/*      $NetBSD: if_tap.c,v 1.136 2024/11/10 10:57:52 mlelstv Exp $     */

/*
*  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
*  All rights reserved.
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions
*  are met:
*  1. Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*  2. Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in the
*     documentation and/or other materials provided with the distribution.
*
*  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
*  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
*  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
*  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
*  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
*  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
*  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
*  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
*  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
*  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*  POSSIBILITY OF SUCH DAMAGE.
*/

/*
* tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
* device to the system, but can also be accessed by userland through a
* character device interface, which allows reading and injecting frames.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.136 2024/11/10 10:57:52 mlelstv Exp $");

#if defined(_KERNEL_OPT)
#include "opt_modular.h"
#include "opt_net_mpsafe.h"
#endif

#include <sys/param.h>
#include <sys/atomic.h>
#include <sys/conf.h>
#include <sys/cprng.h>
#include <sys/device.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/intr.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/poll.h>
#include <sys/proc.h>
#include <sys/select.h>
#include <sys/sockio.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/systm.h>

#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_tap.h>
#include <net/bpf.h>

#include "ioconf.h"

/*
* sysctl node management
*
* It's not really possible to use a SYSCTL_SETUP block with
* current module implementation, so it is easier to just define
* our own function.
*
* The handler function is a "helper" in Andrew Brown's sysctl
* framework terminology.  It is used as a gateway for sysctl
* requests over the nodes.
*
* tap_log allows the module to log creations of nodes and
* destroy them all at once using sysctl_teardown.
*/
static int      tap_node;
static int      tap_sysctl_handler(SYSCTLFN_PROTO);
static void     sysctl_tap_setup(struct sysctllog **);

struct tap_softc {
       device_t        sc_dev;
       struct ethercom sc_ec;
       int             sc_flags;
#define TAP_INUSE       0x00000001      /* tap device can only be opened once */
#define TAP_ASYNCIO     0x00000002      /* user is using async I/O (SIGIO) on the device */
#define TAP_NBIO        0x00000004      /* user wants calls to avoid blocking */
#define TAP_GOING       0x00000008      /* interface is being destroyed */
       struct selinfo  sc_rsel;
       pid_t           sc_pgid; /* For async. IO */
       kmutex_t        sc_lock;
       kcondvar_t      sc_cv;
       void            *sc_sih;
       struct timespec sc_atime;
       struct timespec sc_mtime;
       struct timespec sc_btime;
};

/* autoconf(9) glue */

static int      tap_match(device_t, cfdata_t, void *);
static void     tap_attach(device_t, device_t, void *);
static int      tap_detach(device_t, int);

CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
   tap_match, tap_attach, tap_detach, NULL);
extern struct cfdriver tap_cd;

/* Real device access routines */
static void     tap_dev_close(struct tap_softc *);
static int      tap_dev_read(int, struct uio *, int);
static int      tap_dev_write(int, struct uio *, int);
static int      tap_dev_ioctl(int, u_long, void *, struct lwp *);
static int      tap_dev_poll(int, int, struct lwp *);
static int      tap_dev_kqfilter(int, struct knote *);

/* Fileops access routines */
static int      tap_fops_close(file_t *);
static int      tap_fops_read(file_t *, off_t *, struct uio *,
   kauth_cred_t, int);
static int      tap_fops_write(file_t *, off_t *, struct uio *,
   kauth_cred_t, int);
static int      tap_fops_ioctl(file_t *, u_long, void *);
static int      tap_fops_poll(file_t *, int);
static int      tap_fops_stat(file_t *, struct stat *);
static int      tap_fops_kqfilter(file_t *, struct knote *);

static const struct fileops tap_fileops = {
       .fo_name = "tap",
       .fo_read = tap_fops_read,
       .fo_write = tap_fops_write,
       .fo_ioctl = tap_fops_ioctl,
       .fo_fcntl = fnullop_fcntl,
       .fo_poll = tap_fops_poll,
       .fo_stat = tap_fops_stat,
       .fo_close = tap_fops_close,
       .fo_kqfilter = tap_fops_kqfilter,
       .fo_restart = fnullop_restart,
};

/* Helper for cloning open() */
static int      tap_dev_cloner(struct lwp *);

/* Character device routines */
static int      tap_cdev_open(dev_t, int, int, struct lwp *);
static int      tap_cdev_close(dev_t, int, int, struct lwp *);
static int      tap_cdev_read(dev_t, struct uio *, int);
static int      tap_cdev_write(dev_t, struct uio *, int);
static int      tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
static int      tap_cdev_poll(dev_t, int, struct lwp *);
static int      tap_cdev_kqfilter(dev_t, struct knote *);

const struct cdevsw tap_cdevsw = {
       .d_open = tap_cdev_open,
       .d_close = tap_cdev_close,
       .d_read = tap_cdev_read,
       .d_write = tap_cdev_write,
       .d_ioctl = tap_cdev_ioctl,
       .d_stop = nostop,
       .d_tty = notty,
       .d_poll = tap_cdev_poll,
       .d_mmap = nommap,
       .d_kqfilter = tap_cdev_kqfilter,
       .d_discard = nodiscard,
       .d_flag = D_OTHER | D_MPSAFE
};

