/*      $NetBSD: vfs_lockf.c,v 1.83 2024/12/07 02:27:38 riastradh Exp $ */

/*
* Copyright (c) 1982, 1986, 1989, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Scooter Morris at Genentech Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.83 2024/12/07 02:27:38 riastradh Exp $");

#include <sys/param.h>
#include <sys/types.h>

#include <sys/atomic.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/lockf.h>
#include <sys/proc.h>
#include <sys/sdt.h>
#include <sys/systm.h>
#include <sys/uidinfo.h>
#include <sys/vnode.h>

/*
* The lockf structure is a kernel structure which contains the information
* associated with a byte range lock.  The lockf structures are linked into
* the vnode structure.  Locks are sorted by the starting byte of the lock for
* efficiency.
*
* lf_next is used for two purposes, depending on whether the lock is
* being held, or is in conflict with an existing lock.  If this lock
* is held, it indicates the next lock on the same vnode.
* For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
* must be queued on the lf_blkhd TAILQ of lock->lf_next.
*/

TAILQ_HEAD(locklist, lockf);

struct lockf {
       kcondvar_t lf_cv;        /* Signalling */
       short   lf_flags;        /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
       short   lf_type;         /* Lock type: F_RDLCK, F_WRLCK */
       off_t   lf_start;        /* The byte # of the start of the lock */
       off_t   lf_end;          /* The byte # of the end of the lock (-1=EOF)*/
       void    *lf_id;          /* process or file description holding lock */
       struct  lockf **lf_head; /* Back pointer to the head of lockf list */
       struct  lockf *lf_next;  /* Next lock on this vnode, or blocking lock */
       struct  locklist lf_blkhd; /* List of requests blocked on this lock */
       TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
       struct  uidinfo *lf_uip; /* Cached pointer to uidinfo */
};

/* Maximum length of sleep chains to traverse to try and detect deadlock. */
#define MAXDEPTH 50

static kmutex_t lockf_lock __cacheline_aligned;
static char lockstr[] = "lockf";

/*
* This variable controls the maximum number of processes that will
* be checked in doing deadlock detection.
*/
int maxlockdepth = MAXDEPTH;

#ifdef LOCKF_DEBUG
int     lockf_debug = 0;
#endif

#define SELF    0x1
#define OTHERS  0x2

/*
* XXX TODO
* Misc cleanups: "void *id" should be visible in the API as a
* "struct proc *".
* (This requires rototilling all VFS's which support advisory locking).
*/

/*
* If there's a lot of lock contention on a single vnode, locking
* schemes which allow for more paralleism would be needed.  Given how
* infrequently byte-range locks are actually used in typical BSD
* code, a more complex approach probably isn't worth it.
*/

/*
* We enforce a limit on locks by uid, so that a single user cannot
* run the kernel out of memory.  For now, the limit is pretty coarse.
* There is no limit on root.
*
* Splitting a lock will always succeed, regardless of current allocations.
* If you're slightly above the limit, we still have to permit an allocation
* so that the unlock can succeed.  If the unlocking causes too many splits,
* however, you're totally cutoff.
*/
#define MAXLOCKSPERUID (2 * maxfiles)

#ifdef LOCKF_DEBUG
/*
* Print out a lock.
*/
static void
lf_print(const char *tag, struct lockf *lock)
{

       printf("%s: lock %p for ", tag, lock);
       if (lock->lf_flags & F_POSIX)
               printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
       else
               printf("file %p", (struct file *)lock->lf_id);
       printf(" %s, start %jd, end %jd",
               lock->lf_type == F_RDLCK ? "shared" :
               lock->lf_type == F_WRLCK ? "exclusive" :
               lock->lf_type == F_UNLCK ? "unlock" :
               "unknown", (intmax_t)lock->lf_start, (intmax_t)lock->lf_end);
       if (TAILQ_FIRST(&lock->lf_blkhd))
               printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
       else
               printf("\n");
}

