/*      $NetBSD: minixfs3.c,v 1.13 2022/04/29 07:42:07 rin Exp $        */

/*-
* Copyright (c) 2012
*      Vrije Universiteit, Amsterdam, The Netherlands. All rights reserved.
*
* Author: Evgeniy Ivanov (based on libsa/ext2fs.c).
*
* This code is derived from src/sys/lib/libsa/ext2fs.c contributed to
* The NetBSD Foundation, see copyrights below.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
* IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 1997 Manuel Bouyer.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*-
* Copyright (c) 1993
*      The Regents of the University of California.  All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*
* Copyright (c) 1990, 1991 Carnegie Mellon University
* All Rights Reserved.
*
* Author: David Golub
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
*  Software Distribution Coordinator  or  [email protected]
*  School of Computer Science
*  Carnegie Mellon University
*  Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/

/*
*      Stand-alone file reading package for MFS file system.
*/

#include <sys/param.h>
#include <sys/time.h>
#ifdef _STANDALONE
#include <lib/libkern/libkern.h>
#else
#include <stddef.h>
#include <string.h>
#endif

#include "stand.h"
#include "minixfs3.h"

#if defined(LIBSA_FS_SINGLECOMPONENT) && !defined(LIBSA_NO_FS_SYMLINK)
#define LIBSA_NO_FS_SYMLINK
#endif

#if defined(LIBSA_NO_TWIDDLE)
#define twiddle()
#endif

typedef uint32_t        ino32_t;
#ifndef FSBTODB
#define FSBTODB(fs, indp) MFS_FSBTODB(fs, indp)
#endif

/*
* To avoid having a lot of filesystem-block sized buffers lurking (which
* could be 32k) we only keep a few entries of the indirect block map.
* With 8k blocks, 2^8 blocks is ~500k so we reread the indirect block
* ~13 times pulling in a 6M kernel.
* The cache size must be smaller than the smallest filesystem block,
* so LN2_IND_CACHE_SZ <= 9 (UFS2 and 4k blocks).
*/
#define LN2_IND_CACHE_SZ        6
#define IND_CACHE_SZ            (1 << LN2_IND_CACHE_SZ)
#define IND_CACHE_MASK          (IND_CACHE_SZ - 1)

/*
* In-core open file.
*/
struct file {
       off_t           f_seekp;        /* seek pointer */
       struct mfs_sblock  *f_fs;       /* pointer to super-block */
       struct mfs_dinode  f_di;        /* copy of on-disk inode */
       uint            f_nishift;      /* for blocks in indirect block */
       block_t         f_ind_cache_block;
       block_t         f_ind_cache[IND_CACHE_SZ];

       char            *f_buf;         /* buffer for data block */
       size_t          f_buf_size;     /* size of data block */
       daddr_t         f_buf_blkno;    /* block number of data block */
};

static int read_inode(ino32_t, struct open_file *);
static int block_map(struct open_file *, block_t, block_t *);
static int buf_read_file(struct open_file *, void *, size_t *);
static int search_directory(const char *, int, struct open_file *, ino32_t *);
static int read_sblock(struct open_file *, struct mfs_sblock *);

/*
* Read a new inode into a file structure.
*/
static int
read_inode(ino32_t inumber, struct open_file *f)
{
       struct file *fp = (struct file *)f->f_fsdata;
       struct mfs_sblock *fs = fp->f_fs;
       char *buf;
       size_t rsize;
       int rc;
       daddr_t inode_sector;
       struct mfs_dinode *dip;

       inode_sector = FSBTODB(fs, ino_to_fsba(fs, inumber));

       /*
        * Read inode and save it.
        */
       buf = fp->f_buf;
       twiddle();
       rc = DEV_STRATEGY(f->f_dev)(f->f_devdata, F_READ,
           inode_sector, fs->mfs_block_size, buf, &rsize);
       if (rc)
               return rc;
       if (rsize != fs->mfs_block_size)
               return EIO;

       dip = (struct mfs_dinode *)(buf +
           INODE_SIZE * ino_to_fsbo(fs, inumber));
       mfs_iload(dip, &fp->f_di);

       /*
        * Clear out the old buffers
        */
       fp->f_ind_cache_block = ~0;
       fp->f_buf_blkno = -1;
       return rc;
}

