/*      $NetBSD: tcp_subr.c,v 1.298 2025/02/26 04:49:45 andvar Exp $    */

/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

/*
* Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
* Facility, NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)tcp_subr.c  8.2 (Berkeley) 5/24/95
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.298 2025/02/26 04:49:45 andvar Exp $");

#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_ipsec.h"
#include "opt_inet_csum.h"
#include "opt_mbuftrace.h"
#endif

#include <sys/param.h>
#include <sys/atomic.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/once.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/pool.h>
#include <sys/md5.h>
#include <sys/cprng.h>

#include <net/route.h>
#include <net/if.h>

#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/ip_var.h>
#include <netinet/ip_icmp.h>

#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/ip6_var.h>
#include <netinet6/in6_var.h>
#include <netinet6/ip6protosw.h>
#include <netinet/icmp6.h>
#include <netinet6/nd6.h>
#endif

#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcp_vtw.h>
#include <netinet/tcp_private.h>
#include <netinet/tcp_congctl.h>
#include <netinet/tcp_syncache.h>

#ifdef IPSEC
#include <netipsec/ipsec.h>
#ifdef INET6
#include <netipsec/ipsec6.h>
#endif
#include <netipsec/key.h>
#endif


struct  inpcbtable tcbtable;    /* head of queue of active tcpcb's */
u_int32_t tcp_now;              /* slow ticks, for RFC 1323 timestamps */

percpu_t *tcpstat_percpu;

/* patchable/settable parameters for tcp */
int     tcp_mssdflt = TCP_MSS;
int     tcp_minmss = TCP_MINMSS;
int     tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
int     tcp_do_rfc1323 = 1;     /* window scaling / timestamps (obsolete) */
int     tcp_do_rfc1948 = 0;     /* ISS by cryptographic hash */
int     tcp_do_sack = 1;        /* selective acknowledgement */
int     tcp_do_win_scale = 1;   /* RFC1323 window scaling */
int     tcp_do_timestamps = 1;  /* RFC1323 timestamps */
int     tcp_ack_on_push = 0;    /* set to enable immediate ACK-on-PUSH */
int     tcp_do_ecn = 0;         /* Explicit Congestion Notification */
#ifndef TCP_INIT_WIN
#define TCP_INIT_WIN    4       /* initial slow start window */
#endif
#ifndef TCP_INIT_WIN_LOCAL
#define TCP_INIT_WIN_LOCAL 4    /* initial slow start window for local nets */
#endif
/*
* Up to 5 we scale linearly, to reach 3 * 1460; then (iw) * 1460.
* This is to simulate current behavior for iw == 4
*/
int tcp_init_win_max[] = {
        1 * 1460,
        1 * 1460,
        2 * 1460,
        2 * 1460,
        3 * 1460,
        5 * 1460,
        6 * 1460,
        7 * 1460,
        8 * 1460,
        9 * 1460,
       10 * 1460
};
int     tcp_init_win = TCP_INIT_WIN;
int     tcp_init_win_local = TCP_INIT_WIN_LOCAL;
int     tcp_mss_ifmtu = 0;
int     tcp_rst_ppslim = 100;   /* 100pps */
int     tcp_ackdrop_ppslim = 100;       /* 100pps */
int     tcp_do_loopback_cksum = 0;
int     tcp_do_abc = 1;         /* RFC3465 Appropriate byte counting. */
int     tcp_abc_aggressive = 1; /* 1: L=2*SMSS  0: L=1*SMSS */
int     tcp_sack_tp_maxholes = 32;
int     tcp_sack_globalmaxholes = 1024;
int     tcp_sack_globalholes = 0;
int     tcp_ecn_maxretries = 1;
int     tcp_msl_enable = 1;             /* enable TIME_WAIT truncation  */
int     tcp_msl_loop   = PR_SLOWHZ;     /* MSL for loopback             */
int     tcp_msl_local  = 5 * PR_SLOWHZ; /* MSL for 'local'              */
int     tcp_msl_remote = TCPTV_MSL;     /* MSL otherwise                */
int     tcp_msl_remote_threshold = TCPTV_SRTTDFLT;      /* RTT threshold */
int     tcp_rttlocal = 0;               /* Use RTT to decide who's 'local' */

int     tcp4_vtw_enable = 0;            /* 1 to enable */
int     tcp6_vtw_enable = 0;            /* 1 to enable */
int     tcp_vtw_was_enabled = 0;
int     tcp_vtw_entries = 1 << 4;       /* 16 vestigial TIME_WAIT entries */

/* tcb hash */
#ifndef TCBHASHSIZE
#define TCBHASHSIZE     128
#endif
int     tcbhashsize = TCBHASHSIZE;

int     tcp_freeq(struct tcpcb *);
static int      tcp_iss_secret_init(void);

static void     tcp_mtudisc_callback(struct in_addr);

#ifdef INET6
static void     tcp6_mtudisc(struct inpcb *, int);
#endif

static struct pool tcpcb_pool;

static int tcp_drainwanted;

#ifdef TCP_CSUM_COUNTERS
#include <sys/device.h>

struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   NULL, "tcp", "hwcsum bad");
struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   NULL, "tcp", "hwcsum ok");
struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   NULL, "tcp", "hwcsum data");
struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   NULL, "tcp", "swcsum");

EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
EVCNT_ATTACH_STATIC(tcp_swcsum);

#if defined(INET6)
struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   NULL, "tcp6", "hwcsum bad");
struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   NULL, "tcp6", "hwcsum ok");
struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   NULL, "tcp6", "hwcsum data");
struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   NULL, "tcp6", "swcsum");

EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
EVCNT_ATTACH_STATIC(tcp6_swcsum);
#endif /* defined(INET6) */
#endif /* TCP_CSUM_COUNTERS */


#ifdef TCP_OUTPUT_COUNTERS
#include <sys/device.h>

struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   NULL, "tcp", "output big header");
struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   NULL, "tcp", "output predict hit");
struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   NULL, "tcp", "output predict miss");
struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   NULL, "tcp", "output copy small");
struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   NULL, "tcp", "output copy big");
struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   NULL, "tcp", "output reference big");

EVCNT_ATTACH_STATIC(tcp_output_bigheader);
EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
EVCNT_ATTACH_STATIC(tcp_output_copysmall);
EVCNT_ATTACH_STATIC(tcp_output_copybig);
EVCNT_ATTACH_STATIC(tcp_output_refbig);

#endif /* TCP_OUTPUT_COUNTERS */

#ifdef TCP_REASS_COUNTERS
#include <sys/device.h>

struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   NULL, "tcp_reass", "calls");
struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   &tcp_reass_, "tcp_reass", "insert into empty queue");
struct evcnt tcp_reass_iteration[8] = {
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
};
struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   &tcp_reass_, "tcp_reass", "prepend to first");
struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   &tcp_reass_, "tcp_reass", "prepend");
struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   &tcp_reass_, "tcp_reass", "insert");
struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   &tcp_reass_, "tcp_reass", "insert at tail");
struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   &tcp_reass_, "tcp_reass", "append");
struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   &tcp_reass_, "tcp_reass", "append to tail fragment");
struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   &tcp_reass_, "tcp_reass", "overlap at end");
struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   &tcp_reass_, "tcp_reass", "overlap at start");
struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   &tcp_reass_, "tcp_reass", "duplicate segment");
struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
   &tcp_reass_, "tcp_reass", "duplicate fragment");

EVCNT_ATTACH_STATIC(tcp_reass_);
EVCNT_ATTACH_STATIC(tcp_reass_empty);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
EVCNT_ATTACH_STATIC(tcp_reass_prepend);
EVCNT_ATTACH_STATIC(tcp_reass_insert);
EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
EVCNT_ATTACH_STATIC(tcp_reass_append);
EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
EVCNT_ATTACH_STATIC(tcp_reass_segdup);
EVCNT_ATTACH_STATIC(tcp_reass_fragdup);

