/*      $NetBSD: if_vlan.c,v 1.172 2024/06/29 12:11:12 riastradh Exp $  */

/*
* Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright 1998 Massachusetts Institute of Technology
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby
* granted, provided that both the above copyright notice and this
* permission notice appear in all copies, that both the above
* copyright notice and this permission notice appear in all
* supporting documentation, and that the name of M.I.T. not be used
* in advertising or publicity pertaining to distribution of the
* software without specific, written prior permission.  M.I.T. makes
* no representations about the suitability of this software for any
* purpose.  It is provided "as is" without express or implied
* warranty.
*
* THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
* ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
* SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
* via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
*/

/*
* if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.  Might be
* extended some day to also handle IEEE 802.1P priority tagging.  This is
* sort of sneaky in the implementation, since we need to pretend to be
* enough of an Ethernet implementation to make ARP work.  The way we do
* this is by telling everyone that we are an Ethernet interface, and then
* catch the packets that ether_output() left on our output queue when it
* calls if_start(), rewrite them for use by the real outgoing interface,
* and ask it to send them.
*
* TODO:
*
*      - Need some way to notify vlan interfaces when the parent
*        interface changes MTU.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.172 2024/06/29 12:11:12 riastradh Exp $");

#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_net_mpsafe.h"
#endif

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#include <sys/mutex.h>
#include <sys/kmem.h>
#include <sys/cprng.h>
#include <sys/cpu.h>
#include <sys/pserialize.h>
#include <sys/psref.h>
#include <sys/pslist.h>
#include <sys/atomic.h>
#include <sys/device.h>
#include <sys/module.h>

#include <net/bpf.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_ether.h>
#include <net/if_vlanvar.h>

#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#ifdef INET6
#include <netinet6/in6_ifattach.h>
#include <netinet6/in6_var.h>
#include <netinet6/nd6.h>
#endif

#include "ioconf.h"

struct vlan_mc_entry {
       LIST_ENTRY(vlan_mc_entry)       mc_entries;
       /*
        * A key to identify this entry.  The mc_addr below can't be
        * used since multiple sockaddr may mapped into the same
        * ether_multi (e.g., AF_UNSPEC).
        */
       struct ether_multi      *mc_enm;
       struct sockaddr_storage         mc_addr;
};

struct ifvlan_linkmib {
       struct ifvlan *ifvm_ifvlan;
       const struct vlan_multisw *ifvm_msw;
       int     ifvm_mtufudge;  /* MTU fudged by this much */
       int     ifvm_mintu;     /* min transmission unit */
       uint16_t ifvm_proto;    /* encapsulation ethertype */
       uint16_t ifvm_tag;      /* tag to apply on packets */
       struct ifnet *ifvm_p;   /* parent interface of this vlan */

       struct psref_target ifvm_psref;
};

struct ifvlan {
       struct ethercom ifv_ec;
       uint8_t ifv_lladdr[ETHER_ADDR_LEN];
       struct ifvlan_linkmib *ifv_mib; /*
                                        * reader must use vlan_getref_linkmib()
                                        * instead of direct dereference
                                        */
       kmutex_t ifv_lock;              /* writer lock for ifv_mib */
       pserialize_t ifv_psz;
       void *ifv_linkstate_hook;
       void *ifv_ifdetach_hook;

       LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
       struct pslist_entry ifv_hash;
       int ifv_flags;
       bool ifv_stopping;
};

#define IFVF_PROMISC    0x01            /* promiscuous mode enabled */

#define ifv_if          ifv_ec.ec_if

#define ifv_msw         ifv_mib.ifvm_msw
#define ifv_mtufudge    ifv_mib.ifvm_mtufudge
#define ifv_mintu       ifv_mib.ifvm_mintu
#define ifv_tag         ifv_mib.ifvm_tag

struct vlan_multisw {
       int     (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
       int     (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
       void    (*vmsw_purgemulti)(struct ifvlan *);
};

static int      vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
static int      vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
static void     vlan_ether_purgemulti(struct ifvlan *);

const struct vlan_multisw vlan_ether_multisw = {
       .vmsw_addmulti = vlan_ether_addmulti,
       .vmsw_delmulti = vlan_ether_delmulti,
       .vmsw_purgemulti = vlan_ether_purgemulti,
};

static void     vlan_multi_nothing(struct ifvlan *);
static int      vlan_multi_nothing_ifreq(struct ifvlan *, struct ifreq *);

const struct vlan_multisw vlan_nothing_multisw = {
       .vmsw_addmulti = vlan_multi_nothing_ifreq,
       .vmsw_delmulti = vlan_multi_nothing_ifreq,
       .vmsw_purgemulti = vlan_multi_nothing,
};

static int      vlan_clone_create(struct if_clone *, int);
static int      vlan_clone_destroy(struct ifnet *);
static int      vlan_config(struct ifvlan *, struct ifnet *, uint16_t);
static int      vlan_ioctl(struct ifnet *, u_long, void *);
static void     vlan_start(struct ifnet *);
static int      vlan_transmit(struct ifnet *, struct mbuf *);
static void     vlan_link_state_changed(void *);
static void     vlan_ifdetach(void *);
static void     vlan_unconfig(struct ifnet *);
static int      vlan_unconfig_locked(struct ifvlan *, struct ifvlan_linkmib *);
static void     vlan_hash_init(void);
static int      vlan_hash_fini(void);
static int      vlan_tag_hash(uint16_t, u_long);
static struct ifvlan_linkmib*
               vlan_getref_linkmib(struct ifvlan *, struct psref *);
static void     vlan_putref_linkmib(struct ifvlan_linkmib *, struct psref *);
static void     vlan_linkmib_update(struct ifvlan *, struct ifvlan_linkmib *);
static struct ifvlan_linkmib*
               vlan_lookup_tag_psref(struct ifnet *, uint16_t,
                   struct psref *);

