/*-
* Copyright (c) 2014-2020 Mindaugas Rasiukevicius <rmind at noxt eu>
* Copyright (c) 2010-2013 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This material is based upon work partially supported by The
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* NPF network address port translation (NAPT) and other forms of NAT.
* Described in RFC 2663, RFC 3022, etc.
*
* Overview
*
*      There are a few mechanisms: NAT policy, port map and translation.
*      The NAT module has a separate ruleset where rules always have an
*      associated NAT policy.
*
* Translation types
*
*      There are two types of translation: outbound (NPF_NATOUT) and
*      inbound (NPF_NATIN).  It should not be confused with connection
*      direction.  See npf_nat_which() for the description of how the
*      addresses are rewritten.  The bi-directional NAT is a combined
*      outbound and inbound translation, therefore is constructed as
*      two policies.
*
* NAT policies and port maps
*
*      The NAT (translation) policy is applied when packet matches the
*      rule.  Apart from the filter criteria, the NAT policy always has
*      a translation IP address or a table.  If port translation is set,
*      then NAT mechanism relies on port map mechanism.
*
* Connections, translation entries and their life-cycle
*
*      NAT relies on the connection tracking module.  Each translated
*      connection has an associated translation entry (npf_nat_t) which
*      contains information used for backwards stream translation, i.e.
*      the original IP address with port and translation port, allocated
*      from the port map.  Each NAT entry is associated with the policy,
*      which contains translation IP address.  Allocated port is returned
*      to the port map and NAT entry is destroyed when connection expires.
*/

#ifdef _KERNEL
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: npf_nat.c,v 1.53 2023/02/24 11:03:01 riastradh Exp $");

#include <sys/param.h>
#include <sys/types.h>

#include <sys/atomic.h>
#include <sys/condvar.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/pool.h>
#include <sys/proc.h>
#endif

#include "npf_impl.h"
#include "npf_conn.h"

/*
* NAT policy structure.
*/
struct npf_natpolicy {
       npf_t *                 n_npfctx;
       kmutex_t                n_lock;
       LIST_HEAD(, npf_nat)    n_nat_list;
       unsigned                n_refcnt;
       uint64_t                n_id;

       /*
        * Translation type, flags, address or table and the port.
        * Additionally, there may be translation algorithm and any
        * auxiliary data, e.g. NPTv6 adjustment value.
        *
        * NPF_NP_CMP_START mark starts here.
        */
       unsigned                n_type;
       unsigned                n_flags;
       unsigned                n_alen;

       npf_addr_t              n_taddr;
       npf_netmask_t           n_tmask;
       in_port_t               n_tport;
       unsigned                n_tid;

       unsigned                n_algo;
       union {
               unsigned        n_rr_idx;
               uint16_t        n_npt66_adj;
       };
};

/*
* Private flags - must be in the NPF_NAT_PRIVMASK range.
*/
#define NPF_NAT_USETABLE        (0x01000000 & NPF_NAT_PRIVMASK)

#define NPF_NP_CMP_START        offsetof(npf_natpolicy_t, n_type)
#define NPF_NP_CMP_SIZE         (sizeof(npf_natpolicy_t) - NPF_NP_CMP_START)

/*
* NAT entry for a connection.
*/
struct npf_nat {
       /* Associated NAT policy. */
       npf_natpolicy_t *       nt_natpolicy;

       uint16_t                nt_ifid;
       uint16_t                nt_alen;

       /*
        * Translation address as well as the original address which is
        * used for backwards translation.  The same for ports.
        */
       npf_addr_t              nt_taddr;
       npf_addr_t              nt_oaddr;

       in_port_t               nt_oport;
       in_port_t               nt_tport;

       /* ALG (if any) associated with this NAT entry. */
       npf_alg_t *             nt_alg;
       uintptr_t               nt_alg_arg;

       LIST_ENTRY(npf_nat)     nt_entry;
       npf_conn_t *            nt_conn;
};

static pool_cache_t             nat_cache       __read_mostly;

