/*      $NetBSD: vfs_cache.c,v 1.159 2024/12/07 02:27:38 riastradh Exp $        */

/*-
* Copyright (c) 2008, 2019, 2020, 2023 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 1989, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94
*/

/*
* Name caching:
*
*      Names found by directory scans are retained in a cache for future
*      reference.  It is managed LRU, so frequently used names will hang
*      around.  The cache is indexed by hash value obtained from the name.
*
*      The name cache is the brainchild of Robert Elz and was introduced in
*      4.3BSD.  See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk
*      McKusick, May 21 1984.
*
* Data structures:
*
*      Most Unix namecaches very sensibly use a global hash table to index
*      names.  The global hash table works well, but can cause concurrency
*      headaches for the kernel hacker.  In the NetBSD 10.0 implementation
*      we are not sensible, and use a per-directory data structure to index
*      names, but the cache otherwise functions the same.
*
*      The index is a red-black tree.  It should not be difficult to
*      experiment with other types of index, however note that a tree
*      can trivially be made to support lockless lookup.
*
*      Each cached name is stored in a struct namecache, along with a
*      pointer to the associated vnode (nc_vp).  Names longer than a
*      maximum length of NCHNAMLEN are allocated with kmem_alloc(); they
*      occur infrequently, and names shorter than this are stored directly
*      in struct namecache.  If it is a "negative" entry, (i.e. for a name
*      that is known NOT to exist) the vnode pointer will be NULL.
*
*      In practice this implementation is not any slower than the hash
*      table that preceeded it and in some cases it significantly
*      outperforms the hash table.  Some reasons why this might be:
*
*      - natural partitioning provided by the file system structure, which
*        the prior implementation discarded (global hash table).
*      - worst case tree traversal of O(log n), the hash table could have
*        many collisions.
*      - minimized cache misses & total L2/L3 CPU cache footprint; struct
*        namecache and vnode_impl_t are laid out to keep cache footprint
*        minimal in the lookup path; no hash table buckets to cache.
*      - minimized number of conditionals & string comparisons.
*
*      For a directory with 3 cached names for 3 distinct vnodes, the
*      various vnodes and namecache structs would be connected like this
*      (the root is at the bottom of the diagram):
*
*          ...
*           ^
*           |- vi_nc_tree
*           |
*      +----o----+               +---------+               +---------+
*      |  VDIR   |               |  VCHR   |               |  VREG   |
*      |  vnode  o-----+         |  vnode  o-----+         |  vnode  o------+
*      +---------+     |         +---------+     |         +---------+      |
*           ^          |              ^          |              ^           |
*           |- nc_vp   |- vi_nc_list  |- nc_vp   |- vi_nc_list  |- nc_vp    |
*           |          |              |          |              |           |
*      +----o----+     |         +----o----+     |         +----o----+      |
*  +---onamecache|<----+     +---onamecache|<----+     +---onamecache|<-----+
*  |   +---------+           |   +---------+           |   +---------+
*  |        ^                |        ^                |        ^
*  |        |                |        |                |        |
*  |        |  +----------------------+                |        |
*  |-nc_dvp | +-------------------------------------------------+
*  |        |/- vi_nc_tree   |                         |
*  |        |                |- nc_dvp                 |- nc_dvp
*  |   +----o----+           |                         |
*  +-->|  VDIR   |<----------+                         |
*      |  vnode  |<------------------------------------+
*      +---------+
*
*      START HERE
*
* Replacement:
*
*      As the cache becomes full, old and unused entries are purged as new
*      entries are added.  The synchronization overhead in maintaining a
*      strict ordering would be prohibitive, so the VM system's "clock" or
*      "second chance" page replacement algorithm is aped here.  New
*      entries go to the tail of the active list.  After they age out and
*      reach the head of the list, they are moved to the tail of the
*      inactive list.  Any use of the deactivated cache entry reactivates
*      it, saving it from impending doom; if not reactivated, the entry
*      eventually reaches the head of the inactive list and is purged.
*
* Concurrency:
*
*      From a performance perspective, cache_lookup(nameiop == LOOKUP) is
*      what really matters; insertion of new entries with cache_enter() is
*      comparatively infrequent, and overshadowed by the cost of expensive
*      file system metadata operations (which may involve disk I/O).  We
*      therefore want to make everything simplest in the lookup path.
*
*      struct namecache is mostly stable except for list and tree related
*      entries, changes to which don't affect the cached name or vnode.
*      For changes to name+vnode, entries are purged in preference to
*      modifying them.
*
*      Read access to namecache entries is made via tree, list, or LRU
*      list.  A lock corresponding to the direction of access should be
*      held.  See definition of "struct namecache" in src/sys/namei.src,
*      and the definition of "struct vnode" for the particulars.
*
*      Per-CPU statistics, and LRU list totals are read unlocked, since an
*      approximate value is OK.  We maintain 32-bit sized per-CPU counters
*      and 64-bit global counters since 32-bit sized counters can be
*      observed locklessly while the global counters are protected by a
*      mutex.
*
*      The lock order is:
*
*      1) vi->vi_nc_lock       (tree or parent -> child direction,
*                               used during forward lookup)
*
*      2) vi->vi_nc_listlock   (list or child -> parent direction,
*                               used during reverse lookup)
*
*      3) cache_lru_lock       (LRU list direction, used during reclaim)
*/

#define __NAMECACHE_PRIVATE

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.159 2024/12/07 02:27:38 riastradh Exp $");

#ifdef _KERNEL_OPT
#include "opt_ddb.h"
#include "opt_dtrace.h"
#endif

#include <sys/param.h>
#include <sys/types.h>

#include <sys/atomic.h>
#include <sys/callout.h>
#include <sys/cpu.h>
#include <sys/errno.h>
#include <sys/evcnt.h>
#include <sys/hash.h>
#include <sys/kernel.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/namei.h>
#include <sys/param.h>
#include <sys/pool.h>
#include <sys/sdt.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/vnode_impl.h>

