/*      $NetBSD: vfs_bio.c,v 1.306 2024/12/07 02:27:38 riastradh Exp $  */

/*-
* Copyright (c) 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran, and by Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*-
* Copyright (c) 1982, 1986, 1989, 1993
*      The Regents of the University of California.  All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)vfs_bio.c   8.6 (Berkeley) 1/11/94
*/

/*-
* Copyright (c) 1994 Christopher G. Demetriou
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by the University of
*      California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)vfs_bio.c   8.6 (Berkeley) 1/11/94
*/

/*
* The buffer cache subsystem.
*
* Some references:
*      Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
*      Leffler, et al.: The Design and Implementation of the 4.3BSD
*              UNIX Operating System (Addison Welley, 1989)
*
* Locking
*
* There are three locks:
* - bufcache_lock: protects global buffer cache state.
* - BC_BUSY: a long term per-buffer lock.
* - buf_t::b_objlock: lock on completion (biowait vs biodone).
*
* For buffers associated with vnodes (a most common case) b_objlock points
* to the vnode_t::v_interlock.  Otherwise, it points to generic buffer_lock.
*
* Lock order:
*      bufcache_lock ->
*              buf_t::b_objlock
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.306 2024/12/07 02:27:38 riastradh Exp $");

#ifdef _KERNEL_OPT
#include "opt_biohist.h"
#include "opt_bufcache.h"
#include "opt_dtrace.h"
#endif

#include <sys/param.h>
#include <sys/types.h>

#include <sys/bitops.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/cprng.h>
#include <sys/cpu.h>
#include <sys/fstrans.h>
#include <sys/intr.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/sdt.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/vnode.h>
#include <sys/wapbl.h>

#include <uvm/uvm.h>    /* extern struct uvm uvm */

#include <miscfs/specfs/specdev.h>

SDT_PROVIDER_DEFINE(io);

SDT_PROBE_DEFINE4(io, kernel, , bbusy__start,
   "struct buf *"/*bp*/,
   "bool"/*intr*/, "int"/*timo*/, "kmutex_t *"/*interlock*/);
SDT_PROBE_DEFINE5(io, kernel, , bbusy__done,
   "struct buf *"/*bp*/,
   "bool"/*intr*/,
   "int"/*timo*/,
   "kmutex_t *"/*interlock*/,
   "int"/*error*/);
SDT_PROBE_DEFINE0(io, kernel, , getnewbuf__start);
SDT_PROBE_DEFINE1(io, kernel, , getnewbuf__done,  "struct buf *"/*bp*/);
SDT_PROBE_DEFINE3(io, kernel, , getblk__start,
   "struct vnode *"/*vp*/, "daddr_t"/*blkno*/, "int"/*size*/);
SDT_PROBE_DEFINE4(io, kernel, , getblk__done,
   "struct vnode *"/*vp*/, "daddr_t"/*blkno*/, "int"/*size*/,
   "struct buf *"/*bp*/);
SDT_PROBE_DEFINE2(io, kernel, , brelse, "struct buf *"/*bp*/, "int"/*set*/);
SDT_PROBE_DEFINE1(io, kernel, , wait__start, "struct buf *"/*bp*/);
SDT_PROBE_DEFINE1(io, kernel, , wait__done, "struct buf *"/*bp*/);

#ifndef BUFPAGES
# define BUFPAGES 0
#endif

#ifdef BUFCACHE
# if (BUFCACHE < 5) || (BUFCACHE > 95)
#  error BUFCACHE is not between 5 and 95
# endif
#else
# define BUFCACHE 15
#endif

u_int   nbuf;                   /* desired number of buffer headers */
u_int   bufpages = BUFPAGES;    /* optional hardwired count */
u_int   bufcache = BUFCACHE;    /* max % of RAM to use for buffer cache */

/*
* Definitions for the buffer free lists.
*/
#define BQUEUES         3               /* number of free buffer queues */

#define BQ_LOCKED       0               /* super-blocks &c */
#define BQ_LRU          1               /* lru, useful buffers */
#define BQ_AGE          2               /* rubbish */

struct bqueue {
       TAILQ_HEAD(, buf) bq_queue;
       uint64_t bq_bytes;
       buf_t *bq_marker;
};
static struct bqueue bufqueues[BQUEUES] __cacheline_aligned;