/*
* npf_nat_sys{init,fini}: initialize/destroy NAT subsystem structures.
*/

void
npf_nat_sysinit(void)
{
       nat_cache = pool_cache_init(sizeof(npf_nat_t), 0,
           0, 0, "npfnatpl", NULL, IPL_NET, NULL, NULL, NULL);
       KASSERT(nat_cache != NULL);
}

void
npf_nat_sysfini(void)
{
       /* All NAT policies should already be destroyed. */
       pool_cache_destroy(nat_cache);
}

/*
* npf_natpolicy_create: create a new NAT policy.
*/
npf_natpolicy_t *
npf_natpolicy_create(npf_t *npf, const nvlist_t *nat, npf_ruleset_t *rset)
{
       npf_natpolicy_t *np;
       const void *addr;
       size_t len;

       np = kmem_zalloc(sizeof(npf_natpolicy_t), KM_SLEEP);
       atomic_store_relaxed(&np->n_refcnt, 1);
       np->n_npfctx = npf;

       /* The translation type, flags and policy ID. */
       np->n_type = dnvlist_get_number(nat, "type", 0);
       np->n_flags = dnvlist_get_number(nat, "flags", 0) & ~NPF_NAT_PRIVMASK;
       np->n_id = dnvlist_get_number(nat, "nat-policy", 0);

       /* Should be exclusively either inbound or outbound NAT. */
       if (((np->n_type == NPF_NATIN) ^ (np->n_type == NPF_NATOUT)) == 0) {
               goto err;
       }
       mutex_init(&np->n_lock, MUTEX_DEFAULT, IPL_SOFTNET);
       LIST_INIT(&np->n_nat_list);

       /*
        * Translation IP, mask and port (if applicable).  If using the
        * the table, specified by the ID, then the nat-addr/nat-mask will
        * be used as a filter for the addresses selected from table.
        */
       if (nvlist_exists_number(nat, "nat-table-id")) {
               if (np->n_flags & NPF_NAT_STATIC) {
                       goto err;
               }
               np->n_tid = nvlist_get_number(nat, "nat-table-id");
               np->n_tmask = NPF_NO_NETMASK;
               np->n_flags |= NPF_NAT_USETABLE;
       } else {
               addr = dnvlist_get_binary(nat, "nat-addr", &len, NULL, 0);
               if (!addr || len == 0 || len > sizeof(npf_addr_t)) {
                       goto err;
               }
               memcpy(&np->n_taddr, addr, len);
               np->n_alen = len;
               np->n_tmask = dnvlist_get_number(nat, "nat-mask", NPF_NO_NETMASK);
               if (npf_netmask_check(np->n_alen, np->n_tmask)) {
                       goto err;
               }
       }
       np->n_tport = dnvlist_get_number(nat, "nat-port", 0);

       /*
        * NAT algorithm.
        */
       np->n_algo = dnvlist_get_number(nat, "nat-algo", 0);
       switch (np->n_algo) {
       case NPF_ALGO_NPT66:
               np->n_npt66_adj = dnvlist_get_number(nat, "npt66-adj", 0);
               break;
       case NPF_ALGO_NETMAP:
               break;
       case NPF_ALGO_IPHASH:
       case NPF_ALGO_RR:
       default:
               if (np->n_tmask != NPF_NO_NETMASK) {
                       goto err;
               }
               break;
       }
       return np;
err:
       mutex_destroy(&np->n_lock);
       kmem_free(np, sizeof(npf_natpolicy_t));
       return NULL;
}

int
npf_natpolicy_export(const npf_natpolicy_t *np, nvlist_t *nat)
{
       nvlist_add_number(nat, "nat-policy", np->n_id);
       nvlist_add_number(nat, "type", np->n_type);
       nvlist_add_number(nat, "flags", np->n_flags);

       if (np->n_flags & NPF_NAT_USETABLE) {
               nvlist_add_number(nat, "nat-table-id", np->n_tid);
       } else {
               nvlist_add_binary(nat, "nat-addr", &np->n_taddr, np->n_alen);
               nvlist_add_number(nat, "nat-mask", np->n_tmask);
       }
       nvlist_add_number(nat, "nat-port", np->n_tport);
       nvlist_add_number(nat, "nat-algo", np->n_algo);