static void
lf_printlist(const char *tag, struct lockf *lock)
{
       struct lockf *lf, *blk;

       printf("%s: Lock list:\n", tag);
       for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
               printf("\tlock %p for ", lf);
               if (lf->lf_flags & F_POSIX)
                       printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
               else
                       printf("file %p", (struct file *)lf->lf_id);
               printf(", %s, start %jd, end %jd",
                   lf->lf_type == F_RDLCK ? "shared" :
                   lf->lf_type == F_WRLCK ? "exclusive" :
                   lf->lf_type == F_UNLCK ? "unlock" :
                   "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
               TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
                       if (blk->lf_flags & F_POSIX)
                               printf("; proc %d",
                                   ((struct proc *)blk->lf_id)->p_pid);
                       else
                               printf("; file %p", (struct file *)blk->lf_id);
                       printf(", %s, start %jd, end %jd",
                           blk->lf_type == F_RDLCK ? "shared" :
                           blk->lf_type == F_WRLCK ? "exclusive" :
                           blk->lf_type == F_UNLCK ? "unlock" :
                           "unknown",
                           (intmax_t)blk->lf_start, (intmax_t)blk->lf_end);
                       if (TAILQ_FIRST(&blk->lf_blkhd))
                                panic("lf_printlist: bad list");
               }
               printf("\n");
       }
}
#endif /* LOCKF_DEBUG */

/*
* 3 options for allowfail.
* 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
*/
static struct lockf *
lf_alloc(int allowfail)
{
       struct uidinfo *uip;
       struct lockf *lock;
       u_long lcnt;
       const uid_t uid = kauth_cred_geteuid(kauth_cred_get());

       uip = uid_find(uid);
       lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
       if (uid && allowfail && lcnt >
           (allowfail == 1 ? MAXLOCKSPERUID : (MAXLOCKSPERUID * 2))) {
               atomic_dec_ulong(&uip->ui_lockcnt);
               return NULL;
       }

       lock = kmem_alloc(sizeof(*lock), KM_SLEEP);
       lock->lf_uip = uip;
       cv_init(&lock->lf_cv, lockstr);
       return lock;
}

static void
lf_free(struct lockf *lock)
{

       atomic_dec_ulong(&lock->lf_uip->ui_lockcnt);
       cv_destroy(&lock->lf_cv);
       kmem_free(lock, sizeof(*lock));
}

/*
* Walk the list of locks for an inode to
* find an overlapping lock (if any).
*
* NOTE: this returns only the FIRST overlapping lock.  There
*       may be more than one.
*/
static int
lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
   struct lockf ***prev, struct lockf **overlap)
{
       off_t start, end;