/* Function prototypes */
static void buf_setwm(void);
static int buf_trim(void);
static void *bufpool_page_alloc(struct pool *, int);
static void bufpool_page_free(struct pool *, void *);
static buf_t *bio_doread(struct vnode *, daddr_t, int, int);
static buf_t *getnewbuf(int, int, int);
static int buf_lotsfree(void);
static int buf_canrelease(void);
static u_long buf_mempoolidx(u_long);
static u_long buf_roundsize(u_long);
static void *buf_alloc(size_t);
static void buf_mrelease(void *, size_t);
static void binsheadfree(buf_t *, struct bqueue *);
static void binstailfree(buf_t *, struct bqueue *);
#ifdef DEBUG
static int checkfreelist(buf_t *, struct bqueue *, int);
#endif
static void biointr(void *);
static void biodone2(buf_t *);
static void sysctl_kern_buf_setup(void);
static void sysctl_vm_buf_setup(void);

/* Initialization for biohist */

#include <sys/biohist.h>

BIOHIST_DEFINE(biohist);

void
biohist_init(void)
{

       BIOHIST_INIT(biohist, BIOHIST_SIZE);
}

/*
* Definitions for the buffer hash lists.
*/
#define BUFHASH(dvp, lbn)       \
       (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
u_long  bufhash;

static int     bufhash_stats(struct hashstat_sysctl *, bool);

static kcondvar_t needbuffer_cv;

/*
* Buffer queue lock.
*/
kmutex_t bufcache_lock __cacheline_aligned;
kmutex_t buffer_lock __cacheline_aligned;

/* Software ISR for completed transfers. */
static void *biodone_sih;

/* Buffer pool for I/O buffers. */
static pool_cache_t buf_cache;
static pool_cache_t bufio_cache;

#define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE)) /* smallest pool is 512 bytes */
#define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
__CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);

/* Buffer memory pools */
static struct pool bmempools[NMEMPOOLS];

static struct vm_map *buf_map;

/*
* Buffer memory pool allocator.
*/
static void *
bufpool_page_alloc(struct pool *pp, int flags)
{

       return (void *)uvm_km_alloc(buf_map,
           MAXBSIZE, MAXBSIZE,
           ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
           | UVM_KMF_WIRED);
}

static void
bufpool_page_free(struct pool *pp, void *v)
{

       uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
}

static struct pool_allocator bufmempool_allocator = {
       .pa_alloc = bufpool_page_alloc,
       .pa_free = bufpool_page_free,
       .pa_pagesz = MAXBSIZE,
};

/* Buffer memory management variables */
u_long bufmem_valimit;
u_long bufmem_hiwater;
u_long bufmem_lowater;
u_long bufmem;

/*
* MD code can call this to set a hard limit on the amount
* of virtual memory used by the buffer cache.
*/
int
buf_setvalimit(vsize_t sz)
{

       /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
       if (sz < NMEMPOOLS * MAXBSIZE)
               return SET_ERROR(EINVAL);

       bufmem_valimit = sz;
       return 0;
}

static void
buf_setwm(void)
{

       bufmem_hiwater = buf_memcalc();
       /* lowater is approx. 2% of memory (with bufcache = 15) */
#define BUFMEM_WMSHIFT  3
#define BUFMEM_HIWMMIN  (64 * 1024 << BUFMEM_WMSHIFT)
       if (bufmem_hiwater < BUFMEM_HIWMMIN)
               /* Ensure a reasonable minimum value */
               bufmem_hiwater = BUFMEM_HIWMMIN;
       bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
}

#ifdef DEBUG
int debug_verify_freelist = 0;
static int
checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
{
       buf_t *b;

       if (!debug_verify_freelist)
               return 1;

       TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
               if (b == bp)
                       return ison ? 1 : 0;
       }

       return ison ? 0 : 1;
}
#endif

/*
* Insq/Remq for the buffer hash lists.
* Call with buffer queue locked.
*/
static void
binsheadfree(buf_t *bp, struct bqueue *dp)
{

