/*-
* Copyright (c) 2010-2012 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This material is based upon work partially supported by The
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* NPF TCP state engine for connection tracking.
*/

#ifdef _KERNEL
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: npf_state_tcp.c,v 1.21 2020/05/30 14:16:56 rmind Exp $");

#include <sys/param.h>
#include <sys/types.h>

#include <netinet/in.h>
#include <netinet/tcp.h>
#endif

#include "npf_impl.h"

/*
* NPF TCP states.  Note: these states are different from the TCP FSM
* states of RFC 793.  The packet filter is a man-in-the-middle.
*/
#define NPF_TCPS_OK             255
#define NPF_TCPS_CLOSED         0
#define NPF_TCPS_SYN_SENT       1
#define NPF_TCPS_SIMSYN_SENT    2
#define NPF_TCPS_SYN_RECEIVED   3
#define NPF_TCPS_ESTABLISHED    4
#define NPF_TCPS_FIN_SENT       5
#define NPF_TCPS_FIN_RECEIVED   6
#define NPF_TCPS_CLOSE_WAIT     7
#define NPF_TCPS_FIN_WAIT       8
#define NPF_TCPS_CLOSING        9
#define NPF_TCPS_LAST_ACK       10
#define NPF_TCPS_TIME_WAIT      11

#define NPF_TCP_NSTATES         12

/* Timeouts */
#define NPF_TCPT_NEW            0
#define NPF_TCPT_ESTABLISHED    1
#define NPF_TCPT_HALFCLOSE      2
#define NPF_TCPT_CLOSE          3
#define NPF_TCPT_TIMEWAIT       4
#define NPF_TCPT_COUNT          5

/*
* Parameters.
*/
typedef struct {
       int             max_ack_win;
       int             strict_order_rst;
       int             timeouts[NPF_TCPT_COUNT];
} npf_state_tcp_params_t;

/*
* Helpers.
*/
#define SEQ_LT(a,b)             ((int)((a)-(b)) < 0)
#define SEQ_LEQ(a,b)            ((int)((a)-(b)) <= 0)
#define SEQ_GT(a,b)             ((int)((a)-(b)) > 0)
#define SEQ_GEQ(a,b)            ((int)((a)-(b)) >= 0)

/*
* List of TCP flag cases and conversion of flags to a case (index).
*/

#define TCPFC_INVALID           0
#define TCPFC_SYN               1
#define TCPFC_SYNACK            2
#define TCPFC_ACK               3
#define TCPFC_FIN               4
#define TCPFC_COUNT             5

static inline unsigned
npf_tcpfl2case(const unsigned tcpfl)
{
       unsigned i, c;

       CTASSERT(TH_FIN == 0x01);
       CTASSERT(TH_SYN == 0x02);
       CTASSERT(TH_ACK == 0x10);

       /*
        * Flags are shifted to use three least significant bits, thus each
        * flag combination has a unique number ranging from 0 to 7, e.g.
        * TH_SYN | TH_ACK has number 6, since (0x02 | (0x10 >> 2)) == 6.
        * However, the requirement is to have number 0 for invalid cases,
        * such as TH_SYN | TH_FIN, and to have the same number for TH_FIN
        * and TH_FIN|TH_ACK cases.  Thus, we generate a mask assigning 3
        * bits for each number, which contains the actual case numbers:
        *
        * TCPFC_SYNACK << (6 << 2) == 0x2000000 (6 - SYN,ACK)
        * TCPFC_FIN    << (5 << 2) == 0x0400000 (5 - FIN,ACK)
        * ...
        *
        * Hence, OR'ed mask value is 0x2430140.
        */
       i = (tcpfl & (TH_SYN | TH_FIN)) | ((tcpfl & TH_ACK) >> 2);
       c = (0x2430140 >> (i << 2)) & 7;