       *overlap = lf;
       if (lf == NULL)
               return 0;
#ifdef LOCKF_DEBUG
       if (lockf_debug & 2)
               lf_print("lf_findoverlap: looking for overlap in", lock);
#endif /* LOCKF_DEBUG */
       start = lock->lf_start;
       end = lock->lf_end;
       while (lf != NULL) {
               if (((type == SELF) && lf->lf_id != lock->lf_id) ||
                   ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
                       *prev = &lf->lf_next;
                       *overlap = lf = lf->lf_next;
                       continue;
               }
#ifdef LOCKF_DEBUG
               if (lockf_debug & 2)
                       lf_print("\tchecking", lf);
#endif /* LOCKF_DEBUG */
               /*
                * OK, check for overlap
                *
                * Six cases:
                *      0) no overlap
                *      1) overlap == lock
                *      2) overlap contains lock
                *      3) lock contains overlap
                *      4) overlap starts before lock
                *      5) overlap ends after lock
                */
               if ((lf->lf_end != -1 && start > lf->lf_end) ||
                   (end != -1 && lf->lf_start > end)) {
                       /* Case 0 */
#ifdef LOCKF_DEBUG
                       if (lockf_debug & 2)
                               printf("no overlap\n");
#endif /* LOCKF_DEBUG */
                       if ((type & SELF) && end != -1 && lf->lf_start > end)
                               return 0;
                       *prev = &lf->lf_next;
                       *overlap = lf = lf->lf_next;
                       continue;
               }
               if ((lf->lf_start == start) && (lf->lf_end == end)) {
                       /* Case 1 */
#ifdef LOCKF_DEBUG
                       if (lockf_debug & 2)
                               printf("overlap == lock\n");
#endif /* LOCKF_DEBUG */
                       return 1;
               }
               if ((lf->lf_start <= start) &&
                   (end != -1) &&
                   ((lf->lf_end >= end) || (lf->lf_end == -1))) {
                       /* Case 2 */
#ifdef LOCKF_DEBUG
                       if (lockf_debug & 2)
                               printf("overlap contains lock\n");
#endif /* LOCKF_DEBUG */
                       return 2;
               }
               if (start <= lf->lf_start &&
                          (end == -1 ||
                          (lf->lf_end != -1 && end >= lf->lf_end))) {
                       /* Case 3 */
#ifdef LOCKF_DEBUG
                       if (lockf_debug & 2)
                               printf("lock contains overlap\n");
#endif /* LOCKF_DEBUG */
                       return 3;
               }
               if ((lf->lf_start < start) &&
                       ((lf->lf_end >= start) || (lf->lf_end == -1))) {
                       /* Case 4 */
#ifdef LOCKF_DEBUG
                       if (lockf_debug & 2)
                               printf("overlap starts before lock\n");
#endif /* LOCKF_DEBUG */
                       return 4;
               }
               if ((lf->lf_start > start) &&
                       (end != -1) &&
                       ((lf->lf_end > end) || (lf->lf_end == -1))) {
                       /* Case 5 */
#ifdef LOCKF_DEBUG
                       if (lockf_debug & 2)
                               printf("overlap ends after lock\n");
#endif /* LOCKF_DEBUG */
                       return 5;
               }
               panic("lf_findoverlap: default");
       }
       return 0;
}

/*
* Split a lock and a contained region into
* two or three locks as necessary.
*/
static void
lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
{
       struct lockf *splitlock;

#ifdef LOCKF_DEBUG
       if (lockf_debug & 2) {
               lf_print("lf_split", lock1);
               lf_print("splitting from", lock2);
       }
#endif /* LOCKF_DEBUG */
       /*
        * Check to see if splitting into only two pieces.
        */
       if (lock1->lf_start == lock2->lf_start) {
               lock1->lf_start = lock2->lf_end + 1;
               lock2->lf_next = lock1;
               return;
       }
       if (lock1->lf_end == lock2->lf_end) {
               lock1->lf_end = lock2->lf_start - 1;
               lock2->lf_next = lock1->lf_next;
               lock1->lf_next = lock2;
               return;
       }
       /*
        * Make a new lock consisting of the last part of
        * the encompassing lock
        */
       splitlock = *sparelock;
       *sparelock = NULL;
       cv_destroy(&splitlock->lf_cv);
       memcpy(splitlock, lock1, sizeof(*splitlock));
       cv_init(&splitlock->lf_cv, lockstr);

       splitlock->lf_start = lock2->lf_end + 1;
       TAILQ_INIT(&splitlock->lf_blkhd);
       lock1->lf_end = lock2->lf_start - 1;
       /*
        * OK, now link it in
        */
       splitlock->lf_next = lock1->lf_next;
       lock2->lf_next = splitlock;
       lock1->lf_next = lock2;
}

/*
* Wakeup a blocklist
*/
static void
lf_wakelock(struct lockf *listhead)
{
       struct lockf *wakelock;

       while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
               KASSERT(wakelock->lf_next == listhead);
               TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
               wakelock->lf_next = NULL;
#ifdef LOCKF_DEBUG
               if (lockf_debug & 2)
                       lf_print("lf_wakelock: awakening", wakelock);
#endif
               cv_broadcast(&wakelock->lf_cv);
       }
}