#if !defined(VLAN_TAG_HASH_SIZE)
#define VLAN_TAG_HASH_SIZE 32
#endif
static struct {
       kmutex_t lock;
       struct pslist_head *lists;
       u_long mask;
} ifv_hash __cacheline_aligned = {
       .lists = NULL,
       .mask = 0,
};

pserialize_t vlan_psz __read_mostly;
static struct psref_class *ifvm_psref_class __read_mostly;

struct if_clone vlan_cloner =
   IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);

static uint32_t nvlanifs;

static inline int
vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
{
       int e;

       KERNEL_LOCK_UNLESS_NET_MPSAFE();
       e = ifpromisc(ifp, pswitch);
       KERNEL_UNLOCK_UNLESS_NET_MPSAFE();

       return e;
}

__unused static inline int
vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
{
       int e;

       KERNEL_LOCK_UNLESS_NET_MPSAFE();
       e = ifpromisc_locked(ifp, pswitch);
       KERNEL_UNLOCK_UNLESS_NET_MPSAFE();

       return e;
}

void
vlanattach(int n)
{

       /*
        * Nothing to do here, initialization is handled by the
        * module initialization code in vlaninit() below.
        */
}

static void
vlaninit(void)
{
       nvlanifs = 0;

       mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
       vlan_psz = pserialize_create();
       ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
       if_clone_attach(&vlan_cloner);

       vlan_hash_init();
       MODULE_HOOK_SET(if_vlan_vlan_input_hook, vlan_input);
}

static int
vlandetach(void)
{
       int error;

       if (nvlanifs > 0)
               return EBUSY;

       error = vlan_hash_fini();
       if (error != 0)
               return error;

       if_clone_detach(&vlan_cloner);
       psref_class_destroy(ifvm_psref_class);
       pserialize_destroy(vlan_psz);
       mutex_destroy(&ifv_hash.lock);

       MODULE_HOOK_UNSET(if_vlan_vlan_input_hook);
       return 0;
}

static void
vlan_reset_linkname(struct ifnet *ifp)
{

       /*
        * We start out with a "802.1Q VLAN" type and zero-length
        * addresses.  When we attach to a parent interface, we
        * inherit its type, address length, address, and data link
        * type.
        */

       ifp->if_type = IFT_L2VLAN;
       ifp->if_addrlen = 0;
       ifp->if_dlt = DLT_NULL;
       if_alloc_sadl(ifp);
}

static int
vlan_clone_create(struct if_clone *ifc, int unit)
{
       struct ifvlan *ifv;
       struct ifnet *ifp;
       struct ifvlan_linkmib *mib;

       ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK | M_ZERO);
       mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
       ifp = &ifv->ifv_if;
       LIST_INIT(&ifv->ifv_mc_listhead);
       cprng_fast(ifv->ifv_lladdr, sizeof(ifv->ifv_lladdr));
       ifv->ifv_lladdr[0] &= 0xFE; /* clear I/G bit */
       ifv->ifv_lladdr[0] |= 0x02; /* set G/L bit */

       mib->ifvm_ifvlan = ifv;
       mib->ifvm_p = NULL;
       psref_target_init(&mib->ifvm_psref, ifvm_psref_class);

       mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
       ifv->ifv_psz = pserialize_create();
       ifv->ifv_mib = mib;

       atomic_inc_uint(&nvlanifs);

       if_initname(ifp, ifc->ifc_name, unit);
       ifp->if_softc = ifv;
       ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
#ifdef NET_MPSAFE
       ifp->if_extflags = IFEF_MPSAFE;
#endif
       ifp->if_start = vlan_start;
       ifp->if_transmit = vlan_transmit;
       ifp->if_ioctl = vlan_ioctl;
       IFQ_SET_READY(&ifp->if_snd);
       if_initialize(ifp);
       /*
        * Set the link state to down.
        * When the parent interface attaches we will use that link state.
        * When the parent interface link state changes, so will ours.
        * When the parent interface detaches, set the link state to down.
        */
       ifp->if_link_state = LINK_STATE_DOWN;

       vlan_reset_linkname(ifp);
       if_register(ifp);
       return 0;
}

static int
vlan_clone_destroy(struct ifnet *ifp)
{
       struct ifvlan *ifv = ifp->if_softc;

       atomic_dec_uint(&nvlanifs);

