/*      $NetBSD: layer_vnops.c,v 1.72 2021/10/20 03:08:18 thorpej Exp $ */

/*
* Copyright (c) 1999 National Aeronautics & Space Administration
* All rights reserved.
*
* This software was written by William Studenmund of the
* Numerical Aerospace Simulation Facility, NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the National Aeronautics & Space Administration
*    nor the names of its contributors may be used to endorse or promote
*    products derived from this software without specific prior written
*    permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
* UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* John Heidemann of the UCLA Ficus project.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)null_vnops.c        8.6 (Berkeley) 5/27/95
*
* Ancestors:
*      @(#)lofs_vnops.c        1.2 (Berkeley) 6/18/92
*      Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
*      ...and...
*      @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
*/

/*
* Generic layer vnode operations.
*
* The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
* the core implementation of stacked file-systems.
*
* The layerfs duplicates a portion of the file system name space under
* a new name.  In this respect, it is similar to the loopback file system.
* It differs from the loopback fs in two respects: it is implemented using
* a stackable layers technique, and it is "layerfs-nodes" stack above all
* lower-layer vnodes, not just over directory vnodes.
*
* OPERATION OF LAYERFS
*
* The layerfs is the minimum file system layer, bypassing all possible
* operations to the lower layer for processing there.  The majority of its
* activity centers on the bypass routine, through which nearly all vnode
* operations pass.
*
* The bypass routine accepts arbitrary vnode operations for handling by
* the lower layer.  It begins by examining vnode operation arguments and
* replacing any layered nodes by their lower-layer equivalents.  It then
* invokes an operation on the lower layer.  Finally, it replaces the
* layered nodes in the arguments and, if a vnode is returned by the
* operation, stacks a layered node on top of the returned vnode.
*
* The bypass routine in this file, layer_bypass(), is suitable for use
* by many different layered filesystems. It can be used by multiple
* filesystems simultaneously. Alternatively, a layered fs may provide
* its own bypass routine, in which case layer_bypass() should be used as
* a model. For instance, the main functionality provided by umapfs, the user
* identity mapping file system, is handled by a custom bypass routine.
*
* Typically a layered fs registers its selected bypass routine as the
* default vnode operation in its vnodeopv_entry_desc table. Additionally
* the filesystem must store the bypass entry point in the layerm_bypass
* field of struct layer_mount. All other layer routines in this file will
* use the layerm_bypass() routine.
*
* Although the bypass routine handles most operations outright, a number
* of operations are special cased and handled by the layerfs.  For instance,
* layer_getattr() must change the fsid being returned.  While layer_lock()
* and layer_unlock() must handle any locking for the current vnode as well
* as pass the lock request down.  layer_inactive() and layer_reclaim() are
* not bypassed so that they can handle freeing layerfs-specific data.  Also,
* certain vnode operations (create, mknod, remove, link, rename, mkdir,
* rmdir, and symlink) change the locking state within the operation.  Ideally
* these operations should not change the lock state, but should be changed
* to let the caller of the function unlock them.  Otherwise, all intermediate
* vnode layers (such as union, umapfs, etc) must catch these functions to do
* the necessary locking at their layer.
*
* INSTANTIATING VNODE STACKS
*
* Mounting associates "layerfs-nodes" stack and lower layer, in effect
* stacking two VFSes.  The initial mount creates a single vnode stack for
* the root of the new layerfs.  All other vnode stacks are created as a
* result of vnode operations on this or other layerfs vnode stacks.
*
* New vnode stacks come into existence as a result of an operation which
* returns a vnode.  The bypass routine stacks a layerfs-node above the new
* vnode before returning it to the caller.
*
* For example, imagine mounting a null layer with:
*
*      "mount_null /usr/include /dev/layer/null"
*
* Changing directory to /dev/layer/null will assign the root layerfs-node,
* which was created when the null layer was mounted).  Now consider opening
* "sys".  A layer_lookup() would be performed on the root layerfs-node.
* This operation would bypass through to the lower layer which would return
* a vnode representing the UFS "sys".  Then, layer_bypass() builds a
* layerfs-node aliasing the UFS "sys" and returns this to the caller.
* Later operations on the layerfs-node "sys" will repeat this process when
* constructing other vnode stacks.
*
* INVOKING OPERATIONS ON LOWER LAYERS
*
* There are two techniques to invoke operations on a lower layer when the
* operation cannot be completely bypassed.  Each method is appropriate in
* different situations.  In both cases, it is the responsibility of the
* aliasing layer to make the operation arguments "correct" for the lower
* layer by mapping any vnode arguments to the lower layer.
*
* The first approach is to call the aliasing layer's bypass routine.  This
* method is most suitable when you wish to invoke the operation currently
* being handled on the lower layer.  It has the advantage that the bypass
* routine already must do argument mapping.  An example of this is
* layer_getattr().
*
* A second approach is to directly invoke vnode operations on the lower
* layer with the VOP_OPERATIONNAME interface.  The advantage of this method
* is that it is easy to invoke arbitrary operations on the lower layer.
* The disadvantage is that vnode's arguments must be manually mapped.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.72 2021/10/20 03:08:18 thorpej Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/time.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/kmem.h>
#include <sys/buf.h>
#include <sys/kauth.h>
#include <sys/fcntl.h>
#include <sys/fstrans.h>