/*
* Remove a byte-range lock on an inode.
*
* Generally, find the lock (or an overlap to that lock)
* and remove it (or shrink it), then wakeup anyone we can.
*/
static int
lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
{
       struct lockf **head = unlock->lf_head;
       struct lockf *lf = *head;
       struct lockf *overlap, **prev;
       int ovcase;

       if (lf == NULL)
               return 0;
#ifdef LOCKF_DEBUG
       if (unlock->lf_type != F_UNLCK)
               panic("lf_clearlock: bad type");
       if (lockf_debug & 1)
               lf_print("lf_clearlock", unlock);
#endif /* LOCKF_DEBUG */
       prev = head;
       while ((ovcase = lf_findoverlap(lf, unlock, SELF,
           &prev, &overlap)) != 0) {
               /*
                * Wakeup the list of locks to be retried.
                */
               lf_wakelock(overlap);

               switch (ovcase) {

               case 1: /* overlap == lock */
                       *prev = overlap->lf_next;
                       lf_free(overlap);
                       break;

               case 2: /* overlap contains lock: split it */
                       if (overlap->lf_start == unlock->lf_start) {
                               overlap->lf_start = unlock->lf_end + 1;
                               break;
                       }
                       lf_split(overlap, unlock, sparelock);
                       overlap->lf_next = unlock->lf_next;
                       break;

               case 3: /* lock contains overlap */
                       *prev = overlap->lf_next;
                       lf = overlap->lf_next;
                       lf_free(overlap);
                       continue;

               case 4: /* overlap starts before lock */
                       overlap->lf_end = unlock->lf_start - 1;
                       prev = &overlap->lf_next;
                       lf = overlap->lf_next;
                       continue;

               case 5: /* overlap ends after lock */
                       overlap->lf_start = unlock->lf_end + 1;
                       break;
               }
               break;
       }
#ifdef LOCKF_DEBUG
       if (lockf_debug & 1)
               lf_printlist("lf_clearlock", unlock);
#endif /* LOCKF_DEBUG */
       return 0;
}

/*
* Walk the list of locks for an inode and
* return the first blocking lock.
*/
static struct lockf *
lf_getblock(struct lockf *lock)
{
       struct lockf **prev, *overlap, *lf = *(lock->lf_head);

       prev = lock->lf_head;
       while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
               /*
                * We've found an overlap, see if it blocks us
                */
               if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
                       return overlap;
               /*
                * Nope, point to the next one on the list and
                * see if it blocks us
                */
               lf = overlap->lf_next;
       }
       return NULL;
}

/*
* Set a byte-range lock.
*/
static int
lf_setlock(struct lockf *lock, struct lockf **sparelock,
   kmutex_t *interlock)
{
       struct lockf *block;
       struct lockf **head = lock->lf_head;
       struct lockf **prev, *overlap, *ltmp;
       int ovcase, needtolink, error;

#ifdef LOCKF_DEBUG
       if (lockf_debug & 1)
               lf_print("lf_setlock", lock);
#endif /* LOCKF_DEBUG */

       /*
        * Scan lock list for this file looking for locks that would block us.
        */
       while ((block = lf_getblock(lock)) != NULL) {
               /*
                * Free the structure and return if nonblocking.
                */
               if ((lock->lf_flags & F_WAIT) == 0) {
                       lf_free(lock);
                       return SET_ERROR(EAGAIN);
               }
               /*
                * We are blocked. Since flock style locks cover
                * the whole file, there is no chance for deadlock.
                * For byte-range locks we must check for deadlock.
                *
                * Deadlock detection is done by looking through the
                * wait channels to see if there are any cycles that
                * involve us. MAXDEPTH is set just to make sure we
                * do not go off into neverneverland.
                */
               if ((lock->lf_flags & F_POSIX) &&
                   (block->lf_flags & F_POSIX)) {
                       struct lwp *wlwp;
                       volatile const struct lockf *waitblock;
                       int i = 0;
                       struct proc *p;