#define TAP_CLONER      0xfffff         /* Maximal minor value */

/* kqueue-related routines */
static void     tap_kqdetach(struct knote *);
static int      tap_kqread(struct knote *, long);

/*
* Those are needed by the ifnet interface, and would typically be
* there for any network interface driver.
* Some other routines are optional: watchdog and drain.
*/
static void     tap_start(struct ifnet *);
static void     tap_stop(struct ifnet *, int);
static int      tap_init(struct ifnet *);
static int      tap_ioctl(struct ifnet *, u_long, void *);

/* Internal functions */
static int      tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
static void     tap_softintr(void *);

/*
* tap is a clonable interface, although it is highly unrealistic for
* an Ethernet device.
*
* Here are the bits needed for a clonable interface.
*/
static int      tap_clone_create(struct if_clone *, int);
static int      tap_clone_destroy(struct ifnet *);

struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
                                       tap_clone_create,
                                       tap_clone_destroy);

/* Helper functions shared by the two cloning code paths */
static struct tap_softc *       tap_clone_creator(int);
static void                     tap_clone_destroyer(device_t);

static struct sysctllog *tap_sysctl_clog;

#ifdef _MODULE
devmajor_t tap_bmajor = -1, tap_cmajor = -1;
#endif

static u_int tap_count;

void
tapattach(int n)
{

       /*
        * Nothing to do here, initialization is handled by the
        * module initialization code in tapinit() below).
        */
}

static void
tapinit(void)
{
       int error;

#ifdef _MODULE
       devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
#endif
       error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);

       if (error) {
               aprint_error("%s: unable to register cfattach\n",
                   tap_cd.cd_name);
               (void)config_cfdriver_detach(&tap_cd);
               return;
       }

       if_clone_attach(&tap_cloners);
       sysctl_tap_setup(&tap_sysctl_clog);
}

static int
tapdetach(void)
{
       int error = 0;

       if_clone_detach(&tap_cloners);

       if (tap_count != 0) {
               if_clone_attach(&tap_cloners);
               return EBUSY;
       }

       error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
       if (error == 0) {
#ifdef _MODULE
               devsw_detach(NULL, &tap_cdevsw);
#endif
               sysctl_teardown(&tap_sysctl_clog);
       } else
               if_clone_attach(&tap_cloners);

       return error;
}

/* Pretty much useless for a pseudo-device */
static int
tap_match(device_t parent, cfdata_t cfdata, void *arg)
{

       return 1;
}

void
tap_attach(device_t parent, device_t self, void *aux)
{
       struct tap_softc *sc = device_private(self);
       struct ifnet *ifp;
       const struct sysctlnode *node;
       int error;
       uint8_t enaddr[ETHER_ADDR_LEN] =
           { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
       char enaddrstr[3 * ETHER_ADDR_LEN];

       sc->sc_dev = self;
       sc->sc_sih = NULL;
       getnanotime(&sc->sc_btime);
       sc->sc_atime = sc->sc_mtime = sc->sc_btime;
       sc->sc_flags = 0;
       selinit(&sc->sc_rsel);

       cv_init(&sc->sc_cv, "tapread");
       mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);

       if (!pmf_device_register(self, NULL, NULL))
               aprint_error_dev(self, "couldn't establish power handler\n");

       /*
        * In order to obtain unique initial Ethernet address on a host,
        * do some randomisation.  It's not meant for anything but avoiding
        * hard-coding an address.
        */
       cprng_fast(&enaddr[3], 3);

       aprint_verbose_dev(self, "Ethernet address %s\n",
           ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));

       /*
        * One should note that an interface must do multicast in order
        * to support IPv6.
        */
       ifp = &sc->sc_ec.ec_if;
       strcpy(ifp->if_xname, device_xname(self));
       ifp->if_softc   = sc;
       ifp->if_flags   = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
#ifdef NET_MPSAFE
       ifp->if_extflags = IFEF_MPSAFE;
#endif
       ifp->if_ioctl   = tap_ioctl;
       ifp->if_start   = tap_start;
       ifp->if_stop    = tap_stop;
       ifp->if_init    = tap_init;
       IFQ_SET_READY(&ifp->if_snd);

       sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;