       KASSERT(c < TCPFC_COUNT);
       return c;
}

/*
* NPF transition table of a tracked TCP connection.
*
* There is a single state, which is changed in the following way:
*
* new_state = npf_tcp_fsm[old_state][direction][npf_tcpfl2case(tcp_flags)];
*
* Note that this state is different from the state in each end (host).
*/

static const uint8_t npf_tcp_fsm[NPF_TCP_NSTATES][2][TCPFC_COUNT] = {
       [NPF_TCPS_CLOSED] = {
               [NPF_FLOW_FORW] = {
                       /* Handshake (1): initial SYN. */
                       [TCPFC_SYN]     = NPF_TCPS_SYN_SENT,
               },
       },
       [NPF_TCPS_SYN_SENT] = {
               [NPF_FLOW_FORW] = {
                       /* SYN may be retransmitted. */
                       [TCPFC_SYN]     = NPF_TCPS_OK,
               },
               [NPF_FLOW_BACK] = {
                       /* Handshake (2): SYN-ACK is expected. */
                       [TCPFC_SYNACK]  = NPF_TCPS_SYN_RECEIVED,
                       /* Simultaneous initiation - SYN. */
                       [TCPFC_SYN]     = NPF_TCPS_SIMSYN_SENT,
               },
       },
       [NPF_TCPS_SIMSYN_SENT] = {
               [NPF_FLOW_FORW] = {
                       /* Original SYN re-transmission. */
                       [TCPFC_SYN]     = NPF_TCPS_OK,
                       /* SYN-ACK response to simultaneous SYN. */
                       [TCPFC_SYNACK]  = NPF_TCPS_SYN_RECEIVED,
               },
               [NPF_FLOW_BACK] = {
                       /* Simultaneous SYN re-transmission.*/
                       [TCPFC_SYN]     = NPF_TCPS_OK,
                       /* SYN-ACK response to original SYN. */
                       [TCPFC_SYNACK]  = NPF_TCPS_SYN_RECEIVED,
                       /* FIN may occur early. */
                       [TCPFC_FIN]     = NPF_TCPS_FIN_RECEIVED,
               },
       },
       [NPF_TCPS_SYN_RECEIVED] = {
               [NPF_FLOW_FORW] = {
                       /* Handshake (3): ACK is expected. */
                       [TCPFC_ACK]     = NPF_TCPS_ESTABLISHED,
                       /* FIN may be sent early. */
                       [TCPFC_FIN]     = NPF_TCPS_FIN_SENT,
                       /* Late SYN re-transmission. */
                       [TCPFC_SYN]     = NPF_TCPS_OK,
               },
               [NPF_FLOW_BACK] = {
                       /* SYN-ACK may be retransmitted. */
                       [TCPFC_SYNACK]  = NPF_TCPS_OK,
                       /* XXX: ACK of late SYN in simultaneous case? */
                       [TCPFC_ACK]     = NPF_TCPS_OK,
                       /* FIN may occur early. */
                       [TCPFC_FIN]     = NPF_TCPS_FIN_RECEIVED,
               },
       },
       [NPF_TCPS_ESTABLISHED] = {
               /*
                * Regular ACKs (data exchange) or FIN.
                * FIN packets may have ACK set.
                */
               [NPF_FLOW_FORW] = {
                       [TCPFC_ACK]     = NPF_TCPS_OK,
                       /* FIN by the sender. */
                       [TCPFC_FIN]     = NPF_TCPS_FIN_SENT,
               },
               [NPF_FLOW_BACK] = {
                       [TCPFC_ACK]     = NPF_TCPS_OK,
                       /* FIN by the receiver. */
                       [TCPFC_FIN]     = NPF_TCPS_FIN_RECEIVED,
               },
       },
       [NPF_TCPS_FIN_SENT] = {
               [NPF_FLOW_FORW] = {
                       /* FIN may be re-transmitted.  Late ACK as well. */
                       [TCPFC_ACK]     = NPF_TCPS_OK,
                       [TCPFC_FIN]     = NPF_TCPS_OK,
               },
               [NPF_FLOW_BACK] = {
                       /* If ACK, connection is half-closed now. */
                       [TCPFC_ACK]     = NPF_TCPS_FIN_WAIT,
                       /* FIN or FIN-ACK race - immediate closing. */
                       [TCPFC_FIN]     = NPF_TCPS_CLOSING,
               },
       },
       [NPF_TCPS_FIN_RECEIVED] = {
               /*
                * FIN was received.  Equivalent scenario to sent FIN.
                */
               [NPF_FLOW_FORW] = {
                       [TCPFC_ACK]     = NPF_TCPS_CLOSE_WAIT,
                       [TCPFC_FIN]     = NPF_TCPS_CLOSING,
               },
               [NPF_FLOW_BACK] = {
                       [TCPFC_ACK]     = NPF_TCPS_OK,
                       [TCPFC_FIN]     = NPF_TCPS_OK,
               },
       },
       [NPF_TCPS_CLOSE_WAIT] = {
               /* Sender has sent the FIN and closed its end. */
               [NPF_FLOW_FORW] = {
                       [TCPFC_ACK]     = NPF_TCPS_OK,
                       [TCPFC_FIN]     = NPF_TCPS_LAST_ACK,
               },
               [NPF_FLOW_BACK] = {
                       [TCPFC_ACK]     = NPF_TCPS_OK,
                       [TCPFC_FIN]     = NPF_TCPS_LAST_ACK,
               },
       },
       [NPF_TCPS_FIN_WAIT] = {
               /* Receiver has closed its end. */
               [NPF_FLOW_FORW] = {
                       [TCPFC_ACK]     = NPF_TCPS_OK,
                       [TCPFC_FIN]     = NPF_TCPS_LAST_ACK,
               },
               [NPF_FLOW_BACK] = {
                       [TCPFC_ACK]     = NPF_TCPS_OK,
                       [TCPFC_FIN]     = NPF_TCPS_LAST_ACK,
               },
       },
       [NPF_TCPS_CLOSING] = {
               /* Race of FINs - expecting ACK. */
               [NPF_FLOW_FORW] = {
                       [TCPFC_ACK]     = NPF_TCPS_LAST_ACK,
               },
               [NPF_FLOW_BACK] = {
                       [TCPFC_ACK]     = NPF_TCPS_LAST_ACK,
               },
       },
       [NPF_TCPS_LAST_ACK] = {
               /* FINs exchanged - expecting last ACK. */
               [NPF_FLOW_FORW] = {
                       [TCPFC_ACK]     = NPF_TCPS_TIME_WAIT,
               },
               [NPF_FLOW_BACK] = {
                       [TCPFC_ACK]     = NPF_TCPS_TIME_WAIT,
               },
       },
       [NPF_TCPS_TIME_WAIT] = {
               /* May re-open the connection as per RFC 1122. */
               [NPF_FLOW_FORW] = {
                       [TCPFC_SYN]     = NPF_TCPS_SYN_SENT,
               },
       },
};