       KASSERT(mutex_owned(&bufcache_lock));
       KASSERT(bp->b_freelistindex == -1);
       TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
       dp->bq_bytes += bp->b_bufsize;
       bp->b_freelistindex = dp - bufqueues;
}

static void
binstailfree(buf_t *bp, struct bqueue *dp)
{

       KASSERT(mutex_owned(&bufcache_lock));
       KASSERTMSG(bp->b_freelistindex == -1, "double free of buffer? "
           "bp=%p, b_freelistindex=%d\n", bp, bp->b_freelistindex);
       TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
       dp->bq_bytes += bp->b_bufsize;
       bp->b_freelistindex = dp - bufqueues;
}

void
bremfree(buf_t *bp)
{
       struct bqueue *dp;
       int bqidx = bp->b_freelistindex;

       KASSERT(mutex_owned(&bufcache_lock));

       KASSERT(bqidx != -1);
       dp = &bufqueues[bqidx];
       KDASSERT(checkfreelist(bp, dp, 1));
       KASSERT(dp->bq_bytes >= bp->b_bufsize);
       TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
       dp->bq_bytes -= bp->b_bufsize;

       /* For the sysctl helper. */
       if (bp == dp->bq_marker)
               dp->bq_marker = NULL;

#if defined(DIAGNOSTIC)
       bp->b_freelistindex = -1;
#endif /* defined(DIAGNOSTIC) */
}

/*
* note that for some ports this is used by pmap bootstrap code to
* determine kva size.
*/
u_long
buf_memcalc(void)
{
       u_long n;
       vsize_t mapsz = 0;

       /*
        * Determine the upper bound of memory to use for buffers.
        *
        *      - If bufpages is specified, use that as the number
        *        pages.
        *
        *      - Otherwise, use bufcache as the percentage of
        *        physical memory.
        */
       if (bufpages != 0) {
               n = bufpages;
       } else {
               if (bufcache < 5) {
                       printf("forcing bufcache %d -> 5", bufcache);
                       bufcache = 5;
               }
               if (bufcache > 95) {
                       printf("forcing bufcache %d -> 95", bufcache);
                       bufcache = 95;
               }
               if (buf_map != NULL)
                       mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
               n = calc_cache_size(mapsz, bufcache,
                   (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
                   / PAGE_SIZE;
       }

       n <<= PAGE_SHIFT;
       if (bufmem_valimit != 0 && n > bufmem_valimit)
               n = bufmem_valimit;

       return n;
}

/*
* Initialize buffers and hash links for buffers.
*/
void
bufinit(void)
{
       struct bqueue *dp;
       int use_std;
       u_int i;

       biodone_vfs = biodone;

       mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
       mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
       cv_init(&needbuffer_cv, "needbuf");

       if (bufmem_valimit != 0) {
               vaddr_t minaddr = 0, maxaddr;
               buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
                   bufmem_valimit, 0, false, 0);
               if (buf_map == NULL)
                       panic("bufinit: cannot allocate submap");
       } else
               buf_map = kernel_map;

       /*
        * Initialize buffer cache memory parameters.
        */
       bufmem = 0;
       buf_setwm();

       /* On "small" machines use small pool page sizes where possible */
       use_std = (physmem < atop(16*1024*1024));

       /*
        * Also use them on systems that can map the pool pages using
        * a direct-mapped segment.
        */
#ifdef PMAP_MAP_POOLPAGE
       use_std = 1;
#endif

       buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
           "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
       bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
           "biopl", NULL, IPL_BIO, NULL, NULL, NULL);

       for (i = 0; i < NMEMPOOLS; i++) {
               struct pool_allocator *pa;
               struct pool *pp = &bmempools[i];
               u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
               char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */

               if (__predict_false(size >= 1048576))
                       (void)snprintf(name, 8, "buf%um", size / 1048576);
               else if (__predict_true(size >= 1024))
                       (void)snprintf(name, 8, "buf%uk", size / 1024);
               else
                       (void)snprintf(name, 8, "buf%ub", size);
               pa = (size <= PAGE_SIZE && use_std)
                   ? &pool_allocator_nointr
                   : &bufmempool_allocator;
               pool_init(pp, size, DEV_BSIZE, 0, 0, name, pa, IPL_NONE);
               pool_setlowat(pp, 1);
               pool_sethiwat(pp, 1);
       }

       /* Initialize the buffer queues */
       for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
               TAILQ_INIT(&dp->bq_queue);
               dp->bq_bytes = 0;
       }