/*
* Given an offset in a file, find the disk block number (not zone!)
* that contains that block.
*/
static int
block_map(struct open_file *f, block_t file_block, block_t *disk_block_p)
{
       struct file *fp = (struct file *)f->f_fsdata;
       struct mfs_sblock *fs = fp->f_fs;
       uint level;
       block_t ind_cache;
       block_t ind_block_num;
       zone_t zone;
       size_t rsize;
       int rc;
       int boff;
       int scale = fs->mfs_log_zone_size; /* for block-zone conversion */
       block_t *buf = (void *)fp->f_buf;

       /*
        * Index structure of an inode:
        *
        * mdi_blocks[0..NR_DZONES-1]
        *                      hold zone numbers for zones
        *                      0..NR_DZONES-1
        *
        * mdi_blocks[NR_DZONES+0]
        *                      block NDADDR+0 is the single indirect block
        *                      holds zone numbers for zones
        *                      NR_DZONES .. NR_DZONES + MFS_NINDIR(fs)-1
        *
        * mdi_blocks[NR_DZONES+1]
        *                      block NDADDR+1 is the double indirect block
        *                      holds zone numbers for INDEX blocks for zones
        *                      NR_DZONES + MFS_NINDIR(fs) ..
        *                      NR_TZONES + MFS_NINDIR(fs) + MFS_NINDIR(fs)**2 - 1
        */

       zone = file_block >> scale;
       boff = (int) (file_block - (zone << scale) ); /* relative blk in zone */

       if (zone < NR_DZONES) {
               /* Direct zone */
               zone_t z = fs2h32(fp->f_di.mdi_zone[zone]);
               if (z == NO_ZONE) {
                       *disk_block_p = NO_BLOCK;
                       return 0;
               }
               *disk_block_p = (block_t) ((z << scale) + boff);
               return 0;
       }

       zone -= NR_DZONES;

       ind_cache = zone >> LN2_IND_CACHE_SZ;
       if (ind_cache == fp->f_ind_cache_block) {
               *disk_block_p =
                   fs2h32(fp->f_ind_cache[zone & IND_CACHE_MASK]);
               return 0;
       }

       for (level = 0;;) {
               level += fp->f_nishift;

               if (zone < (block_t)1 << level)
                       break;
               if (level > NIADDR * fp->f_nishift)
                       /* Zone number too high */
                       return EFBIG;
               zone -= (block_t)1 << level;
       }

       ind_block_num =
           fs2h32(fp->f_di.mdi_zone[NR_DZONES + (level / fp->f_nishift - 1)]);

       for (;;) {
               level -= fp->f_nishift;
               if (ind_block_num == 0) {
                       *disk_block_p = NO_BLOCK;       /* missing */
                       return 0;
               }

               twiddle();
               /*
                * If we were feeling brave, we could work out the number
                * of the disk sector and read a single disk sector instead
                * of a filesystem block.
                * However we don't do this very often anyway...
                */
               rc = DEV_STRATEGY(f->f_dev)(f->f_devdata, F_READ,
                       FSBTODB(fs, ind_block_num), fs->mfs_block_size,
                       buf, &rsize);
               if (rc)
                       return rc;
               if (rsize != fs->mfs_block_size)
                       return EIO;

               ind_block_num = fs2h32(buf[zone >> level]);
               if (level == 0)
                       break;
               zone &= (1 << level) - 1;
       }

       /* Save the part of the block that contains this sector */
       memcpy(fp->f_ind_cache, &buf[zone & ~IND_CACHE_MASK],
           IND_CACHE_SZ * sizeof fp->f_ind_cache[0]);
       fp->f_ind_cache_block = ind_cache;

       zone = (zone_t)ind_block_num;
       *disk_block_p = (block_t)((zone << scale) + boff);
       return 0;
}