#endif /* TCP_REASS_COUNTERS */

#ifdef MBUFTRACE
struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
#endif

static int
do_tcpinit(void)
{

       inpcb_init(&tcbtable, tcbhashsize, tcbhashsize);
       pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
           NULL, IPL_SOFTNET);

       tcp_usrreq_init();

       /* Initialize timer state. */
       tcp_timer_init();

       /* Initialize the compressed state engine. */
       syn_cache_init();

       /* Initialize the congestion control algorithms. */
       tcp_congctl_init();

       /* Initialize the TCPCB template. */
       tcp_tcpcb_template();

       /* Initialize reassembly queue */
       tcpipqent_init();

       /* SACK */
       tcp_sack_init();

       MOWNER_ATTACH(&tcp_tx_mowner);
       MOWNER_ATTACH(&tcp_rx_mowner);
       MOWNER_ATTACH(&tcp_reass_mowner);
       MOWNER_ATTACH(&tcp_sock_mowner);
       MOWNER_ATTACH(&tcp_sock_tx_mowner);
       MOWNER_ATTACH(&tcp_sock_rx_mowner);
       MOWNER_ATTACH(&tcp_mowner);

       tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);

       vtw_earlyinit();

       tcp_slowtimo_init();

       return 0;
}

void
tcp_init_common(unsigned basehlen)
{
       static ONCE_DECL(dotcpinit);
       unsigned hlen = basehlen + sizeof(struct tcphdr);
       unsigned oldhlen;

       if (max_linkhdr + hlen > MHLEN)
               panic("tcp_init");
       while ((oldhlen = max_protohdr) < hlen)
               atomic_cas_uint(&max_protohdr, oldhlen, hlen);

       RUN_ONCE(&dotcpinit, do_tcpinit);
}

/*
* Tcp initialization
*/
void
tcp_init(void)
{

       icmp_mtudisc_callback_register(tcp_mtudisc_callback);

       tcp_init_common(sizeof(struct ip));
}

/*
* Create template to be used to send tcp packets on a connection.
* Call after host entry created, allocates an mbuf and fills
* in a skeletal tcp/ip header, minimizing the amount of work
* necessary when the connection is used.
*/
struct mbuf *
tcp_template(struct tcpcb *tp)
{
       struct inpcb *inp = tp->t_inpcb;
       struct tcphdr *n;
       struct mbuf *m;
       int hlen;

       switch (tp->t_family) {
       case AF_INET:
               hlen = sizeof(struct ip);
               if (inp->inp_af == AF_INET)
                       break;
#ifdef INET6
               if (inp->inp_af == AF_INET6) {
                       /* mapped addr case */
                       if (IN6_IS_ADDR_V4MAPPED(&in6p_laddr(inp))
                        && IN6_IS_ADDR_V4MAPPED(&in6p_faddr(inp)))
                               break;
               }
#endif
               return NULL;    /*EINVAL*/
#ifdef INET6
       case AF_INET6:
               hlen = sizeof(struct ip6_hdr);
               if (inp != NULL) {
                       /* more sainty check? */
                       break;
               }
               return NULL;    /*EINVAL*/
#endif
       default:
               return NULL;    /*EAFNOSUPPORT*/
       }

       KASSERT(hlen + sizeof(struct tcphdr) <= MCLBYTES);

       m = tp->t_template;
       if (m && m->m_len == hlen + sizeof(struct tcphdr)) {
               ;
       } else {
               m_freem(m);
               m = tp->t_template = NULL;
               MGETHDR(m, M_DONTWAIT, MT_HEADER);
               if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
                       MCLGET(m, M_DONTWAIT);
                       if ((m->m_flags & M_EXT) == 0) {
                               m_free(m);
                               m = NULL;
                       }
               }
               if (m == NULL)
                       return NULL;
               MCLAIM(m, &tcp_mowner);
               m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
       }

       memset(mtod(m, void *), 0, m->m_len);

       n = (struct tcphdr *)(mtod(m, char *) + hlen);

       switch (tp->t_family) {
       case AF_INET:
           {
               struct ipovly *ipov;
               mtod(m, struct ip *)->ip_v = 4;
               mtod(m, struct ip *)->ip_hl = hlen >> 2;
               ipov = mtod(m, struct ipovly *);
               ipov->ih_pr = IPPROTO_TCP;
               ipov->ih_len = htons(sizeof(struct tcphdr));
               if (inp->inp_af == AF_INET) {
                       ipov->ih_src = in4p_laddr(inp);
                       ipov->ih_dst = in4p_faddr(inp);
               }
#ifdef INET6
               else if (inp->inp_af == AF_INET6) {
                       /* mapped addr case */
                       bcopy(&in6p_laddr(inp).s6_addr32[3], &ipov->ih_src,
                               sizeof(ipov->ih_src));
                       bcopy(&in6p_faddr(inp).s6_addr32[3], &ipov->ih_dst,
                               sizeof(ipov->ih_dst));
               }
#endif

               /*
                * Compute the pseudo-header portion of the checksum
                * now.  We incrementally add in the TCP option and
                * payload lengths later, and then compute the TCP
                * checksum right before the packet is sent off onto
                * the wire.
                */
               n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
                   ipov->ih_dst.s_addr,
                   htons(sizeof(struct tcphdr) + IPPROTO_TCP));
               break;
           }
#ifdef INET6
       case AF_INET6:
           {
               struct ip6_hdr *ip6;
               mtod(m, struct ip *)->ip_v = 6;
               ip6 = mtod(m, struct ip6_hdr *);
               ip6->ip6_nxt = IPPROTO_TCP;
               ip6->ip6_plen = htons(sizeof(struct tcphdr));
               ip6->ip6_src = in6p_laddr(inp);
               ip6->ip6_dst = in6p_faddr(inp);
               ip6->ip6_flow = in6p_flowinfo(inp) & IPV6_FLOWINFO_MASK;
               if (ip6_auto_flowlabel) {
                       ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
                       ip6->ip6_flow |=
                           (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
               }
               ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
               ip6->ip6_vfc |= IPV6_VERSION;

               /*
                * Compute the pseudo-header portion of the checksum
                * now.  We incrementally add in the TCP option and
                * payload lengths later, and then compute the TCP
                * checksum right before the packet is sent off onto
                * the wire.
                */
               n->th_sum = in6_cksum_phdr(&in6p_laddr(inp),
                   &in6p_faddr(inp), htonl(sizeof(struct tcphdr)),
                   htonl(IPPROTO_TCP));
               break;
           }
#endif
       }

       n->th_sport = inp->inp_lport;
       n->th_dport = inp->inp_fport;

       n->th_seq = 0;
       n->th_ack = 0;
       n->th_x2 = 0;
       n->th_off = 5;
       n->th_flags = 0;
       n->th_win = 0;
       n->th_urp = 0;
       return m;
}

/*
* Send a single message to the TCP at address specified by
* the given TCP/IP header.  If m == 0, then we make a copy
* of the tcpiphdr at ti and send directly to the addressed host.
* This is used to force keep alive messages out using the TCP
* template for a connection tp->t_template.  If flags are given
* then we send a message back to the TCP which originated the
* segment ti, and discard the mbuf containing it and any other
* attached mbufs.
*
* In any case the ack and sequence number of the transmitted
* segment are as specified by the parameters.
*/
int
tcp_respond(struct tcpcb *tp, struct mbuf *mtemplate, struct mbuf *m,
   struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
{
       struct route *ro;
       int error, tlen, win = 0;
       int hlen;
       struct ip *ip;
#ifdef INET6
       struct ip6_hdr *ip6;
#endif
       int family;     /* family on packet, not inpcb! */
       struct tcphdr *th;

       if (tp != NULL && (flags & TH_RST) == 0) {
               KASSERT(tp->t_inpcb != NULL);

               win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
       }

       th = NULL;      /* Quell uninitialized warning */
       ip = NULL;
#ifdef INET6
       ip6 = NULL;
#endif
       if (m == NULL) {
               if (!mtemplate)
                       return EINVAL;