       /*
        * Estimate hash table size based on the amount of memory we
        * intend to use for the buffer cache. The average buffer
        * size is dependent on our clients (i.e. filesystems).
        *
        * For now, use an empirical 3K per buffer.
        */
       nbuf = (bufmem_hiwater / 1024) / 3;
       bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);

       sysctl_kern_buf_setup();
       sysctl_vm_buf_setup();
       hashstat_register("bufhash", bufhash_stats);
}

void
bufinit2(void)
{

       biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
           NULL);
       if (biodone_sih == NULL)
               panic("bufinit2: can't establish soft interrupt");
}

static int
buf_lotsfree(void)
{
       u_long guess;

       /* Always allocate if less than the low water mark. */
       if (bufmem < bufmem_lowater)
               return 1;

       /* Never allocate if greater than the high water mark. */
       if (bufmem > bufmem_hiwater)
               return 0;

       /* If there's anything on the AGE list, it should be eaten. */
       if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
               return 0;

       /*
        * The probabily of getting a new allocation is inversely
        * proportional  to the current size of the cache above
        * the low water mark.  Divide the total first to avoid overflows
        * in the product.
        */
       guess = cprng_fast32() % 16;

       if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
           (bufmem - bufmem_lowater))
               return 1;

       /* Otherwise don't allocate. */
       return 0;
}

/*
* Return estimate of bytes we think need to be
* released to help resolve low memory conditions.
*
* => called with bufcache_lock held.
*/
static int
buf_canrelease(void)
{
       int pagedemand, ninvalid = 0;

       KASSERT(mutex_owned(&bufcache_lock));

       if (bufmem < bufmem_lowater)
               return 0;

       if (bufmem > bufmem_hiwater)
               return bufmem - bufmem_hiwater;

       ninvalid += bufqueues[BQ_AGE].bq_bytes;

       pagedemand = uvmexp.freetarg - uvm_availmem(false);
       if (pagedemand < 0)
               return ninvalid;
       return MAX(ninvalid, MIN(2 * MAXBSIZE,
           MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
}

/*
* Buffer memory allocation helper functions
*/
static u_long
buf_mempoolidx(u_long size)
{
       u_int n = 0;

       size -= 1;
       size >>= MEMPOOL_INDEX_OFFSET;
       while (size) {
               size >>= 1;
               n += 1;
       }
       if (n >= NMEMPOOLS)
               panic("buf mem pool index %d", n);
       return n;
}

static u_long
buf_roundsize(u_long size)
{

       /* Round up to nearest power of 2 */
       return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
}

static void *
buf_alloc(size_t size)
{
       u_int n = buf_mempoolidx(size);
       void *addr;

       while (1) {
               addr = pool_get(&bmempools[n], PR_NOWAIT);
               if (addr != NULL)
                       break;

               /* No memory, see if we can free some. If so, try again */
               mutex_enter(&bufcache_lock);
               if (buf_drain(1) > 0) {
                       mutex_exit(&bufcache_lock);
                       continue;
               }

               if (curlwp == uvm.pagedaemon_lwp) {
                       mutex_exit(&bufcache_lock);
                       return NULL;
               }

               /* Wait for buffers to arrive on the LRU queue */
               cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
               mutex_exit(&bufcache_lock);
       }

       return addr;
}

static void
buf_mrelease(void *addr, size_t size)
{

       pool_put(&bmempools[buf_mempoolidx(size)], addr);
}

/*
* bread()/breadn() helper.
*/
static buf_t *
bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
{
       buf_t *bp;
       struct mount *mp;

       bp = getblk(vp, blkno, size, 0, 0);

       /*
        * getblk() may return NULL if we are the pagedaemon.
        */
       if (bp == NULL) {
               KASSERT(curlwp == uvm.pagedaemon_lwp);
               return NULL;
       }

       /*
        * If buffer does not have data valid, start a read.
        * Note that if buffer is BC_INVAL, getblk() won't return it.
        * Therefore, it's valid if its I/O has completed or been delayed.
        */
       if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
               /* Start I/O for the buffer. */
               SET(bp->b_flags, B_READ | async);
               if (async)
                       BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
               else
                       BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
               VOP_STRATEGY(vp, bp);