       switch (np->n_algo) {
       case NPF_ALGO_NPT66:
               nvlist_add_number(nat, "npt66-adj", np->n_npt66_adj);
               break;
       }
       return 0;
}

static void
npf_natpolicy_release(npf_natpolicy_t *np)
{
       KASSERT(atomic_load_relaxed(&np->n_refcnt) > 0);

       membar_release();
       if (atomic_dec_uint_nv(&np->n_refcnt) != 0) {
               return;
       }
       membar_acquire();
       KASSERT(LIST_EMPTY(&np->n_nat_list));
       mutex_destroy(&np->n_lock);
       kmem_free(np, sizeof(npf_natpolicy_t));
}

/*
* npf_natpolicy_destroy: free the NAT policy.
*
* => Called from npf_rule_free() during the reload via npf_ruleset_destroy().
* => At this point, NAT policy cannot acquire new references.
*/
void
npf_natpolicy_destroy(npf_natpolicy_t *np)
{
       /*
        * Drain the references.  If there are active NAT connections,
        * then expire them and kick the worker.
        */
       if (atomic_load_relaxed(&np->n_refcnt) > 1) {
               npf_nat_t *nt;

               mutex_enter(&np->n_lock);
               LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
                       npf_conn_t *con = nt->nt_conn;
                       KASSERT(con != NULL);
                       npf_conn_expire(con);
               }
               mutex_exit(&np->n_lock);
               npf_worker_signal(np->n_npfctx);
       }
       KASSERT(atomic_load_relaxed(&np->n_refcnt) >= 1);

       /*
        * Drop the initial reference, but it might not be the last one.
        * If so, the last reference will be triggered via:
        *
        * npf_conn_destroy() -> npf_nat_destroy() -> npf_natpolicy_release()
        */
       npf_natpolicy_release(np);
}

void
npf_nat_freealg(npf_natpolicy_t *np, npf_alg_t *alg)
{
       npf_nat_t *nt;

       mutex_enter(&np->n_lock);
       LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
               if (nt->nt_alg == alg) {
                       npf_alg_destroy(np->n_npfctx, alg, nt, nt->nt_conn);
                       nt->nt_alg = NULL;
               }
       }
       mutex_exit(&np->n_lock);
}

/*
* npf_natpolicy_cmp: compare two NAT policies.
*
* => Return 0 on match, and non-zero otherwise.
*/
bool
npf_natpolicy_cmp(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
{
       const void *np_raw, *mnp_raw;

       /*
        * Compare the relevant NAT policy information (in its raw form)
        * that is enough as a matching criteria.
        */
       KASSERT(np && mnp && np != mnp);
       np_raw = (const uint8_t *)np + NPF_NP_CMP_START;
       mnp_raw = (const uint8_t *)mnp + NPF_NP_CMP_START;
       return memcmp(np_raw, mnp_raw, NPF_NP_CMP_SIZE) == 0;
}

void
npf_nat_setid(npf_natpolicy_t *np, uint64_t id)
{
       np->n_id = id;
}

uint64_t
npf_nat_getid(const npf_natpolicy_t *np)
{
       return np->n_id;
}

/*
* npf_nat_which: tell which address (source or destination) should be
* rewritten given the combination of the NAT type and flow direction.
*
* => Returns NPF_SRC or NPF_DST constant.
*/
static inline unsigned
npf_nat_which(const unsigned type, const npf_flow_t flow)
{
       unsigned which;

       /* The logic below relies on these values being 0 or 1. */
       CTASSERT(NPF_SRC == 0 && NPF_DST == 1);
       CTASSERT(NPF_FLOW_FORW == NPF_SRC && NPF_FLOW_BACK == NPF_DST);

       KASSERT(type == NPF_NATIN || type == NPF_NATOUT);
       KASSERT(flow == NPF_FLOW_FORW || flow == NPF_FLOW_BACK);

       /*
        * Outbound NAT rewrites:
        *
        * - Source (NPF_SRC) on "forwards" stream.
        * - Destination (NPF_DST) on "backwards" stream.
        *
        * Inbound NAT is other way round.
        */
       which = (type == NPF_NATOUT) ? flow : !flow;
       KASSERT(which == NPF_SRC || which == NPF_DST);
       return which;
}