       /* Those steps are mandatory for an Ethernet driver. */
       if_initialize(ifp);
       ifp->if_percpuq = if_percpuq_create(ifp);
       ether_ifattach(ifp, enaddr);
       /* Opening the device will bring the link state up. */
       ifp->if_link_state = LINK_STATE_DOWN;
       if_register(ifp);

       /*
        * Add a sysctl node for that interface.
        *
        * The pointer transmitted is not a string, but instead a pointer to
        * the softc structure, which we can use to build the string value on
        * the fly in the helper function of the node.  See the comments for
        * tap_sysctl_handler for details.
        *
        * Usually sysctl_createv is called with CTL_CREATE as the before-last
        * component.  However, we can allocate a number ourselves, as we are
        * the only consumer of the net.link.<iface> node.  In this case, the
        * unit number is conveniently used to number the node.  CTL_CREATE
        * would just work, too.
        */
       if ((error = sysctl_createv(NULL, 0, NULL,
           &node, CTLFLAG_READWRITE,
           CTLTYPE_STRING, device_xname(self), NULL,
           tap_sysctl_handler, 0, (void *)sc, 18,
           CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
           CTL_EOL)) != 0)
               aprint_error_dev(self,
                   "sysctl_createv returned %d, ignoring\n", error);
}

/*
* When detaching, we do the inverse of what is done in the attach
* routine, in reversed order.
*/
static int
tap_detach(device_t self, int flags)
{
       struct tap_softc *sc = device_private(self);
       struct ifnet *ifp = &sc->sc_ec.ec_if;
       int error;

       sc->sc_flags |= TAP_GOING;
       tap_stop(ifp, 1);
       if_down(ifp);

       if (sc->sc_sih != NULL) {
               softint_disestablish(sc->sc_sih);
               sc->sc_sih = NULL;
       }

       /*
        * Destroying a single leaf is a very straightforward operation using
        * sysctl_destroyv.  One should be sure to always end the path with
        * CTL_EOL.
        */
       if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
           device_unit(sc->sc_dev), CTL_EOL)) != 0)
               aprint_error_dev(self,
                   "sysctl_destroyv returned %d, ignoring\n", error);
       ether_ifdetach(ifp);
       if_detach(ifp);
       seldestroy(&sc->sc_rsel);
       mutex_destroy(&sc->sc_lock);
       cv_destroy(&sc->sc_cv);

       pmf_device_deregister(self);

       return 0;
}

/*
* This is the function where we SEND packets.
*
* There is no 'receive' equivalent.  A typical driver will get
* interrupts from the hardware, and from there will inject new packets
* into the network stack.
*
* Once handled, a packet must be freed.  A real driver might not be able
* to fit all the pending packets into the hardware, and is allowed to
* return before having sent all the packets.  It should then use the
* if_flags flag IFF_OACTIVE to notify the upper layer.
*
* There are also other flags one should check, such as IFF_PAUSE.
*
* It is our duty to make packets available to BPF listeners.
*
* You should be aware that this function is called by the Ethernet layer
* at splnet().
*
* When the device is opened, we have to pass the packet(s) to the
* userland.  For that we stay in OACTIVE mode while the userland gets
* the packets, and we send a signal to the processes waiting to read.
*
* wakeup(sc) is the counterpart to the tsleep call in
* tap_dev_read, while selnotify() is used for kevent(2) and
* poll(2) (which includes select(2)) listeners.
*/
static void
tap_start(struct ifnet *ifp)
{
       struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
       struct mbuf *m0;

       mutex_enter(&sc->sc_lock);
       if ((sc->sc_flags & TAP_INUSE) == 0) {
               /* Simply drop packets */
               for (;;) {
                       IFQ_DEQUEUE(&ifp->if_snd, m0);
                       if (m0 == NULL)
                               goto done;

                       if_statadd2(ifp, if_opackets, 1, if_obytes, m0->m_len);
                       bpf_mtap(ifp, m0, BPF_D_OUT);

                       m_freem(m0);
               }
       } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
               ifp->if_flags |= IFF_OACTIVE;
               cv_broadcast(&sc->sc_cv);
               selnotify(&sc->sc_rsel, 0, 1);
               if (sc->sc_flags & TAP_ASYNCIO) {
                       kpreempt_disable();
                       softint_schedule(sc->sc_sih);
                       kpreempt_enable();
               }
       }
done:
       mutex_exit(&sc->sc_lock);
}

static void
tap_softintr(void *cookie)
{
       struct tap_softc *sc;
       struct ifnet *ifp;
       int a, b;

       sc = cookie;

       if (sc->sc_flags & TAP_ASYNCIO) {
               ifp = &sc->sc_ec.ec_if;
               if (ifp->if_flags & IFF_RUNNING) {
                       a = POLL_IN;
                       b = POLLIN | POLLRDNORM;
               } else {
                       a = POLL_HUP;
                       b = 0;
               }
               fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
       }
}