/*
* npf_tcp_inwindow: determine whether the packet is in the TCP window
* and thus part of the connection we are tracking.
*/
static bool
npf_tcp_inwindow(npf_cache_t *npc, npf_state_t *nst, const npf_flow_t flow)
{
       const npf_state_tcp_params_t *params;
       const struct tcphdr * const th = npc->npc_l4.tcp;
       const int tcpfl = th->th_flags;
       npf_tcpstate_t *fstate, *tstate;
       int tcpdlen, ackskew;
       tcp_seq seq, ack, end;
       uint32_t win;

       params = npc->npc_ctx->params[NPF_PARAMS_TCP_STATE];
       KASSERT(npf_iscached(npc, NPC_TCP));

       /*
        * Perform SEQ/ACK numbers check against boundaries.  Reference:
        *
        *      Rooij G., "Real stateful TCP packet filtering in IP Filter",
        *      10th USENIX Security Symposium invited talk, Aug. 2001.
        *
        * There are four boundaries defined as following:
        *      I)   SEQ + LEN  <= MAX { SND.ACK + MAX(SND.WIN, 1) }
        *      II)  SEQ        >= MAX { SND.SEQ + SND.LEN - MAX(RCV.WIN, 1) }
        *      III) ACK        <= MAX { RCV.SEQ + RCV.LEN }
        *      IV)  ACK        >= MAX { RCV.SEQ + RCV.LEN } - MAXACKWIN
        *
        * Let these members of npf_tcpstate_t be the maximum seen values of:
        *      nst_end         - SEQ + LEN
        *      nst_maxend      - ACK + MAX(WIN, 1)
        *      nst_maxwin      - MAX(WIN, 1)
        */

       tcpdlen = npf_tcpsaw(__UNCONST(npc), &seq, &ack, &win);
       end = seq + tcpdlen;
       if (tcpfl & TH_SYN) {
               end++;
       }
       if (tcpfl & TH_FIN) {
               end++;
       }

       fstate = &nst->nst_tcpst[flow];
       tstate = &nst->nst_tcpst[!flow];
       win = win ? (win << fstate->nst_wscale) : 1;