/*
* npf_nat_inspect: inspect packet against NAT ruleset and return a policy.
*
* => Acquire a reference on the policy, if found.
* => NAT lookup is protected by EBR.
*/
static npf_natpolicy_t *
npf_nat_inspect(npf_cache_t *npc, const unsigned di)
{
       npf_t *npf = npc->npc_ctx;
       int slock = npf_config_read_enter(npf);
       npf_ruleset_t *rlset = npf_config_natset(npf);
       npf_natpolicy_t *np;
       npf_rule_t *rl;

       rl = npf_ruleset_inspect(npc, rlset, di, NPF_LAYER_3);
       if (rl == NULL) {
               npf_config_read_exit(npf, slock);
               return NULL;
       }
       np = npf_rule_getnat(rl);
       atomic_inc_uint(&np->n_refcnt);
       npf_config_read_exit(npf, slock);
       return np;
}

static void
npf_nat_algo_netmap(const npf_cache_t *npc, const npf_natpolicy_t *np,
   const unsigned which, npf_addr_t *addr)
{
       const npf_addr_t *orig_addr = npc->npc_ips[which];

       /*
        * NETMAP:
        *
        *      addr = net-addr | (orig-addr & ~mask)
        */
       npf_addr_mask(&np->n_taddr, np->n_tmask, npc->npc_alen, addr);
       npf_addr_bitor(orig_addr, np->n_tmask, npc->npc_alen, addr);
}

static inline npf_addr_t *
npf_nat_getaddr(npf_cache_t *npc, npf_natpolicy_t *np, const unsigned alen)
{
       npf_tableset_t *ts = npf_config_tableset(np->n_npfctx);
       npf_table_t *t = npf_tableset_getbyid(ts, np->n_tid);
       unsigned idx;

       /*
        * Dynamically select the translation IP address.
        */
       switch (np->n_algo) {
       case NPF_ALGO_RR:
               idx = atomic_inc_uint_nv(&np->n_rr_idx);
               break;
       case NPF_ALGO_IPHASH:
       default:
               idx = npf_addr_mix(alen,
                   npc->npc_ips[NPF_SRC],
                   npc->npc_ips[NPF_DST]);
               break;
       }
       return npf_table_getsome(t, alen, idx);
}

/*
* npf_nat_create: create a new NAT translation entry.
*
* => The caller must pass the NAT policy with a reference acquired for us.
*/
static npf_nat_t *
npf_nat_create(npf_cache_t *npc, npf_natpolicy_t *np, npf_conn_t *con)
{
       const unsigned proto = npc->npc_proto;
       const unsigned alen = npc->npc_alen;
       const nbuf_t *nbuf = npc->npc_nbuf;
       npf_t *npf = npc->npc_ctx;
       npf_addr_t *taddr;
       npf_nat_t *nt;

       KASSERT(npf_iscached(npc, NPC_IP46));
       KASSERT(npf_iscached(npc, NPC_LAYER4));

       /* Construct a new NAT entry and associate it with the connection. */
       nt = pool_cache_get(nat_cache, PR_NOWAIT);
       if (__predict_false(!nt)) {
               return NULL;
       }
       npf_stats_inc(npf, NPF_STAT_NAT_CREATE);
       nt->nt_natpolicy = np;
       nt->nt_conn = con;
       nt->nt_alg = NULL;

       /*
        * Save the interface ID.
        *
        * Note: this can be different from the given connection if it
        * was established on a different interface, using the global state
        * mode (state.key.interface = 0).
        */
       KASSERT(nbuf->nb_ifid != 0);
       nt->nt_ifid = nbuf->nb_ifid;

       /*
        * Select the translation address.
        */
       if (np->n_flags & NPF_NAT_USETABLE) {
               int slock = npf_config_read_enter(npf);
               taddr = npf_nat_getaddr(npc, np, alen);
               if (__predict_false(!taddr)) {
                       npf_config_read_exit(npf, slock);
                       pool_cache_put(nat_cache, nt);
                       return NULL;
               }
               memcpy(&nt->nt_taddr, taddr, alen);
               npf_config_read_exit(npf, slock);