/*
* A typical driver will only contain the following handlers for
* ioctl calls, except SIOCSIFPHYADDR.
* The latter is a hack I used to set the Ethernet address of the
* faked device.
*
* Note that ether_ioctl() has to be called under splnet().
*/
static int
tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
       int s, error;

       s = splnet();

       switch (cmd) {
       case SIOCSIFPHYADDR:
               error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
               break;
       default:
               error = ether_ioctl(ifp, cmd, data);
               if (error == ENETRESET)
                       error = 0;
               break;
       }

       splx(s);

       return error;
}

/*
* Helper function to set Ethernet address.  This has been replaced by
* the generic SIOCALIFADDR ioctl on a PF_LINK socket.
*/
static int
tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
{
       const struct sockaddr *sa = &ifra->ifra_addr;

       if (sa->sa_family != AF_LINK)
               return EINVAL;

       if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);

       return 0;
}

/*
* _init() would typically be called when an interface goes up,
* meaning it should configure itself into the state in which it
* can send packets.
*/
static int
tap_init(struct ifnet *ifp)
{
       ifp->if_flags |= IFF_RUNNING;

       tap_start(ifp);

       return 0;
}

/*
* _stop() is called when an interface goes down.  It is our
* responsibility to validate that state by clearing the
* IFF_RUNNING flag.
*
* We have to wake up all the sleeping processes to have the pending
* read requests cancelled.
*/
static void
tap_stop(struct ifnet *ifp, int disable)
{
       struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;

       mutex_enter(&sc->sc_lock);
       ifp->if_flags &= ~IFF_RUNNING;
       cv_broadcast(&sc->sc_cv);
       selnotify(&sc->sc_rsel, 0, 1);
       if (sc->sc_flags & TAP_ASYNCIO) {
               kpreempt_disable();
               softint_schedule(sc->sc_sih);
               kpreempt_enable();
       }
       mutex_exit(&sc->sc_lock);
}

/*
* The 'create' command of ifconfig can be used to create
* any numbered instance of a given device.  Thus we have to
* make sure we have enough room in cd_devs to create the
* user-specified instance.  config_attach_pseudo will do this
* for us.
*/
static int
tap_clone_create(struct if_clone *ifc, int unit)
{

       if (tap_clone_creator(unit) == NULL) {
               aprint_error("%s%d: unable to attach an instance\n",
                   tap_cd.cd_name, unit);
               return ENXIO;
       }
       atomic_inc_uint(&tap_count);
       return 0;
}

/*
* tap(4) can be cloned by two ways:
*   using 'ifconfig tap0 create', which will use the network
*     interface cloning API, and call tap_clone_create above.
*   opening the cloning device node, whose minor number is TAP_CLONER.
*     See below for an explanation on how this part work.
*/
static struct tap_softc *
tap_clone_creator(int unit)
{
       cfdata_t cf;

       cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
       cf->cf_name = tap_cd.cd_name;
       cf->cf_atname = tap_ca.ca_name;
       if (unit == -1) {
               /* let autoconf find the first free one */
               cf->cf_unit = 0;
               cf->cf_fstate = FSTATE_STAR;
       } else {
               cf->cf_unit = unit;
               cf->cf_fstate = FSTATE_NOTFOUND;
       }

       return device_private(config_attach_pseudo(cf));
}

static int
tap_clone_destroy(struct ifnet *ifp)
{
       struct tap_softc *sc = ifp->if_softc;

       tap_clone_destroyer(sc->sc_dev);
       atomic_dec_uint(&tap_count);
       return 0;
}

static void
tap_clone_destroyer(device_t dev)
{
       cfdata_t cf = device_cfdata(dev);
       int error;

       error = config_detach(dev, DETACH_FORCE);
       KASSERTMSG(error == 0, "error=%d", error);
       kmem_free(cf, sizeof(*cf));
}

/*
* tap(4) is a bit of an hybrid device.  It can be used in two different
* ways:
*  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
*  2. open /dev/tap, get a new interface created and read/write off it.
*     That interface is destroyed when the process that had it created exits.
*
* The first way is managed by the cdevsw structure, and you access interfaces
* through a (major, minor) mapping:  tap4 is obtained by the minor number
* 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
*
* The second way is the so-called "cloning" device.  It's a special minor
* number (chosen as the maximal number, to allow as much tap devices as
* possible).  The user first opens the cloner (e.g., /dev/tap), and that
* call ends in tap_cdev_open.  The actual place where it is handled is
* tap_dev_cloner.
*
* A tap device cannot be opened more than once at a time, so the cdevsw
* part of open() does nothing but noting that the interface is being used and
* hence ready to actually handle packets.
*/

static int
tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
{
       struct tap_softc *sc;

       if (minor(dev) == TAP_CLONER)
               return tap_dev_cloner(l);

       sc = device_lookup_private(&tap_cd, minor(dev));
       if (sc == NULL)
               return ENXIO;