#include <miscfs/genfs/layer.h>
#include <miscfs/genfs/layer_extern.h>
#include <miscfs/genfs/genfs.h>
#include <miscfs/specfs/specdev.h>

/*
* This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
*              routine by John Heidemann.
*      The new element for this version is that the whole nullfs
* system gained the concept of locks on the lower node.
*    The 10-Apr-92 version was optimized for speed, throwing away some
* safety checks.  It should still always work, but it's not as
* robust to programmer errors.
*
* In general, we map all vnodes going down and unmap them on the way back.
*
* Also, some BSD vnode operations have the side effect of vrele'ing
* their arguments.  With stacking, the reference counts are held
* by the upper node, not the lower one, so we must handle these
* side-effects here.  This is not of concern in Sun-derived systems
* since there are no such side-effects.
*
* New for the 08-June-99 version: we also handle operations which unlock
* the passed-in node (typically they vput the node).
*
* This makes the following assumptions:
* - only one returned vpp
* - no INOUT vpp's (Sun's vop_open has one of these)
* - the vnode operation vector of the first vnode should be used
*   to determine what implementation of the op should be invoked
* - all mapped vnodes are of our vnode-type (NEEDSWORK:
*   problems on rmdir'ing mount points and renaming?)
*/
int
layer_bypass(void *v)
{
       struct vop_generic_args /* {
               struct vnodeop_desc *a_desc;
               <other random data follows, presumably>
       } */ *ap = v;
       int (**our_vnodeop_p)(void *);
       struct vnode **this_vp_p;
       int error;
       struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
       struct vnode **vps_p[VDESC_MAX_VPS];
       struct vnode ***vppp;
       struct mount *mp;
       struct vnodeop_desc *descp = ap->a_desc;
       int reles, i, flags;

#ifdef DIAGNOSTIC
       /*
        * We require at least one vp.
        */
       if (descp->vdesc_vp_offsets == NULL ||
           descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
               panic("%s: no vp's in map.\n", __func__);
#endif

       vps_p[0] =
           VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
       vp0 = *vps_p[0];
       mp = vp0->v_mount;
       flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
       our_vnodeop_p = vp0->v_op;

       if (flags & LAYERFS_MBYPASSDEBUG)
               printf("%s: %s\n", __func__, descp->vdesc_name);