               /* Pay for the read. */
               curlwp->l_ru.ru_inblock++;
       } else if (async)
               brelse(bp, 0);

       if (vp->v_type == VBLK)
               mp = spec_node_getmountedfs(vp);
       else
               mp = vp->v_mount;

       /*
        * Collect statistics on synchronous and asynchronous reads.
        * Reads from block devices are charged to their associated
        * filesystem (if any).
        */
       if (mp != NULL) {
               if (async == 0)
                       mp->mnt_stat.f_syncreads++;
               else
                       mp->mnt_stat.f_asyncreads++;
       }

       return bp;
}

/*
* Read a disk block.
* This algorithm described in Bach (p.54).
*/
int
bread(struct vnode *vp, daddr_t blkno, int size, int flags, buf_t **bpp)
{
       buf_t *bp;
       int error;

       BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);

       /* Get buffer for block. */
       bp = *bpp = bio_doread(vp, blkno, size, 0);
       if (bp == NULL)
               return SET_ERROR(ENOMEM);

       /* Wait for the read to complete, and return result. */
       error = biowait(bp);
       if (error == 0 && (flags & B_MODIFY) != 0)
               error = fscow_run(bp, true);
       if (error) {
               brelse(bp, 0);
               *bpp = NULL;
       }

       return error;
}

/*
* Read-ahead multiple disk blocks. The first is sync, the rest async.
* Trivial modification to the breada algorithm presented in Bach (p.55).
*/
int
breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
   int *rasizes, int nrablks, int flags, buf_t **bpp)
{
       buf_t *bp;
       int error, i;

       BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);

       bp = *bpp = bio_doread(vp, blkno, size, 0);
       if (bp == NULL)
               return SET_ERROR(ENOMEM);

       /*
        * For each of the read-ahead blocks, start a read, if necessary.
        */
       mutex_enter(&bufcache_lock);
       for (i = 0; i < nrablks; i++) {
               /* If it's in the cache, just go on to next one. */
               if (incore(vp, rablks[i]))
                       continue;

               /* Get a buffer for the read-ahead block */
               mutex_exit(&bufcache_lock);
               (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
               mutex_enter(&bufcache_lock);
       }
       mutex_exit(&bufcache_lock);

       /* Otherwise, we had to start a read for it; wait until it's valid. */
       error = biowait(bp);
       if (error == 0 && (flags & B_MODIFY) != 0)
               error = fscow_run(bp, true);
       if (error) {
               brelse(bp, 0);
               *bpp = NULL;
       }

       return error;
}

/*
* Block write.  Described in Bach (p.56)
*/
int
bwrite(buf_t *bp)
{
       int rv, sync, wasdelayed;
       struct vnode *vp;
       struct mount *mp;

       BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
           (uintptr_t)bp, 0, 0, 0);

       KASSERT(ISSET(bp->b_cflags, BC_BUSY));
       KASSERT(!cv_has_waiters(&bp->b_done));

       vp = bp->b_vp;

       /*
        * dholland 20160728 AFAICT vp==NULL must be impossible as it
        * will crash upon reaching VOP_STRATEGY below... see further
        * analysis on tech-kern.
        */
       KASSERTMSG(vp != NULL, "bwrite given buffer with null vnode");

       if (vp != NULL) {
               KASSERT(bp->b_objlock == vp->v_interlock);
               if (vp->v_type == VBLK)
                       mp = spec_node_getmountedfs(vp);
               else
                       mp = vp->v_mount;
       } else {
               mp = NULL;
       }

       if (mp && mp->mnt_wapbl) {
               if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
                       bdwrite(bp);
                       return 0;
               }
       }

       /*
        * Remember buffer type, to switch on it later.  If the write was
        * synchronous, but the file system was mounted with MNT_ASYNC,
        * convert it to a delayed write.
        * XXX note that this relies on delayed tape writes being converted
        * to async, not sync writes (which is safe, but ugly).
        */
       sync = !ISSET(bp->b_flags, B_ASYNC);
       if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
               bdwrite(bp);
               return 0;
       }

       /*
        * Collect statistics on synchronous and asynchronous writes.
        * Writes to block devices are charged to their associated
        * filesystem (if any).
        */
       if (mp != NULL) {
               if (sync)
                       mp->mnt_stat.f_syncwrites++;
               else
                       mp->mnt_stat.f_asyncwrites++;
       }