       IFNET_LOCK(ifp);
       vlan_unconfig(ifp);
       IFNET_UNLOCK(ifp);
       if_detach(ifp);

       psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
       kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
       pserialize_destroy(ifv->ifv_psz);
       mutex_destroy(&ifv->ifv_lock);
       free(ifv, M_DEVBUF);

       return 0;
}

/*
* Configure a VLAN interface.
*/
static int
vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
{
       struct ifnet *ifp = &ifv->ifv_if;
       struct ifvlan_linkmib *nmib = NULL;
       struct ifvlan_linkmib *omib = NULL;
       struct ifvlan_linkmib *checkmib;
       struct psref_target *nmib_psref = NULL;
       struct ethercom *ec;
       const uint16_t vid = EVL_VLANOFTAG(tag);
       const uint8_t *lla;
       u_char ifv_iftype;
       int error = 0;
       int idx;
       bool omib_cleanup = false;
       struct psref psref;

       /* VLAN ID 0 and 4095 are reserved in the spec */
       if ((vid == 0) || (vid == 0xfff))
               return EINVAL;

       nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
       mutex_enter(&ifv->ifv_lock);
       omib = ifv->ifv_mib;

       if (omib->ifvm_p != NULL) {
               error = EBUSY;
               goto done;
       }

       /* Duplicate check */
       checkmib = vlan_lookup_tag_psref(p, vid, &psref);
       if (checkmib != NULL) {
               vlan_putref_linkmib(checkmib, &psref);
               error = EEXIST;
               goto done;
       }

       *nmib = *omib;
       nmib_psref = &nmib->ifvm_psref;

       psref_target_init(nmib_psref, ifvm_psref_class);

       switch (p->if_type) {
       case IFT_ETHER:
               nmib->ifvm_msw = &vlan_ether_multisw;
               nmib->ifvm_mintu = ETHERMIN;

               /*
                * We inherit the parent's Ethernet address.
                */
               lla = CLLADDR(p->if_sadl);

               /*
                * Inherit the if_type from the parent.  This allows us
                * to participate in bridges of that type.
                */
               ifv_iftype = p->if_type;
               break;

       case IFT_L2TP:
               nmib->ifvm_msw = &vlan_nothing_multisw;
               nmib->ifvm_mintu = ETHERMIN;
               /* use random Ethernet address. */
               lla = ifv->ifv_lladdr;
               ifv_iftype = IFT_ETHER;
               break;

       default:
               error = EPROTONOSUPPORT;
               goto done;
       }

       error = ether_add_vlantag(p, tag, NULL);
       if (error != 0)
               goto done;

       ec = (struct ethercom *)p;
       if (ec->ec_capenable & ETHERCAP_VLAN_MTU) {
               nmib->ifvm_mtufudge = 0;
       } else {
               /*
                * Fudge the MTU by the encapsulation size. This
                * makes us incompatible with strictly compliant
                * 802.1Q implementations, but allows us to use
                * the feature with other NetBSD
                * implementations, which might still be useful.
                */
               nmib->ifvm_mtufudge = ETHER_VLAN_ENCAP_LEN;
       }

       /*
        * If the parent interface can do hardware-assisted
        * VLAN encapsulation, then propagate its hardware-
        * assisted checksumming flags and tcp segmentation
        * offload.
        */
       if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
               ifp->if_capabilities = p->if_capabilities &
                   (IFCAP_TSOv4 | IFCAP_TSOv6 |
                       IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx |
                       IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
                       IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
                       IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
                       IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx);
       }

       ether_ifattach(ifp, lla);
       ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */

       nmib->ifvm_p = p;
       nmib->ifvm_tag = vid;
       ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
       ifv->ifv_if.if_flags = p->if_flags &
           (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);

       /*XXX need to update the if_type in if_sadl if it is changed */
       ifv->ifv_if.if_type = ifv_iftype;

       PSLIST_ENTRY_INIT(ifv, ifv_hash);
       idx = vlan_tag_hash(vid, ifv_hash.mask);

       mutex_enter(&ifv_hash.lock);
       PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
       mutex_exit(&ifv_hash.lock);

       vlan_linkmib_update(ifv, nmib);
       nmib = NULL;
       nmib_psref = NULL;
       omib_cleanup = true;

       ifv->ifv_ifdetach_hook = ether_ifdetachhook_establish(p,
           vlan_ifdetach, ifp);

       /*
        * We inherit the parents link state.
        */
       ifv->ifv_linkstate_hook = if_linkstate_change_establish(p,
           vlan_link_state_changed, ifv);
       if_link_state_change(&ifv->ifv_if, p->if_link_state);

done:
       mutex_exit(&ifv->ifv_lock);

       if (nmib_psref)
               psref_target_destroy(nmib_psref, ifvm_psref_class);
       if (nmib)
               kmem_free(nmib, sizeof(*nmib));
       if (omib_cleanup)
               kmem_free(omib, sizeof(*omib));

       return error;
}

/*
* Unconfigure a VLAN interface.
*/
static void
vlan_unconfig(struct ifnet *ifp)
{
       struct ifvlan *ifv = ifp->if_softc;
       struct ifvlan_linkmib *nmib = NULL;
       int error;

       KASSERT(IFNET_LOCKED(ifp));

       nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);

       mutex_enter(&ifv->ifv_lock);
       error = vlan_unconfig_locked(ifv, nmib);
       mutex_exit(&ifv->ifv_lock);

       if (error)
               kmem_free(nmib, sizeof(*nmib));
}
static int
vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
{
       struct ifnet *p;
       struct ifnet *ifp = &ifv->ifv_if;
       struct psref_target *nmib_psref = NULL;
       struct ifvlan_linkmib *omib;
       int error = 0;