       /*
        * Map the vnodes going in.
        * Later, we'll invoke the operation based on
        * the first mapped vnode's operation vector.
        */
       reles = descp->vdesc_flags;
       for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
               if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
                       break;   /* bail out at end of list */
               vps_p[i] = this_vp_p =
                   VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
                   ap);
               /*
                * We're not guaranteed that any but the first vnode
                * are of our type.  Check for and don't map any
                * that aren't.  (We must always map first vp or vclean fails.)
                */
               if (i && (*this_vp_p == NULL ||
                   (*this_vp_p)->v_op != our_vnodeop_p)) {
                       old_vps[i] = NULL;
               } else {
                       old_vps[i] = *this_vp_p;
                       *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
                       /*
                        * XXX - Several operations have the side effect
                        * of vrele'ing their vp's.  We must account for
                        * that.  (This should go away in the future.)
                        */
                       if (reles & VDESC_VP0_WILLRELE)
                               vref(*this_vp_p);
               }
       }

       /*
        * Call the operation on the lower layer
        * with the modified argument structure.
        */
       error = VCALL(*vps_p[0], descp->vdesc_offset, ap);

       /*
        * Maintain the illusion of call-by-value
        * by restoring vnodes in the argument structure
        * to their original value.
        */
       reles = descp->vdesc_flags;
       for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
               if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
                       break;   /* bail out at end of list */
               if (old_vps[i]) {
                       *(vps_p[i]) = old_vps[i];
                       if (reles & VDESC_VP0_WILLRELE)
                               vrele(*(vps_p[i]));
               }
       }

       /*
        * Map the possible out-going vpp
        * (Assumes that the lower layer always returns
        * a VREF'ed vpp unless it gets an error.)
        */
       if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
               vppp = VOPARG_OFFSETTO(struct vnode***,
                                descp->vdesc_vpp_offset, ap);
               /*
                * Only vop_lookup, vop_create, vop_makedir, vop_mknod
                * and vop_symlink return vpp's. vop_lookup doesn't call bypass
                * as a lookup on "." would generate a locking error.
                * So all the calls which get us here have a unlocked vpp. :-)
                */
               error = layer_node_create(mp, **vppp, *vppp);
               if (error) {
                       vrele(**vppp);
                       **vppp = NULL;
               }
       }
       return error;
}

/*
* We have to carry on the locking protocol on the layer vnodes
* as we progress through the tree. We also have to enforce read-only
* if this layer is mounted read-only.
*/
int
layer_lookup(void *v)
{
       struct vop_lookup_v2_args /* {
               struct vnodeop_desc *a_desc;
               struct vnode * a_dvp;
               struct vnode ** a_vpp;
               struct componentname * a_cnp;
       } */ *ap = v;
       struct componentname *cnp = ap->a_cnp;
       struct vnode *dvp, *lvp, *ldvp;
       int error, flags = cnp->cn_flags;

       dvp = ap->a_dvp;

       if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
           (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
               *ap->a_vpp = NULL;
               return EROFS;
       }

       ldvp = LAYERVPTOLOWERVP(dvp);
       ap->a_dvp = ldvp;
       error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
       lvp = *ap->a_vpp;
       *ap->a_vpp = NULL;

       if (error == EJUSTRETURN && (flags & ISLASTCN) &&
           (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
           (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
               error = EROFS;

       /*
        * We must do the same locking and unlocking at this layer as
        * is done in the layers below us.
        */
       if (ldvp == lvp) {
               /*
                * Got the same object back, because we looked up ".",
                * or ".." in the root node of a mount point.
                * So we make another reference to dvp and return it.
                */
               vref(dvp);
               *ap->a_vpp = dvp;
               vrele(lvp);
       } else if (lvp != NULL) {
               /* Note: dvp and ldvp are both locked. */
               KASSERT(error != ENOLCK);
               error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
               if (error) {
                       vrele(lvp);
               }
       }
       return error;
}