#include <miscfs/genfs/genfs.h>

/*
* Assert that data structure layout hasn't changed unintentionally.
*/
#ifdef _LP64
CTASSERT(sizeof(struct namecache) == 128);
#else
CTASSERT(sizeof(struct namecache) == 64);
#endif
CTASSERT(NC_NLEN_MASK >= MAXPATHLEN);

static void     cache_activate(struct namecache *);
static void     cache_update_stats(void *);
static int      cache_compare_nodes(void *, const void *, const void *);
static void     cache_deactivate(void);
static void     cache_reclaim(void);
static int      cache_stat_sysctl(SYSCTLFN_ARGS);

/*
* Global pool cache.
*/
static pool_cache_t cache_pool __read_mostly;

/*
* LRU replacement.
*/
enum cache_lru_id {
       LRU_ACTIVE,
       LRU_INACTIVE,
       LRU_COUNT
};

static struct {
       TAILQ_HEAD(, namecache) list[LRU_COUNT];
       u_int                   count[LRU_COUNT];
} cache_lru __cacheline_aligned;

static kmutex_t cache_lru_lock __cacheline_aligned;

/*
* Cache effectiveness statistics.  nchstats holds system-wide total.
*/
struct nchstats nchstats;
struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
struct nchcpu {
       struct nchstats_percpu cur;
       struct nchstats_percpu last;
};
static callout_t cache_stat_callout;
static kmutex_t cache_stat_lock __cacheline_aligned;

#define COUNT(f) do { \
       lwp_t *l = curlwp; \
       KPREEMPT_DISABLE(l); \
       struct nchcpu *nchcpu = curcpu()->ci_data.cpu_nch; \
       nchcpu->cur.f++; \
       KPREEMPT_ENABLE(l); \
} while (/* CONSTCOND */ 0);

#define UPDATE(nchcpu, f) do { \
       uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \
       nchstats.f += (uint32_t)(cur - nchcpu->last.f); \
       nchcpu->last.f = cur; \
} while (/* CONSTCOND */ 0)

/*
* Tunables.  cache_maxlen replaces the historical doingcache:
* set it zero to disable caching for debugging purposes.
*/
int cache_lru_maxdeact __read_mostly = 2;       /* max # to deactivate */
int cache_lru_maxscan __read_mostly = 64;       /* max # to scan/reclaim */
int cache_maxlen __read_mostly = NC_NLEN_MASK;  /* max name length to cache */
int cache_stat_interval __read_mostly = 300;    /* in seconds */

/*
* sysctl stuff.
*/
static struct   sysctllog *cache_sysctllog;

/*
* This is a dummy name that cannot usually occur anywhere in the cache nor
* file system.  It's used when caching the root vnode of mounted file
* systems.  The name is attached to the directory that the file system is
* mounted on.
*/
static const char cache_mp_name[] = "";
static const int cache_mp_nlen = sizeof(cache_mp_name) - 1;

/*
* Red-black tree stuff.
*/
static const rb_tree_ops_t cache_rbtree_ops = {
       .rbto_compare_nodes = cache_compare_nodes,
       .rbto_compare_key = cache_compare_nodes,
       .rbto_node_offset = offsetof(struct namecache, nc_tree),
       .rbto_context = NULL
};

/*
* dtrace probes.
*/
SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
   "char *", "size_t");
SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
   "char *", "size_t");
SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
   "char *", "size_t");
SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
    "struct vnode *");
SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
    "int");
SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
   "char *", "size_t");
SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
   "char *", "size_t");

/*
* rbtree: compare two nodes.
*/
static int
cache_compare_nodes(void *context, const void *n1, const void *n2)
{
       const struct namecache *nc1 = n1;
       const struct namecache *nc2 = n2;

       if (nc1->nc_key < nc2->nc_key) {
               return -1;
       }
       if (nc1->nc_key > nc2->nc_key) {
               return 1;
       }
       KASSERT(NC_NLEN(nc1) == NC_NLEN(nc2));
       return memcmp(nc1->nc_name, nc2->nc_name, NC_NLEN(nc1));
}

/*
* Compute a key value for the given name.  The name length is encoded in
* the key value to try and improve uniqueness, and so that length doesn't
* need to be compared separately for string comparisons.
*/
static uintptr_t
cache_key(const char *name, size_t nlen)
{
       uintptr_t key;

       KASSERT((nlen & ~NC_NLEN_MASK) == 0);

       key = hash32_buf(name, nlen, HASH32_STR_INIT);
       return (key << NC_NLEN_BITS) | (uintptr_t)nlen;
}

/*
* Remove an entry from the cache.  vi_nc_lock must be held, and if dir2node
* is true, then we're locking in the conventional direction and the list
* lock will be acquired when removing the entry from the vnode list.
*/
static void
cache_remove(struct namecache *ncp, const bool dir2node)
{
       struct vnode *vp, *dvp = ncp->nc_dvp;
       vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
       size_t namelen = NC_NLEN(ncp);

       KASSERT(rw_write_held(&dvi->vi_nc_lock));
       KASSERT(cache_key(ncp->nc_name, namelen) == ncp->nc_key);
       KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp);

       SDT_PROBE(vfs, namecache, invalidate, done, ncp, 0, 0, 0, 0);

       /*
        * Remove from the vnode's list.  This excludes cache_revlookup(),
        * and then it's safe to remove from the LRU lists.
        */
       if ((vp = ncp->nc_vp) != NULL) {
               vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
               if (__predict_true(dir2node)) {
                       rw_enter(&vi->vi_nc_listlock, RW_WRITER);
                       TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
                       rw_exit(&vi->vi_nc_listlock);
               } else {
                       TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
               }
       }

