/*      $NetBSD: radix.c,v 1.49 2020/10/18 13:07:31 gson Exp $  */

/*
* Copyright (c) 1988, 1989, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)radix.c     8.6 (Berkeley) 10/17/95
*/

/*
* Routines to build and maintain radix trees for routing lookups.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.49 2020/10/18 13:07:31 gson Exp $");

#ifndef _NET_RADIX_H_
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/kmem.h>
#ifdef  _KERNEL
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#endif

#include <sys/systm.h>
#include <sys/malloc.h>
#define M_DONTWAIT M_NOWAIT
#include <sys/domain.h>
#else
#include <stdlib.h>
#endif
#include <sys/syslog.h>
#include <net/radix.h>
#endif

typedef void (*rn_printer_t)(void *, const char *fmt, ...);

int     max_keylen;
struct radix_mask *rn_mkfreelist;
struct radix_node_head *mask_rnhead;
static char *addmask_key;
static const char normal_chars[] =
   {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
static char *rn_zeros, *rn_ones;

#define rn_masktop (mask_rnhead->rnh_treetop)

static int rn_satisfies_leaf(const char *, struct radix_node *, int);
static int rn_lexobetter(const void *, const void *);
static struct radix_mask *rn_new_radix_mask(struct radix_node *,
   struct radix_mask *);
static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
   void *);
static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
   void *);
static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
   const char *);

#define SUBTREE_OPEN    "[ "
#define SUBTREE_CLOSE   " ]"

#ifdef RN_DEBUG
static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
#endif /* RN_DEBUG */

/*
* The data structure for the keys is a radix tree with one way
* branching removed.  The index rn_b at an internal node n represents a bit
* position to be tested.  The tree is arranged so that all descendants
* of a node n have keys whose bits all agree up to position rn_b - 1.
* (We say the index of n is rn_b.)
*
* There is at least one descendant which has a one bit at position rn_b,
* and at least one with a zero there.
*
* A route is determined by a pair of key and mask.  We require that the
* bit-wise logical and of the key and mask to be the key.
* We define the index of a route to associated with the mask to be
* the first bit number in the mask where 0 occurs (with bit number 0
* representing the highest order bit).
*
* We say a mask is normal if every bit is 0, past the index of the mask.
* If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
* and m is a normal mask, then the route applies to every descendant of n.
* If the index(m) < rn_b, this implies the trailing last few bits of k
* before bit b are all 0, (and hence consequently true of every descendant
* of n), so the route applies to all descendants of the node as well.
*
* Similar logic shows that a non-normal mask m such that
* index(m) <= index(n) could potentially apply to many children of n.
* Thus, for each non-host route, we attach its mask to a list at an internal
* node as high in the tree as we can go.
*
* The present version of the code makes use of normal routes in short-
* circuiting an explicit mask and compare operation when testing whether
* a key satisfies a normal route, and also in remembering the unique leaf
* that governs a subtree.
*/

struct radix_node *
rn_search(
       const void *v_arg,
       struct radix_node *head)
{
       const u_char * const v = v_arg;
       struct radix_node *x;

       for (x = head; x->rn_b >= 0;) {
               if (x->rn_bmask & v[x->rn_off])
                       x = x->rn_r;
               else
                       x = x->rn_l;
       }
       return x;
}

struct radix_node *
rn_search_m(
       const void *v_arg,
       struct radix_node *head,
       const void *m_arg)
{
       struct radix_node *x;
       const u_char * const v = v_arg;
       const u_char * const m = m_arg;

       for (x = head; x->rn_b >= 0;) {
               if ((x->rn_bmask & m[x->rn_off]) &&
                   (x->rn_bmask & v[x->rn_off]))
                       x = x->rn_r;
               else
                       x = x->rn_l;
       }
       return x;
}

int
rn_refines(
       const void *m_arg,
       const void *n_arg)
{
       const char *m = m_arg;
       const char *n = n_arg;
       const char *lim = n + *(const u_char *)n;
       const char *lim2 = lim;
       int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++);
       int masks_are_equal = 1;