/*
* Setattr call. Disallow write attempts if the layer is mounted read-only.
*/
int
layer_setattr(void *v)
{
       struct vop_setattr_args /* {
               struct vnodeop_desc *a_desc;
               struct vnode *a_vp;
               struct vattr *a_vap;
               kauth_cred_t a_cred;
               struct lwp *a_l;
       } */ *ap = v;
       struct vnode *vp = ap->a_vp;
       struct vattr *vap = ap->a_vap;

       if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
           vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
           vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
           (vp->v_mount->mnt_flag & MNT_RDONLY))
               return EROFS;
       if (vap->va_size != VNOVAL) {
               switch (vp->v_type) {
               case VDIR:
                       return EISDIR;
               case VCHR:
               case VBLK:
               case VSOCK:
               case VFIFO:
                       return 0;
               case VREG:
               case VLNK:
               default:
                       /*
                        * Disallow write attempts if the filesystem is
                        * mounted read-only.
                        */
                       if (vp->v_mount->mnt_flag & MNT_RDONLY)
                               return EROFS;
               }
       }
       return LAYERFS_DO_BYPASS(vp, ap);
}

/*
*  We handle getattr only to change the fsid.
*/
int
layer_getattr(void *v)
{
       struct vop_getattr_args /* {
               struct vnode *a_vp;
               struct vattr *a_vap;
               kauth_cred_t a_cred;
               struct lwp *a_l;
       } */ *ap = v;
       struct vnode *vp = ap->a_vp;
       int error;

       error = LAYERFS_DO_BYPASS(vp, ap);
       if (error) {
               return error;
       }
       /* Requires that arguments be restored. */
       ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
       return 0;
}

int
layer_access(void *v)
{
       struct vop_access_args /* {
               struct vnode *a_vp;
               accmode_t  a_accmode;
               kauth_cred_t a_cred;
               struct lwp *a_l;
       } */ *ap = v;
       struct vnode *vp = ap->a_vp;
       accmode_t accmode = ap->a_accmode;

       /*
        * Disallow write attempts on read-only layers;
        * unless the file is a socket, fifo, or a block or
        * character device resident on the file system.
        */
       if (accmode & VWRITE) {
               switch (vp->v_type) {
               case VDIR:
               case VLNK:
               case VREG:
                       if (vp->v_mount->mnt_flag & MNT_RDONLY)
                               return EROFS;
                       break;
               default:
                       break;
               }
       }
       return LAYERFS_DO_BYPASS(vp, ap);
}

/*
* We must handle open to be able to catch MNT_NODEV and friends
* and increment the lower v_writecount.
*/
int
layer_open(void *v)
{
       struct vop_open_args /* {
               const struct vnodeop_desc *a_desc;
               struct vnode *a_vp;
               int a_mode;
               kauth_cred_t a_cred;
       } */ *ap = v;
       struct vnode *vp = ap->a_vp;
       struct vnode *lvp = LAYERVPTOLOWERVP(vp);
       int error;

       if (((lvp->v_type == VBLK) || (lvp->v_type == VCHR)) &&
           (vp->v_mount->mnt_flag & MNT_NODEV))
               return ENXIO;

       error = LAYERFS_DO_BYPASS(vp, ap);
       if (error == 0 && (ap->a_mode & FWRITE)) {
               mutex_enter(lvp->v_interlock);
               lvp->v_writecount++;
               mutex_exit(lvp->v_interlock);
       }
       return error;
}

/*
* We must handle close to decrement the lower v_writecount.
*/
int
layer_close(void *v)
{
       struct vop_close_args /* {
               const struct vnodeop_desc *a_desc;
               struct vnode *a_vp;
               int a_fflag;
               kauth_cred_t a_cred;
       } */ *ap = v;
       struct vnode *vp = ap->a_vp;
       struct vnode *lvp = LAYERVPTOLOWERVP(vp);

       if ((ap->a_fflag & FWRITE)) {
               mutex_enter(lvp->v_interlock);
               KASSERT(lvp->v_writecount > 0);
               lvp->v_writecount--;
               mutex_exit(lvp->v_interlock);
       }
       return LAYERFS_DO_BYPASS(vp, ap);
}