       KASSERT(IFNET_LOCKED(ifp));
       KASSERT(mutex_owned(&ifv->ifv_lock));

       if (ifv->ifv_stopping) {
               error = -1;
               goto done;
       }

       ifp->if_flags &= ~(IFF_UP | IFF_RUNNING);

       omib = ifv->ifv_mib;
       p = omib->ifvm_p;

       if (p == NULL) {
               error = -1;
               goto done;
       }

       *nmib = *omib;
       nmib_psref = &nmib->ifvm_psref;
       psref_target_init(nmib_psref, ifvm_psref_class);

       /*
        * Since the interface is being unconfigured, we need to empty the
        * list of multicast groups that we may have joined while we were
        * alive and remove them from the parent's list also.
        */
       (*nmib->ifvm_msw->vmsw_purgemulti)(ifv);

       /* Disconnect from parent. */
       KASSERT(
           p->if_type == IFT_ETHER ||
           p->if_type == IFT_L2TP);
       (void)ether_del_vlantag(p, nmib->ifvm_tag);

       /* XXX ether_ifdetach must not be called with IFNET_LOCK */
       ifv->ifv_stopping = true;
       mutex_exit(&ifv->ifv_lock);
       IFNET_UNLOCK(ifp);
       ether_ifdetach(ifp);
       IFNET_LOCK(ifp);
       mutex_enter(&ifv->ifv_lock);
       ifv->ifv_stopping = false;

       /* if_free_sadl must be called with IFNET_LOCK */
       if_free_sadl(ifp, 1);

       /* Restore vlan_ioctl overwritten by ether_ifdetach */
       ifp->if_ioctl = vlan_ioctl;
       vlan_reset_linkname(ifp);

       nmib->ifvm_p = NULL;
       ifv->ifv_if.if_mtu = 0;
       ifv->ifv_flags = 0;

       mutex_enter(&ifv_hash.lock);
       PSLIST_WRITER_REMOVE(ifv, ifv_hash);
       pserialize_perform(vlan_psz);
       mutex_exit(&ifv_hash.lock);
       PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
       if_linkstate_change_disestablish(p,
           ifv->ifv_linkstate_hook, NULL);

       vlan_linkmib_update(ifv, nmib);
       if_link_state_change(ifp, LINK_STATE_DOWN);

       /*XXX ether_ifdetachhook_disestablish must not called with IFNET_LOCK */
       IFNET_UNLOCK(ifp);
       ether_ifdetachhook_disestablish(p, ifv->ifv_ifdetach_hook,
           &ifv->ifv_lock);
       mutex_exit(&ifv->ifv_lock);
       IFNET_LOCK(ifp);

       nmib_psref = NULL;
       kmem_free(omib, sizeof(*omib));

#ifdef INET6
       KERNEL_LOCK_UNLESS_NET_MPSAFE();
       /* To delete v6 link local addresses */
       if (in6_present)
               in6_ifdetach(ifp);
       KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
#endif

       if_down_locked(ifp);
       ifp->if_capabilities = 0;
       mutex_enter(&ifv->ifv_lock);
done:
       if (nmib_psref)
               psref_target_destroy(nmib_psref, ifvm_psref_class);

       return error;
}

static void
vlan_hash_init(void)
{

       ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
           &ifv_hash.mask);
}

static int
vlan_hash_fini(void)
{
       int i;

       mutex_enter(&ifv_hash.lock);

       for (i = 0; i < ifv_hash.mask + 1; i++) {
               if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
                   ifv_hash) != NULL) {
                       mutex_exit(&ifv_hash.lock);
                       return EBUSY;
               }
       }

       for (i = 0; i < ifv_hash.mask + 1; i++)
               PSLIST_DESTROY(&ifv_hash.lists[i]);

       mutex_exit(&ifv_hash.lock);

       hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);

       ifv_hash.lists = NULL;
       ifv_hash.mask = 0;

       return 0;
}

static int
vlan_tag_hash(uint16_t tag, u_long mask)
{
       uint32_t hash;

       hash = (tag >> 8) ^ tag;
       hash = (hash >> 2) ^ hash;

       return hash & mask;
}

static struct ifvlan_linkmib *
vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
{
       struct ifvlan_linkmib *mib;
       int s;

       s = pserialize_read_enter();
       mib = atomic_load_consume(&sc->ifv_mib);
       if (mib == NULL) {
               pserialize_read_exit(s);
               return NULL;
       }
       psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
       pserialize_read_exit(s);

       return mib;
}

static void
vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
{
       if (mib == NULL)
               return;
       psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
}

static struct ifvlan_linkmib *
vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
{
       int idx;
       int s;
       struct ifvlan *sc;

       idx = vlan_tag_hash(tag, ifv_hash.mask);

       s = pserialize_read_enter();
       PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
           ifv_hash) {
               struct ifvlan_linkmib *mib = atomic_load_consume(&sc->ifv_mib);
               if (mib == NULL)
                       continue;
               if (mib->ifvm_tag != tag)
                       continue;
               if (mib->ifvm_p != ifp)
                       continue;

               psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
               pserialize_read_exit(s);
               return mib;
       }
       pserialize_read_exit(s);
       return NULL;
}

static void
vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
{
       struct ifvlan_linkmib *omib = ifv->ifv_mib;