       if (longer > 0)
               lim -= longer;
       while (n < lim) {
               if (*n & ~(*m))
                       return 0;
               if (*n++ != *m++)
                       masks_are_equal = 0;
       }
       while (n < lim2)
               if (*n++)
                       return 0;
       if (masks_are_equal && (longer < 0))
               for (lim2 = m - longer; m < lim2; )
                       if (*m++)
                               return 1;
       return !masks_are_equal;
}

struct radix_node *
rn_lookup(
       const void *v_arg,
       const void *m_arg,
       struct radix_node_head *head)
{
       struct radix_node *x;
       const char *netmask = NULL;

       if (m_arg) {
               if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
                       return NULL;
               netmask = x->rn_key;
       }
       x = rn_match(v_arg, head);
       if (x != NULL && netmask != NULL) {
               while (x != NULL && x->rn_mask != netmask)
                       x = x->rn_dupedkey;
       }
       return x;
}

static int
rn_satisfies_leaf(
       const char *trial,
       struct radix_node *leaf,
       int skip)
{
       const char *cp = trial;
       const char *cp2 = leaf->rn_key;
       const char *cp3 = leaf->rn_mask;
       const char *cplim;
       int length = uimin(*(const u_char *)cp, *(const u_char *)cp2);

       if (cp3 == 0)
               cp3 = rn_ones;
       else
               length = uimin(length, *(const u_char *)cp3);
       cplim = cp + length; cp3 += skip; cp2 += skip;
       for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
               if ((*cp ^ *cp2) & *cp3)
                       return 0;
       return 1;
}

struct radix_node *
rn_match(
       const void *v_arg,
       struct radix_node_head *head)
{
       const char * const v = v_arg;
       struct radix_node *t = head->rnh_treetop;
       struct radix_node *top = t;
       struct radix_node *x;
       struct radix_node *saved_t;
       const char *cp = v;
       const char *cp2;
       const char *cplim;
       int off = t->rn_off;
       int vlen = *(const u_char *)cp;
       int matched_off;
       int test, b, rn_b;

       /*
        * Open code rn_search(v, top) to avoid overhead of extra
        * subroutine call.
        */
       for (; t->rn_b >= 0; ) {
               if (t->rn_bmask & cp[t->rn_off])
                       t = t->rn_r;
               else
                       t = t->rn_l;
       }
       /*
        * See if we match exactly as a host destination
        * or at least learn how many bits match, for normal mask finesse.
        *
        * It doesn't hurt us to limit how many bytes to check
        * to the length of the mask, since if it matches we had a genuine
        * match and the leaf we have is the most specific one anyway;
        * if it didn't match with a shorter length it would fail
        * with a long one.  This wins big for class B&C netmasks which
        * are probably the most common case...
        */
       if (t->rn_mask)
               vlen = *(const u_char *)t->rn_mask;
       cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
       for (; cp < cplim; cp++, cp2++)
               if (*cp != *cp2)
                       goto on1;
       /*
        * This extra grot is in case we are explicitly asked
        * to look up the default.  Ugh!
        */
       if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
               t = t->rn_dupedkey;
       return t;
on1:
       test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
       for (b = 7; (test >>= 1) > 0;)
               b--;
       matched_off = cp - v;
       b += matched_off << 3;
       rn_b = -1 - b;
       /*
        * If there is a host route in a duped-key chain, it will be first.
        */
       if ((saved_t = t)->rn_mask == 0)
               t = t->rn_dupedkey;
       for (; t; t = t->rn_dupedkey)
               /*
                * Even if we don't match exactly as a host,
                * we may match if the leaf we wound up at is
                * a route to a net.
                */
               if (t->rn_flags & RNF_NORMAL) {
                       if (rn_b <= t->rn_b)
                               return t;
               } else if (rn_satisfies_leaf(v, t, matched_off))
                               return t;
       t = saved_t;
       /* start searching up the tree */
       do {
               struct radix_mask *m;
               t = t->rn_p;
               m = t->rn_mklist;
               if (m) {
                       /*
                        * If non-contiguous masks ever become important
                        * we can restore the masking and open coding of
                        * the search and satisfaction test and put the
                        * calculation of "off" back before the "do".
                        */
                       do {
                               if (m->rm_flags & RNF_NORMAL) {
                                       if (rn_b <= m->rm_b)
                                               return m->rm_leaf;
                               } else {
                                       off = uimin(t->rn_off, matched_off);
                                       x = rn_search_m(v, t, m->rm_mask);
                                       while (x && x->rn_mask != m->rm_mask)
                                               x = x->rn_dupedkey;
                                       if (x && rn_satisfies_leaf(v, x, off))
                                               return x;
                               }
                               m = m->rm_mklist;
                       } while (m);
               }
       } while (t != top);
       return NULL;
}