                       p = (struct proc *)block->lf_id;
                       KASSERT(p != NULL);
                       while (i++ < maxlockdepth) {
                               mutex_enter(p->p_lock);
                               if (p->p_nlwps > 1) {
                                       mutex_exit(p->p_lock);
                                       break;
                               }
                               wlwp = LIST_FIRST(&p->p_lwps);
                               lwp_lock(wlwp);
                               if (wlwp->l_wchan == NULL ||
                                   wlwp->l_wmesg != lockstr) {
                                       lwp_unlock(wlwp);
                                       mutex_exit(p->p_lock);
                                       break;
                               }
                               waitblock = wlwp->l_wchan;
                               lwp_unlock(wlwp);
                               mutex_exit(p->p_lock);
                               /* Get the owner of the blocking lock */
                               waitblock = waitblock->lf_next;
                               if ((waitblock->lf_flags & F_POSIX) == 0)
                                       break;
                               p = (struct proc *)waitblock->lf_id;
                               if (p == curproc) {
                                       lf_free(lock);
                                       return SET_ERROR(EDEADLK);
                               }
                       }
                       /*
                        * If we're still following a dependency chain
                        * after maxlockdepth iterations, assume we're in
                        * a cycle to be safe.
                        */
                       if (i >= maxlockdepth) {
                               lf_free(lock);
                               return SET_ERROR(EDEADLK);
                       }
               }
               /*
                * For flock type locks, we must first remove
                * any shared locks that we hold before we sleep
                * waiting for an exclusive lock.
                */
               if ((lock->lf_flags & F_FLOCK) &&
                   lock->lf_type == F_WRLCK) {
                       lock->lf_type = F_UNLCK;
                       (void) lf_clearlock(lock, NULL);
                       lock->lf_type = F_WRLCK;
               }
               /*
                * Add our lock to the blocked list and sleep until we're free.
                * Remember who blocked us (for deadlock detection).
                */
               lock->lf_next = block;
               TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
#ifdef LOCKF_DEBUG
               if (lockf_debug & 1) {
                       lf_print("lf_setlock: blocking on", block);
                       lf_printlist("lf_setlock", block);
               }
#endif /* LOCKF_DEBUG */
               error = cv_wait_sig(&lock->lf_cv, interlock);

               /*
                * We may have been awoken by a signal (in
                * which case we must remove ourselves from the
                * blocked list) and/or by another process
                * releasing a lock (in which case we have already
                * been removed from the blocked list and our
                * lf_next field set to NULL).
                */
               if (lock->lf_next != NULL) {
                       TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
                       lock->lf_next = NULL;
               }
               if (error) {
                       lf_free(lock);
                       return error;
               }
       }
       /*
        * No blocks!!  Add the lock.  Note that we will
        * downgrade or upgrade any overlapping locks this
        * process already owns.
        *
        * Skip over locks owned by other processes.
        * Handle any locks that overlap and are owned by ourselves.
        */
       prev = head;
       block = *head;
       needtolink = 1;
       for (;;) {
               ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
               if (ovcase)
                       block = overlap->lf_next;
               /*
                * Six cases:
                *      0) no overlap
                *      1) overlap == lock
                *      2) overlap contains lock
                *      3) lock contains overlap
                *      4) overlap starts before lock
                *      5) overlap ends after lock
                */
               switch (ovcase) {
               case 0: /* no overlap */
                       if (needtolink) {
                               *prev = lock;
                               lock->lf_next = overlap;
                       }
                       break;

               case 1: /* overlap == lock */
                       /*
                        * If downgrading lock, others may be
                        * able to acquire it.
                        */
                       if (lock->lf_type == F_RDLCK &&
                           overlap->lf_type == F_WRLCK)
                               lf_wakelock(overlap);
                       overlap->lf_type = lock->lf_type;
                       lf_free(lock);
                       lock = overlap; /* for debug output below */
                       break;