               /* get family information from template */
               switch (mtod(mtemplate, struct ip *)->ip_v) {
               case 4:
                       family = AF_INET;
                       hlen = sizeof(struct ip);
                       break;
#ifdef INET6
               case 6:
                       family = AF_INET6;
                       hlen = sizeof(struct ip6_hdr);
                       break;
#endif
               default:
                       return EAFNOSUPPORT;
               }

               MGETHDR(m, M_DONTWAIT, MT_HEADER);
               if (m) {
                       MCLAIM(m, &tcp_tx_mowner);
                       MCLGET(m, M_DONTWAIT);
                       if ((m->m_flags & M_EXT) == 0) {
                               m_free(m);
                               m = NULL;
                       }
               }
               if (m == NULL)
                       return ENOBUFS;

               tlen = 0;

               m->m_data += max_linkhdr;
               bcopy(mtod(mtemplate, void *), mtod(m, void *),
                       mtemplate->m_len);
               switch (family) {
               case AF_INET:
                       ip = mtod(m, struct ip *);
                       th = (struct tcphdr *)(ip + 1);
                       break;
#ifdef INET6
               case AF_INET6:
                       ip6 = mtod(m, struct ip6_hdr *);
                       th = (struct tcphdr *)(ip6 + 1);
                       break;
#endif
               }
               flags = TH_ACK;
       } else {
               if ((m->m_flags & M_PKTHDR) == 0) {
                       m_freem(m);
                       return EINVAL;
               }
               KASSERT(th0 != NULL);

               /* get family information from m */
               switch (mtod(m, struct ip *)->ip_v) {
               case 4:
                       family = AF_INET;
                       hlen = sizeof(struct ip);
                       ip = mtod(m, struct ip *);
                       break;
#ifdef INET6
               case 6:
                       family = AF_INET6;
                       hlen = sizeof(struct ip6_hdr);
                       ip6 = mtod(m, struct ip6_hdr *);
                       break;
#endif
               default:
                       m_freem(m);
                       return EAFNOSUPPORT;
               }
               /* clear h/w csum flags inherited from rx packet */
               m->m_pkthdr.csum_flags = 0;

               if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
                       tlen = sizeof(*th0);
               else
                       tlen = th0->th_off << 2;

               if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
                   mtod(m, char *) + hlen == (char *)th0) {
                       m->m_len = hlen + tlen;
                       m_freem(m->m_next);
                       m->m_next = NULL;
               } else {
                       struct mbuf *n;

                       KASSERT(max_linkhdr + hlen + tlen <= MCLBYTES);

                       MGETHDR(n, M_DONTWAIT, MT_HEADER);
                       if (n && max_linkhdr + hlen + tlen > MHLEN) {
                               MCLGET(n, M_DONTWAIT);
                               if ((n->m_flags & M_EXT) == 0) {
                                       m_freem(n);
                                       n = NULL;
                               }
                       }
                       if (!n) {
                               m_freem(m);
                               return ENOBUFS;
                       }

                       MCLAIM(n, &tcp_tx_mowner);
                       n->m_data += max_linkhdr;
                       n->m_len = hlen + tlen;
                       m_copyback(n, 0, hlen, mtod(m, void *));
                       m_copyback(n, hlen, tlen, (void *)th0);

                       m_freem(m);
                       m = n;
                       n = NULL;
               }

#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
               switch (family) {
               case AF_INET:
                       ip = mtod(m, struct ip *);
                       th = (struct tcphdr *)(ip + 1);
                       ip->ip_p = IPPROTO_TCP;
                       xchg(ip->ip_dst, ip->ip_src, struct in_addr);
                       ip->ip_p = IPPROTO_TCP;
                       break;
#ifdef INET6
               case AF_INET6:
                       ip6 = mtod(m, struct ip6_hdr *);
                       th = (struct tcphdr *)(ip6 + 1);
                       ip6->ip6_nxt = IPPROTO_TCP;
                       xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
                       ip6->ip6_nxt = IPPROTO_TCP;
                       break;
#endif
               }
               xchg(th->th_dport, th->th_sport, u_int16_t);
#undef xchg
               tlen = 0;       /*be friendly with the following code*/
       }
       th->th_seq = htonl(seq);
       th->th_ack = htonl(ack);
       th->th_x2 = 0;
       if ((flags & TH_SYN) == 0) {
               if (tp)
                       win >>= tp->rcv_scale;
               if (win > TCP_MAXWIN)
                       win = TCP_MAXWIN;
               th->th_win = htons((u_int16_t)win);
               th->th_off = sizeof (struct tcphdr) >> 2;
               tlen += sizeof(*th);
       } else {
               tlen += th->th_off << 2;
       }
       m->m_len = hlen + tlen;
       m->m_pkthdr.len = hlen + tlen;
       m_reset_rcvif(m);
       th->th_flags = flags;
       th->th_urp = 0;

       switch (family) {
       case AF_INET:
           {
               struct ipovly *ipov = (struct ipovly *)ip;
               memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
               ipov->ih_len = htons((u_int16_t)tlen);

               th->th_sum = 0;
               th->th_sum = in_cksum(m, hlen + tlen);
               ip->ip_len = htons(hlen + tlen);
               ip->ip_ttl = ip_defttl;
               break;
           }
#ifdef INET6
       case AF_INET6:
           {
               th->th_sum = 0;
               th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
                   tlen);
               ip6->ip6_plen = htons(tlen);
               if (tp && tp->t_inpcb->inp_af == AF_INET6)
                       ip6->ip6_hlim = in6pcb_selecthlim_rt(tp->t_inpcb);
               else
                       ip6->ip6_hlim = ip6_defhlim;
               ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
               if (ip6_auto_flowlabel) {
                       ip6->ip6_flow |=
                           (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
               }
               break;
           }
#endif
       }

       if (tp != NULL && tp->t_inpcb->inp_af == AF_INET) {
               ro = &tp->t_inpcb->inp_route;
               KASSERT(family == AF_INET);
               KASSERT(in_hosteq(ip->ip_dst, in4p_faddr(tp->t_inpcb)));
       }
#ifdef INET6
       else if (tp != NULL && tp->t_inpcb->inp_af == AF_INET6) {
               ro = (struct route *)&tp->t_inpcb->inp_route;

#ifdef DIAGNOSTIC
               if (family == AF_INET) {
                       if (!IN6_IS_ADDR_V4MAPPED(&in6p_faddr(tp->t_inpcb)))
                               panic("tcp_respond: not mapped addr");
                       if (memcmp(&ip->ip_dst,
                           &in6p_faddr(tp->t_inpcb).s6_addr32[3],
                           sizeof(ip->ip_dst)) != 0) {
                               panic("tcp_respond: ip_dst != in6p_faddr");
                       }
               } else if (family == AF_INET6) {
                       if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
                           &in6p_faddr(tp->t_inpcb)))
                               panic("tcp_respond: ip6_dst != in6p_faddr");
               } else
                       panic("tcp_respond: address family mismatch");
#endif
       }
#endif
       else
               ro = NULL;

       switch (family) {
       case AF_INET:
               error = ip_output(m, NULL, ro,
                   (tp && tp->t_mtudisc ? IP_MTUDISC : 0), NULL,
                   tp ? tp->t_inpcb : NULL);
               break;
#ifdef INET6
       case AF_INET6:
               error = ip6_output(m, NULL, ro, 0, NULL,
                   tp ? tp->t_inpcb : NULL, NULL);
               break;
#endif
       default:
               error = EAFNOSUPPORT;
               break;
       }

       return error;
}

/*
* Template TCPCB.  Rather than zeroing a new TCPCB and initializing
* a bunch of members individually, we maintain this template for the
* static and mostly-static components of the TCPCB, and copy it into
* the new TCPCB instead.
*/
static struct tcpcb tcpcb_template = {
       .t_srtt = TCPTV_SRTTBASE,
       .t_rttmin = TCPTV_MIN,