       /* Remove from the directory's rbtree. */
       rb_tree_remove_node(&dvi->vi_nc_tree, ncp);

       /* Remove from the LRU lists. */
       mutex_enter(&cache_lru_lock);
       TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
       cache_lru.count[ncp->nc_lrulist]--;
       mutex_exit(&cache_lru_lock);

       /* Finally, free it. */
       if (namelen > NCHNAMLEN) {
               size_t sz = offsetof(struct namecache, nc_name[namelen]);
               kmem_free(ncp, sz);
       } else {
               pool_cache_put(cache_pool, ncp);
       }
}

/*
* Find a single cache entry and return it.  vi_nc_lock must be held.
*/
static struct namecache * __noinline
cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen,
   uintptr_t key)
{
       vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
       struct rb_node *node = dvi->vi_nc_tree.rbt_root;
       struct namecache *ncp;
       enum cache_lru_id lrulist;
       int diff;

       KASSERT(namelen <= MAXPATHLEN);
       KASSERT(rw_lock_held(&dvi->vi_nc_lock));

       /*
        * Search the RB tree for the key.  This is an inlined lookup
        * tailored for exactly what's needed here that turns out to be
        * quite a bit faster than using rb_tree_find_node().
        *
        * For a matching key memcmp() needs to be called once to confirm
        * that the correct name has been found.  Very rarely there will be
        * a key value collision and the search will continue.
        */
       for (;;) {
               if (__predict_false(RB_SENTINEL_P(node))) {
                       return NULL;
               }
               ncp = (struct namecache *)node;
               KASSERT((void *)&ncp->nc_tree == (void *)ncp);
               KASSERT(ncp->nc_dvp == dvp);
               if (ncp->nc_key == key) {
                       KASSERT(NC_NLEN(ncp) == namelen);
                       diff = memcmp(ncp->nc_name, name, namelen);
                       if (__predict_true(diff == 0)) {
                               break;
                       }
                       node = node->rb_nodes[diff < 0];
               } else {
                       node = node->rb_nodes[ncp->nc_key < key];
               }
       }

       /*
        * If the entry is on the wrong LRU list, requeue it.  This is an
        * unlocked check, but it will rarely be wrong and even then there
        * will be no harm caused.
        */
       lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
       if (__predict_false(lrulist != LRU_ACTIVE)) {
               cache_activate(ncp);
       }
       return ncp;
}

/*
* Look for a the name in the cache. We don't do this
* if the segment name is long, simply so the cache can avoid
* holding long names (which would either waste space, or
* add greatly to the complexity).
*
* Lookup is called with DVP pointing to the directory to search,
* and CNP providing the name of the entry being sought: cn_nameptr
* is the name, cn_namelen is its length, and cn_flags is the flags
* word from the namei operation.
*
* DVP must be locked.
*
* There are three possible non-error return states:
*    1. Nothing was found in the cache. Nothing is known about
*       the requested name.
*    2. A negative entry was found in the cache, meaning that the
*       requested name definitely does not exist.
*    3. A positive entry was found in the cache, meaning that the
*       requested name does exist and that we are providing the
*       vnode.
* In these cases the results are:
*    1. 0 returned; VN is set to NULL.
*    2. 1 returned; VN is set to NULL.
*    3. 1 returned; VN is set to the vnode found.
*
* The additional result argument ISWHT is set to zero, unless a
* negative entry is found that was entered as a whiteout, in which
* case ISWHT is set to one.
*
* The ISWHT_RET argument pointer may be null. In this case an
* assertion is made that the whiteout flag is not set. File systems
* that do not support whiteouts can/should do this.
*
* Filesystems that do support whiteouts should add ISWHITEOUT to
* cnp->cn_flags if ISWHT comes back nonzero.
*
* When a vnode is returned, it is locked, as per the vnode lookup
* locking protocol.
*
* There is no way for this function to fail, in the sense of
* generating an error that requires aborting the namei operation.
*
* (Prior to October 2012, this function returned an integer status,
* and a vnode, and mucked with the flags word in CNP for whiteouts.
* The integer status was -1 for "nothing found", ENOENT for "a
* negative entry found", 0 for "a positive entry found", and possibly
* other errors, and the value of VN might or might not have been set
* depending on what error occurred.)
*/
bool
cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
            uint32_t nameiop, uint32_t cnflags,
            int *iswht_ret, struct vnode **vn_ret)
{
       vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
       struct namecache *ncp;
       struct vnode *vp;
       uintptr_t key;
       int error;
       bool hit;
       krw_t op;

       KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);

       /* Establish default result values */
       if (iswht_ret != NULL) {
               *iswht_ret = 0;
       }
       *vn_ret = NULL;

       if (__predict_false(namelen > cache_maxlen)) {
               SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
                   name, namelen, 0, 0);
               COUNT(ncs_long);
               return false;
       }

       /* Compute the key up front - don't need the lock. */
       key = cache_key(name, namelen);

       /* Could the entry be purged below? */
       if ((cnflags & ISLASTCN) != 0 &&
           ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) {
               op = RW_WRITER;
       } else {
               op = RW_READER;
       }