               case 2: /* overlap contains lock */
                       /*
                        * Check for common starting point and different types.
                        */
                       if (overlap->lf_type == lock->lf_type) {
                               lf_free(lock);
                               lock = overlap; /* for debug output below */
                               break;
                       }
                       if (overlap->lf_start == lock->lf_start) {
                               *prev = lock;
                               lock->lf_next = overlap;
                               overlap->lf_start = lock->lf_end + 1;
                       } else
                               lf_split(overlap, lock, sparelock);
                       lf_wakelock(overlap);
                       break;

               case 3: /* lock contains overlap */
                       /*
                        * If downgrading lock, others may be able to
                        * acquire it, otherwise take the list.
                        */
                       if (lock->lf_type == F_RDLCK &&
                           overlap->lf_type == F_WRLCK) {
                               lf_wakelock(overlap);
                       } else {
                               while ((ltmp =
                                       TAILQ_FIRST(&overlap->lf_blkhd))
                                   != NULL) {
                                       KASSERT(ltmp->lf_next == overlap);
                                       TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
                                           lf_block);
                                       ltmp->lf_next = lock;
                                       TAILQ_INSERT_TAIL(&lock->lf_blkhd,
                                           ltmp, lf_block);
                               }
                       }
                       /*
                        * Add the new lock if necessary and delete the
                        * overlap.
                        */
                       if (needtolink) {
                               *prev = lock;
                               lock->lf_next = overlap->lf_next;
                               prev = &lock->lf_next;
                               needtolink = 0;
                       } else
                               *prev = overlap->lf_next;
                       lf_free(overlap);
                       continue;

               case 4: /* overlap starts before lock */
                       /*
                        * Add lock after overlap on the list.
                        */
                       lock->lf_next = overlap->lf_next;
                       overlap->lf_next = lock;
                       overlap->lf_end = lock->lf_start - 1;
                       prev = &lock->lf_next;
                       lf_wakelock(overlap);
                       needtolink = 0;
                       continue;

               case 5: /* overlap ends after lock */
                       /*
                        * Add the new lock before overlap.
                        */
                       if (needtolink) {
                               *prev = lock;
                               lock->lf_next = overlap;
                       }
                       overlap->lf_start = lock->lf_end + 1;
                       lf_wakelock(overlap);
                       break;
               }
               break;
       }
#ifdef LOCKF_DEBUG
       if (lockf_debug & 1) {
               lf_print("lf_setlock: got the lock", lock);
               lf_printlist("lf_setlock", lock);
       }
#endif /* LOCKF_DEBUG */
       return 0;
}

/*
* Check whether there is a blocking lock,
* and if so return its process identifier.
*/
static int
lf_getlock(struct lockf *lock, struct flock *fl)
{
       struct lockf *block;

#ifdef LOCKF_DEBUG
       if (lockf_debug & 1)
               lf_print("lf_getlock", lock);
#endif /* LOCKF_DEBUG */

       if ((block = lf_getblock(lock)) != NULL) {
               fl->l_type = block->lf_type;
               fl->l_whence = SEEK_SET;
               fl->l_start = block->lf_start;
               if (block->lf_end == -1)
                       fl->l_len = 0;
               else
                       fl->l_len = block->lf_end - block->lf_start + 1;
               if (block->lf_flags & F_POSIX)
                       fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
               else
                       fl->l_pid = -1;
       } else {
               fl->l_type = F_UNLCK;
       }
       return 0;
}

/*
* Do an advisory lock operation.
*/
int
lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
{
       struct flock *fl = ap->a_fl;
       struct lockf *lock = NULL;
       struct lockf *sparelock;
       kmutex_t *interlock = &lockf_lock;
       off_t start, end;
       int error = 0;

       KASSERTMSG(size >= 0, "size=%jd", (intmax_t)size);