/*
* Read a portion of a file into an internal buffer.
* Return the location in the buffer and the amount in the buffer.
*/
static int
buf_read_file(struct open_file *f, void *v, size_t *size_p)
{
       char **buf_p = v;
       struct file *fp = (struct file *)f->f_fsdata;
       struct mfs_sblock *fs = fp->f_fs;
       long off;
       block_t file_block;
       block_t disk_block = 0; /* XXX: gcc */
       size_t block_size, nsz;
       int rc;

       off = mfs_blkoff(fs, fp->f_seekp);
       file_block = mfs_lblkno(fs, fp->f_seekp);
       block_size = fs->mfs_block_size;

       if (file_block != fp->f_buf_blkno) {
               rc = block_map(f, file_block, &disk_block);
               if (rc)
                       return rc;

               if (disk_block == 0) {
                       memset(fp->f_buf, 0, block_size);
                       fp->f_buf_size = block_size;
               } else {
                       twiddle();
                       rc = DEV_STRATEGY(f->f_dev)(f->f_devdata, F_READ,
                               FSBTODB(fs, disk_block),
                               block_size, fp->f_buf, &fp->f_buf_size);
                       if (rc)
                               return rc;
               }

               fp->f_buf_blkno = file_block;
       }

       /*
        * Return address of byte in buffer corresponding to
        * offset, and size of remainder of buffer after that
        * byte.
        */
       *buf_p = fp->f_buf + off;
       *size_p = block_size - off;

       /*
        * But truncate buffer at end of file.
        */
       nsz = (size_t)(fp->f_di.mdi_size - fp->f_seekp);
       if (*size_p > nsz)
               *size_p = nsz;

       return 0;
}

/*
* Search a directory for a name and return its
* inode number.
*/
static int
search_directory(const char *name, int length, struct open_file *f,
       ino32_t *inumber_p)
{
       struct file *fp = (struct file *)f->f_fsdata;
       struct mfs_sblock *fs = fp->f_fs;
       struct mfs_direct *dp;
       struct mfs_direct *dbuf;
       size_t buf_size;
       int namlen;
       int rc;

       fp->f_seekp = 0;

       while (fp->f_seekp < (off_t)fp->f_di.mdi_size) {
               rc = buf_read_file(f, (void *)&dbuf, &buf_size);
               if (rc)
                       return rc;
               if (buf_size == 0)
                       return EIO;

               /* XXX we assume, that buf_read_file reads an fs block and
                * doesn't truncate buffer. Currently i_size in MFS doesn't
                * the same as size of allocated blocks, it makes buf_read_file
                * to truncate buf_size.
                */
               if (buf_size < fs->mfs_block_size)
                       buf_size = fs->mfs_block_size;

               for (dp = dbuf; dp < &dbuf[NR_DIR_ENTRIES(fs)]; dp++) {
                       char *cp;
                       if (fs2h32(dp->mfsd_ino) == (ino32_t) 0)
                               continue;
                       /* Compute the length of the name */
                       cp = memchr(dp->mfsd_name, '\0', sizeof(dp->mfsd_name));
                       if (cp == NULL)
                               namlen = sizeof(dp->mfsd_name);
                       else
                               namlen = cp - (dp->mfsd_name);

                       if (namlen == length &&
                           !memcmp(name, dp->mfsd_name, length)) {
                               /* found entry */
                               *inumber_p = fs2h32(dp->mfsd_ino);
                               return 0;
                       }
               }
               fp->f_seekp += buf_size;
       }
       return ENOENT;
}

int
read_sblock(struct open_file *f, struct mfs_sblock *fs)
{
       static uint8_t sbbuf[MINBSIZE];
       size_t buf_size;
       int rc;

       /* We must read amount multiple of sector size, hence we can't
        * read SBSIZE and read MINBSIZE.
        */
       if (SBSIZE > MINBSIZE)
               return EINVAL;

       rc = DEV_STRATEGY(f->f_dev)(f->f_devdata, F_READ,
           SUPER_BLOCK_OFF / GETSECSIZE(f), MINBSIZE, sbbuf, &buf_size);
       if (rc)
               return rc;

       if (buf_size != MINBSIZE)
               return EIO;

       mfs_sbload((void *)sbbuf, fs);

       if (fs->mfs_magic != SUPER_MAGIC)
               return EINVAL;
       if (fs->mfs_block_size < MINBSIZE)
               return EINVAL;
       if ((fs->mfs_block_size % 512) != 0)
               return EINVAL;
       if (SBSIZE > fs->mfs_block_size)
               return EINVAL;
       if ((fs->mfs_block_size % INODE_SIZE) != 0)
               return EINVAL;