       .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
       .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
       .snd_numholes = 0,
       .snd_cubic_wmax = 0,
       .snd_cubic_wmax_last = 0,
       .snd_cubic_ctime = 0,

       .t_partialacks = -1,
       .t_bytes_acked = 0,
       .t_sndrexmitpack = 0,
       .t_rcvoopack = 0,
       .t_sndzerowin = 0,
};

/*
* Updates the TCPCB template whenever a parameter that would affect
* the template is changed.
*/
void
tcp_tcpcb_template(void)
{
       struct tcpcb *tp = &tcpcb_template;
       int flags;

       tp->t_peermss = tcp_mssdflt;
       tp->t_ourmss = tcp_mssdflt;
       tp->t_segsz = tcp_mssdflt;

       flags = 0;
       if (tcp_do_rfc1323 && tcp_do_win_scale)
               flags |= TF_REQ_SCALE;
       if (tcp_do_rfc1323 && tcp_do_timestamps)
               flags |= TF_REQ_TSTMP;
       tp->t_flags = flags;

       /*
        * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
        * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
        * reasonable initial retransmit time.
        */
       tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
       TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
           TCPTV_MIN, TCPTV_REXMTMAX);

       /* Keep Alive */
       tp->t_keepinit = MIN(tcp_keepinit, TCP_TIMER_MAXTICKS);
       tp->t_keepidle = MIN(tcp_keepidle, TCP_TIMER_MAXTICKS);
       tp->t_keepintvl = MIN(tcp_keepintvl, TCP_TIMER_MAXTICKS);
       tp->t_keepcnt = MAX(1, MIN(tcp_keepcnt, TCP_TIMER_MAXTICKS));
       tp->t_maxidle = tp->t_keepcnt * MIN(tp->t_keepintvl,
           TCP_TIMER_MAXTICKS/tp->t_keepcnt);

       /* MSL */
       tp->t_msl = TCPTV_MSL;
}

/*
* Create a new TCP control block, making an
* empty reassembly queue and hooking it to the argument
* protocol control block.
*/
struct tcpcb *
tcp_newtcpcb(int family, struct inpcb *inp)
{
       struct tcpcb *tp;
       int i;

       /* XXX Consider using a pool_cache for speed. */
       tp = pool_get(&tcpcb_pool, PR_NOWAIT);  /* splsoftnet via tcp_usrreq */
       if (tp == NULL)
               return NULL;
       memcpy(tp, &tcpcb_template, sizeof(*tp));
       TAILQ_INIT(&tp->segq);
       TAILQ_INIT(&tp->timeq);
       tp->t_family = family;          /* may be overridden later on */
       TAILQ_INIT(&tp->snd_holes);
       LIST_INIT(&tp->t_sc);           /* XXX can template this */

       /* Don't sweat this loop; hopefully the compiler will unroll it. */
       for (i = 0; i < TCPT_NTIMERS; i++) {
               callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
               TCP_TIMER_INIT(tp, i);
       }
       callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);

       switch (family) {
       case AF_INET:
               in4p_ip(inp).ip_ttl = ip_defttl;
               inp->inp_ppcb = (void *)tp;

               tp->t_inpcb = inp;
               tp->t_mtudisc = ip_mtudisc;
               break;
#ifdef INET6
       case AF_INET6:
               in6p_ip6(inp).ip6_hlim = in6pcb_selecthlim_rt(inp);
               inp->inp_ppcb = (void *)tp;

               tp->t_inpcb = inp;
               /* for IPv6, always try to run path MTU discovery */
               tp->t_mtudisc = 1;
               break;
#endif /* INET6 */
       default:
               for (i = 0; i < TCPT_NTIMERS; i++)
                       callout_destroy(&tp->t_timer[i]);
               callout_destroy(&tp->t_delack_ch);
               pool_put(&tcpcb_pool, tp);      /* splsoftnet via tcp_usrreq */
               return NULL;
       }

       /*
        * Initialize our timebase.  When we send timestamps, we take
        * the delta from tcp_now -- this means each connection always
        * gets a timebase of 1, which makes it, among other things,
        * more difficult to determine how long a system has been up,
        * and thus how many TCP sequence increments have occurred.
        *
        * We start with 1, because 0 doesn't work with linux, which
        * considers timestamp 0 in a SYN packet as a bug and disables
        * timestamps.
        */
       tp->ts_timebase = tcp_now - 1;

       tcp_congctl_select(tp, tcp_congctl_global_name);

       return tp;
}

/*
* Drop a TCP connection, reporting
* the specified error.  If connection is synchronized,
* then send a RST to peer.
*/
struct tcpcb *
tcp_drop(struct tcpcb *tp, int errno)
{
       struct socket *so;

       KASSERT(tp->t_inpcb != NULL);

       so = tp->t_inpcb->inp_socket;
       if (so == NULL)
               return NULL;

       if (TCPS_HAVERCVDSYN(tp->t_state)) {
               tp->t_state = TCPS_CLOSED;
               (void) tcp_output(tp);
               TCP_STATINC(TCP_STAT_DROPS);
       } else
               TCP_STATINC(TCP_STAT_CONNDROPS);
       if (errno == ETIMEDOUT && tp->t_softerror)
               errno = tp->t_softerror;
       so->so_error = errno;
       return (tcp_close(tp));
}

/*
* Close a TCP control block:
*      discard all space held by the tcp
*      discard internet protocol block
*      wake up any sleepers
*/
struct tcpcb *
tcp_close(struct tcpcb *tp)
{
       struct inpcb *inp;
       struct socket *so;
#ifdef RTV_RTT
       struct rtentry *rt = NULL;
#endif
       struct route *ro;
       int j;

       inp = tp->t_inpcb;
       so = inp->inp_socket;
       ro = &inp->inp_route;

#ifdef RTV_RTT
       /*
        * If we sent enough data to get some meaningful characteristics,
        * save them in the routing entry.  'Enough' is arbitrarily
        * defined as the sendpipesize (default 4K) * 16.  This would
        * give us 16 rtt samples assuming we only get one sample per
        * window (the usual case on a long haul net).  16 samples is
        * enough for the srtt filter to converge to within 5% of the correct
        * value; fewer samples and we could save a very bogus rtt.
        *
        * Don't update the default route's characteristics and don't
        * update anything that the user "locked".
        */
       if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
           ro && (rt = rtcache_validate(ro)) != NULL &&
           !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
               u_long i = 0;

               if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
                       i = tp->t_srtt *
                           ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
                       if (rt->rt_rmx.rmx_rtt && i)
                               /*
                                * filter this update to half the old & half
                                * the new values, converting scale.
                                * See route.h and tcp_var.h for a
                                * description of the scaling constants.
                                */
                               rt->rt_rmx.rmx_rtt =
                                   (rt->rt_rmx.rmx_rtt + i) / 2;
                       else
                               rt->rt_rmx.rmx_rtt = i;
               }
               if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
                       i = tp->t_rttvar *
                           ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
                       if (rt->rt_rmx.rmx_rttvar && i)
                               rt->rt_rmx.rmx_rttvar =
                                   (rt->rt_rmx.rmx_rttvar + i) / 2;
                       else
                               rt->rt_rmx.rmx_rttvar = i;
               }
               /*
                * update the pipelimit (ssthresh) if it has been updated
                * already or if a pipesize was specified & the threshold
                * got below half the pipesize.  I.e., wait for bad news
                * before we start updating, then update on both good
                * and bad news.
                */
               if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
                   (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
                   i < (rt->rt_rmx.rmx_sendpipe / 2)) {
                       /*
                        * convert the limit from user data bytes to
                        * packets then to packet data bytes.
                        */
                       i = (i + tp->t_segsz / 2) / tp->t_segsz;
                       if (i < 2)
                               i = 2;
                       i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
                       if (rt->rt_rmx.rmx_ssthresh)
                               rt->rt_rmx.rmx_ssthresh =
                                   (rt->rt_rmx.rmx_ssthresh + i) / 2;
                       else
                               rt->rt_rmx.rmx_ssthresh = i;
               }
       }
       rtcache_unref(rt, ro);
#endif /* RTV_RTT */
       /* free the reassembly queue, if any */
       TCP_REASS_LOCK(tp);
       (void) tcp_freeq(tp);
       TCP_REASS_UNLOCK(tp);