       KASSERT(mutex_owned(&ifv->ifv_lock));

       atomic_store_release(&ifv->ifv_mib, nmib);

       pserialize_perform(ifv->ifv_psz);
       psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
}

/*
* Called when a parent interface is detaching; destroy any VLAN
* configuration for the parent interface.
*/
static void
vlan_ifdetach(void *xifp)
{
       struct ifnet *ifp;

       ifp = (struct ifnet *)xifp;

       /* IFNET_LOCK must be held before ifv_lock. */
       IFNET_LOCK(ifp);
       vlan_unconfig(ifp);
       IFNET_UNLOCK(ifp);
}

static int
vlan_set_promisc(struct ifnet *ifp)
{
       struct ifvlan *ifv = ifp->if_softc;
       struct ifvlan_linkmib *mib;
       struct psref psref;
       int error = 0;
       int bound;

       bound = curlwp_bind();
       mib = vlan_getref_linkmib(ifv, &psref);
       if (mib == NULL) {
               curlwp_bindx(bound);
               return EBUSY;
       }

       if ((ifp->if_flags & IFF_PROMISC) != 0) {
               if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
                       error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
                       if (error == 0)
                               ifv->ifv_flags |= IFVF_PROMISC;
               }
       } else {
               if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
                       error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
                       if (error == 0)
                               ifv->ifv_flags &= ~IFVF_PROMISC;
               }
       }
       vlan_putref_linkmib(mib, &psref);
       curlwp_bindx(bound);

       return error;
}

static int
vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
       struct lwp *l = curlwp;
       struct ifvlan *ifv = ifp->if_softc;
       struct ifaddr *ifa = (struct ifaddr *) data;
       struct ifreq *ifr = (struct ifreq *) data;
       struct ifnet *pr;
       struct ifcapreq *ifcr;
       struct vlanreq vlr;
       struct ifvlan_linkmib *mib;
       struct psref psref;
       int error = 0;
       int bound;

       switch (cmd) {
       case SIOCSIFMTU:
               bound = curlwp_bind();
               mib = vlan_getref_linkmib(ifv, &psref);
               if (mib == NULL) {
                       curlwp_bindx(bound);
                       error = EBUSY;
                       break;
               }

               if (mib->ifvm_p == NULL) {
                       vlan_putref_linkmib(mib, &psref);
                       curlwp_bindx(bound);
                       error = EINVAL;
               } else if (
                   ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
                   ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
                       vlan_putref_linkmib(mib, &psref);
                       curlwp_bindx(bound);
                       error = EINVAL;
               } else {
                       vlan_putref_linkmib(mib, &psref);
                       curlwp_bindx(bound);

                       error = ifioctl_common(ifp, cmd, data);
                       if (error == ENETRESET)
                               error = 0;
               }

               break;

       case SIOCSETVLAN:
               if ((error = kauth_authorize_network(l->l_cred,
                   KAUTH_NETWORK_INTERFACE,
                   KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
                   NULL)) != 0)
                       break;
               if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
                       break;

               if (vlr.vlr_parent[0] == '\0') {
                       bound = curlwp_bind();
                       mib = vlan_getref_linkmib(ifv, &psref);
                       if (mib == NULL) {
                               curlwp_bindx(bound);
                               error = EBUSY;
                               break;
                       }

                       if (mib->ifvm_p != NULL &&
                           (ifp->if_flags & IFF_PROMISC) != 0)
                               error = vlan_safe_ifpromisc(mib->ifvm_p, 0);

                       vlan_putref_linkmib(mib, &psref);
                       curlwp_bindx(bound);

                       vlan_unconfig(ifp);
                       break;
               }
               if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
                       error = EINVAL;          /* check for valid tag */
                       break;
               }
               if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
                       error = ENOENT;
                       break;
               }

               error = vlan_config(ifv, pr, vlr.vlr_tag);
               if (error != 0)
                       break;

               /* Update promiscuous mode, if necessary. */
               vlan_set_promisc(ifp);

               ifp->if_flags |= IFF_RUNNING;
               break;

       case SIOCGETVLAN:
               memset(&vlr, 0, sizeof(vlr));
               bound = curlwp_bind();
               mib = vlan_getref_linkmib(ifv, &psref);
               if (mib == NULL) {
                       curlwp_bindx(bound);
                       error = EBUSY;
                       break;
               }
               if (mib->ifvm_p != NULL) {
                       snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
                           mib->ifvm_p->if_xname);
                       vlr.vlr_tag = mib->ifvm_tag;
               }
               vlan_putref_linkmib(mib, &psref);
               curlwp_bindx(bound);
               error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
               break;

       case SIOCSIFFLAGS:
               if ((error = ifioctl_common(ifp, cmd, data)) != 0)
                       break;
               /*
                * For promiscuous mode, we enable promiscuous mode on
                * the parent if we need promiscuous on the VLAN interface.
                */
               bound = curlwp_bind();
               mib = vlan_getref_linkmib(ifv, &psref);
               if (mib == NULL) {
                       curlwp_bindx(bound);
                       error = EBUSY;
                       break;
               }