       } else if (np->n_algo == NPF_ALGO_NETMAP) {
               const unsigned which = npf_nat_which(np->n_type, NPF_FLOW_FORW);
               npf_nat_algo_netmap(npc, np, which, &nt->nt_taddr);
               taddr = &nt->nt_taddr;
       } else {
               /* Static IP address. */
               taddr = &np->n_taddr;
               memcpy(&nt->nt_taddr, taddr, alen);
       }
       nt->nt_alen = alen;

       /* Save the original address which may be rewritten. */
       if (np->n_type == NPF_NATOUT) {
               /* Outbound NAT: source (think internal) address. */
               memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_SRC], alen);
       } else {
               /* Inbound NAT: destination (think external) address. */
               KASSERT(np->n_type == NPF_NATIN);
               memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_DST], alen);
       }

       /*
        * Port translation, if required, and if it is TCP/UDP.
        */
       if ((np->n_flags & NPF_NAT_PORTS) == 0 ||
           (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) {
               nt->nt_oport = 0;
               nt->nt_tport = 0;
               goto out;
       }

       /* Save the relevant TCP/UDP port. */
       if (proto == IPPROTO_TCP) {
               const struct tcphdr *th = npc->npc_l4.tcp;
               nt->nt_oport = (np->n_type == NPF_NATOUT) ?
                   th->th_sport : th->th_dport;
       } else {
               const struct udphdr *uh = npc->npc_l4.udp;
               nt->nt_oport = (np->n_type == NPF_NATOUT) ?
                   uh->uh_sport : uh->uh_dport;
       }

       /* Get a new port for translation. */
       if ((np->n_flags & NPF_NAT_PORTMAP) != 0) {
               npf_portmap_t *pm = np->n_npfctx->portmap;
               nt->nt_tport = npf_portmap_get(pm, alen, taddr);
       } else {
               nt->nt_tport = np->n_tport;
       }
out:
       mutex_enter(&np->n_lock);
       LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
       /* Note: we also consume the reference on policy. */
       mutex_exit(&np->n_lock);
       return nt;
}

/*
* npf_dnat_translate: perform translation given the state data.
*/
static inline int
npf_dnat_translate(npf_cache_t *npc, npf_nat_t *nt, npf_flow_t flow)
{
       const npf_natpolicy_t *np = nt->nt_natpolicy;
       const unsigned which = npf_nat_which(np->n_type, flow);
       const npf_addr_t *addr;
       in_port_t port;

       KASSERT(npf_iscached(npc, NPC_IP46));
       KASSERT(npf_iscached(npc, NPC_LAYER4));

       if (flow == NPF_FLOW_FORW) {
               /* "Forwards" stream: use translation address/port. */
               addr = &nt->nt_taddr;
               port = nt->nt_tport;
       } else {
               /* "Backwards" stream: use original address/port. */
               addr = &nt->nt_oaddr;
               port = nt->nt_oport;
       }
       KASSERT((np->n_flags & NPF_NAT_PORTS) != 0 || port == 0);

       /* Execute ALG translation first. */
       if ((npc->npc_info & NPC_ALG_EXEC) == 0) {
               npc->npc_info |= NPC_ALG_EXEC;
               npf_alg_exec(npc, nt, flow);
               npf_recache(npc);
       }
       KASSERT(!nbuf_flag_p(npc->npc_nbuf, NBUF_DATAREF_RESET));

       /* Finally, perform the translation. */
       return npf_napt_rwr(npc, which, addr, port);
}

/*
* npf_snat_translate: perform translation given the algorithm.
*/
static inline int
npf_snat_translate(npf_cache_t *npc, const npf_natpolicy_t *np, npf_flow_t flow)
{
       const unsigned which = npf_nat_which(np->n_type, flow);
       const npf_addr_t *taddr;
       npf_addr_t addr;

       KASSERT(np->n_flags & NPF_NAT_STATIC);

       switch (np->n_algo) {
       case NPF_ALGO_NETMAP:
               npf_nat_algo_netmap(npc, np, which, &addr);
               taddr = &addr;
               break;
       case NPF_ALGO_NPT66:
               return npf_npt66_rwr(npc, which, &np->n_taddr,
                   np->n_tmask, np->n_npt66_adj);
       default:
               taddr = &np->n_taddr;
               break;
       }
       return npf_napt_rwr(npc, which, taddr, np->n_tport);
}