       /* free the SACK holes list. */
       tcp_free_sackholes(tp);
       tcp_congctl_release(tp);
       syn_cache_cleanup(tp);

       if (tp->t_template) {
               m_free(tp->t_template);
               tp->t_template = NULL;
       }

       /*
        * Detaching the pcb will unlock the socket/tcpcb, and stopping
        * the timers can also drop the lock.  We need to prevent access
        * to the tcpcb as it's half torn down.  Flag the pcb as dead
        * (prevents access by timers) and only then detach it.
        */
       tp->t_flags |= TF_DEAD;
       inp->inp_ppcb = NULL;
       soisdisconnected(so);
       inpcb_destroy(inp);
       /*
        * pcb is no longer visble elsewhere, so we can safely release
        * the lock in callout_halt() if needed.
        */
       TCP_STATINC(TCP_STAT_CLOSED);
       for (j = 0; j < TCPT_NTIMERS; j++) {
               callout_halt(&tp->t_timer[j], softnet_lock);
               callout_destroy(&tp->t_timer[j]);
       }
       callout_halt(&tp->t_delack_ch, softnet_lock);
       callout_destroy(&tp->t_delack_ch);
       pool_put(&tcpcb_pool, tp);

       return NULL;
}

int
tcp_freeq(struct tcpcb *tp)
{
       struct ipqent *qe;
       int rv = 0;

       TCP_REASS_LOCK_CHECK(tp);

       while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
               TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
               TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
               m_freem(qe->ipqe_m);
               tcpipqent_free(qe);
               rv = 1;
       }
       tp->t_segqlen = 0;
       KASSERT(TAILQ_EMPTY(&tp->timeq));
       return (rv);
}

void
tcp_fasttimo(void)
{
       if (tcp_drainwanted) {
               tcp_drain();
               tcp_drainwanted = 0;
       }
}

void
tcp_drainstub(void)
{
       tcp_drainwanted = 1;
}

/*
* Protocol drain routine.  Called when memory is in short supply.
* Called from pr_fasttimo thus a callout context.
*/
void
tcp_drain(void)
{
       struct inpcb *inp;
       struct tcpcb *tp;

       mutex_enter(softnet_lock);
       KERNEL_LOCK(1, NULL);

       /*
        * Free the sequence queue of all TCP connections.
        */
       TAILQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
               tp = intotcpcb(inp);
               if (tp != NULL) {
                       /*
                        * If the tcpcb is already busy,
                        * just bail out now.
                        */
                       if (tcp_reass_lock_try(tp) == 0)
                               continue;
                       if (tcp_freeq(tp))
                               TCP_STATINC(TCP_STAT_CONNSDRAINED);
                       TCP_REASS_UNLOCK(tp);
               }
       }

       KERNEL_UNLOCK_ONE(NULL);
       mutex_exit(softnet_lock);
}

/*
* Notify a tcp user of an asynchronous error;
* store error as soft error, but wake up user
* (for now, won't do anything until can select for soft error).
*/
void
tcp_notify(struct inpcb *inp, int error)
{
       struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
       struct socket *so = inp->inp_socket;

       /*
        * Ignore some errors if we are hooked up.
        * If connection hasn't completed, has retransmitted several times,
        * and receives a second error, give up now.  This is better
        * than waiting a long time to establish a connection that
        * can never complete.
        */
       if (tp->t_state == TCPS_ESTABLISHED &&
            (error == EHOSTUNREACH || error == ENETUNREACH ||
             error == EHOSTDOWN)) {
               return;
       } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
           tp->t_rxtshift > 3 && tp->t_softerror)
               so->so_error = error;
       else
               tp->t_softerror = error;
       cv_broadcast(&so->so_cv);
       sorwakeup(so);
       sowwakeup(so);
}

#ifdef INET6
void *
tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
{
       struct tcphdr th;
       void (*notify)(struct inpcb *, int) = tcp_notify;
       int nmatch;
       struct ip6_hdr *ip6;
       const struct sockaddr_in6 *sa6_src = NULL;
       const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
       struct mbuf *m;
       int off;

       if (sa->sa_family != AF_INET6 ||
           sa->sa_len != sizeof(struct sockaddr_in6))
               return NULL;
       if ((unsigned)cmd >= PRC_NCMDS)
               return NULL;
       else if (cmd == PRC_QUENCH) {
               /*
                * Don't honor ICMP Source Quench messages meant for
                * TCP connections.
                */
               return NULL;
       } else if (PRC_IS_REDIRECT(cmd))
               notify = in6pcb_rtchange, d = NULL;
       else if (cmd == PRC_MSGSIZE)
               ; /* special code is present, see below */
       else if (cmd == PRC_HOSTDEAD)
               d = NULL;
       else if (inet6ctlerrmap[cmd] == 0)
               return NULL;

       /* if the parameter is from icmp6, decode it. */
       if (d != NULL) {
               struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
               m = ip6cp->ip6c_m;
               ip6 = ip6cp->ip6c_ip6;
               off = ip6cp->ip6c_off;
               sa6_src = ip6cp->ip6c_src;
       } else {
               m = NULL;
               ip6 = NULL;
               sa6_src = &sa6_any;
               off = 0;
       }

       if (ip6) {
               /* check if we can safely examine src and dst ports */
               if (m->m_pkthdr.len < off + sizeof(th)) {
                       if (cmd == PRC_MSGSIZE)
                               icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
                       return NULL;
               }

               memset(&th, 0, sizeof(th));
               m_copydata(m, off, sizeof(th), (void *)&th);

               if (cmd == PRC_MSGSIZE) {
                       int valid = 0;

                       /*
                        * Check to see if we have a valid TCP connection
                        * corresponding to the address in the ICMPv6 message
                        * payload.
                        */
                       if (in6pcb_lookup(&tcbtable, &sa6->sin6_addr,
                           th.th_dport,
                           (const struct in6_addr *)&sa6_src->sin6_addr,
                                                 th.th_sport, 0, 0))
                               valid++;

                       /*
                        * Depending on the value of "valid" and routing table
                        * size (mtudisc_{hi,lo}wat), we will:
                        * - recalculate the new MTU and create the
                        *   corresponding routing entry, or
                        * - ignore the MTU change notification.
                        */
                       icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);