       /* Now look for the name. */
       rw_enter(&dvi->vi_nc_lock, op);
       ncp = cache_lookup_entry(dvp, name, namelen, key);
       if (__predict_false(ncp == NULL)) {
               rw_exit(&dvi->vi_nc_lock);
               COUNT(ncs_miss);
               SDT_PROBE(vfs, namecache, lookup, miss, dvp,
                   name, namelen, 0, 0);
               return false;
       }
       if (__predict_false((cnflags & MAKEENTRY) == 0)) {
               /*
                * Last component and we are renaming or deleting,
                * the cache entry is invalid, or otherwise don't
                * want cache entry to exist.
                */
               KASSERT((cnflags & ISLASTCN) != 0);
               cache_remove(ncp, true);
               rw_exit(&dvi->vi_nc_lock);
               COUNT(ncs_badhits);
               return false;
       }
       if ((vp = ncp->nc_vp) == NULL) {
               if (iswht_ret != NULL) {
                       /*
                        * Restore the ISWHITEOUT flag saved earlier.
                        */
                       *iswht_ret = ncp->nc_whiteout;
               } else {
                       KASSERT(!ncp->nc_whiteout);
               }
               if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) {
                       /*
                        * Last component and we are preparing to create
                        * the named object, so flush the negative cache
                        * entry.
                        */
                       COUNT(ncs_badhits);
                       cache_remove(ncp, true);
                       hit = false;
               } else {
                       COUNT(ncs_neghits);
                       SDT_PROBE(vfs, namecache, lookup, hit, dvp, name,
                           namelen, 0, 0);
                       /* found neg entry; vn is already null from above */
                       hit = true;
               }
               rw_exit(&dvi->vi_nc_lock);
               return hit;
       }
       error = vcache_tryvget(vp);
       rw_exit(&dvi->vi_nc_lock);
       if (error) {
               KASSERT(error == EBUSY);
               /*
                * This vnode is being cleaned out.
                * XXX badhits?
                */
               COUNT(ncs_falsehits);
               return false;
       }

       COUNT(ncs_goodhits);
       SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
       /* found it */
       *vn_ret = vp;
       return true;
}

/*
* Version of the above without the nameiop argument, for NFS.
*/
bool
cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
                uint32_t cnflags,
                int *iswht_ret, struct vnode **vn_ret)
{

       return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY,
           iswht_ret, vn_ret);
}

/*
* Used by namei() to walk down a path, component by component by looking up
* names in the cache.  The node locks are chained along the way: a parent's
* lock is not dropped until the child's is acquired.
*/
bool
cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen,
                   struct vnode **vn_ret, krwlock_t **plock,
                   kauth_cred_t cred)
{
       vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
       struct namecache *ncp;
       krwlock_t *oldlock, *newlock;
       struct vnode *vp;
       uintptr_t key;
       int error;

       KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);

       /* If disabled, or file system doesn't support this, bail out. */
       if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) {
               return false;
       }

       if (__predict_false(namelen > cache_maxlen)) {
               COUNT(ncs_long);
               return false;
       }

       /* Compute the key up front - don't need the lock. */
       key = cache_key(name, namelen);

       /*
        * Acquire the directory lock.  Once we have that, we can drop the
        * previous one (if any).
        *
        * The two lock holds mean that the directory can't go away while
        * here: the directory must be purged with cache_purge() before
        * being freed, and both parent & child's vi_nc_lock must be taken
        * before that point is passed.
        *
        * However if there's no previous lock, like at the root of the
        * chain, then "dvp" must be referenced to prevent dvp going away
        * before we get its lock.
        *
        * Note that the two locks can be the same if looking up a dot, for
        * example: /usr/bin/.  If looking up the parent (..) we can't wait
        * on the lock as child -> parent is the wrong direction.
        */
       if (*plock != &dvi->vi_nc_lock) {
               oldlock = *plock;
               newlock = &dvi->vi_nc_lock;
               if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) {
                       return false;
               }
       } else {
               oldlock = NULL;
               newlock = NULL;
               if (*plock == NULL) {
                       KASSERT(vrefcnt(dvp) > 0);
               }
       }

       /*
        * First up check if the user is allowed to look up files in this
        * directory.
        */
       if (cred != FSCRED) {
               if (dvi->vi_nc_mode == VNOVAL) {
                       if (newlock != NULL) {
                               rw_exit(newlock);
                       }
                       return false;
               }
               KASSERT(dvi->vi_nc_uid != VNOVAL);
               KASSERT(dvi->vi_nc_gid != VNOVAL);
               error = kauth_authorize_vnode(cred,
                   KAUTH_ACCESS_ACTION(VEXEC,
                       dvp->v_type, dvi->vi_nc_mode & ALLPERMS),
                   dvp, NULL,
                   genfs_can_access(dvp, cred, dvi->vi_nc_uid, dvi->vi_nc_gid,
                       dvi->vi_nc_mode & ALLPERMS, NULL, VEXEC));
               if (error != 0) {
                       if (newlock != NULL) {
                               rw_exit(newlock);
                       }
                       COUNT(ncs_denied);
                       return false;
               }
       }

       /*
        * Now look for a matching cache entry.
        */
       ncp = cache_lookup_entry(dvp, name, namelen, key);
       if (__predict_false(ncp == NULL)) {
               if (newlock != NULL) {
                       rw_exit(newlock);
               }
               COUNT(ncs_miss);
               SDT_PROBE(vfs, namecache, lookup, miss, dvp,
                   name, namelen, 0, 0);
               return false;
       }
       if ((vp = ncp->nc_vp) == NULL) {
               /* found negative entry; vn is already null from above */
               KASSERT(namelen != cache_mp_nlen);
               KASSERT(name != cache_mp_name);
               COUNT(ncs_neghits);
       } else {
               COUNT(ncs_goodhits); /* XXX can be "badhits" */
       }
       SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);

       /*
        * Return with the directory lock still held.  It will either be
        * returned to us with another call to cache_lookup_linked() when
        * looking up the next component, or the caller will release it
        * manually when finished.
        */
       if (oldlock) {
               rw_exit(oldlock);
       }
       if (newlock) {
               *plock = newlock;
       }
       *vn_ret = vp;
       return true;
}