static void
rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
   const char *delim)
{
       (*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
           delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
           rn->rn_l, rn->rn_r);
}

#ifdef RN_DEBUG
int     rn_debug =  1;

static void
rn_dbg_print(void *arg, const char *fmt, ...)
{
       va_list ap;

       va_start(ap, fmt);
       vlog(LOG_DEBUG, fmt, ap);
       va_end(ap);
}

static void
rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
{
       struct radix_node *dup, *rn;
       const char *delim;

       if (printer == NULL)
               return;

       rn = rn_walkfirst(h->rnh_treetop, printer, arg);
       for (;;) {
               /* Process leaves */
               delim = "";
               for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
                       if ((dup->rn_flags & RNF_ROOT) != 0)
                               continue;
                       rn_nodeprint(dup, printer, arg, delim);
                       delim = ", ";
               }
               rn = rn_walknext(rn, printer, arg);
               if (rn->rn_flags & RNF_ROOT)
                       return;
       }
       /* NOTREACHED */
}

#define traverse(__head, __rn)  rn_treeprint((__head), rn_dbg_print, (__rn))
#endif /* RN_DEBUG */

struct radix_node *
rn_newpair(
       const void *v,
       int b,
       struct radix_node nodes[2])
{
       struct radix_node *tt = nodes;
       struct radix_node *t = tt + 1;
       t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
       t->rn_l = tt; t->rn_off = b >> 3;
       tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
       tt->rn_flags = t->rn_flags = RNF_ACTIVE;
       return t;
}

struct radix_node *
rn_insert(
       const void *v_arg,
       struct radix_node_head *head,
       int *dupentry,
       struct radix_node nodes[2])
{
       struct radix_node *top = head->rnh_treetop;
       struct radix_node *t = rn_search(v_arg, top);
       struct radix_node *tt;
       const char *v = v_arg;
       int head_off = top->rn_off;
       int vlen = *((const u_char *)v);
       const char *cp = v + head_off;
       int b;
       /*
        * Find first bit at which v and t->rn_key differ
        */
   {
       const char *cp2 = t->rn_key + head_off;
       const char *cplim = v + vlen;
       int cmp_res;

       while (cp < cplim)
               if (*cp2++ != *cp++)
                       goto on1;
       *dupentry = 1;
       return t;
on1:
       *dupentry = 0;
       cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
       for (b = (cp - v) << 3; cmp_res; b--)
               cmp_res >>= 1;
   }
   {
       struct radix_node *p, *x = top;
       cp = v;
       do {
               p = x;
               if (cp[x->rn_off] & x->rn_bmask)
                       x = x->rn_r;
               else x = x->rn_l;
       } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
#ifdef RN_DEBUG
       if (rn_debug)
               log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
#endif
       t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
       if ((cp[p->rn_off] & p->rn_bmask) == 0)
               p->rn_l = t;
       else
               p->rn_r = t;
       x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
       if ((cp[t->rn_off] & t->rn_bmask) == 0) {
               t->rn_r = x;
       } else {
               t->rn_r = tt; t->rn_l = x;
       }
#ifdef RN_DEBUG
       if (rn_debug) {
               log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
                   traverse(head, p);
       }
#endif /* RN_DEBUG */
   }
       return tt;
}