       /*
        * Convert the flock structure into a start and end.
        */
       switch (fl->l_whence) {
       case SEEK_SET:
       case SEEK_CUR:
               /*
                * Caller is responsible for adding any necessary offset
                * when SEEK_CUR is used.
                */
               start = fl->l_start;
               break;

       case SEEK_END:
               if (fl->l_start > __type_max(off_t) - size)
                       return SET_ERROR(EINVAL);
               start = size + fl->l_start;
               break;

       default:
               return SET_ERROR(EINVAL);
       }

       if (fl->l_len == 0)
               end = -1;
       else {
               if (fl->l_len >= 0) {
                       if (start >= 0 &&
                           fl->l_len - 1 > __type_max(off_t) - start)
                               return SET_ERROR(EINVAL);
                       end = start + (fl->l_len - 1);
               } else {
                       /* lockf() allows -ve lengths */
                       if (start < 0)
                               return SET_ERROR(EINVAL);
                       end = start - 1;
                       start += fl->l_len;
               }
       }
       if (start < 0)
               return SET_ERROR(EINVAL);

       /*
        * Allocate locks before acquiring the interlock.  We need two
        * locks in the worst case.
        */
       switch (ap->a_op) {
       case F_SETLK:
       case F_UNLCK:
               /*
                * XXX For F_UNLCK case, we can re-use the lock.
                */
               if ((ap->a_flags & F_FLOCK) == 0) {
                       /*
                        * Byte-range lock might need one more lock.
                        */
                       sparelock = lf_alloc(0);
                       if (sparelock == NULL) {
                               error = SET_ERROR(ENOMEM);
                               goto quit;
                       }
                       break;
               }
               /* FALLTHROUGH */

       case F_GETLK:
               sparelock = NULL;
               break;

       default:
               return SET_ERROR(EINVAL);
       }

       switch (ap->a_op) {
       case F_SETLK:
               lock = lf_alloc(1);
               break;
       case F_UNLCK:
               if (start == 0 || end == -1) {
                       /* never split */
                       lock = lf_alloc(0);
               } else {
                       /* might split */
                       lock = lf_alloc(2);
               }
               break;
       case F_GETLK:
               lock = lf_alloc(0);
               break;
       }
       if (lock == NULL) {
               error = SET_ERROR(ENOMEM);
               goto quit;
       }

       mutex_enter(interlock);

       /*
        * Avoid the common case of unlocking when inode has no locks.
        */
       if (*head == (struct lockf *)0) {
               if (ap->a_op != F_SETLK) {
                       fl->l_type = F_UNLCK;
                       error = 0;
                       goto quit_unlock;
               }
       }

       /*
        * Create the lockf structure.
        */
       lock->lf_start = start;
       lock->lf_end = end;
       lock->lf_head = head;
       lock->lf_type = fl->l_type;
       lock->lf_next = (struct lockf *)0;
       TAILQ_INIT(&lock->lf_blkhd);
       lock->lf_flags = ap->a_flags;
       if (lock->lf_flags & F_POSIX) {
               KASSERT(curproc == (struct proc *)ap->a_id);
       }
       lock->lf_id = ap->a_id;

       /*
        * Do the requested operation.
        */
       switch (ap->a_op) {

       case F_SETLK:
               error = lf_setlock(lock, &sparelock, interlock);
               lock = NULL; /* lf_setlock freed it */
               break;

       case F_UNLCK:
               error = lf_clearlock(lock, &sparelock);
               break;

       case F_GETLK:
               error = lf_getlock(lock, fl);
               break;

       default:
               break;
               /* NOTREACHED */
       }

quit_unlock:
       mutex_exit(interlock);
quit:
       if (lock)
               lf_free(lock);
       if (sparelock)
               lf_free(sparelock);

       return error;
}

/*
* Initialize subsystem.
*
* XXX We use a global lock.  This could be the vnode interlock, but
* the deadlock detection code may need to inspect locks belonging to
* other files.
*/
void
lf_init(void)
{

       mutex_init(&lockf_lock, MUTEX_DEFAULT, IPL_NONE);
}