       /* For even larger disks, a similar problem occurs with s_firstdatazone.
        * If the on-disk field contains zero, we assume that the value was too
        * large to fit, and compute it on the fly.
        */
       if (fs->mfs_firstdatazone_old == 0) {
               block_t offset;
               offset = START_BLOCK + fs->mfs_imap_blocks + fs->mfs_zmap_blocks;
               offset += (fs->mfs_ninodes + fs->mfs_inodes_per_block - 1) /
                               fs->mfs_inodes_per_block;

               fs->mfs_firstdatazone =
                       (offset + (1 << fs->mfs_log_zone_size) - 1) >>
                               fs->mfs_log_zone_size;
       } else {
               fs->mfs_firstdatazone = (zone_t) fs->mfs_firstdatazone_old;
       }

       if (fs->mfs_imap_blocks < 1 || fs->mfs_zmap_blocks < 1
                       || fs->mfs_ninodes < 1 || fs->mfs_zones < 1
                       || fs->mfs_firstdatazone <= 4
                       || fs->mfs_firstdatazone >= fs->mfs_zones
                       || (unsigned) fs->mfs_log_zone_size > 4)
               return EINVAL;

       /* compute in-memory mfs_sblock values */
       fs->mfs_inodes_per_block = fs->mfs_block_size / INODE_SIZE;


       {
               int32_t mult = fs->mfs_block_size >> LOG_MINBSIZE;
               int ln2 = LOG_MINBSIZE;

               for (; mult != 1; ln2++)
                       mult >>= 1;

               fs->mfs_bshift = ln2;
               /* XXX assume hw bsize = 512 */
               fs->mfs_fsbtodb = ln2 - LOG_MINBSIZE + 1;
       }

       fs->mfs_qbmask = fs->mfs_block_size - 1;
       fs->mfs_bmask = ~fs->mfs_qbmask;

       return 0;
}

/*
* Open a file.
*/
__compactcall int
minixfs3_open(const char *path, struct open_file *f)
{
#ifndef LIBSA_FS_SINGLECOMPONENT
       const char *cp, *ncp;
       int c;
#endif
       ino32_t inumber;
       struct file *fp;
       struct mfs_sblock *fs;
       int rc;
#ifndef LIBSA_NO_FS_SYMLINK
       ino32_t parent_inumber;
       int nlinks = 0;
       char namebuf[MAXPATHLEN+1];
       char *buf;
#endif

       /* allocate file system specific data structure */
       fp = alloc(sizeof(struct file));
       memset(fp, 0, sizeof(struct file));
       f->f_fsdata = (void *)fp;

       /* allocate space and read super block */
       fs = alloc(sizeof(*fs));
       memset(fs, 0, sizeof(*fs));
       fp->f_fs = fs;
       twiddle();

       rc = read_sblock(f, fs);
       if (rc)
               goto out;

       /* alloc a block sized buffer used for all fs transfers */
       fp->f_buf = alloc(fs->mfs_block_size);

       /*
        * Calculate indirect block levels.
        */
       {
               int32_t mult;
               int ln2;

               /*
                * We note that the number of indirect blocks is always
                * a power of 2.  This lets us use shifts and masks instead
                * of divide and remainder and avoids pulling in the
                * 64bit division routine into the boot code.
                */
               mult = MFS_NINDIR(fs);
#ifdef DEBUG
               if (!powerof2(mult)) {
                       /* Hummm was't a power of 2 */
                       rc = EINVAL;
                       goto out;
               }
#endif
               for (ln2 = 0; mult != 1; ln2++)
                       mult >>= 1;

               fp->f_nishift = ln2;
       }

       inumber = ROOT_INODE;
       if ((rc = read_inode(inumber, f)) != 0)
               goto out;

#ifndef LIBSA_FS_SINGLECOMPONENT
       cp = path;
       while (*cp) {

               /*
                * Remove extra separators
                */
               while (*cp == '/')
                       cp++;
               if (*cp == '\0')
                       break;

               /*
                * Check that current node is a directory.
                */
               if ((fp->f_di.mdi_mode & I_TYPE) != I_DIRECTORY) {
                       rc = ENOTDIR;
                       goto out;
               }

               /*
                * Get next component of path name.
                */
               ncp = cp;
               while ((c = *cp) != '\0' && c != '/')
                       cp++;

               /*
                * Look up component in current directory.
                * Save directory inumber in case we find a
                * symbolic link.
                */
#ifndef LIBSA_NO_FS_SYMLINK
               parent_inumber = inumber;
#endif
               rc = search_directory(ncp, cp - ncp, f, &inumber);
               if (rc)
                       goto out;