       /* The device can only be opened once */
       if (sc->sc_flags & TAP_INUSE)
               return EBUSY;
       sc->sc_flags |= TAP_INUSE;
       if_link_state_change(&sc->sc_ec.ec_if, LINK_STATE_UP);

       return 0;
}

/*
* There are several kinds of cloning devices, and the most simple is the one
* tap(4) uses.  What it does is change the file descriptor with a new one,
* with its own fileops structure (which maps to the various read, write,
* ioctl functions).  It starts allocating a new file descriptor with falloc,
* then actually creates the new tap devices.
*
* Once those two steps are successful, we can re-wire the existing file
* descriptor to its new self.  This is done with fdclone():  it fills the fp
* structure as needed (notably f_devunit gets filled with the fifth parameter
* passed, the unit of the tap device which will allows us identifying the
* device later), and returns EMOVEFD.
*
* That magic value is interpreted by sys_open() which then replaces the
* current file descriptor by the new one (through a magic member of struct
* lwp, l_dupfd).
*
* The tap device is flagged as being busy since it otherwise could be
* externally accessed through the corresponding device node with the cdevsw
* interface.
*/

static int
tap_dev_cloner(struct lwp *l)
{
       struct tap_softc *sc;
       file_t *fp;
       int error, fd;

       if ((error = fd_allocfile(&fp, &fd)) != 0)
               return error;

       if ((sc = tap_clone_creator(-1)) == NULL) {
               fd_abort(curproc, fp, fd);
               return ENXIO;
       }

       sc->sc_flags |= TAP_INUSE;
       if_link_state_change(&sc->sc_ec.ec_if, LINK_STATE_UP);

       return fd_clone(fp, fd, FREAD | FWRITE, &tap_fileops,
           (void *)(intptr_t)device_unit(sc->sc_dev));
}

/*
* While all other operations (read, write, ioctl, poll and kqfilter) are
* really the same whether we are in cdevsw or fileops mode, the close()
* function is slightly different in the two cases.
*
* As for the other, the core of it is shared in tap_dev_close.  What
* it does is sufficient for the cdevsw interface, but the cloning interface
* needs another thing:  the interface is destroyed when the processes that
* created it closes it.
*/
static int
tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
{
       struct tap_softc *sc = device_lookup_private(&tap_cd, minor(dev));

       if (sc == NULL)
               return ENXIO;

       tap_dev_close(sc);
       return 0;
}

/*
* It might happen that the administrator used ifconfig to externally destroy
* the interface.  In that case, tap_fops_close will be called while
* tap_detach is already happening.  If we called it again from here, we
* would dead lock.  TAP_GOING ensures that this situation doesn't happen.
*/
static int
tap_fops_close(file_t *fp)
{
       struct tap_softc *sc;
       int unit = fp->f_devunit;

       sc = device_lookup_private(&tap_cd, unit);
       if (sc == NULL)
               return ENXIO;

       KERNEL_LOCK(1, NULL);
       tap_dev_close(sc);

       /*
        * Destroy the device now that it is no longer useful, unless
        * it's already being destroyed.
        */
       if ((sc->sc_flags & TAP_GOING) != 0)
               goto out;
       tap_clone_destroyer(sc->sc_dev);

out:    KERNEL_UNLOCK_ONE(NULL);
       return 0;
}

static void
tap_dev_close(struct tap_softc *sc)
{
       struct ifnet *ifp;
       int s;

       s = splnet();
       /* Let tap_start handle packets again */
       ifp = &sc->sc_ec.ec_if;
       ifp->if_flags &= ~IFF_OACTIVE;

       /* Purge output queue */
       if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
               struct mbuf *m;

               for (;;) {
                       IFQ_DEQUEUE(&ifp->if_snd, m);
                       if (m == NULL)
                               break;

                       if_statadd2(ifp, if_opackets, 1, if_obytes, m->m_len);
                       bpf_mtap(ifp, m, BPF_D_OUT);
                       m_freem(m);
               }
       }
       splx(s);

       if (sc->sc_sih != NULL) {
               softint_disestablish(sc->sc_sih);
               sc->sc_sih = NULL;
       }
       sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
       if_link_state_change(ifp, LINK_STATE_DOWN);
}

static int
tap_cdev_read(dev_t dev, struct uio *uio, int flags)
{

       return tap_dev_read(minor(dev), uio, flags);
}

static int
tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
   kauth_cred_t cred, int flags)
{
       int error;