struct radix_node *
rn_addmask(
       const void *n_arg,
       int search,
       int skip)
{
       const char *netmask = n_arg;
       const char *cp;
       const char *cplim;
       struct radix_node *x;
       struct radix_node *saved_x;
       int b = 0, mlen, j;
       int maskduplicated, m0, isnormal;
       static int last_zeroed = 0;

       if ((mlen = *(const u_char *)netmask) > max_keylen)
               mlen = max_keylen;
       if (skip == 0)
               skip = 1;
       if (mlen <= skip)
               return mask_rnhead->rnh_nodes;
       if (skip > 1)
               memmove(addmask_key + 1, rn_ones + 1, skip - 1);
       if ((m0 = mlen) > skip)
               memmove(addmask_key + skip, netmask + skip, mlen - skip);
       /*
        * Trim trailing zeroes.
        */
       for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
               cp--;
       mlen = cp - addmask_key;
       if (mlen <= skip) {
               if (m0 >= last_zeroed)
                       last_zeroed = mlen;
               return mask_rnhead->rnh_nodes;
       }
       if (m0 < last_zeroed)
               memset(addmask_key + m0, 0, last_zeroed - m0);
       *addmask_key = last_zeroed = mlen;
       x = rn_search(addmask_key, rn_masktop);
       if (memcmp(addmask_key, x->rn_key, mlen) != 0)
               x = 0;
       if (x || search)
               return x;
       R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
       if ((saved_x = x) == NULL)
               return NULL;
       memset(x, 0, max_keylen + 2 * sizeof (*x));
       cp = netmask = (void *)(x + 2);
       memmove(x + 2, addmask_key, mlen);
       x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
       if (maskduplicated) {
               log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
               Free(saved_x);
               return x;
       }
       /*
        * Calculate index of mask, and check for normalcy.
        */
       cplim = netmask + mlen; isnormal = 1;
       for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;)
               cp++;
       if (cp != cplim) {
               for (j = 0x80; (j & *cp) != 0; j >>= 1)
                       b++;
               if (*cp != normal_chars[b] || cp != (cplim - 1))
                       isnormal = 0;
       }
       b += (cp - netmask) << 3;
       x->rn_b = -1 - b;
       if (isnormal)
               x->rn_flags |= RNF_NORMAL;
       return x;
}

static int      /* XXX: arbitrary ordering for non-contiguous masks */
rn_lexobetter(
       const void *m_arg,
       const void *n_arg)
{
       const u_char *mp = m_arg;
       const u_char *np = n_arg;
       const u_char *lim;

       if (*mp > *np)
               return 1;  /* not really, but need to check longer one first */
       if (*mp == *np)
               for (lim = mp + *mp; mp < lim;)
                       if (*mp++ > *np++)
                               return 1;
       return 0;
}

static struct radix_mask *
rn_new_radix_mask(
       struct radix_node *tt,
       struct radix_mask *next)
{
       struct radix_mask *m;

       MKGet(m);
       if (m == NULL) {
               log(LOG_ERR, "Mask for route not entered\n");
               return NULL;
       }
       memset(m, 0, sizeof(*m));
       m->rm_b = tt->rn_b;
       m->rm_flags = tt->rn_flags;
       if (tt->rn_flags & RNF_NORMAL)
               m->rm_leaf = tt;
       else
               m->rm_mask = tt->rn_mask;
       m->rm_mklist = next;
       tt->rn_mklist = m;
       return m;
}

struct radix_node *
rn_addroute(
       const void *v_arg,
       const void *n_arg,
       struct radix_node_head *head,
       struct radix_node treenodes[2])
{
       const char *v = v_arg, *netmask = n_arg;
       struct radix_node *t, *x = NULL, *tt;
       struct radix_node *saved_tt, *top = head->rnh_treetop;
       short b = 0, b_leaf = 0;
       int keyduplicated;
       const char *mmask;
       struct radix_mask *m, **mp;