               if (mib->ifvm_p != NULL)
                       error = vlan_set_promisc(ifp);
               vlan_putref_linkmib(mib, &psref);
               curlwp_bindx(bound);
               break;

       case SIOCADDMULTI:
               mutex_enter(&ifv->ifv_lock);
               mib = ifv->ifv_mib;
               if (mib == NULL) {
                       error = EBUSY;
                       mutex_exit(&ifv->ifv_lock);
                       break;
               }

               error = (mib->ifvm_p != NULL) ?
                   (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
               mib = NULL;
               mutex_exit(&ifv->ifv_lock);
               break;

       case SIOCDELMULTI:
               mutex_enter(&ifv->ifv_lock);
               mib = ifv->ifv_mib;
               if (mib == NULL) {
                       error = EBUSY;
                       mutex_exit(&ifv->ifv_lock);
                       break;
               }
               error = (mib->ifvm_p != NULL) ?
                   (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
               mib = NULL;
               mutex_exit(&ifv->ifv_lock);
               break;

       case SIOCSIFCAP:
               ifcr = data;
               /* make sure caps are enabled on parent */
               bound = curlwp_bind();
               mib = vlan_getref_linkmib(ifv, &psref);
               if (mib == NULL) {
                       curlwp_bindx(bound);
                       error = EBUSY;
                       break;
               }

               if (mib->ifvm_p == NULL) {
                       vlan_putref_linkmib(mib, &psref);
                       curlwp_bindx(bound);
                       error = EINVAL;
                       break;
               }
               if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
                   ifcr->ifcr_capenable) {
                       vlan_putref_linkmib(mib, &psref);
                       curlwp_bindx(bound);
                       error = EINVAL;
                       break;
               }

               vlan_putref_linkmib(mib, &psref);
               curlwp_bindx(bound);

               if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
                       error = 0;
               break;
       case SIOCINITIFADDR:
               bound = curlwp_bind();
               mib = vlan_getref_linkmib(ifv, &psref);
               if (mib == NULL) {
                       curlwp_bindx(bound);
                       error = EBUSY;
                       break;
               }

               if (mib->ifvm_p == NULL) {
                       error = EINVAL;
                       vlan_putref_linkmib(mib, &psref);
                       curlwp_bindx(bound);
                       break;
               }
               vlan_putref_linkmib(mib, &psref);
               curlwp_bindx(bound);

               ifp->if_flags |= IFF_UP;
#ifdef INET
               if (ifa->ifa_addr->sa_family == AF_INET)
                       arp_ifinit(ifp, ifa);
#endif
               break;

       default:
               error = ether_ioctl(ifp, cmd, data);
       }

       return error;
}

static int
vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
{
       const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
       struct vlan_mc_entry *mc;
       uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
       struct ifvlan_linkmib *mib;
       int error;

       KASSERT(mutex_owned(&ifv->ifv_lock));

       if (sa->sa_len > sizeof(struct sockaddr_storage))
               return EINVAL;

       error = ether_addmulti(sa, &ifv->ifv_ec);
       if (error != ENETRESET)
               return error;

       /*
        * This is a new multicast address.  We have to tell parent
        * about it.  Also, remember this multicast address so that
        * we can delete it on unconfigure.
        */
       mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
       if (mc == NULL) {
               error = ENOMEM;
               goto alloc_failed;
       }

       /*
        * Since ether_addmulti() returned ENETRESET, the following two
        * statements shouldn't fail. Here ifv_ec is implicitly protected
        * by the ifv_lock lock.
        */
       error = ether_multiaddr(sa, addrlo, addrhi);
       KASSERT(error == 0);

       ETHER_LOCK(&ifv->ifv_ec);
       mc->mc_enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
       ETHER_UNLOCK(&ifv->ifv_ec);

       KASSERT(mc->mc_enm != NULL);

       memcpy(&mc->mc_addr, sa, sa->sa_len);
       LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);

       mib = ifv->ifv_mib;

       KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
       error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
       KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);

       if (error != 0)
               goto ioctl_failed;
       return error;

ioctl_failed:
       LIST_REMOVE(mc, mc_entries);
       free(mc, M_DEVBUF);

alloc_failed:
       (void)ether_delmulti(sa, &ifv->ifv_ec);
       return error;
}

static int
vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
{
       const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
       struct ether_multi *enm;
       struct vlan_mc_entry *mc;
       struct ifvlan_linkmib *mib;
       uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
       int error;

       KASSERT(mutex_owned(&ifv->ifv_lock));

       /*
        * Find a key to lookup vlan_mc_entry.  We have to do this
        * before calling ether_delmulti for obvious reasons.
        */
       if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
               return error;

       ETHER_LOCK(&ifv->ifv_ec);
       enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
       ETHER_UNLOCK(&ifv->ifv_ec);
       if (enm == NULL)
               return EINVAL;

       LIST_FOREACH(mc, &ifv->ifv_mc_listhead, mc_entries) {
               if (mc->mc_enm == enm)
                       break;
       }