       KERNEL_LOCK(1, NULL);
       error = tap_dev_read(fp->f_devunit, uio, flags);
       KERNEL_UNLOCK_ONE(NULL);
       return error;
}

static int
tap_dev_read(int unit, struct uio *uio, int flags)
{
       struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
       struct ifnet *ifp;
       struct mbuf *m, *n;
       int error = 0;

       if (sc == NULL)
               return ENXIO;

       getnanotime(&sc->sc_atime);

       ifp = &sc->sc_ec.ec_if;
       if ((ifp->if_flags & IFF_UP) == 0)
               return EHOSTDOWN;

       mutex_enter(&sc->sc_lock);
       if (IFQ_IS_EMPTY(&ifp->if_snd)) {
               ifp->if_flags &= ~IFF_OACTIVE;
               if (sc->sc_flags & TAP_NBIO)
                       error = EWOULDBLOCK;
               else
                       error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);

               if (error != 0) {
                       mutex_exit(&sc->sc_lock);
                       return error;
               }
               /* The device might have been downed */
               if ((ifp->if_flags & IFF_UP) == 0) {
                       mutex_exit(&sc->sc_lock);
                       return EHOSTDOWN;
               }
       }

       IFQ_DEQUEUE(&ifp->if_snd, m);
       mutex_exit(&sc->sc_lock);

       ifp->if_flags &= ~IFF_OACTIVE;
       if (m == NULL) {
               error = 0;
               goto out;
       }

       if_statadd2(ifp, if_opackets, 1,
           if_obytes, m->m_len);               /* XXX only first in chain */
       bpf_mtap(ifp, m, BPF_D_OUT);
       if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
               goto out;
       if (m == NULL)
               goto out;

       /*
        * One read is one packet.
        */
       do {
               error = uiomove(mtod(m, void *),
                   uimin(m->m_len, uio->uio_resid), uio);
               m = n = m_free(m);
       } while (m != NULL && uio->uio_resid > 0 && error == 0);

       m_freem(m);

out:
       return error;
}

static int
tap_fops_stat(file_t *fp, struct stat *st)
{
       int error = 0;
       struct tap_softc *sc;
       int unit = fp->f_devunit;

       (void)memset(st, 0, sizeof(*st));

       KERNEL_LOCK(1, NULL);
       sc = device_lookup_private(&tap_cd, unit);
       if (sc == NULL) {
               error = ENXIO;
               goto out;
       }

       st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
       st->st_atimespec = sc->sc_atime;
       st->st_mtimespec = sc->sc_mtime;
       st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
       st->st_uid = kauth_cred_geteuid(fp->f_cred);
       st->st_gid = kauth_cred_getegid(fp->f_cred);
out:
       KERNEL_UNLOCK_ONE(NULL);
       return error;
}

static int
tap_cdev_write(dev_t dev, struct uio *uio, int flags)
{

       return tap_dev_write(minor(dev), uio, flags);
}

static int
tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   kauth_cred_t cred, int flags)
{
       int error;

       KERNEL_LOCK(1, NULL);
       error = tap_dev_write(fp->f_devunit, uio, flags);
       KERNEL_UNLOCK_ONE(NULL);
       return error;
}

static int
tap_dev_write(int unit, struct uio *uio, int flags)
{
       struct tap_softc *sc =
           device_lookup_private(&tap_cd, unit);
       struct ifnet *ifp;
       struct mbuf *m, **mp;
       size_t len = 0;
       int error = 0;

       if (sc == NULL)
               return ENXIO;

       getnanotime(&sc->sc_mtime);
       ifp = &sc->sc_ec.ec_if;

       /* One write, one packet, that's the rule */
       MGETHDR(m, M_DONTWAIT, MT_DATA);
       if (m == NULL) {
               if_statinc(ifp, if_ierrors);
               return ENOBUFS;
       }
       MCLAIM(m, &sc->sc_ec.ec_rx_mowner);
       m->m_pkthdr.len = uio->uio_resid;

       mp = &m;
       while (error == 0 && uio->uio_resid > 0) {
               if (*mp != m) {
                       MGET(*mp, M_DONTWAIT, MT_DATA);
                       if (*mp == NULL) {
                               error = ENOBUFS;
                               break;
                       }
                       MCLAIM(*mp, &sc->sc_ec.ec_rx_mowner);
               }
               (*mp)->m_len = uimin(MHLEN, uio->uio_resid);
               len += (*mp)->m_len;
               error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
               mp = &(*mp)->m_next;
       }
       if (error) {
               if_statinc(ifp, if_ierrors);
               m_freem(m);
               return error;
       }

       m_set_rcvif(m, ifp);