/*
* Associate NAT policy with an existing connection state.
*/
npf_nat_t *
npf_nat_share_policy(npf_cache_t *npc, npf_conn_t *con, npf_nat_t *src_nt)
{
       npf_natpolicy_t *np = src_nt->nt_natpolicy;
       npf_nat_t *nt;
       int ret;

       /* Create a new NAT entry. */
       nt = npf_nat_create(npc, np, con);
       if (__predict_false(nt == NULL)) {
               return NULL;
       }
       atomic_inc_uint(&np->n_refcnt);

       /* Associate the NAT translation entry with the connection. */
       ret = npf_conn_setnat(npc, con, nt, np->n_type);
       if (__predict_false(ret)) {
               /* Will release the reference. */
               npf_nat_destroy(con, nt);
               return NULL;
       }
       return nt;
}

/*
* npf_nat_lookup: lookup the (dynamic) NAT state and return its entry,
*
* => Checks that the packet is on the interface where NAT policy is applied.
* => Determines the flow direction in the context of the NAT policy.
*/
static npf_nat_t *
npf_nat_lookup(const npf_cache_t *npc, npf_conn_t *con,
   const unsigned di, npf_flow_t *flow)
{
       const nbuf_t *nbuf = npc->npc_nbuf;
       const npf_natpolicy_t *np;
       npf_nat_t *nt;

       if ((nt = npf_conn_getnat(con)) == NULL) {
               return NULL;
       }
       if (nt->nt_ifid != nbuf->nb_ifid) {
               return NULL;
       }

       np = nt->nt_natpolicy;
       KASSERT(atomic_load_relaxed(&np->n_refcnt) > 0);

       /*
        * We rely on NPF_NAT{IN,OUT} being equal to PFIL_{IN,OUT}.
        */
       CTASSERT(NPF_NATIN == PFIL_IN && NPF_NATOUT == PFIL_OUT);
       *flow = (np->n_type == di) ? NPF_FLOW_FORW : NPF_FLOW_BACK;
       return nt;
}

/*
* npf_do_nat:
*
*      - Inspect packet for a NAT policy, unless a connection with a NAT
*        association already exists.  In such case, determine whether it
*        is a "forwards" or "backwards" stream.
*
*      - Perform translation: rewrite source or destination fields,
*        depending on translation type and direction.
*
*      - Associate a NAT policy with a connection (may establish a new).
*/
int
npf_do_nat(npf_cache_t *npc, npf_conn_t *con, const unsigned di)
{
       nbuf_t *nbuf = npc->npc_nbuf;
       npf_conn_t *ncon = NULL;
       npf_natpolicy_t *np;
       npf_flow_t flow;
       npf_nat_t *nt;
       int error;

       /* All relevant data should be already cached. */
       if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
               return 0;
       }
       KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));

       /*
        * Return the NAT entry associated with the connection, if any.
        * Determines whether the stream is "forwards" or "backwards".
        * Note: no need to lock, since reference on connection is held.
        */
       if (con && (nt = npf_nat_lookup(npc, con, di, &flow)) != NULL) {
               np = nt->nt_natpolicy;
               goto translate;
       }

       /*
        * Inspect the packet for a NAT policy, if there is no connection.
        * Note: acquires a reference if found.
        */
       np = npf_nat_inspect(npc, di);
       if (np == NULL) {
               /* If packet does not match - done. */
               return 0;
       }
       flow = NPF_FLOW_FORW;

       /* Static NAT - just perform the translation. */
       if (np->n_flags & NPF_NAT_STATIC) {
               if (nbuf_cksum_barrier(nbuf, di)) {
                       npf_recache(npc);
               }
               error = npf_snat_translate(npc, np, flow);
               npf_natpolicy_release(np);
               return error;
       }