       /*
        * In dealing with non-contiguous masks, there may be
        * many different routes which have the same mask.
        * We will find it useful to have a unique pointer to
        * the mask to speed avoiding duplicate references at
        * nodes and possibly save time in calculating indices.
        */
       if (netmask != NULL) {
               if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL)
                       return NULL;
               b_leaf = x->rn_b;
               b = -1 - x->rn_b;
               netmask = x->rn_key;
       }
       /*
        * Deal with duplicated keys: attach node to previous instance
        */
       saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
       if (keyduplicated) {
               for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) {
                       if (tt->rn_mask == netmask)
                               return NULL;
                       if (netmask == NULL ||
                           (tt->rn_mask != NULL &&
                            (b_leaf < tt->rn_b || /* index(netmask) > node */
                              rn_refines(netmask, tt->rn_mask) ||
                              rn_lexobetter(netmask, tt->rn_mask))))
                               break;
               }
               /*
                * If the mask is not duplicated, we wouldn't
                * find it among possible duplicate key entries
                * anyway, so the above test doesn't hurt.
                *
                * We sort the masks for a duplicated key the same way as
                * in a masklist -- most specific to least specific.
                * This may require the unfortunate nuisance of relocating
                * the head of the list.
                *
                * We also reverse, or doubly link the list through the
                * parent pointer.
                */
               if (tt == saved_tt) {
                       struct  radix_node *xx = x;
                       /* link in at head of list */
                       (tt = treenodes)->rn_dupedkey = t;
                       tt->rn_flags = t->rn_flags;
                       tt->rn_p = x = t->rn_p;
                       t->rn_p = tt;
                       if (x->rn_l == t)
                               x->rn_l = tt;
                       else
                               x->rn_r = tt;
                       saved_tt = tt;
                       x = xx;
               } else {
                       (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
                       t->rn_dupedkey = tt;
                       tt->rn_p = t;
                       if (tt->rn_dupedkey)
                               tt->rn_dupedkey->rn_p = tt;
               }
               tt->rn_key = v;
               tt->rn_b = -1;
               tt->rn_flags = RNF_ACTIVE;
       }
       /*
        * Put mask in tree.
        */
       if (netmask != NULL) {
               tt->rn_mask = netmask;
               tt->rn_b = x->rn_b;
               tt->rn_flags |= x->rn_flags & RNF_NORMAL;
       }
       t = saved_tt->rn_p;
       if (keyduplicated)
               goto on2;
       b_leaf = -1 - t->rn_b;
       if (t->rn_r == saved_tt)
               x = t->rn_l;
       else
               x = t->rn_r;
       /* Promote general routes from below */
       if (x->rn_b < 0) {
               for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) {
                       if (x->rn_mask != NULL && x->rn_b >= b_leaf &&
                           x->rn_mklist == NULL) {
                               *mp = m = rn_new_radix_mask(x, NULL);
                               if (m != NULL)
                                       mp = &m->rm_mklist;
                       }
               }
       } else if (x->rn_mklist != NULL) {
               /*
                * Skip over masks whose index is > that of new node
                */
               for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
                       if (m->rm_b >= b_leaf)
                               break;
               t->rn_mklist = m;
               *mp = NULL;
       }
on2:
       /* Add new route to highest possible ancestor's list */
       if (netmask == NULL || b > t->rn_b)
               return tt; /* can't lift at all */
       b_leaf = tt->rn_b;
       do {
               x = t;
               t = t->rn_p;
       } while (b <= t->rn_b && x != top);
       /*
        * Search through routes associated with node to
        * insert new route according to index.
        * Need same criteria as when sorting dupedkeys to avoid
        * double loop on deletion.
        */
       for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
               if (m->rm_b < b_leaf)
                       continue;
               if (m->rm_b > b_leaf)
                       break;
               if (m->rm_flags & RNF_NORMAL) {
                       mmask = m->rm_leaf->rn_mask;
                       if (tt->rn_flags & RNF_NORMAL) {
                               log(LOG_ERR, "Non-unique normal route,"
                                   " mask not entered\n");
                               return tt;
                       }
               } else
                       mmask = m->rm_mask;
               if (mmask == netmask) {
                       m->rm_refs++;
                       tt->rn_mklist = m;
                       return tt;
               }
               if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
                       break;
       }
       *mp = rn_new_radix_mask(tt, *mp);
       return tt;
}