                       /*
                        * no need to call in6pcb_notify, it should have been
                        * called via callback if necessary
                        */
                       return NULL;
               }

               nmatch = in6pcb_notify(&tcbtable, sa, th.th_dport,
                   (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
               if (nmatch == 0 && syn_cache_count &&
                   (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
                    inet6ctlerrmap[cmd] == ENETUNREACH ||
                    inet6ctlerrmap[cmd] == EHOSTDOWN))
                       syn_cache_unreach((const struct sockaddr *)sa6_src,
                                         sa, &th);
       } else {
               (void) in6pcb_notify(&tcbtable, sa, 0,
                   (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
       }

       return NULL;
}
#endif

/* assumes that ip header and tcp header are contiguous on mbuf */
void *
tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
{
       struct ip *ip = v;
       struct tcphdr *th;
       struct icmp *icp;
       extern const int inetctlerrmap[];
       void (*notify)(struct inpcb *, int) = tcp_notify;
       int errno;
       int nmatch;
       struct tcpcb *tp;
       u_int mtu;
       tcp_seq seq;
       struct inpcb *inp;
#ifdef INET6
       struct in6_addr src6, dst6;
#endif

       if (sa->sa_family != AF_INET ||
           sa->sa_len != sizeof(struct sockaddr_in))
               return NULL;
       if ((unsigned)cmd >= PRC_NCMDS)
               return NULL;
       errno = inetctlerrmap[cmd];
       if (cmd == PRC_QUENCH)
               /*
                * Don't honor ICMP Source Quench messages meant for
                * TCP connections.
                */
               return NULL;
       else if (PRC_IS_REDIRECT(cmd))
               notify = inpcb_rtchange, ip = 0;
       else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
               /*
                * Check to see if we have a valid TCP connection
                * corresponding to the address in the ICMP message
                * payload.
                *
                * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
                */
               th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
#ifdef INET6
               in6_in_2_v4mapin6(&ip->ip_src, &src6);
               in6_in_2_v4mapin6(&ip->ip_dst, &dst6);
#endif
               if ((inp = inpcb_lookup(&tcbtable, ip->ip_dst,
                   th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
                       ;
#ifdef INET6
               else if ((inp = in6pcb_lookup(&tcbtable, &dst6,
                   th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
                       ;
#endif
               else
                       return NULL;

               /*
                * Now that we've validated that we are actually communicating
                * with the host indicated in the ICMP message, locate the
                * ICMP header, recalculate the new MTU, and create the
                * corresponding routing entry.
                */
               icp = (struct icmp *)((char *)ip -
                   offsetof(struct icmp, icmp_ip));
               tp = intotcpcb(inp);
               if (tp == NULL)
                       return NULL;
               seq = ntohl(th->th_seq);
               if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
                       return NULL;
               /*
                * If the ICMP message advertises a Next-Hop MTU
                * equal or larger than the maximum packet size we have
                * ever sent, drop the message.
                */
               mtu = (u_int)ntohs(icp->icmp_nextmtu);
               if (mtu >= tp->t_pmtud_mtu_sent)
                       return NULL;
               if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
                       /*
                        * Calculate new MTU, and create corresponding
                        * route (traditional PMTUD).
                        */
                       tp->t_flags &= ~TF_PMTUD_PEND;
                       icmp_mtudisc(icp, ip->ip_dst);
               } else {
                       /*
                        * Record the information got in the ICMP
                        * message; act on it later.
                        * If we had already recorded an ICMP message,
                        * replace the old one only if the new message
                        * refers to an older TCP segment
                        */
                       if (tp->t_flags & TF_PMTUD_PEND) {
                               if (SEQ_LT(tp->t_pmtud_th_seq, seq))
                                       return NULL;
                       } else
                               tp->t_flags |= TF_PMTUD_PEND;
                       tp->t_pmtud_th_seq = seq;
                       tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
                       tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
                       tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
               }
               return NULL;
       } else if (cmd == PRC_HOSTDEAD)
               ip = 0;
       else if (errno == 0)
               return NULL;
       if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
               th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
               nmatch = inpcb_notify(&tcbtable, satocsin(sa)->sin_addr,
                   th->th_dport, ip->ip_src, th->th_sport, errno, notify);
               if (nmatch == 0 && syn_cache_count &&
                   (inetctlerrmap[cmd] == EHOSTUNREACH ||
                   inetctlerrmap[cmd] == ENETUNREACH ||
                   inetctlerrmap[cmd] == EHOSTDOWN)) {
                       struct sockaddr_in sin;
                       memset(&sin, 0, sizeof(sin));
                       sin.sin_len = sizeof(sin);
                       sin.sin_family = AF_INET;
                       sin.sin_port = th->th_sport;
                       sin.sin_addr = ip->ip_src;
                       syn_cache_unreach((struct sockaddr *)&sin, sa, th);
               }

               /* XXX mapped address case */
       } else
               inpcb_notifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
                   notify);
       return NULL;
}

/*
* When a source quench is received, we are being notified of congestion.
* Close the congestion window down to the Loss Window (one segment).
* We will gradually open it again as we proceed.
*/
void
tcp_quench(struct inpcb *inp)
{
       struct tcpcb *tp = intotcpcb(inp);

       if (tp) {
               tp->snd_cwnd = tp->t_segsz;
               tp->t_bytes_acked = 0;
       }
}

/*
* Path MTU Discovery handlers.
*/
void
tcp_mtudisc_callback(struct in_addr faddr)
{
#ifdef INET6
       struct in6_addr in6;
#endif

       inpcb_notifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
#ifdef INET6
       in6_in_2_v4mapin6(&faddr, &in6);
       tcp6_mtudisc_callback(&in6);
#endif
}

/*
* On receipt of path MTU corrections, flush old route and replace it
* with the new one.  Retransmit all unacknowledged packets, to ensure
* that all packets will be received.
*/
void
tcp_mtudisc(struct inpcb *inp, int errno)
{
       struct tcpcb *tp = intotcpcb(inp);
       struct rtentry *rt;

       if (tp == NULL)
               return;

       rt = inpcb_rtentry(inp);
       if (rt != NULL) {
               /*
                * If this was not a host route, remove and realloc.
                */
               if ((rt->rt_flags & RTF_HOST) == 0) {
                       inpcb_rtentry_unref(rt, inp);
                       inpcb_rtchange(inp, errno);
                       if ((rt = inpcb_rtentry(inp)) == NULL)
                               return;
               }

               /*
                * Slow start out of the error condition.  We
                * use the MTU because we know it's smaller
                * than the previously transmitted segment.
                *
                * Note: This is more conservative than the
                * suggestion in draft-floyd-incr-init-win-03.
                */
               if (rt->rt_rmx.rmx_mtu != 0)
                       tp->snd_cwnd =
                           TCP_INITIAL_WINDOW(tcp_init_win,
                           rt->rt_rmx.rmx_mtu);
               inpcb_rtentry_unref(rt, inp);
       }

       /*
        * Resend unacknowledged packets.
        */
       tp->snd_nxt = tp->sack_newdata = tp->snd_una;
       tcp_output(tp);
}

#ifdef INET6
/*
* Path MTU Discovery handlers.
*/
void
tcp6_mtudisc_callback(struct in6_addr *faddr)
{
       struct sockaddr_in6 sin6;

       memset(&sin6, 0, sizeof(sin6));
       sin6.sin6_family = AF_INET6;
       sin6.sin6_len = sizeof(struct sockaddr_in6);
       sin6.sin6_addr = *faddr;
       (void) in6pcb_notify(&tcbtable, (struct sockaddr *)&sin6, 0,
           (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
}

void
tcp6_mtudisc(struct inpcb *inp, int errno)
{
       struct tcpcb *tp = intotcpcb(inp);
       struct rtentry *rt;

       if (tp == NULL)
               return;

       rt = in6pcb_rtentry(inp);
       if (rt != NULL) {
               /*
                * If this was not a host route, remove and realloc.
                */
               if ((rt->rt_flags & RTF_HOST) == 0) {
                       in6pcb_rtentry_unref(rt, inp);
                       in6pcb_rtchange(inp, errno);
                       rt = in6pcb_rtentry(inp);
                       if (rt == NULL)
                               return;
               }