/*
* If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
* syncing the underlying vnodes, since they'll be fsync'ed when
* reclaimed; otherwise, pass it through to the underlying layer.
*
* XXX Do we still need to worry about shallow fsync?
*/
int
layer_fsync(void *v)
{
       struct vop_fsync_args /* {
               struct vnode *a_vp;
               kauth_cred_t a_cred;
               int  a_flags;
               off_t offlo;
               off_t offhi;
               struct lwp *a_l;
       } */ *ap = v;
       int error;

       if (ap->a_flags & FSYNC_RECLAIM) {
               return 0;
       }
       if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
               error = spec_fsync(v);
               if (error)
                       return error;
       }
       return LAYERFS_DO_BYPASS(ap->a_vp, ap);
}

int
layer_inactive(void *v)
{
       struct vop_inactive_v2_args /* {
               struct vnode *a_vp;
               bool *a_recycle;
       } */ *ap = v;
       struct vnode *vp = ap->a_vp;

       /*
        * If we did a remove, don't cache the node.
        */
       *ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);

       /*
        * Do nothing (and _don't_ bypass).
        * Wait to vrele lowervp until reclaim,
        * so that until then our layer_node is in the
        * cache and reusable.
        *
        * NEEDSWORK: Someday, consider inactive'ing
        * the lowervp and then trying to reactivate it
        * with capabilities (v_id)
        * like they do in the name lookup cache code.
        * That's too much work for now.
        */

       return 0;
}

int
layer_remove(void *v)
{
       struct vop_remove_v3_args /* {
               struct vnode            *a_dvp;
               struct vnode            *a_vp;
               struct componentname    *a_cnp;
               nlink_t                  ctx_vp_new_nlink;
       } */ *ap = v;
       struct vnode *vp = ap->a_vp;
       int error;

       vref(vp);
       error = LAYERFS_DO_BYPASS(vp, ap);
       if (error == 0) {
               VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
       }
       vrele(vp);

       return error;
}

int
layer_rename(void *v)
{
       struct vop_rename_args /* {
               struct vnode            *a_fdvp;
               struct vnode            *a_fvp;
               struct componentname    *a_fcnp;
               struct vnode            *a_tdvp;
               struct vnode            *a_tvp;
               struct componentname    *a_tcnp;
       } */ *ap = v;
       struct vnode *fdvp = ap->a_fdvp, *tvp;
       int error;

       tvp = ap->a_tvp;
       if (tvp) {
               if (tvp->v_mount != fdvp->v_mount)
                       tvp = NULL;
               else
                       vref(tvp);
       }
       error = LAYERFS_DO_BYPASS(fdvp, ap);
       if (tvp) {
               if (error == 0)
                       VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
               vrele(tvp);
       }
       return error;
}

int
layer_rmdir(void *v)
{
       struct vop_rmdir_v2_args /* {
               struct vnode            *a_dvp;
               struct vnode            *a_vp;
               struct componentname    *a_cnp;
       } */ *ap = v;
       int             error;
       struct vnode    *vp = ap->a_vp;

       vref(vp);
       error = LAYERFS_DO_BYPASS(vp, ap);
       if (error == 0) {
               VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
       }
       vrele(vp);

       return error;
}

int
layer_revoke(void *v)
{
       struct vop_revoke_args /* {
               struct vnode *a_vp;
               int a_flags;
       } */ *ap = v;
       struct vnode *vp = ap->a_vp;
       struct vnode *lvp = LAYERVPTOLOWERVP(vp);
       int error;

       /*
        * We will most likely end up in vclean which uses the usecount
        * to determine if a vnode is active.  Take an extra reference on
        * the lower vnode so it will always close and inactivate.
        */
       vref(lvp);
       error = LAYERFS_DO_BYPASS(vp, ap);
       vrele(lvp);

       return error;
}

int
layer_reclaim(void *v)
{
       struct vop_reclaim_v2_args /* {
               struct vnode *a_vp;
               struct lwp *a_l;
       } */ *ap = v;
       struct vnode *vp = ap->a_vp;
       struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
       struct layer_node *xp = VTOLAYER(vp);
       struct vnode *lowervp = xp->layer_lowervp;