       /*
        * If there is no local connection (no "stateful" rule - unusual,
        * but possible configuration), establish one before translation.
        * Note that it is not a "pass" connection, therefore passing of
        * "backwards" stream depends on other, stateless filtering rules.
        */
       if (con == NULL) {
               ncon = npf_conn_establish(npc, di, true);
               if (ncon == NULL) {
                       npf_natpolicy_release(np);
                       return ENOMEM;
               }
               con = ncon;
       }

       /*
        * Create a new NAT entry and associate with the connection.
        * We will consume the reference on success (release on error).
        */
       nt = npf_nat_create(npc, np, con);
       if (nt == NULL) {
               npf_natpolicy_release(np);
               error = ENOMEM;
               goto out;
       }

       /* Determine whether any ALG matches. */
       if (npf_alg_match(npc, nt, di)) {
               KASSERT(nt->nt_alg != NULL);
       }

       /* Associate the NAT translation entry with the connection. */
       error = npf_conn_setnat(npc, con, nt, np->n_type);
       if (error) {
               /* Will release the reference. */
               npf_nat_destroy(con, nt);
               goto out;
       }

translate:
       /* May need to process the delayed checksums first (XXX: NetBSD). */
       if (nbuf_cksum_barrier(nbuf, di)) {
               npf_recache(npc);
       }

       /* Perform the translation. */
       error = npf_dnat_translate(npc, nt, flow);
out:
       if (__predict_false(ncon)) {
               if (error) {
                       /* It was created for NAT - just expire. */
                       npf_conn_expire(ncon);
               }
               npf_conn_release(ncon);
       }
       return error;
}

/*
* npf_nat_gettrans: return translation IP address and port.
*/
void
npf_nat_gettrans(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
{
       *addr = &nt->nt_taddr;
       *port = nt->nt_tport;
}

/*
* npf_nat_getorig: return original IP address and port from translation entry.
*/
void
npf_nat_getorig(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
{
       *addr = &nt->nt_oaddr;
       *port = nt->nt_oport;
}

/*
* npf_nat_setalg: associate an ALG with the NAT entry.
*/
void
npf_nat_setalg(npf_nat_t *nt, npf_alg_t *alg, uintptr_t arg)
{
       nt->nt_alg = alg;
       nt->nt_alg_arg = arg;
}

npf_alg_t *
npf_nat_getalg(const npf_nat_t *nt)
{
       return nt->nt_alg;
}

uintptr_t
npf_nat_getalgarg(const npf_nat_t *nt)
{
       return nt->nt_alg_arg;
}

/*
* npf_nat_destroy: destroy NAT structure (performed on connection expiration).
*/
void
npf_nat_destroy(npf_conn_t *con, npf_nat_t *nt)
{
       npf_natpolicy_t *np = nt->nt_natpolicy;
       npf_t *npf = np->n_npfctx;
       npf_alg_t *alg;

       /* Execute the ALG destroy callback, if any. */
       if ((alg = npf_nat_getalg(nt)) != NULL) {
               npf_alg_destroy(npf, alg, nt, con);
               nt->nt_alg = NULL;
       }

       /* Return taken port to the portmap. */
       if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
               npf_portmap_t *pm = npf->portmap;
               npf_portmap_put(pm, nt->nt_alen, &nt->nt_taddr, nt->nt_tport);
       }
       npf_stats_inc(np->n_npfctx, NPF_STAT_NAT_DESTROY);

       /*
        * Remove the connection from the list and drop the reference on
        * the NAT policy.  Note: this might trigger its destruction.
        */
       mutex_enter(&np->n_lock);
       LIST_REMOVE(nt, nt_entry);
       mutex_exit(&np->n_lock);
       npf_natpolicy_release(np);

       pool_cache_put(nat_cache, nt);
}

/*
* npf_nat_export: serialize the NAT entry with a NAT policy ID.
*/
void
npf_nat_export(npf_t *npf, const npf_nat_t *nt, nvlist_t *con_nv)
{
       npf_natpolicy_t *np = nt->nt_natpolicy;
       unsigned alen = nt->nt_alen;
       nvlist_t *nat_nv;