       if_statadd2(ifp, if_ipackets, 1, if_ibytes, len);
       bpf_mtap(ifp, m, BPF_D_IN);
       if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN)) != 0)
               return error;
       if (m == NULL)
               return 0;

       if_percpuq_enqueue(ifp->if_percpuq, m);

       return 0;
}

static int
tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
{

       return tap_dev_ioctl(minor(dev), cmd, data, l);
}

static int
tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
{

       return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
}

static int
tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
{
       struct tap_softc *sc = device_lookup_private(&tap_cd, unit);

       if (sc == NULL)
               return ENXIO;

       switch (cmd) {
       case FIONREAD:
               {
                       struct ifnet *ifp = &sc->sc_ec.ec_if;
                       struct mbuf *m;
                       int s;

                       s = splnet();
                       IFQ_POLL(&ifp->if_snd, m);

                       if (m == NULL)
                               *(int *)data = 0;
                       else
                               *(int *)data = m->m_pkthdr.len;
                       splx(s);
                       return 0;
               }
       case TIOCSPGRP:
       case FIOSETOWN:
               return fsetown(&sc->sc_pgid, cmd, data);
       case TIOCGPGRP:
       case FIOGETOWN:
               return fgetown(sc->sc_pgid, cmd, data);
       case FIOASYNC:
               if (*(int *)data) {
                       if (sc->sc_sih == NULL) {
                               sc->sc_sih = softint_establish(SOFTINT_CLOCK,
                                   tap_softintr, sc);
                               if (sc->sc_sih == NULL)
                                       return EBUSY; /* XXX */
                       }
                       sc->sc_flags |= TAP_ASYNCIO;
               } else {
                       sc->sc_flags &= ~TAP_ASYNCIO;
                       if (sc->sc_sih != NULL) {
                               softint_disestablish(sc->sc_sih);
                               sc->sc_sih = NULL;
                       }
               }
               return 0;
       case FIONBIO:
               if (*(int *)data)
                       sc->sc_flags |= TAP_NBIO;
               else
                       sc->sc_flags &= ~TAP_NBIO;
               return 0;
       case TAPGIFNAME:
               {
                       struct ifreq *ifr = (struct ifreq *)data;
                       struct ifnet *ifp = &sc->sc_ec.ec_if;

                       strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
                       return 0;
               }
       default:
               return ENOTTY;
       }
}

static int
tap_cdev_poll(dev_t dev, int events, struct lwp *l)
{

       return tap_dev_poll(minor(dev), events, l);
}

static int
tap_fops_poll(file_t *fp, int events)
{

       return tap_dev_poll(fp->f_devunit, events, curlwp);
}

static int
tap_dev_poll(int unit, int events, struct lwp *l)
{
       struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
       int revents = 0;

       if (sc == NULL)
               return POLLERR;

       if (events & (POLLIN | POLLRDNORM)) {
               struct ifnet *ifp = &sc->sc_ec.ec_if;
               struct mbuf *m;
               int s;

               s = splnet();
               IFQ_POLL(&ifp->if_snd, m);

               if (m != NULL)
                       revents |= events & (POLLIN | POLLRDNORM);
               else {
                       mutex_spin_enter(&sc->sc_lock);
                       selrecord(l, &sc->sc_rsel);
                       mutex_spin_exit(&sc->sc_lock);
               }
               splx(s);
       }
       revents |= events & (POLLOUT | POLLWRNORM);

       return revents;
}

static struct filterops tap_read_filterops = {
       .f_flags = FILTEROP_ISFD,
       .f_attach = NULL,
       .f_detach = tap_kqdetach,
       .f_event = tap_kqread,
};

static int
tap_cdev_kqfilter(dev_t dev, struct knote *kn)
{

       return tap_dev_kqfilter(minor(dev), kn);
}

static int
tap_fops_kqfilter(file_t *fp, struct knote *kn)
{

       return tap_dev_kqfilter(fp->f_devunit, kn);
}

static int
tap_dev_kqfilter(int unit, struct knote *kn)
{
       struct tap_softc *sc = device_lookup_private(&tap_cd, unit);

       if (sc == NULL)
               return ENXIO;

       switch(kn->kn_filter) {
       case EVFILT_READ:
               kn->kn_fop = &tap_read_filterops;
               kn->kn_hook = sc;
               KERNEL_LOCK(1, NULL);
               mutex_spin_enter(&sc->sc_lock);
               selrecord_knote(&sc->sc_rsel, kn);
               mutex_spin_exit(&sc->sc_lock);
               KERNEL_UNLOCK_ONE(NULL);
               break;

       case EVFILT_WRITE:
               kn->kn_fop = &seltrue_filtops;
               break;

       default:
               return EINVAL;
       }

       return 0;
}

static void
tap_kqdetach(struct knote *kn)
{
       struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;