       VOP_UNLOCK(vp);

       /*
        * Note: in vop_reclaim, the node's struct lock has been
        * decomissioned, so we have to be careful about calling
        * VOP's on ourself.  We must be careful as VXLOCK is set.
        */
       if (vp == lmp->layerm_rootvp) {
               /*
                * Oops! We no longer have a root node. Most likely reason is
                * that someone forcably unmunted the underlying fs.
                *
                * Now getting the root vnode will fail. We're dead. :-(
                */
               lmp->layerm_rootvp = NULL;
       }

       mutex_enter(vp->v_interlock);
       KASSERT(vp->v_interlock == lowervp->v_interlock);
       lowervp->v_writecount -= vp->v_writecount;
       mutex_exit(vp->v_interlock);

       /* After this assignment, this node will not be re-used. */
       xp->layer_lowervp = NULL;
       kmem_free(vp->v_data, lmp->layerm_size);
       vp->v_data = NULL;
       vrele(lowervp);

       return 0;
}

/*
* We just feed the returned vnode up to the caller - there's no need
* to build a layer node on top of the node on which we're going to do
* i/o. :-)
*/
int
layer_bmap(void *v)
{
       struct vop_bmap_args /* {
               struct vnode *a_vp;
               daddr_t  a_bn;
               struct vnode **a_vpp;
               daddr_t *a_bnp;
               int *a_runp;
       } */ *ap = v;
       struct vnode *vp;

       vp = LAYERVPTOLOWERVP(ap->a_vp);
       ap->a_vp = vp;

       return VCALL(vp, ap->a_desc->vdesc_offset, ap);
}

int
layer_print(void *v)
{
       struct vop_print_args /* {
               struct vnode *a_vp;
       } */ *ap = v;
       struct vnode *vp = ap->a_vp;
       printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
       return 0;
}

int
layer_getpages(void *v)
{
       struct vop_getpages_args /* {
               struct vnode *a_vp;
               voff_t a_offset;
               struct vm_page **a_m;
               int *a_count;
               int a_centeridx;
               vm_prot_t a_access_type;
               int a_advice;
               int a_flags;
       } */ *ap = v;
       struct vnode *vp = ap->a_vp;
       struct mount *mp = vp->v_mount;
       int error;
       krw_t op;

       KASSERT(rw_lock_held(vp->v_uobj.vmobjlock));

       if (ap->a_flags & PGO_LOCKED) {
               return EBUSY;
       }
       ap->a_vp = LAYERVPTOLOWERVP(vp);
       KASSERT(vp->v_uobj.vmobjlock == ap->a_vp->v_uobj.vmobjlock);

       /* Just pass the request on to the underlying layer. */
       op = rw_lock_op(vp->v_uobj.vmobjlock);
       rw_exit(vp->v_uobj.vmobjlock);
       fstrans_start(mp);
       rw_enter(vp->v_uobj.vmobjlock, op);
       if (mp == vp->v_mount) {
               /* Will release the lock. */
               error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
       } else {
               rw_exit(vp->v_uobj.vmobjlock);
               error = ENOENT;
       }
       fstrans_done(mp);

       return error;
}

int
layer_putpages(void *v)
{
       struct vop_putpages_args /* {
               struct vnode *a_vp;
               voff_t a_offlo;
               voff_t a_offhi;
               int a_flags;
       } */ *ap = v;
       struct vnode *vp = ap->a_vp;

       KASSERT(rw_write_held(vp->v_uobj.vmobjlock));

       ap->a_vp = LAYERVPTOLOWERVP(vp);
       KASSERT(vp->v_uobj.vmobjlock == ap->a_vp->v_uobj.vmobjlock);

       if (ap->a_flags & PGO_RECLAIM) {
               rw_exit(vp->v_uobj.vmobjlock);
               return 0;
       }

       /* Just pass the request on to the underlying layer. */
       return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
}