       /*
        * Pay for the I/O operation and make sure the buf is on the correct
        * vnode queue.
        */
       bp->b_error = 0;
       wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
       CLR(bp->b_flags, B_READ);
       if (wasdelayed) {
               mutex_enter(&bufcache_lock);
               mutex_enter(bp->b_objlock);
               CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
               reassignbuf(bp, bp->b_vp);
               /* Wake anyone trying to busy the buffer via vnode's lists. */
               cv_broadcast(&bp->b_busy);
               mutex_exit(&bufcache_lock);
       } else {
               curlwp->l_ru.ru_oublock++;
               mutex_enter(bp->b_objlock);
               CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
       }
       if (vp != NULL)
               vp->v_numoutput++;
       mutex_exit(bp->b_objlock);

       /* Initiate disk write. */
       if (sync)
               BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
       else
               BIO_SETPRIO(bp, BPRIO_TIMELIMITED);

       VOP_STRATEGY(vp, bp);

       if (sync) {
               /* If I/O was synchronous, wait for it to complete. */
               rv = biowait(bp);

               /* Release the buffer. */
               brelse(bp, 0);

               return rv;
       } else {
               return 0;
       }
}

int
vn_bwrite(void *v)
{
       struct vop_bwrite_args *ap = v;

       return bwrite(ap->a_bp);
}

/*
* Delayed write.
*
* The buffer is marked dirty, but is not queued for I/O.
* This routine should be used when the buffer is expected
* to be modified again soon, typically a small write that
* partially fills a buffer.
*
* NB: magnetic tapes cannot be delayed; they must be
* written in the order that the writes are requested.
*
* Described in Leffler, et al. (pp. 208-213).
*/
void
bdwrite(buf_t *bp)
{

       BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
           (uintptr_t)bp, 0, 0, 0);

       KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
           bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
       KASSERT(ISSET(bp->b_cflags, BC_BUSY));
       KASSERT(!cv_has_waiters(&bp->b_done));

       /* If this is a tape block, write the block now. */
       if (bdev_type(bp->b_dev) == D_TAPE) {
               bawrite(bp);
               return;
       }

       if (wapbl_vphaswapbl(bp->b_vp)) {
               struct mount *mp = wapbl_vptomp(bp->b_vp);

               if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
                       WAPBL_ADD_BUF(mp, bp);
               }
       }

       /*
        * If the block hasn't been seen before:
        *      (1) Mark it as having been seen,
        *      (2) Charge for the write,
        *      (3) Make sure it's on its vnode's correct block list.
        */
       KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);

       if (!ISSET(bp->b_oflags, BO_DELWRI)) {
               mutex_enter(&bufcache_lock);
               mutex_enter(bp->b_objlock);
               SET(bp->b_oflags, BO_DELWRI);
               curlwp->l_ru.ru_oublock++;
               reassignbuf(bp, bp->b_vp);
               /* Wake anyone trying to busy the buffer via vnode's lists. */
               cv_broadcast(&bp->b_busy);
               mutex_exit(&bufcache_lock);
       } else {
               mutex_enter(bp->b_objlock);
       }
       /* Otherwise, the "write" is done, so mark and release the buffer. */
       CLR(bp->b_oflags, BO_DONE);
       mutex_exit(bp->b_objlock);

       brelse(bp, 0);
}

/*
* Asynchronous block write; just an asynchronous bwrite().
*/
void
bawrite(buf_t *bp)
{

       KASSERT(ISSET(bp->b_cflags, BC_BUSY));
       KASSERT(bp->b_vp != NULL);

       SET(bp->b_flags, B_ASYNC);
       VOP_BWRITE(bp->b_vp, bp);
}

/*
* Release a buffer on to the free lists.
* Described in Bach (p. 46).
*/
void
brelsel(buf_t *bp, int set)
{
       struct bqueue *bufq;
       struct vnode *vp;

       SDT_PROBE2(io, kernel, , brelse,  bp, set);

       KASSERT(bp != NULL);
       KASSERT(mutex_owned(&bufcache_lock));
       KASSERT(!cv_has_waiters(&bp->b_done));

       SET(bp->b_cflags, set);

       KASSERT(ISSET(bp->b_cflags, BC_BUSY));
       KASSERT(bp->b_iodone == NULL);