       /*
        * Initialise if the first packet.
        * Note: only case when nst_maxwin is zero.
        */
       if (__predict_false(fstate->nst_maxwin == 0)) {
               /*
                * Normally, it should be the first SYN or a re-transmission
                * of SYN.  The state of the other side will get set with a
                * SYN-ACK reply (see below).
                */
               fstate->nst_end = end;
               fstate->nst_maxend = end;
               fstate->nst_maxwin = win;
               tstate->nst_end = 0;
               tstate->nst_maxend = 0;
               tstate->nst_maxwin = 1;

               /*
                * Handle TCP Window Scaling (RFC 1323).  Both sides may
                * send this option in their SYN packets.
                */
               fstate->nst_wscale = 0;
               (void)npf_fetch_tcpopts(npc, NULL, &fstate->nst_wscale);

               tstate->nst_wscale = 0;

               /* Done. */
               return true;
       }

       if (fstate->nst_end == 0) {
               /*
                * Should be a SYN-ACK reply to SYN.  If SYN is not set,
                * then we are in the middle of connection and lost tracking.
                */
               fstate->nst_end = end;
               fstate->nst_maxend = end + 1;
               fstate->nst_maxwin = win;
               fstate->nst_wscale = 0;

               /* Handle TCP Window Scaling (must be ignored if no SYN). */
               if (tcpfl & TH_SYN) {
                       (void)npf_fetch_tcpopts(npc, NULL, &fstate->nst_wscale);
               }
       }

       if ((tcpfl & TH_ACK) == 0) {
               /* Pretend that an ACK was sent. */
               ack = tstate->nst_end;
       } else if ((tcpfl & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST) && ack == 0) {
               /* Workaround for some TCP stacks. */
               ack = tstate->nst_end;
       }

       if (__predict_false(tcpfl & TH_RST)) {
               /* RST to the initial SYN may have zero SEQ - fix it up. */
               if (seq == 0 && nst->nst_state == NPF_TCPS_SYN_SENT) {
                       end = fstate->nst_end;
                       seq = end;
               }

               /* Strict in-order sequence for RST packets (RFC 5961). */
               if (params->strict_order_rst && (fstate->nst_end - seq) > 1) {
                       return false;
               }
       }

       /*
        * Determine whether the data is within previously noted window,
        * that is, upper boundary for valid data (I).
        */
       if (!SEQ_LEQ(end, fstate->nst_maxend)) {
               npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE_TCP1);
               return false;
       }

       /* Lower boundary (II), which is no more than one window back. */
       if (!SEQ_GEQ(seq, fstate->nst_end - tstate->nst_maxwin)) {
               npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE_TCP2);
               return false;
       }

       /*
        * Boundaries for valid acknowledgments (III, IV) - one predicted
        * window up or down, since packets may be fragmented.
        */
       ackskew = tstate->nst_end - ack;
       if (ackskew < -(int)params->max_ack_win ||
           ackskew > ((int)params->max_ack_win << fstate->nst_wscale)) {
               npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE_TCP3);
               return false;
       }

       /*
        * Packet has been passed.
        *
        * Negative ackskew might be due to fragmented packets.  Since the
        * total length of the packet is unknown - bump the boundary.
        */

       if (ackskew < 0) {
               tstate->nst_end = ack;
       }
       /* Keep track of the maximum window seen. */
       if (fstate->nst_maxwin < win) {
               fstate->nst_maxwin = win;
       }
       if (SEQ_GT(end, fstate->nst_end)) {
               fstate->nst_end = end;
       }
       /* Note the window for upper boundary. */
       if (SEQ_GEQ(ack + win, tstate->nst_maxend)) {
               tstate->nst_maxend = ack + win;
       }
       return true;
}

/*
* npf_state_tcp: inspect TCP segment, determine whether it belongs to
* the connection and track its state.
*/
bool
npf_state_tcp(npf_cache_t *npc, npf_state_t *nst, npf_flow_t flow)
{
       const struct tcphdr * const th = npc->npc_l4.tcp;
       const unsigned tcpfl = th->th_flags, state = nst->nst_state;
       unsigned nstate;

       KASSERT(nst->nst_state < NPF_TCP_NSTATES);

       /* Look for a transition to a new state. */
       if (__predict_true((tcpfl & TH_RST) == 0)) {
               const u_int flagcase = npf_tcpfl2case(tcpfl);
               nstate = npf_tcp_fsm[state][flow][flagcase];
       } else if (state == NPF_TCPS_TIME_WAIT) {
               /* Prevent TIME-WAIT assassination (RFC 1337). */
               nstate = NPF_TCPS_OK;
       } else {
               nstate = NPF_TCPS_CLOSED;
       }