               /*
                * Slow start out of the error condition.  We
                * use the MTU because we know it's smaller
                * than the previously transmitted segment.
                *
                * Note: This is more conservative than the
                * suggestion in draft-floyd-incr-init-win-03.
                */
               if (rt->rt_rmx.rmx_mtu != 0) {
                       tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
                           rt->rt_rmx.rmx_mtu);
               }
               in6pcb_rtentry_unref(rt, inp);
       }

       /*
        * Resend unacknowledged packets.
        */
       tp->snd_nxt = tp->sack_newdata = tp->snd_una;
       tcp_output(tp);
}
#endif /* INET6 */

/*
* Compute the MSS to advertise to the peer.  Called only during
* the 3-way handshake.  If we are the server (peer initiated
* connection), we are called with a pointer to the interface
* on which the SYN packet arrived.  If we are the client (we
* initiated connection), we are called with a pointer to the
* interface out which this connection should go.
*
* NOTE: Do not subtract IP option/extension header size nor IPsec
* header size from MSS advertisement.  MSS option must hold the maximum
* segment size we can accept, so it must always be:
*       max(if mtu) - ip header - tcp header
*/
u_long
tcp_mss_to_advertise(const struct ifnet *ifp, int af)
{
       extern u_long in_maxmtu;
       u_long mss = 0;
       u_long hdrsiz;

       /*
        * In order to avoid defeating path MTU discovery on the peer,
        * we advertise the max MTU of all attached networks as our MSS,
        * per RFC 1191, section 3.1.
        *
        * We provide the option to advertise just the MTU of
        * the interface on which we hope this connection will
        * be receiving.  If we are responding to a SYN, we
        * will have a pretty good idea about this, but when
        * initiating a connection there is a bit more doubt.
        *
        * We also need to ensure that loopback has a large enough
        * MSS, as the loopback MTU is never included in in_maxmtu.
        */

       if (ifp != NULL)
               switch (af) {
#ifdef INET6
               case AF_INET6:  /* FALLTHROUGH */
#endif
               case AF_INET:
                       mss = ifp->if_mtu;
                       break;
               }

       if (tcp_mss_ifmtu == 0)
               switch (af) {
#ifdef INET6
               case AF_INET6:  /* FALLTHROUGH */
#endif
               case AF_INET:
                       mss = uimax(in_maxmtu, mss);
                       break;
               }

       switch (af) {
       case AF_INET:
               hdrsiz = sizeof(struct ip);
               break;
#ifdef INET6
       case AF_INET6:
               hdrsiz = sizeof(struct ip6_hdr);
               break;
#endif
       default:
               hdrsiz = 0;
               break;
       }
       hdrsiz += sizeof(struct tcphdr);
       if (mss > hdrsiz)
               mss -= hdrsiz;

       mss = uimax(tcp_mssdflt, mss);
       return (mss);
}

/*
* Set connection variables based on the peer's advertised MSS.
* We are passed the TCPCB for the actual connection.  If we
* are the server, we are called by the compressed state engine
* when the 3-way handshake is complete.  If we are the client,
* we are called when we receive the SYN,ACK from the server.
*
* NOTE: Our advertised MSS value must be initialized in the TCPCB
* before this routine is called!
*/
void
tcp_mss_from_peer(struct tcpcb *tp, int offer)
{
       struct socket *so;
#if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
       struct rtentry *rt;
#endif
       u_long bufsize;
       int mss;

       KASSERT(tp->t_inpcb != NULL);

       so = NULL;
       rt = NULL;

       so = tp->t_inpcb->inp_socket;
#if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
       rt = inpcb_rtentry(tp->t_inpcb);
#endif

       /*
        * As per RFC1122, use the default MSS value, unless they
        * sent us an offer.  Do not accept offers less than 256 bytes.
        */
       mss = tcp_mssdflt;
       if (offer)
               mss = offer;
       mss = uimax(mss, 256);          /* sanity */
       tp->t_peermss = mss;
       mss -= tcp_optlen(tp);
       if (tp->t_inpcb->inp_af == AF_INET)
               mss -= ip_optlen(tp->t_inpcb);
#ifdef INET6
       if (tp->t_inpcb->inp_af == AF_INET6)
               mss -= ip6_optlen(tp->t_inpcb);
#endif
       /*
        * XXX XXX What if mss goes negative or zero? This can happen if a
        * socket has large IPv6 options. We crash below.
        */

       /*
        * If there's a pipesize, change the socket buffer to that size.
        * Make the socket buffer an integral number of MSS units.  If
        * the MSS is larger than the socket buffer, artificially decrease
        * the MSS.
        */
#ifdef RTV_SPIPE
       if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
               bufsize = rt->rt_rmx.rmx_sendpipe;
       else
#endif
       {
               KASSERT(so != NULL);
               bufsize = so->so_snd.sb_hiwat;
       }
       if (bufsize < mss)
               mss = bufsize;
       else {
               bufsize = roundup(bufsize, mss);
               if (bufsize > sb_max)
                       bufsize = sb_max;
               (void) sbreserve(&so->so_snd, bufsize, so);
       }
       tp->t_segsz = mss;

#ifdef RTV_SSTHRESH
       if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
               /*
                * There's some sort of gateway or interface buffer
                * limit on the path.  Use this to set the slow
                * start threshold, but set the threshold to no less
                * than 2 * MSS.
                */
               tp->snd_ssthresh = uimax(2 * mss, rt->rt_rmx.rmx_ssthresh);
       }
#endif
#if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
       inpcb_rtentry_unref(rt, tp->t_inpcb);
#endif
}

/*
* Processing necessary when a TCP connection is established.
*/
void
tcp_established(struct tcpcb *tp)
{
       struct socket *so;
#ifdef RTV_RPIPE
       struct rtentry *rt;
#endif
       u_long bufsize;

       KASSERT(tp->t_inpcb != NULL);

       so = NULL;
       rt = NULL;

       /* This is a while() to reduce the dreadful stairstepping below */
       while (tp->t_inpcb->inp_af == AF_INET) {
               so = tp->t_inpcb->inp_socket;
#if defined(RTV_RPIPE)
               rt = inpcb_rtentry(tp->t_inpcb);
#endif
               if (__predict_true(tcp_msl_enable)) {
                       if (in4p_laddr(tp->t_inpcb).s_addr == INADDR_LOOPBACK) {
                               tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
                               break;
                       }

                       if (__predict_false(tcp_rttlocal)) {
                               /* This may be adjusted by tcp_input */
                               tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
                               break;
                       }
                       if (in_localaddr(in4p_faddr(tp->t_inpcb))) {
                               tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
                               break;
                       }
               }
               tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
               break;
       }

       /* Clamp to a reasonable range.  */
       tp->t_msl = MIN(tp->t_msl, TCP_MAXMSL);

#ifdef INET6
       while (tp->t_inpcb->inp_af == AF_INET6) {
               so = tp->t_inpcb->inp_socket;
#if defined(RTV_RPIPE)
               rt = in6pcb_rtentry(tp->t_inpcb);
#endif
               if (__predict_true(tcp_msl_enable)) {
                       extern const struct in6_addr in6addr_loopback;

                       if (IN6_ARE_ADDR_EQUAL(&in6p_laddr(tp->t_inpcb),
                           &in6addr_loopback)) {
                               tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
                               break;
                       }

                       if (__predict_false(tcp_rttlocal)) {
                               /* This may be adjusted by tcp_input */
                               tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
                               break;
                       }
                       if (in6_localaddr(&in6p_faddr(tp->t_inpcb))) {
                               tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
                               break;
                       }
               }
               tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
               break;
       }

       /* Clamp to a reasonable range.  */
       tp->t_msl = MIN(tp->t_msl, TCP_MAXMSL);
#endif

       tp->t_state = TCPS_ESTABLISHED;
       TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);