               /*
                * Open next component.
                */
               if ((rc = read_inode(inumber, f)) != 0)
                       goto out;

#ifndef LIBSA_NO_FS_SYMLINK
               /*
                * Check for symbolic link.
                */
               if ((fp->f_di.mdi_mode & I_TYPE) == I_SYMBOLIC_LINK) {
                       int link_len = fp->f_di.mdi_size;
                       int len;
                       size_t buf_size;
                       block_t disk_block;

                       len = strlen(cp);

                       if (link_len + len > MAXPATHLEN ||
                           ++nlinks > MAXSYMLINKS) {
                               rc = ENOENT;
                               goto out;
                       }

                       memmove(&namebuf[link_len], cp, len + 1);

                       /*
                        * Read file for symbolic link
                        */
                       buf = fp->f_buf;
                       rc = block_map(f, (block_t)0, &disk_block);
                       if (rc)
                               goto out;

                       twiddle();
                       rc = DEV_STRATEGY(f->f_dev)(f->f_devdata,
                                       F_READ, FSBTODB(fs, disk_block),
                                       fs->mfs_block_size, buf, &buf_size);
                       if (rc)
                               goto out;

                       memcpy(namebuf, buf, link_len);

                       /*
                        * If relative pathname, restart at parent directory.
                        * If absolute pathname, restart at root.
                        */
                       cp = namebuf;
                       if (*cp != '/')
                               inumber = parent_inumber;
                       else
                               inumber = (ino32_t) ROOT_INODE;

                       if ((rc = read_inode(inumber, f)) != 0)
                               goto out;
               }
#endif  /* !LIBSA_NO_FS_SYMLINK */
       }

       /*
        * Found terminal component.
        */
       rc = 0;

#else /* !LIBSA_FS_SINGLECOMPONENT */

       /* look up component in the current (root) directory */
       rc = search_directory(path, strlen(path), f, &inumber);
       if (rc)
               goto out;

       /* open it */
       rc = read_inode(inumber, f);

#endif /* !LIBSA_FS_SINGLECOMPONENT */

       fp->f_seekp = 0;                /* reset seek pointer */

out:
       if (rc)
               minixfs3_close(f);

       return rc;
}

__compactcall int
minixfs3_close(struct open_file *f)
{
       struct file *fp = (struct file *)f->f_fsdata;

       f->f_fsdata = NULL;
       if (fp == NULL)
               return 0;

       if (fp->f_buf)
               dealloc(fp->f_buf, fp->f_fs->mfs_block_size);
       dealloc(fp->f_fs, sizeof(*fp->f_fs));
       dealloc(fp, sizeof(struct file));
       return 0;
}

/*
* Copy a portion of a file into kernel memory.
* Cross block boundaries when necessary.
*/
__compactcall int
minixfs3_read(struct open_file *f, void *start, size_t size, size_t *resid)
{
       struct file *fp = (struct file *)f->f_fsdata;
       size_t csize;
       char *buf;
       size_t buf_size;
       int rc = 0;
       char *addr = start;

       while (size != 0) {
               if (fp->f_seekp >= (off_t)fp->f_di.mdi_size)
                       break;

               rc = buf_read_file(f, &buf, &buf_size);
               if (rc)
                       break;

               csize = size;
               if (csize > buf_size)
                       csize = buf_size;

               memcpy(addr, buf, csize);

               fp->f_seekp += csize;
               addr += csize;
               size -= csize;
       }

       if (resid)
               *resid = size;
       return rc;
}

/*
* Not implemented.
*/
#ifndef LIBSA_NO_FS_WRITE
__compactcall int
minixfs3_write(struct open_file *f, void *start, size_t size, size_t *resid)
{

       return EROFS;
}
#endif /* !LIBSA_NO_FS_WRITE */

#ifndef LIBSA_NO_FS_SEEK
__compactcall off_t
minixfs3_seek(struct open_file *f, off_t offset, int where)
{
       struct file *fp = (struct file *)f->f_fsdata;

       switch (where) {
       case SEEK_SET:
               fp->f_seekp = offset;
               break;
       case SEEK_CUR:
               fp->f_seekp += offset;
               break;
       case SEEK_END:
               fp->f_seekp = fp->f_di.mdi_size - offset;
               break;
       default:
               return -1;
       }
       return fp->f_seekp;
}
#endif /* !LIBSA_NO_FS_SEEK */