       /* Determine whether TCP packet really belongs to this connection. */
       if (!npf_tcp_inwindow(npc, nst, flow)) {
               return false;
       }
       if (__predict_true(nstate == NPF_TCPS_OK)) {
               return true;
       }

       nst->nst_state = nstate;
       return true;
}

int
npf_state_tcp_timeout(npf_t *npf, const npf_state_t *nst)
{
       static const uint8_t state_timeout_idx[NPF_TCP_NSTATES] = {
               [NPF_TCPS_CLOSED]       = NPF_TCPT_CLOSE,
               /* Unsynchronised states. */
               [NPF_TCPS_SYN_SENT]     = NPF_TCPT_NEW,
               [NPF_TCPS_SIMSYN_SENT]  = NPF_TCPT_NEW,
               [NPF_TCPS_SYN_RECEIVED] = NPF_TCPT_NEW,
               /* Established (synchronised state). */
               [NPF_TCPS_ESTABLISHED]  = NPF_TCPT_ESTABLISHED,
               /* Half-closed cases. */
               [NPF_TCPS_FIN_SENT]     = NPF_TCPT_HALFCLOSE,
               [NPF_TCPS_FIN_RECEIVED] = NPF_TCPT_HALFCLOSE,
               [NPF_TCPS_CLOSE_WAIT]   = NPF_TCPT_HALFCLOSE,
               [NPF_TCPS_FIN_WAIT]     = NPF_TCPT_HALFCLOSE,
               /* Full close cases. */
               [NPF_TCPS_CLOSING]      = NPF_TCPT_CLOSE,
               [NPF_TCPS_LAST_ACK]     = NPF_TCPT_CLOSE,
               [NPF_TCPS_TIME_WAIT]    = NPF_TCPT_TIMEWAIT,
       };
       const npf_state_tcp_params_t *params;
       const unsigned state = nst->nst_state;

       KASSERT(state < NPF_TCP_NSTATES);
       params = npf->params[NPF_PARAMS_TCP_STATE];
       return params->timeouts[state_timeout_idx[state]];
}

void
npf_state_tcp_sysinit(npf_t *npf)
{
       npf_state_tcp_params_t *params = npf_param_allocgroup(npf,
           NPF_PARAMS_TCP_STATE, sizeof(npf_state_tcp_params_t));
       npf_param_t param_map[] = {
               /*
                * TCP connection timeout table (in seconds).
                */

               /* Unsynchronised states. */
               {
                       "state.tcp.timeout.new",
                       &params->timeouts[NPF_TCPT_NEW],
                       .default_val = 30,
                       .min = 0, .max = INT_MAX
               },
               /* Established. */
               {
                       "state.tcp.timeout.established",
                       &params->timeouts[NPF_TCPT_ESTABLISHED],
                       .default_val = 60 * 60 * 24,
                       .min = 0, .max = INT_MAX
               },
               /* Half-closed cases. */
               {
                       "state.tcp.timeout.half_close",
                       &params->timeouts[NPF_TCPT_HALFCLOSE],
                       .default_val = 60 * 60 * 6,
                       .min = 0, .max = INT_MAX
               },
               /* Full close cases. */
               {
                       "state.tcp.timeout.close",
                       &params->timeouts[NPF_TCPT_CLOSE],
                       .default_val = 10,
                       .min = 0, .max = INT_MAX
               },
               /* TCP time-wait (2 * MSL). */
               {
                       "state.tcp.timeout.time_wait",
                       &params->timeouts[NPF_TCPT_TIMEWAIT],
                       .default_val = 60 * 2 * 2,
                       .min = 0, .max = INT_MAX
               },

               /*
                * Enforce strict order RST.
                */
               {
                       "state.tcp.strict_order_rst",
                       &params->strict_order_rst,
                       .default_val = 1, // true
                       .min = 0, .max = 1
               },

               /*
                * TCP state tracking: maximum allowed ACK window.
                */
               {
                       "state.tcp.max_ack_win",
                       &params->max_ack_win,
                       .default_val = 66000,
                       .min = 0, .max = INT_MAX
               },
       };
       npf_param_register(npf, param_map, __arraycount(param_map));
}

void
npf_state_tcp_sysfini(npf_t *npf)
{
       const size_t len = sizeof(npf_state_tcp_params_t);
       npf_param_freegroup(npf, NPF_PARAMS_TCP_STATE, len);
}