       /* We woun't delete entries we didn't add */
       if (mc == NULL)
               return EINVAL;

       error = ether_delmulti(sa, &ifv->ifv_ec);
       if (error != ENETRESET)
               return error;

       /* We no longer use this multicast address.  Tell parent so. */
       mib = ifv->ifv_mib;
       error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);

       if (error == 0) {
               /* And forget about this address. */
               LIST_REMOVE(mc, mc_entries);
               free(mc, M_DEVBUF);
       } else {
               (void)ether_addmulti(sa, &ifv->ifv_ec);
       }

       return error;
}

/*
* Delete any multicast address we have asked to add from parent
* interface.  Called when the vlan is being unconfigured.
*/
static void
vlan_ether_purgemulti(struct ifvlan *ifv)
{
       struct vlan_mc_entry *mc;
       struct ifvlan_linkmib *mib;

       KASSERT(mutex_owned(&ifv->ifv_lock));
       mib = ifv->ifv_mib;
       if (mib == NULL) {
               return;
       }

       while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
               (void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
                   sstocsa(&mc->mc_addr));
               LIST_REMOVE(mc, mc_entries);
               free(mc, M_DEVBUF);
       }
}

static int
vlan_multi_nothing_ifreq(struct ifvlan *v __unused, struct ifreq *r __unused)
{
       /* do nothing */
       return 0;
}
static void
vlan_multi_nothing(struct ifvlan *v __unused)
{
       /* do nothing */
}

static void
vlan_start(struct ifnet *ifp)
{
       struct ifvlan *ifv = ifp->if_softc;
       struct ifnet *p;
       struct ethercom *ec;
       struct mbuf *m;
       struct ifvlan_linkmib *mib;
       struct psref psref;
       struct ether_header *eh;
       int error, bound;

       bound = curlwp_bind();
       mib = vlan_getref_linkmib(ifv, &psref);
       if (mib == NULL) {
               curlwp_bindx(bound);
               return;
       }

       if (__predict_false(mib->ifvm_p == NULL)) {
               vlan_putref_linkmib(mib, &psref);
               curlwp_bindx(bound);
               return;
       }

       p = mib->ifvm_p;
       ec = (void *)mib->ifvm_p;

       ifp->if_flags |= IFF_OACTIVE;

       for (;;) {
               IFQ_DEQUEUE(&ifp->if_snd, m);
               if (m == NULL)
                       break;

               if (m->m_len < sizeof(*eh)) {
                       m = m_pullup(m, sizeof(*eh));
                       if (m == NULL) {
                               if_statinc(ifp, if_oerrors);
                               continue;
                       }
               }

               eh = mtod(m, struct ether_header *);
               if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
                       m_freem(m);
                       if_statinc(ifp, if_noproto);
                       continue;
               }

#ifdef ALTQ
               /*
                * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is
                * defined.
                */
               KERNEL_LOCK(1, NULL);
               /*
                * If ALTQ is enabled on the parent interface, do
                * classification; the queueing discipline might
                * not require classification, but might require
                * the address family/header pointer in the pktattr.
                */
               if (ALTQ_IS_ENABLED(&p->if_snd)) {
                       KASSERT(
                           p->if_type == IFT_ETHER ||
                           p->if_type == IFT_L2TP);
                       altq_etherclassify(&p->if_snd, m);
               }
               KERNEL_UNLOCK_ONE(NULL);
#endif /* ALTQ */

               bpf_mtap(ifp, m, BPF_D_OUT);
               /*
                * If the parent can insert the tag itself, just mark
                * the tag in the mbuf header.
                */
               if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
                       vlan_set_tag(m, mib->ifvm_tag);
               } else {
                       /*
                        * insert the tag ourselves
                        */
                       KASSERT(
                           p->if_type == IFT_ETHER ||
                           p->if_type == IFT_L2TP);
                       (void)ether_inject_vlantag(&m,
                           ETHERTYPE_VLAN, mib->ifvm_tag);
                       if (m == NULL) {
                               printf("%s: unable to inject VLAN tag",
                                   p->if_xname);
                               continue;
                       }
               }

               if ((p->if_flags & IFF_RUNNING) == 0) {
                       m_freem(m);
                       continue;
               }

               error = if_transmit_lock(p, m);
               if (error) {
                       /* mbuf is already freed */
                       if_statinc(ifp, if_oerrors);
                       continue;
               }
               if_statinc(ifp, if_opackets);
       }

       ifp->if_flags &= ~IFF_OACTIVE;

       /* Remove reference to mib before release */
       vlan_putref_linkmib(mib, &psref);
       curlwp_bindx(bound);
}

static int
vlan_transmit(struct ifnet *ifp, struct mbuf *m)
{
       struct ifvlan *ifv = ifp->if_softc;
       struct ifnet *p;
       struct ethercom *ec;
       struct ifvlan_linkmib *mib;
       struct psref psref;
       struct ether_header *eh;
       int error, bound;
       size_t pktlen = m->m_pkthdr.len;
       bool mcast = (m->m_flags & M_MCAST) != 0;

       if (m->m_len < sizeof(*eh)) {
               m = m_pullup(m, sizeof(*eh));
               if (m == NULL) {
                       if_statinc(ifp, if_oerrors);
                       return ENOBUFS;
               }
       }