__compactcall int
minixfs3_stat(struct open_file *f, struct stat *sb)
{
       struct file *fp = (struct file *)f->f_fsdata;

       /* only important stuff */
       memset(sb, 0, sizeof *sb);
       sb->st_mode = fp->f_di.mdi_mode;
       sb->st_uid = fp->f_di.mdi_uid;
       sb->st_gid = fp->f_di.mdi_gid;
       sb->st_size = fp->f_di.mdi_size;
       return 0;
}

#if defined(LIBSA_ENABLE_LS_OP)
#include "ls.h"
__compactcall void
minixfs3_ls(struct open_file *f, const char *pattern)
{
       struct file *fp = (struct file *)f->f_fsdata;
       struct mfs_sblock *fs = fp->f_fs;
       struct mfs_direct *dp;
       struct mfs_direct *dbuf;
       size_t buf_size;
       lsentry_t *names = 0;

       fp->f_seekp = 0;
       while (fp->f_seekp < (off_t)fp->f_di.mdi_size) {
               int rc = buf_read_file(f, &dbuf, &buf_size);
               if (rc)
                       goto out;

               /* XXX we assume, that buf_read_file reads an fs block and
                * doesn't truncate buffer. Currently i_size in MFS doesn't
                * the same as size of allocated blocks, it makes buf_read_file
                * to truncate buf_size.
                */
               if (buf_size < fs->mfs_block_size)
                       buf_size = fs->mfs_block_size;

               for (dp = dbuf; dp < &dbuf[NR_DIR_ENTRIES(fs)]; dp++) {
                       char *cp;
                       int namlen;

                       if (fs2h32(dp->mfsd_ino) == 0)
                               continue;

                       /* Compute the length of the name,
                        * We don't use strlen and strcpy, because original MFS
                        * code doesn't.
                        */
                       cp = memchr(dp->mfsd_name, '\0', sizeof(dp->mfsd_name));
                       if (cp == NULL)
                               namlen = sizeof(dp->mfsd_name);
                       else
                               namlen = cp - (dp->mfsd_name);

                       lsadd(&names, pattern, dp->mfsd_name, namlen,
                           fs2h32(dp->mfsd_ino), "?");
               }
               fp->f_seekp += buf_size;
       }
       lsprint(names);
out:    lsfree(names);
}
#endif

/*
* byte swap functions for big endian machines
* (mfs is always little endian)
*/

/* These functions are only needed if native byte order is not big endian */
#if BYTE_ORDER == BIG_ENDIAN
void
minixfs3_sb_bswap(struct mfs_sblock *old, struct mfs_sblock *new)
{
       new->mfs_ninodes        =       bswap32(old->mfs_ninodes);
       new->mfs_nzones         =       bswap16(old->mfs_nzones);
       new->mfs_imap_blocks    =       bswap16(old->mfs_imap_blocks);
       new->mfs_zmap_blocks    =       bswap16(old->mfs_zmap_blocks);
       new->mfs_firstdatazone_old =    bswap16(old->mfs_firstdatazone_old);
       new->mfs_log_zone_size  =       bswap16(old->mfs_log_zone_size);
       new->mfs_max_size       =       bswap32(old->mfs_max_size);
       new->mfs_zones          =       bswap32(old->mfs_zones);
       new->mfs_magic          =       bswap16(old->mfs_magic);
       new->mfs_block_size     =       bswap16(old->mfs_block_size);
       new->mfs_disk_version   =       old->mfs_disk_version;
}

void minixfs3_i_bswap(struct mfs_dinode *old, struct mfs_dinode *new)
{
       int i;

       new->mdi_mode           =       bswap16(old->mdi_mode);
       new->mdi_nlinks         =       bswap16(old->mdi_nlinks);
       new->mdi_uid            =       bswap16(old->mdi_uid);
       new->mdi_gid            =       bswap16(old->mdi_gid);
       new->mdi_size           =       bswap32(old->mdi_size);
       new->mdi_atime          =       bswap32(old->mdi_atime);
       new->mdi_mtime          =       bswap32(old->mdi_mtime);
       new->mdi_ctime          =       bswap32(old->mdi_ctime);

       /* We don't swap here, because indirects must be swapped later
        * anyway, hence everything is done by block_map().
        */
       for (i = 0; i < NR_TZONES; i++)
               new->mdi_zone[i] = old->mdi_zone[i];
}
#endif