/*
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Header: divrem.m4,v 1.4 92/06/25 13:23:57 torek Exp
* $NetBSD: divrem.m4,v 1.9 2011/06/13 03:23:53 mrg Exp $
*/

/*
* Division and remainder, from Appendix E of the Sparc Version 8
* Architecture Manual, with fixes from Gordon Irlam.
*/

#if defined(LIBC_SCCS) && !defined(lint)
       .asciz "@(#)divrem.m4   8.1 (Berkeley) 6/4/93"
#endif /* LIBC_SCCS and not lint */

/*
* Input: dividend and divisor in %o0 and %o1 respectively.
*
* m4 parameters:
*  NAME        name of function to generate
*  OP          OP=div => %o0 / %o1; OP=rem => %o0 % %o1
*  S           S=true => signed; S=false => unsigned
*
* Algorithm parameters:
*  N           how many bits per iteration we try to get (4)
*  WORDSIZE    total number of bits (32)
*
* Derived constants:
*  TWOSUPN     2^N, for label generation (m4 exponentiation currently broken)
*  TOPBITS     number of bits in the top `decade' of a number
*
* Important variables:
*  Q           the partial quotient under development (initially 0)
*  R           the remainder so far, initially the dividend
*  ITER        number of main division loop iterations required;
*              equal to ceil(log2(quotient) / N).  Note that this
*              is the log base (2^N) of the quotient.
*  V           the current comparand, initially divisor*2^(ITER*N-1)
*
* Cost:
*  Current estimate for non-large dividend is
*      ceil(log2(quotient) / N) * (10 + 7N/2) + C
*  A large dividend is one greater than 2^(31-TOPBITS) and takes a
*  different path, as the upper bits of the quotient must be developed
*  one bit at a time.
*/

define(N, `4')
define(TWOSUPN, `16')
define(WORDSIZE, `32')
define(TOPBITS, eval(WORDSIZE - N*((WORDSIZE-1)/N)))

define(dividend, `%o0')
define(divisor, `%o1')
define(Q, `%o2')
define(R, `%o3')
define(ITER, `%o4')
define(V, `%o5')

/* m4 reminder: ifelse(a,b,c,d) => if a is b, then c, else d */
define(T, `%g1')
define(SC, `%g5')
ifelse(S, `true', `define(SIGN, `%g6')')

/*
* This is the recursive definition for developing quotient digits.
*
* Parameters:
*  $1  the current depth, 1 <= $1 <= N
*  $2  the current accumulation of quotient bits
*  N   max depth
*
* We add a new bit to $2 and either recurse or insert the bits in
* the quotient.  R, Q, and V are inputs and outputs as defined above;
* the condition codes are expected to reflect the input R, and are
* modified to reflect the output R.
*/
define(DEVELOP_QUOTIENT_BITS,
`       ! depth $1, accumulated bits $2
       bl      L.$1.eval(TWOSUPN+$2)
       srl     V,1,V
       ! remainder is positive
       subcc   R,V,R
       ifelse($1, N,
       `       b       9f
               add     Q, ($2*2+1), Q
       ', `    DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2+1)')')
L.$1.eval(TWOSUPN+$2):
       ! remainder is negative
       addcc   R,V,R
       ifelse($1, N,
       `       b       9f
               add     Q, ($2*2-1), Q
       ', `    DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2-1)')')
       ifelse($1, 1, `9:')')

#include <machine/asm.h>
#include <machine/trap.h>

FUNC(NAME)
ifelse(S, `true',
`       ! compute sign of result; if neither is negative, no problem
       orcc    divisor, dividend, %g0  ! either negative?
       bge     2f                      ! no, go do the divide
       ifelse(OP, `div',
               `xor    divisor, dividend, SIGN',
               `mov    dividend, SIGN')        ! compute sign in any case
       tst     divisor
       bge     1f
       tst     dividend
       ! divisor is definitely negative; dividend might also be negative
       bge     2f                      ! if dividend not negative...
       neg     divisor                 ! in any case, make divisor nonneg
1:      ! dividend is negative, divisor is nonnegative
       neg     dividend                ! make dividend nonnegative
2:
')
       ! Ready to divide.  Compute size of quotient; scale comparand.
       orcc    divisor, %g0, V
       bnz     1f
       mov     dividend, R