       eh = mtod(m, struct ether_header *);
       if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
               m_freem(m);
               if_statinc(ifp, if_noproto);
               return EPROTONOSUPPORT;
       }

       bound = curlwp_bind();
       mib = vlan_getref_linkmib(ifv, &psref);
       if (mib == NULL) {
               curlwp_bindx(bound);
               m_freem(m);
               return ENETDOWN;
       }

       if (__predict_false(mib->ifvm_p == NULL)) {
               vlan_putref_linkmib(mib, &psref);
               curlwp_bindx(bound);
               m_freem(m);
               return ENETDOWN;
       }

       p = mib->ifvm_p;
       ec = (void *)mib->ifvm_p;

       bpf_mtap(ifp, m, BPF_D_OUT);

       if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
               goto out;
       if (m == NULL)
               goto out;

       /*
        * If the parent can insert the tag itself, just mark
        * the tag in the mbuf header.
        */
       if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
               vlan_set_tag(m, mib->ifvm_tag);
       } else {
               /*
                * insert the tag ourselves
                */
               KASSERT(
                   p->if_type == IFT_ETHER ||
                   p->if_type == IFT_L2TP);
               error = ether_inject_vlantag(&m,
                   ETHERTYPE_VLAN, mib->ifvm_tag);
               if (error != 0) {
                       KASSERT(m == NULL);
                       printf("%s: unable to inject VLAN tag",
                           p->if_xname);
                       goto out;
               }
       }

       if ((p->if_flags & IFF_RUNNING) == 0) {
               m_freem(m);
               error = ENETDOWN;
               goto out;
       }

       error = if_transmit_lock(p, m);
       net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
       if (error) {
               /* mbuf is already freed */
               if_statinc_ref(ifp, nsr, if_oerrors);
       } else {
               if_statinc_ref(ifp, nsr, if_opackets);
               if_statadd_ref(ifp, nsr, if_obytes, pktlen);
               if (mcast)
                       if_statinc_ref(ifp, nsr, if_omcasts);
       }
       IF_STAT_PUTREF(ifp);

out:
       /* Remove reference to mib before release */
       vlan_putref_linkmib(mib, &psref);
       curlwp_bindx(bound);

       return error;
}

/*
* Given an Ethernet frame, find a valid vlan interface corresponding to the
* given source interface and tag, then run the real packet through the
* parent's input routine.
*/
struct mbuf *
vlan_input(struct ifnet *ifp, struct mbuf *m)
{
       struct ifvlan *ifv;
       uint16_t vid;
       struct ifvlan_linkmib *mib;
       struct psref psref;

       KASSERT(vlan_has_tag(m));
       vid = EVL_VLANOFTAG(vlan_get_tag(m));
       KASSERT(vid != 0);

       mib = vlan_lookup_tag_psref(ifp, vid, &psref);
       if (mib == NULL) {
               return m;
       }

       ifv = mib->ifvm_ifvlan;
       if ((ifv->ifv_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
           (IFF_UP | IFF_RUNNING)) {
               m_freem(m);
               if_statinc(ifp, if_noproto);
               goto out;
       }

       /*
        * Having found a valid vlan interface corresponding to
        * the given source interface and vlan tag.
        * remove the vlan tag.
        */
       m->m_flags &= ~M_VLANTAG;

       /*
        * Drop promiscuously received packets if we are not in
        * promiscuous mode
        */
       if ((m->m_flags & (M_BCAST | M_MCAST)) == 0 &&
           (ifp->if_flags & IFF_PROMISC) &&
           (ifv->ifv_if.if_flags & IFF_PROMISC) == 0) {
               struct ether_header *eh;

               eh = mtod(m, struct ether_header *);
               if (memcmp(CLLADDR(ifv->ifv_if.if_sadl),
                   eh->ether_dhost, ETHER_ADDR_LEN) != 0) {
                       m_freem(m);
                       if_statinc(&ifv->ifv_if, if_ierrors);
                       goto out;
               }
       }

       m_set_rcvif(m, &ifv->ifv_if);

       if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
               goto out;
       if (m == NULL)
               goto out;

       m->m_flags &= ~M_PROMISC;
       if_input(&ifv->ifv_if, m);
out:
       vlan_putref_linkmib(mib, &psref);
       return NULL;
}

/*
* If the parent link state changed, the vlan link state should change also.
*/
static void
vlan_link_state_changed(void *xifv)
{
       struct ifvlan *ifv = xifv;
       struct ifnet *ifp, *p;
       struct ifvlan_linkmib *mib;
       struct psref psref;
       int bound;

       bound = curlwp_bind();
       mib = vlan_getref_linkmib(ifv, &psref);
       if (mib == NULL) {
               curlwp_bindx(bound);
               return;
       }

       if (mib->ifvm_p == NULL) {
               vlan_putref_linkmib(mib, &psref);
               curlwp_bindx(bound);
               return;
       }

       ifp = &ifv->ifv_if;
       p = mib->ifvm_p;
       if_link_state_change(ifp, p->if_link_state);

       vlan_putref_linkmib(mib, &psref);
       curlwp_bindx(bound);
}

/*
* Module infrastructure
*/
#include "if_module.h"

IF_MODULE(MODULE_CLASS_DRIVER, vlan, NULL)