/*
* Scan cache looking for name of directory entry pointing at vp.
* Will not search for "." or "..".
*
* If the lookup succeeds the vnode is referenced and stored in dvpp.
*
* If bufp is non-NULL, also place the name in the buffer which starts
* at bufp, immediately before *bpp, and move bpp backwards to point
* at the start of it.  (Yes, this is a little baroque, but it's done
* this way to cater to the whims of getcwd).
*
* Returns 0 on success, -1 on cache miss, positive errno on failure.
*/
int
cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp,
   bool checkaccess, accmode_t accmode)
{
       vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
       struct namecache *ncp;
       enum cache_lru_id lrulist;
       struct vnode *dvp;
       int error, nlen;
       char *bp;

       KASSERT(vp != NULL);

       if (cache_maxlen == 0)
               goto out;

       rw_enter(&vi->vi_nc_listlock, RW_READER);
       if (checkaccess) {
               /*
                * Check if the user is allowed to see.  NOTE: this is
                * checking for access on the "wrong" directory.  getcwd()
                * wants to see that there is access on every component
                * along the way, not that there is access to any individual
                * component.  Don't use this to check you can look in vp.
                *
                * I don't like it, I didn't come up with it, don't blame me!
                */
               if (vi->vi_nc_mode == VNOVAL) {
                       rw_exit(&vi->vi_nc_listlock);
                       return -1;
               }
               KASSERT(vi->vi_nc_uid != VNOVAL);
               KASSERT(vi->vi_nc_gid != VNOVAL);
               error = kauth_authorize_vnode(kauth_cred_get(),
                   KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode &
                       ALLPERMS),
                   vp, NULL, genfs_can_access(vp, curlwp->l_cred,
                       vi->vi_nc_uid, vi->vi_nc_gid,
                       vi->vi_nc_mode & ALLPERMS,
                       NULL, accmode));
               if (error != 0) {
                       rw_exit(&vi->vi_nc_listlock);
                       COUNT(ncs_denied);
                       return SET_ERROR(EACCES);
               }
       }
       TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) {
               KASSERT(ncp->nc_vp == vp);
               KASSERT(ncp->nc_dvp != NULL);
               nlen = NC_NLEN(ncp);

               /*
                * Ignore mountpoint entries.
                */
               if (nlen == cache_mp_nlen) {
                       continue;
               }

               /*
                * The queue is partially sorted.  Once we hit dots, nothing
                * else remains but dots and dotdots, so bail out.
                */
               if (ncp->nc_name[0] == '.') {
                       if (nlen == 1 ||
                           (nlen == 2 && ncp->nc_name[1] == '.')) {
                               break;
                       }
               }

               /*
                * Record a hit on the entry.  This is an unlocked read but
                * even if wrong it doesn't matter too much.
                */
               lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
               if (lrulist != LRU_ACTIVE) {
                       cache_activate(ncp);
               }

               if (bufp) {
                       bp = *bpp;
                       bp -= nlen;
                       if (bp <= bufp) {
                               *dvpp = NULL;
                               rw_exit(&vi->vi_nc_listlock);
                               SDT_PROBE(vfs, namecache, revlookup,
                                   fail, vp, ERANGE, 0, 0, 0);
                               return SET_ERROR(ERANGE);
                       }
                       memcpy(bp, ncp->nc_name, nlen);
                       *bpp = bp;
               }

               dvp = ncp->nc_dvp;
               error = vcache_tryvget(dvp);
               rw_exit(&vi->vi_nc_listlock);
               if (error) {
                       KASSERT(error == EBUSY);
                       if (bufp)
                               (*bpp) += nlen;
                       *dvpp = NULL;
                       SDT_PROBE(vfs, namecache, revlookup, fail, vp,
                           error, 0, 0, 0);
                       return -1;
               }
               *dvpp = dvp;
               SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
                   0, 0, 0);
               COUNT(ncs_revhits);
               return 0;
       }
       rw_exit(&vi->vi_nc_listlock);
       COUNT(ncs_revmiss);
out:
       *dvpp = NULL;
       return -1;
}

/*
* Add an entry to the cache.
*/
void
cache_enter(struct vnode *dvp, struct vnode *vp,
           const char *name, size_t namelen, uint32_t cnflags)
{
       vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
       struct namecache *ncp, *oncp;
       int total;

       KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);

       /* First, check whether we can/should add a cache entry. */
       if ((cnflags & MAKEENTRY) == 0 ||
           __predict_false(namelen > cache_maxlen)) {
               SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
                   0, 0);
               return;
       }

       SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);

       /*
        * Reclaim some entries if over budget.  This is an unlocked check,
        * but it doesn't matter.  Just need to catch up with things
        * eventually: it doesn't matter if we go over temporarily.
        */
       total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]);
       total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]);
       if (__predict_false(total > desiredvnodes)) {
               cache_reclaim();
       }

       /* Now allocate a fresh entry. */
       if (__predict_true(namelen <= NCHNAMLEN)) {
               ncp = pool_cache_get(cache_pool, PR_WAITOK);
       } else {
               size_t sz = offsetof(struct namecache, nc_name[namelen]);
               ncp = kmem_alloc(sz, KM_SLEEP);
       }

       /*
        * Fill in cache info.  For negative hits, save the ISWHITEOUT flag
        * so we can restore it later when the cache entry is used again.
        */
       ncp->nc_vp = vp;
       ncp->nc_dvp = dvp;
       ncp->nc_key = cache_key(name, namelen);
       ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0);
       memcpy(ncp->nc_name, name, namelen);