#ifdef RTV_RPIPE
       if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
               bufsize = rt->rt_rmx.rmx_recvpipe;
       else
#endif
       {
               KASSERT(so != NULL);
               bufsize = so->so_rcv.sb_hiwat;
       }
       if (bufsize > tp->t_ourmss) {
               bufsize = roundup(bufsize, tp->t_ourmss);
               if (bufsize > sb_max)
                       bufsize = sb_max;
               (void) sbreserve(&so->so_rcv, bufsize, so);
       }
#ifdef RTV_RPIPE
       inpcb_rtentry_unref(rt, tp->t_inpcb);
#endif
}

/*
* Check if there's an initial rtt or rttvar.  Convert from the
* route-table units to scaled multiples of the slow timeout timer.
* Called only during the 3-way handshake.
*/
void
tcp_rmx_rtt(struct tcpcb *tp)
{
#ifdef RTV_RTT
       struct rtentry *rt = NULL;
       int rtt;

       KASSERT(tp->t_inpcb != NULL);

       rt = inpcb_rtentry(tp->t_inpcb);
       if (rt == NULL)
               return;

       if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
               /*
                * XXX The lock bit for MTU indicates that the value
                * is also a minimum value; this is subject to time.
                */
               if (rt->rt_rmx.rmx_locks & RTV_RTT)
                       TCPT_RANGESET(tp->t_rttmin,
                           rtt / (RTM_RTTUNIT / PR_SLOWHZ),
                           TCPTV_MIN, TCPTV_REXMTMAX);
               tp->t_srtt = rtt /
                   ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
               if (rt->rt_rmx.rmx_rttvar) {
                       tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
                           ((RTM_RTTUNIT / PR_SLOWHZ) >>
                               (TCP_RTTVAR_SHIFT + 2));
               } else {
                       /* Default variation is +- 1 rtt */
                       tp->t_rttvar =
                           tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
               }
               TCPT_RANGESET(tp->t_rxtcur,
                   ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
                   tp->t_rttmin, TCPTV_REXMTMAX);
       }
       inpcb_rtentry_unref(rt, tp->t_inpcb);
#endif
}

tcp_seq  tcp_iss_seq = 0;       /* tcp initial seq # */

/*
* Get a new sequence value given a tcp control block
*/
tcp_seq
tcp_new_iss(struct tcpcb *tp)
{

       if (tp->t_inpcb->inp_af == AF_INET) {
               return tcp_new_iss1(&in4p_laddr(tp->t_inpcb),
                   &in4p_faddr(tp->t_inpcb), tp->t_inpcb->inp_lport,
                   tp->t_inpcb->inp_fport, sizeof(in4p_laddr(tp->t_inpcb)));
       }
#ifdef INET6
       if (tp->t_inpcb->inp_af == AF_INET6) {
               return tcp_new_iss1(&in6p_laddr(tp->t_inpcb),
                   &in6p_faddr(tp->t_inpcb), tp->t_inpcb->inp_lport,
                   tp->t_inpcb->inp_fport, sizeof(in6p_laddr(tp->t_inpcb)));
       }
#endif

       panic("tcp_new_iss: unreachable");
}

static u_int8_t tcp_iss_secret[16];     /* 128 bits; should be plenty */

/*
* Initialize RFC 1948 ISS Secret
*/
static int
tcp_iss_secret_init(void)
{
       cprng_strong(kern_cprng,
           tcp_iss_secret, sizeof(tcp_iss_secret), 0);

       return 0;
}

/*
* This routine actually generates a new TCP initial sequence number.
*/
tcp_seq
tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   size_t addrsz)
{
       tcp_seq tcp_iss;

       if (tcp_do_rfc1948) {
               MD5_CTX ctx;
               u_int8_t hash[16];      /* XXX MD5 knowledge */
               static ONCE_DECL(tcp_iss_secret_control);

               /*
                * If we haven't been here before, initialize our cryptographic
                * hash secret.
                */
               RUN_ONCE(&tcp_iss_secret_control, tcp_iss_secret_init);

               /*
                * Compute the base value of the ISS.  It is a hash
                * of (saddr, sport, daddr, dport, secret).
                */
               MD5Init(&ctx);

               MD5Update(&ctx, (u_char *) laddr, addrsz);
               MD5Update(&ctx, (u_char *) &lport, sizeof(lport));

               MD5Update(&ctx, (u_char *) faddr, addrsz);
               MD5Update(&ctx, (u_char *) &fport, sizeof(fport));

               MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));

               MD5Final(hash, &ctx);

               memcpy(&tcp_iss, hash, sizeof(tcp_iss));

#ifdef TCPISS_DEBUG
               printf("ISS hash 0x%08x, ", tcp_iss);
#endif
       } else {
               /*
                * Randomize.
                */
               tcp_iss = cprng_fast32() & TCP_ISS_RANDOM_MASK;
#ifdef TCPISS_DEBUG
               printf("ISS random 0x%08x, ", tcp_iss);
#endif
       }

       /*
        * Add the offset in to the computed value.
        */
       tcp_iss += tcp_iss_seq;
#ifdef TCPISS_DEBUG
       printf("ISS %08x\n", tcp_iss);
#endif
       return tcp_iss;
}

#if defined(IPSEC)
/* compute ESP/AH header size for TCP, including outer IP header. */
size_t
ipsec4_hdrsiz_tcp(struct tcpcb *tp)
{
       struct inpcb *inp;
       size_t hdrsiz;

       /* XXX mapped addr case (tp->t_inpcb) */
       if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
               return 0;
       switch (tp->t_family) {
       case AF_INET:
               /* XXX: should use correct direction. */
               hdrsiz = ipsec_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
               break;
       default:
               hdrsiz = 0;
               break;
       }

       return hdrsiz;
}

#ifdef INET6
size_t
ipsec6_hdrsiz_tcp(struct tcpcb *tp)
{
       struct inpcb *inp;
       size_t hdrsiz;

       if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
               return 0;
       switch (tp->t_family) {
       case AF_INET6:
               /* XXX: should use correct direction. */
               hdrsiz = ipsec_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
               break;
       case AF_INET:
               /* mapped address case - tricky */
       default:
               hdrsiz = 0;
               break;
       }

       return hdrsiz;
}
#endif
#endif /*IPSEC*/

/*
* Determine the length of the TCP options for this connection.
*
* XXX:  What do we do for SACK, when we add that?  Just reserve
*       all of the space?  Otherwise we can't exactly be incrementing
*       cwnd by an amount that varies depending on the amount we last
*       had to SACK!
*/

u_int
tcp_optlen(struct tcpcb *tp)
{
       u_int optlen;

       optlen = 0;
       if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
           (TF_REQ_TSTMP | TF_RCVD_TSTMP))
               optlen += TCPOLEN_TSTAMP_APPA;

#ifdef TCP_SIGNATURE
       if (tp->t_flags & TF_SIGNATURE)
               optlen += TCPOLEN_SIGLEN;
#endif

       return optlen;
}

u_int
tcp_hdrsz(struct tcpcb *tp)
{
       u_int hlen;

       switch (tp->t_family) {
#ifdef INET6
       case AF_INET6:
               hlen = sizeof(struct ip6_hdr);
               break;
#endif
       case AF_INET:
               hlen = sizeof(struct ip);
               break;
       default:
               hlen = 0;
               break;
       }
       hlen += sizeof(struct tcphdr);

       if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
           (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
               hlen += TCPOLEN_TSTAMP_APPA;
#ifdef TCP_SIGNATURE
       if (tp->t_flags & TF_SIGNATURE)
               hlen += TCPOLEN_SIGLEN;
#endif
       return hlen;
}

void
tcp_statinc(u_int stat)
{

       KASSERT(stat < TCP_NSTATS);
       TCP_STATINC(stat);
}

void
tcp_statadd(u_int stat, uint64_t val)
{

       KASSERT(stat < TCP_NSTATS);
       TCP_STATADD(stat, val);
}