               ! Divide by zero trap.  If it returns, return 0 (about as
               ! wrong as possible, but that is what SunOS does...).
               t       ST_DIV0
               retl
               clr     %o0

1:
       cmp     R, V                    ! if divisor exceeds dividend, done
       blu     Lgot_result             ! (and algorithm fails otherwise)
       clr     Q
       sethi   %hi(1 << (WORDSIZE - TOPBITS - 1)), T
       cmp     R, T
       blu     Lnot_really_big
       clr     ITER

       ! `Here the dividend is >= 2^(31-N) or so.  We must be careful here,
       ! as our usual N-at-a-shot divide step will cause overflow and havoc.
       ! The number of bits in the result here is N*ITER+SC, where SC <= N.
       ! Compute ITER in an unorthodox manner: know we need to shift V into
       ! the top decade: so do not even bother to compare to R.'
       1:
               cmp     V, T
               bgeu    3f
               mov     1, SC
               sll     V, N, V
               b       1b
               inc     ITER

       ! Now compute SC.
       2:      addcc   V, V, V
               bcc     Lnot_too_big
               inc     SC

               ! We get here if the divisor overflowed while shifting.
               ! This means that R has the high-order bit set.
               ! Restore V and subtract from R.
               sll     T, TOPBITS, T   ! high order bit
               srl     V, 1, V         ! rest of V
               add     V, T, V
               b       Ldo_single_div
               dec     SC

       Lnot_too_big:
       3:      cmp     V, R
               blu     2b
               nop
               be      Ldo_single_div
               nop
       /* NB: these are commented out in the V8-Sparc manual as well */
       /* (I do not understand this) */
       ! V > R: went too far: back up 1 step
       !       srl     V, 1, V
       !       dec     SC
       ! do single-bit divide steps
       !
       ! We have to be careful here.  We know that R >= V, so we can do the
       ! first divide step without thinking.  BUT, the others are conditional,
       ! and are only done if R >= 0.  Because both R and V may have the high-
       ! order bit set in the first step, just falling into the regular
       ! division loop will mess up the first time around.
       ! So we unroll slightly...
       Ldo_single_div:
               deccc   SC
               bl      Lend_regular_divide
               nop
               sub     R, V, R
               mov     1, Q
               b       Lend_single_divloop
               nop
       Lsingle_divloop:
               sll     Q, 1, Q
               bl      1f
               srl     V, 1, V
               ! R >= 0
               sub     R, V, R
               b       2f
               inc     Q
       1:      ! R < 0
               add     R, V, R
               dec     Q
       2:
       Lend_single_divloop:
               deccc   SC
               bge     Lsingle_divloop
               tst     R
               b,a     Lend_regular_divide

Lnot_really_big:
1:
       sll     V, N, V
       cmp     V, R
       bleu    1b
       inccc   ITER
       be      Lgot_result
       dec     ITER

       tst     R       ! set up for initial iteration
Ldivloop:
       sll     Q, N, Q
       DEVELOP_QUOTIENT_BITS(1, 0)
Lend_regular_divide:
       deccc   ITER
       bge     Ldivloop
       tst     R
       bl,a    Lgot_result
       ! non-restoring fixup here (one instruction only!)
ifelse(OP, `div',
`       dec     Q
', `    add     R, divisor, R
')

Lgot_result:
ifelse(S, `true',
`       ! check to see if answer should be < 0
       tst     SIGN
       bl,a    1f
       ifelse(OP, `div', `neg Q', `neg R')
1:')
       retl
       ifelse(OP, `div', `mov Q, %o0', `mov R, %o0')