       /*
        * Insert to the directory.  Concurrent lookups may race for a cache
        * entry.  If there's a entry there already, purge it.
        */
       rw_enter(&dvi->vi_nc_lock, RW_WRITER);
       oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
       if (oncp != ncp) {
               KASSERT(oncp->nc_key == ncp->nc_key);
               KASSERT(NC_NLEN(oncp) == NC_NLEN(ncp));
               KASSERT(memcmp(oncp->nc_name, name, namelen) == 0);
               cache_remove(oncp, true);
               oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
               KASSERT(oncp == ncp);
       }

       /*
        * With the directory lock still held, insert to the tail of the
        * ACTIVE LRU list (new) and take the opportunity to incrementally
        * balance the lists.
        */
       mutex_enter(&cache_lru_lock);
       ncp->nc_lrulist = LRU_ACTIVE;
       cache_lru.count[LRU_ACTIVE]++;
       TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
       cache_deactivate();
       mutex_exit(&cache_lru_lock);

       /*
        * Finally, insert to the vnode and unlock.  With everything set up
        * it's safe to let cache_revlookup() see the entry.  Partially sort
        * the per-vnode list: dots go to back so cache_revlookup() doesn't
        * have to consider them.
        */
       if (vp != NULL) {
               vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
               rw_enter(&vi->vi_nc_listlock, RW_WRITER);
               if ((namelen == 1 && name[0] == '.') ||
                   (namelen == 2 && name[0] == '.' && name[1] == '.')) {
                       TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list);
               } else {
                       TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list);
               }
               rw_exit(&vi->vi_nc_listlock);
       }
       rw_exit(&dvi->vi_nc_lock);
}

/*
* Set identity info in cache for a vnode.  We only care about directories
* so ignore other updates.  The cached info may be marked invalid if the
* inode has an ACL.
*/
void
cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid)
{
       vnode_impl_t *vi = VNODE_TO_VIMPL(vp);

       if (vp->v_type == VDIR) {
               /* Grab both locks, for forward & reverse lookup. */
               rw_enter(&vi->vi_nc_lock, RW_WRITER);
               rw_enter(&vi->vi_nc_listlock, RW_WRITER);
               if (valid) {
                       vi->vi_nc_mode = mode;
                       vi->vi_nc_uid = uid;
                       vi->vi_nc_gid = gid;
               } else {
                       vi->vi_nc_mode = VNOVAL;
                       vi->vi_nc_uid = VNOVAL;
                       vi->vi_nc_gid = VNOVAL;
               }
               rw_exit(&vi->vi_nc_listlock);
               rw_exit(&vi->vi_nc_lock);
       }
}

/*
* Return true if we have identity for the given vnode, and use as an
* opportunity to confirm that everything squares up.
*
* Because of shared code, some file systems could provide partial
* information, missing some updates, so check the mount flag too.
*/
bool
cache_have_id(struct vnode *vp)
{

       if (vp->v_type == VDIR &&
           (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 &&
           atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) {
               return true;
       } else {
               return false;
       }
}

/*
* Enter a mount point.  cvp is the covered vnode, and rvp is the root of
* the mounted file system.
*/
void
cache_enter_mount(struct vnode *cvp, struct vnode *rvp)
{

       KASSERT(vrefcnt(cvp) > 0);
       KASSERT(vrefcnt(rvp) > 0);
       KASSERT(cvp->v_type == VDIR);
       KASSERT((rvp->v_vflag & VV_ROOT) != 0);

       if (rvp->v_type == VDIR) {
               cache_enter(cvp, rvp, cache_mp_name, cache_mp_nlen, MAKEENTRY);
       }
}

/*
* Look up a cached mount point.  Used in the strongly locked path.
*/
bool
cache_lookup_mount(struct vnode *dvp, struct vnode **vn_ret)
{
       bool ret;

       ret = cache_lookup(dvp, cache_mp_name, cache_mp_nlen, LOOKUP,
           MAKEENTRY, NULL, vn_ret);
       KASSERT((*vn_ret != NULL) == ret);
       return ret;
}

/*
* Try to cross a mount point.  For use with cache_lookup_linked().
*/
bool
cache_cross_mount(struct vnode **dvp, krwlock_t **plock)
{

       return cache_lookup_linked(*dvp, cache_mp_name, cache_mp_nlen,
          dvp, plock, FSCRED);
}

/*
* Name cache initialization, from vfs_init() when the system is booting.
*/
void
nchinit(void)
{

       cache_pool = pool_cache_init(sizeof(struct namecache),
           coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL,
           NULL, NULL);
       KASSERT(cache_pool != NULL);

       mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE);
       TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]);
       TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]);

       mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE);
       callout_init(&cache_stat_callout, CALLOUT_MPSAFE);
       callout_setfunc(&cache_stat_callout, cache_update_stats, NULL);
       callout_schedule(&cache_stat_callout, cache_stat_interval * hz);

       KASSERT(cache_sysctllog == NULL);
       sysctl_createv(&cache_sysctllog, 0, NULL, NULL,
                      CTLFLAG_PERMANENT,
                      CTLTYPE_STRUCT, "namecache_stats",
                      SYSCTL_DESCR("namecache statistics"),
                      cache_stat_sysctl, 0, NULL, 0,
                      CTL_VFS, CTL_CREATE, CTL_EOL);
}

/*
* Called once for each CPU in the system as attached.
*/
void
cache_cpu_init(struct cpu_info *ci)
{
       size_t sz;

       sz = roundup2(sizeof(struct nchcpu), coherency_unit);
       ci->ci_data.cpu_nch = kmem_zalloc(sz, KM_SLEEP);
       KASSERT(((uintptr_t)ci->ci_data.cpu_nch & (coherency_unit - 1)) == 0);
}