struct radix_node *
rn_delete1(
       const void *v_arg,
       const void *netmask_arg,
       struct radix_node_head *head,
       struct radix_node *rn)
{
       struct radix_node *t, *p, *x, *tt;
       struct radix_mask *m, *saved_m, **mp;
       struct radix_node *dupedkey, *saved_tt, *top;
       const char *v, *netmask;
       int b, head_off, vlen;

       v = v_arg;
       netmask = netmask_arg;
       x = head->rnh_treetop;
       tt = rn_search(v, x);
       head_off = x->rn_off;
       vlen =  *(const u_char *)v;
       saved_tt = tt;
       top = x;
       if (tt == NULL ||
           memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0)
               return NULL;
       /*
        * Delete our route from mask lists.
        */
       if (netmask != NULL) {
               if ((x = rn_addmask(netmask, 1, head_off)) == NULL)
                       return NULL;
               netmask = x->rn_key;
               while (tt->rn_mask != netmask)
                       if ((tt = tt->rn_dupedkey) == NULL)
                               return NULL;
       }
       if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
               goto on1;
       if (tt->rn_flags & RNF_NORMAL) {
               if (m->rm_leaf != tt || m->rm_refs > 0) {
                       log(LOG_ERR, "rn_delete: inconsistent annotation\n");
                       return NULL;  /* dangling ref could cause disaster */
               }
       } else {
               if (m->rm_mask != tt->rn_mask) {
                       log(LOG_ERR, "rn_delete: inconsistent annotation\n");
                       goto on1;
               }
               if (--m->rm_refs >= 0)
                       goto on1;
       }
       b = -1 - tt->rn_b;
       t = saved_tt->rn_p;
       if (b > t->rn_b)
               goto on1; /* Wasn't lifted at all */
       do {
               x = t;
               t = t->rn_p;
       } while (b <= t->rn_b && x != top);
       for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
               if (m == saved_m) {
                       *mp = m->rm_mklist;
                       MKFree(m);
                       break;
               }
       }
       if (m == NULL) {
               log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
               if (tt->rn_flags & RNF_NORMAL)
                       return NULL; /* Dangling ref to us */
       }
on1:
       /*
        * Eliminate us from tree
        */
       if (tt->rn_flags & RNF_ROOT)
               return NULL;
#ifdef RN_DEBUG
       if (rn_debug)
               log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
#endif
       t = tt->rn_p;
       dupedkey = saved_tt->rn_dupedkey;
       if (dupedkey != NULL) {
               /*
                * Here, tt is the deletion target, and
                * saved_tt is the head of the dupedkey chain.
                */
               if (tt == saved_tt) {
                       x = dupedkey;
                       x->rn_p = t;
                       if (t->rn_l == tt)
                               t->rn_l = x;
                       else
                               t->rn_r = x;
               } else {
                       /* find node in front of tt on the chain */
                       for (x = p = saved_tt;
                            p != NULL && p->rn_dupedkey != tt;)
                               p = p->rn_dupedkey;
                       if (p != NULL) {
                               p->rn_dupedkey = tt->rn_dupedkey;
                               if (tt->rn_dupedkey != NULL)
                                       tt->rn_dupedkey->rn_p = p;
                       } else
                               log(LOG_ERR, "rn_delete: couldn't find us\n");
               }
               t = tt + 1;
               if  (t->rn_flags & RNF_ACTIVE) {
                       *++x = *t;
                       p = t->rn_p;
                       if (p->rn_l == t)
                               p->rn_l = x;
                       else
                               p->rn_r = x;
                       x->rn_l->rn_p = x;
                       x->rn_r->rn_p = x;
               }
               goto out;
       }
       if (t->rn_l == tt)
               x = t->rn_r;
       else
               x = t->rn_l;
       p = t->rn_p;
       if (p->rn_r == t)
               p->rn_r = x;
       else
               p->rn_l = x;
       x->rn_p = p;
       /*
        * Demote routes attached to us.
        */
       if (t->rn_mklist == NULL)
               ;
       else if (x->rn_b >= 0) {
               for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
                       ;
               *mp = t->rn_mklist;
       } else {
               /* If there are any key,mask pairs in a sibling
                  duped-key chain, some subset will appear sorted
                  in the same order attached to our mklist */
               for (m = t->rn_mklist;
                    m != NULL && x != NULL;
                    x = x->rn_dupedkey) {
                       if (m == x->rn_mklist) {
                               struct radix_mask *mm = m->rm_mklist;
                               x->rn_mklist = NULL;
                               if (--(m->rm_refs) < 0)
                                       MKFree(m);
                               m = mm;
                       }
               }
               if (m != NULL) {
                       log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n",
                           m, x);
               }
       }
       /*
        * We may be holding an active internal node in the tree.
        */
       x = tt + 1;
       if (t != x) {
               *t = *x;
               t->rn_l->rn_p = t;
               t->rn_r->rn_p = t;
               p = x->rn_p;
               if (p->rn_l == x)
                       p->rn_l = t;
               else
                       p->rn_r = t;
       }
out:
#ifdef RN_DEBUG
       if (rn_debug) {
               log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
                   traverse(head, tt);
       }
#endif /* RN_DEBUG */
       tt->rn_flags &= ~RNF_ACTIVE;
       tt[1].rn_flags &= ~RNF_ACTIVE;
       return tt;
}