       nat_nv = nvlist_create(0);
       if (nt->nt_ifid) {
               char ifname[IFNAMSIZ];
               npf_ifmap_copyname(npf, nt->nt_ifid, ifname, sizeof(ifname));
               nvlist_add_string(nat_nv, "ifname", ifname);
       }
       nvlist_add_number(nat_nv, "alen", alen);

       nvlist_add_binary(nat_nv, "oaddr", &nt->nt_oaddr, alen);
       nvlist_add_number(nat_nv, "oport", nt->nt_oport);

       nvlist_add_binary(nat_nv, "taddr", &nt->nt_taddr, alen);
       nvlist_add_number(nat_nv, "tport", nt->nt_tport);

       nvlist_add_number(nat_nv, "nat-policy", np->n_id);
       nvlist_move_nvlist(con_nv, "nat", nat_nv);
}

/*
* npf_nat_import: find the NAT policy and unserialize the NAT entry.
*/
npf_nat_t *
npf_nat_import(npf_t *npf, const nvlist_t *nat,
   npf_ruleset_t *natlist, npf_conn_t *con)
{
       npf_natpolicy_t *np;
       npf_nat_t *nt;
       const char *ifname;
       const void *taddr, *oaddr;
       size_t alen, len;
       uint64_t np_id;

       np_id = dnvlist_get_number(nat, "nat-policy", UINT64_MAX);
       if ((np = npf_ruleset_findnat(natlist, np_id)) == NULL) {
               return NULL;
       }
       nt = pool_cache_get(nat_cache, PR_WAITOK);
       memset(nt, 0, sizeof(npf_nat_t));

       ifname = dnvlist_get_string(nat, "ifname", NULL);
       if (ifname && (nt->nt_ifid = npf_ifmap_register(npf, ifname)) == 0) {
               goto err;
       }

       alen = dnvlist_get_number(nat, "alen", 0);
       if (alen == 0 || alen > sizeof(npf_addr_t)) {
               goto err;
       }

       taddr = dnvlist_get_binary(nat, "taddr", &len, NULL, 0);
       if (!taddr || len != alen) {
               goto err;
       }
       memcpy(&nt->nt_taddr, taddr, sizeof(npf_addr_t));

       oaddr = dnvlist_get_binary(nat, "oaddr", &len, NULL, 0);
       if (!oaddr || len != alen) {
               goto err;
       }
       memcpy(&nt->nt_oaddr, oaddr, sizeof(npf_addr_t));

       nt->nt_oport = dnvlist_get_number(nat, "oport", 0);
       nt->nt_tport = dnvlist_get_number(nat, "tport", 0);

       /* Take a specific port from port-map. */
       if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
               npf_portmap_t *pm = npf->portmap;

               if (!npf_portmap_take(pm, nt->nt_alen,
                   &nt->nt_taddr, nt->nt_tport)) {
                       goto err;
               }
       }
       npf_stats_inc(npf, NPF_STAT_NAT_CREATE);

       /*
        * Associate, take a reference and insert.  Unlocked/non-atomic
        * since the policy is not yet globally visible.
        */
       nt->nt_natpolicy = np;
       nt->nt_conn = con;
       atomic_store_relaxed(&np->n_refcnt,
           atomic_load_relaxed(&np->n_refcnt) + 1);
       LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
       return nt;
err:
       pool_cache_put(nat_cache, nt);
       return NULL;
}

#if defined(DDB) || defined(_NPF_TESTING)

void
npf_nat_dump(const npf_nat_t *nt)
{
       const npf_natpolicy_t *np;
       struct in_addr ip;

       np = nt->nt_natpolicy;
       memcpy(&ip, &nt->nt_taddr, sizeof(ip));
       printf("\tNATP(%p): type %u flags 0x%x taddr %s tport %d\n", np,
           np->n_type, np->n_flags, inet_ntoa(ip), ntohs(np->n_tport));
       memcpy(&ip, &nt->nt_oaddr, sizeof(ip));
       printf("\tNAT: original address %s oport %d tport %d\n",
           inet_ntoa(ip), ntohs(nt->nt_oport), ntohs(nt->nt_tport));
       if (nt->nt_alg) {
               printf("\tNAT ALG = %p, ARG = %p\n",
                   nt->nt_alg, (void *)nt->nt_alg_arg);
       }
}

#endif