/*
* A vnode is being allocated: set up cache structures.
*/
void
cache_vnode_init(struct vnode *vp)
{
       vnode_impl_t *vi = VNODE_TO_VIMPL(vp);

       rw_init(&vi->vi_nc_lock);
       rw_init(&vi->vi_nc_listlock);
       rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops);
       TAILQ_INIT(&vi->vi_nc_list);
       vi->vi_nc_mode = VNOVAL;
       vi->vi_nc_uid = VNOVAL;
       vi->vi_nc_gid = VNOVAL;
}

/*
* A vnode is being freed: finish cache structures.
*/
void
cache_vnode_fini(struct vnode *vp)
{
       vnode_impl_t *vi = VNODE_TO_VIMPL(vp);

       KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL);
       KASSERT(TAILQ_EMPTY(&vi->vi_nc_list));
       rw_destroy(&vi->vi_nc_lock);
       rw_destroy(&vi->vi_nc_listlock);
}

/*
* Helper for cache_purge1(): purge cache entries for the given vnode from
* all directories that the vnode is cached in.
*/
static void
cache_purge_parents(struct vnode *vp)
{
       vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp);
       struct vnode *dvp, *blocked;
       struct namecache *ncp;

       SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);

       blocked = NULL;

       rw_enter(&vi->vi_nc_listlock, RW_WRITER);
       while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) {
               /*
                * Locking in the wrong direction.  Try for a hold on the
                * directory node's lock, and if we get it then all good,
                * nuke the entry and move on to the next.
                */
               dvp = ncp->nc_dvp;
               dvi = VNODE_TO_VIMPL(dvp);
               if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
                       cache_remove(ncp, false);
                       rw_exit(&dvi->vi_nc_lock);
                       blocked = NULL;
                       continue;
               }

               /*
                * We can't wait on the directory node's lock with our list
                * lock held or the system could deadlock.
                *
                * Take a hold on the directory vnode to prevent it from
                * being freed (taking the vnode & lock with it).  Then
                * wait for the lock to become available with no other locks
                * held, and retry.
                *
                * If this happens twice in a row, give the other side a
                * breather; we can do nothing until it lets go.
                */
               vhold(dvp);
               rw_exit(&vi->vi_nc_listlock);
               rw_enter(&dvi->vi_nc_lock, RW_WRITER);
               /* Do nothing. */
               rw_exit(&dvi->vi_nc_lock);
               holdrele(dvp);
               if (blocked == dvp) {
                       kpause("ncpurge", false, 1, NULL);
               }
               rw_enter(&vi->vi_nc_listlock, RW_WRITER);
               blocked = dvp;
       }
       rw_exit(&vi->vi_nc_listlock);
}

/*
* Helper for cache_purge1(): purge all cache entries hanging off the given
* directory vnode.
*/
static void
cache_purge_children(struct vnode *dvp)
{
       vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
       struct namecache *ncp;

       SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0);

       rw_enter(&dvi->vi_nc_lock, RW_WRITER);
       while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) {
               cache_remove(ncp, true);
       }
       rw_exit(&dvi->vi_nc_lock);
}

/*
* Helper for cache_purge1(): purge cache entry from the given vnode,
* finding it by name.
*/
static void
cache_purge_name(struct vnode *dvp, const char *name, size_t namelen)
{
       vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
       struct namecache *ncp;
       uintptr_t key;

       SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);

       key = cache_key(name, namelen);
       rw_enter(&dvi->vi_nc_lock, RW_WRITER);
       ncp = cache_lookup_entry(dvp, name, namelen, key);
       if (ncp) {
               cache_remove(ncp, true);
       }
       rw_exit(&dvi->vi_nc_lock);
}

/*
* Cache flush, a particular vnode; called when a vnode is renamed to
* hide entries that would now be invalid.
*/
void
cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
{

       if (flags & PURGE_PARENTS) {
               cache_purge_parents(vp);
       }
       if (flags & PURGE_CHILDREN) {
               cache_purge_children(vp);
       }
       if (name != NULL) {
               cache_purge_name(vp, name, namelen);
       }
}

/*
* vnode filter for cache_purgevfs().
*/
static bool
cache_vdir_filter(void *cookie, vnode_t *vp)
{

       return vp->v_type == VDIR;
}

/*
* Cache flush, a whole filesystem; called when filesys is umounted to
* remove entries that would now be invalid.
*/
void
cache_purgevfs(struct mount *mp)
{
       struct vnode_iterator *iter;
       vnode_t *dvp;

       vfs_vnode_iterator_init(mp, &iter);
       for (;;) {
               dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL);
               if (dvp == NULL) {
                       break;
               }
               cache_purge_children(dvp);
               vrele(dvp);
       }
       vfs_vnode_iterator_destroy(iter);
}

/*
* Re-queue an entry onto the tail of the active LRU list, after it has
* scored a hit.
*/
static void
cache_activate(struct namecache *ncp)
{

       mutex_enter(&cache_lru_lock);
       TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
       TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
       cache_lru.count[ncp->nc_lrulist]--;
       cache_lru.count[LRU_ACTIVE]++;
       ncp->nc_lrulist = LRU_ACTIVE;
       mutex_exit(&cache_lru_lock);
}

/*
* Try to balance the LRU lists.  Pick some victim entries, and re-queue
* them from the head of the active list to the tail of the inactive list.
*/
static void
cache_deactivate(void)
{
       struct namecache *ncp;
       int total, i;

       KASSERT(mutex_owned(&cache_lru_lock));

       /* If we're nowhere near budget yet, don't bother. */
       total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE];
       if (total < (desiredvnodes >> 1)) {
               return;
       }

       /*
        * Aim for a 1:1 ratio of active to inactive.  This is to allow each
        * potential victim a reasonable amount of time to cycle through the
        * inactive list in order to score a hit and be reactivated, while
        * trying not to cause reactivations too frequently.
        */
       if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) {
               return;
       }