struct radix_node *
rn_delete(
       const void *v_arg,
       const void *netmask_arg,
       struct radix_node_head *head)
{
       return rn_delete1(v_arg, netmask_arg, head, NULL);
}

static struct radix_node *
rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
{
       /* If at right child go back up, otherwise, go right */
       while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
               if (printer != NULL)
                       (*printer)(arg, SUBTREE_CLOSE);
               rn = rn->rn_p;
       }
       if (printer)
               rn_nodeprint(rn->rn_p, printer, arg, "");
       /* Find the next *leaf* since next node might vanish, too */
       for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
               if (printer != NULL)
                       (*printer)(arg, SUBTREE_OPEN);
               rn = rn->rn_l;
       }
       return rn;
}

static struct radix_node *
rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
{
       /* First time through node, go left */
       while (rn->rn_b >= 0) {
               if (printer != NULL)
                       (*printer)(arg, SUBTREE_OPEN);
               rn = rn->rn_l;
       }
       return rn;
}

int
rn_walktree(
       struct radix_node_head *h,
       int (*f)(struct radix_node *, void *),
       void *w)
{
       int error;
       struct radix_node *base, *next, *rn;
       /*
        * This gets complicated because we may delete the node
        * while applying the function f to it, so we need to calculate
        * the successor node in advance.
        */
       rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
       for (;;) {
               base = rn;
               next = rn_walknext(rn, NULL, NULL);
               /* Process leaves */
               while ((rn = base) != NULL) {
                       base = rn->rn_dupedkey;
                       if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
                               return error;
               }
               rn = next;
               if (rn->rn_flags & RNF_ROOT)
                       return 0;
       }
       /* NOTREACHED */
}