       KERNEL_LOCK(1, NULL);
       mutex_spin_enter(&sc->sc_lock);
       selremove_knote(&sc->sc_rsel, kn);
       mutex_spin_exit(&sc->sc_lock);
       KERNEL_UNLOCK_ONE(NULL);
}

static int
tap_kqread(struct knote *kn, long hint)
{
       struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
       struct ifnet *ifp = &sc->sc_ec.ec_if;
       struct mbuf *m;
       int s, rv;

       KERNEL_LOCK(1, NULL);
       s = splnet();
       IFQ_POLL(&ifp->if_snd, m);

       if (m == NULL)
               kn->kn_data = 0;
       else
               kn->kn_data = m->m_pkthdr.len;
       splx(s);
       rv = (kn->kn_data != 0 ? 1 : 0);
       KERNEL_UNLOCK_ONE(NULL);
       return rv;
}

/*
* sysctl management routines
* You can set the address of an interface through:
* net.link.tap.tap<number>
*
* Note the consistent use of tap_log in order to use
* sysctl_teardown at unload time.
*
* In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
* blocks register a function in a special section of the kernel
* (called a link set) which is used at init_sysctl() time to cycle
* through all those functions to create the kernel's sysctl tree.
*
* It is not possible to use link sets in a module, so the
* easiest is to simply call our own setup routine at load time.
*
* In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
* CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
* whole kernel sysctl tree is built, it is not possible to add any
* permanent node.
*
* It should be noted that we're not saving the sysctlnode pointer
* we are returned when creating the "tap" node.  That structure
* cannot be trusted once out of the calling function, as it might
* get reused.  So we just save the MIB number, and always give the
* full path starting from the root for later calls to sysctl_createv
* and sysctl_destroyv.
*/
static void
sysctl_tap_setup(struct sysctllog **clog)
{
       const struct sysctlnode *node;
       int error = 0;

       if ((error = sysctl_createv(clog, 0, NULL, NULL,
           CTLFLAG_PERMANENT,
           CTLTYPE_NODE, "link", NULL,
           NULL, 0, NULL, 0,
           CTL_NET, AF_LINK, CTL_EOL)) != 0)
               return;

       /*
        * The first four parameters of sysctl_createv are for management.
        *
        * The four that follows, here starting with a '0' for the flags,
        * describe the node.
        *
        * The next series of four set its value, through various possible
        * means.
        *
        * Last but not least, the path to the node is described.  That path
        * is relative to the given root (third argument).  Here we're
        * starting from the root.
        */
       if ((error = sysctl_createv(clog, 0, NULL, &node,
           CTLFLAG_PERMANENT,
           CTLTYPE_NODE, "tap", NULL,
           NULL, 0, NULL, 0,
           CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
               return;
       tap_node = node->sysctl_num;
}

/*
* The helper functions make Andrew Brown's interface really
* shine.  It makes possible to create value on the fly whether
* the sysctl value is read or written.
*
* As shown as an example in the man page, the first step is to
* create a copy of the node to have sysctl_lookup work on it.
*
* Here, we have more work to do than just a copy, since we have
* to create the string.  The first step is to collect the actual
* value of the node, which is a convenient pointer to the softc
* of the interface.  From there we create the string and use it
* as the value, but only for the *copy* of the node.
*
* Then we let sysctl_lookup do the magic, which consists in
* setting oldp and newp as required by the operation.  When the
* value is read, that means that the string will be copied to
* the user, and when it is written, the new value will be copied
* over in the addr array.
*
* If newp is NULL, the user was reading the value, so we don't
* have anything else to do.  If a new value was written, we
* have to check it.
*
* If it is incorrect, we can return an error and leave 'node' as
* it is:  since it is a copy of the actual node, the change will
* be forgotten.
*
* Upon a correct input, we commit the change to the ifnet
* structure of our interface.
*/
static int
tap_sysctl_handler(SYSCTLFN_ARGS)
{
       struct sysctlnode node;
       struct tap_softc *sc;
       struct ifnet *ifp;
       int error;
       size_t len;
       char addr[3 * ETHER_ADDR_LEN];
       uint8_t enaddr[ETHER_ADDR_LEN];

       node = *rnode;
       sc = node.sysctl_data;
       ifp = &sc->sc_ec.ec_if;
       (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
       node.sysctl_data = addr;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       len = strlen(addr);
       if (len < 11 || len > 17)
               return EINVAL;

       /* Commit change */
       if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
               return EINVAL;
       if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
       return error;
}

/*
* Module infrastructure
*/
#include "if_module.h"

IF_MODULE(MODULE_CLASS_DRIVER, tap, NULL)