       /* Move only a few at a time; will catch up eventually. */
       for (i = 0; i < cache_lru_maxdeact; i++) {
               ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]);
               if (ncp == NULL) {
                       break;
               }
               KASSERT(ncp->nc_lrulist == LRU_ACTIVE);
               ncp->nc_lrulist = LRU_INACTIVE;
               TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
               TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru);
               cache_lru.count[LRU_ACTIVE]--;
               cache_lru.count[LRU_INACTIVE]++;
       }
}

/*
* Free some entries from the cache, when we have gone over budget.
*
* We don't want to cause too much work for any individual caller, and it
* doesn't matter if we temporarily go over budget.  This is also "just a
* cache" so it's not a big deal if we screw up and throw out something we
* shouldn't.  So we take a relaxed attitude to this process to reduce its
* impact.
*/
static void
cache_reclaim(void)
{
       struct namecache *ncp;
       vnode_impl_t *dvi;
       int toscan;

       /*
        * Scan up to a preset maximum number of entries, but no more than
        * 0.8% of the total at once (to allow for very small systems).
        *
        * On bigger systems, do a larger chunk of work to reduce the number
        * of times that cache_lru_lock is held for any length of time.
        */
       mutex_enter(&cache_lru_lock);
       toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7);
       toscan = MAX(toscan, 1);
       SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] +
           cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0);
       while (toscan-- != 0) {
               /* First try to balance the lists. */
               cache_deactivate();

               /* Now look for a victim on head of inactive list (old). */
               ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]);
               if (ncp == NULL) {
                       break;
               }
               dvi = VNODE_TO_VIMPL(ncp->nc_dvp);
               KASSERT(ncp->nc_lrulist == LRU_INACTIVE);
               KASSERT(dvi != NULL);

               /*
                * Locking in the wrong direction.  If we can't get the
                * lock, the directory is actively busy, and it could also
                * cause problems for the next guy in here, so send the
                * entry to the back of the list.
                */
               if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
                       TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE],
                           ncp, nc_lru);
                       TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE],
                           ncp, nc_lru);
                       continue;
               }

               /*
                * Now have the victim entry locked.  Drop the LRU list
                * lock, purge the entry, and start over.  The hold on
                * vi_nc_lock will prevent the vnode from vanishing until
                * finished (cache_purge() will be called on dvp before it
                * disappears, and that will wait on vi_nc_lock).
                */
               mutex_exit(&cache_lru_lock);
               cache_remove(ncp, true);
               rw_exit(&dvi->vi_nc_lock);
               mutex_enter(&cache_lru_lock);
       }
       mutex_exit(&cache_lru_lock);
}

/*
* For file system code: count a lookup that required a full re-scan of
* directory metadata.
*/
void
namecache_count_pass2(void)
{

       COUNT(ncs_pass2);
}

/*
* For file system code: count a lookup that scored a hit in the directory
* metadata near the location of the last lookup.
*/
void
namecache_count_2passes(void)
{

       COUNT(ncs_2passes);
}

/*
* Sum the stats from all CPUs into nchstats.  This needs to run at least
* once within every window where a 32-bit counter could roll over.  It's
* called regularly by timer to ensure this.
*/
static void
cache_update_stats(void *cookie)
{
       CPU_INFO_ITERATOR cii;
       struct cpu_info *ci;

       mutex_enter(&cache_stat_lock);
       for (CPU_INFO_FOREACH(cii, ci)) {
               struct nchcpu *nchcpu = ci->ci_data.cpu_nch;
               UPDATE(nchcpu, ncs_goodhits);
               UPDATE(nchcpu, ncs_neghits);
               UPDATE(nchcpu, ncs_badhits);
               UPDATE(nchcpu, ncs_falsehits);
               UPDATE(nchcpu, ncs_miss);
               UPDATE(nchcpu, ncs_long);
               UPDATE(nchcpu, ncs_pass2);
               UPDATE(nchcpu, ncs_2passes);
               UPDATE(nchcpu, ncs_revhits);
               UPDATE(nchcpu, ncs_revmiss);
               UPDATE(nchcpu, ncs_denied);
       }
       if (cookie != NULL) {
               memcpy(cookie, &nchstats, sizeof(nchstats));
       }
       /* Reset the timer; arrive back here in N minutes at latest. */
       callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
       mutex_exit(&cache_stat_lock);
}

/*
* Fetch the current values of the stats for sysctl.
*/
static int
cache_stat_sysctl(SYSCTLFN_ARGS)
{
       struct nchstats stats;

       if (oldp == NULL) {
               *oldlenp = sizeof(nchstats);
               return 0;
       }

       if (*oldlenp <= 0) {
               *oldlenp = 0;
               return 0;
       }

       /* Refresh the global stats. */
       sysctl_unlock();
       cache_update_stats(&stats);
       sysctl_relock();

       *oldlenp = MIN(sizeof(stats), *oldlenp);
       return sysctl_copyout(l, &stats, oldp, *oldlenp);
}

/*
* For the debugger, given the address of a vnode, print all associated
* names in the cache.
*/
#ifdef DDB
void
namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
{
       struct vnode *dvp = NULL;
       struct namecache *ncp;
       enum cache_lru_id id;

       for (id = 0; id < LRU_COUNT; id++) {
               TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
                       if (ncp->nc_vp == vp) {
                               (*pr)("name %.*s\n", NC_NLEN(ncp),
                                   ncp->nc_name);
                               dvp = ncp->nc_dvp;
                       }
               }
       }
       if (dvp == NULL) {
               (*pr)("name not found\n");
               return;
       }
       for (id = 0; id < LRU_COUNT; id++) {
               TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
                       if (ncp->nc_vp == dvp) {
                               (*pr)("parent %.*s\n", NC_NLEN(ncp),
                                   ncp->nc_name);
                       }
               }
       }
}
#endif