struct radix_node *
rn_search_matched(struct radix_node_head *h,
   int (*matcher)(struct radix_node *, void *), void *w)
{
       bool matched;
       struct radix_node *base, *next, *rn;
       /*
        * This gets complicated because we may delete the node
        * while applying the function f to it, so we need to calculate
        * the successor node in advance.
        */
       rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
       for (;;) {
               base = rn;
               next = rn_walknext(rn, NULL, NULL);
               /* Process leaves */
               while ((rn = base) != NULL) {
                       base = rn->rn_dupedkey;
                       if (!(rn->rn_flags & RNF_ROOT)) {
                               matched = (*matcher)(rn, w);
                               if (matched)
                                       return rn;
                       }
               }
               rn = next;
               if (rn->rn_flags & RNF_ROOT)
                       return NULL;
       }
       /* NOTREACHED */
}

struct delayinit {
       void **head;
       int off;
       SLIST_ENTRY(delayinit) entries;
};
static SLIST_HEAD(, delayinit) delayinits = SLIST_HEAD_INITIALIZER(delayheads);
static int radix_initialized;

/*
* Initialize a radix tree once radix is initialized.  Only for bootstrap.
* Assume that no concurrency protection is necessary at this stage.
*/
void
rn_delayedinit(void **head, int off)
{
       struct delayinit *di;

       if (radix_initialized)
               return;

       di = kmem_alloc(sizeof(*di), KM_SLEEP);
       di->head = head;
       di->off = off;
       SLIST_INSERT_HEAD(&delayinits, di, entries);
}

int
rn_inithead(void **head, int off)
{
       struct radix_node_head *rnh;

       if (*head != NULL)
               return 1;
       R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
       if (rnh == NULL)
               return 0;
       *head = rnh;
       return rn_inithead0(rnh, off);
}

int
rn_inithead0(struct radix_node_head *rnh, int off)
{
       struct radix_node *t;
       struct radix_node *tt;
       struct radix_node *ttt;

       memset(rnh, 0, sizeof(*rnh));
       t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
       ttt = rnh->rnh_nodes + 2;
       t->rn_r = ttt;
       t->rn_p = t;
       tt = t->rn_l;
       tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
       tt->rn_b = -1 - off;
       *ttt = *tt;
       ttt->rn_key = rn_ones;
       rnh->rnh_addaddr = rn_addroute;
       rnh->rnh_deladdr = rn_delete;
       rnh->rnh_matchaddr = rn_match;
       rnh->rnh_lookup = rn_lookup;
       rnh->rnh_treetop = t;
       return 1;
}

void
rn_init(void)
{
       char *cp, *cplim;
       struct delayinit *di;
#ifdef _KERNEL
       struct domain *dp;

       if (radix_initialized)
               panic("radix already initialized");
       radix_initialized = 1;

       DOMAIN_FOREACH(dp) {
               if (dp->dom_maxrtkey > max_keylen)
                       max_keylen = dp->dom_maxrtkey;
       }
#endif
       if (max_keylen == 0) {
#ifndef _KERNEL
               log(LOG_ERR,
                   "rn_init: radix functions require max_keylen be set\n");
#endif
               return;
       }

       R_Malloc(rn_zeros, char *, 3 * max_keylen);
       if (rn_zeros == NULL)
               panic("rn_init");
       memset(rn_zeros, 0, 3 * max_keylen);
       rn_ones = cp = rn_zeros + max_keylen;
       addmask_key = cplim = rn_ones + max_keylen;
       while (cp < cplim)
               *cp++ = -1;
       if (rn_inithead((void *)&mask_rnhead, 0) == 0)
               panic("rn_init 2");

       while ((di = SLIST_FIRST(&delayinits)) != NULL) {
               if (!rn_inithead(di->head, di->off))
                       panic("delayed rn_inithead failed");
               SLIST_REMOVE_HEAD(&delayinits, entries);
               kmem_free(di, sizeof(*di));
       }
}