       /* Wake up any processes waiting for any buffer to become free. */
       cv_signal(&needbuffer_cv);

       /* Wake up any proceeses waiting for _this_ buffer to become free */
       if (ISSET(bp->b_cflags, BC_WANTED))
               CLR(bp->b_cflags, BC_WANTED|BC_AGE);

       /* If it's clean clear the copy-on-write flag. */
       if (ISSET(bp->b_flags, B_COWDONE)) {
               mutex_enter(bp->b_objlock);
               if (!ISSET(bp->b_oflags, BO_DELWRI))
                       CLR(bp->b_flags, B_COWDONE);
               mutex_exit(bp->b_objlock);
       }

       /*
        * Determine which queue the buffer should be on, then put it there.
        */

       /* If it's locked, don't report an error; try again later. */
       if (ISSET(bp->b_flags, B_LOCKED))
               bp->b_error = 0;

       /* If it's not cacheable, or an error, mark it invalid. */
       if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
               SET(bp->b_cflags, BC_INVAL);

       if (ISSET(bp->b_cflags, BC_VFLUSH)) {
               /*
                * This is a delayed write buffer that was just flushed to
                * disk.  It is still on the LRU queue.  If it's become
                * invalid, then we need to move it to a different queue;
                * otherwise leave it in its current position.
                */
               CLR(bp->b_cflags, BC_VFLUSH);
               if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
                   !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
                       KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
                       goto already_queued;
               } else {
                       bremfree(bp);
               }
       }

       KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
       KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
       KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));

       if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
               /*
                * If it's invalid or empty, dissociate it from its vnode
                * and put on the head of the appropriate queue.
                */
               if (ISSET(bp->b_flags, B_LOCKED)) {
                       if (wapbl_vphaswapbl(vp = bp->b_vp)) {
                               struct mount *mp = wapbl_vptomp(vp);

                               KASSERT(bp->b_iodone !=
                                   mp->mnt_wapbl_op->wo_wapbl_biodone);
                               WAPBL_REMOVE_BUF(mp, bp);
                       }
               }

               mutex_enter(bp->b_objlock);
               CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
               if ((vp = bp->b_vp) != NULL) {
                       KASSERT(bp->b_objlock == vp->v_interlock);
                       reassignbuf(bp, bp->b_vp);
                       brelvp(bp);
                       mutex_exit(vp->v_interlock);
               } else {
                       KASSERT(bp->b_objlock == &buffer_lock);
                       mutex_exit(bp->b_objlock);
               }
               /* We want to dispose of the buffer, so wake everybody. */
               cv_broadcast(&bp->b_busy);
               if (bp->b_bufsize <= 0)
                       /* no data */
                       goto already_queued;
               else
                       /* invalid data */
                       bufq = &bufqueues[BQ_AGE];
               binsheadfree(bp, bufq);
       } else  {
               /*
                * It has valid data.  Put it on the end of the appropriate
                * queue, so that it'll stick around for as long as possible.
                * If buf is AGE, but has dependencies, must put it on last
                * bufqueue to be scanned, ie LRU. This protects against the
                * livelock where BQ_AGE only has buffers with dependencies,
                * and we thus never get to the dependent buffers in BQ_LRU.
                */
               if (ISSET(bp->b_flags, B_LOCKED)) {
                       /* locked in core */
                       bufq = &bufqueues[BQ_LOCKED];
               } else if (!ISSET(bp->b_cflags, BC_AGE)) {
                       /* valid data */
                       bufq = &bufqueues[BQ_LRU];
               } else {
                       /* stale but valid data */
                       bufq = &bufqueues[BQ_AGE];
               }
               binstailfree(bp, bufq);
       }
already_queued:
       /* Unlock the buffer. */
       CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
       CLR(bp->b_flags, B_ASYNC);

       /*
        * Wake only the highest priority waiter on the lock, in order to
        * prevent a thundering herd: many LWPs simultaneously awakening and
        * competing for the buffer's lock.  Testing in 2019 revealed this
        * to reduce contention on bufcache_lock tenfold during a kernel
        * compile.  Here and elsewhere, when the buffer is changing
        * identity, being disposed of, or moving from one list to another,
        * we wake all lock requestors.
        */
       if (bp->b_bufsize <= 0) {
               cv_broadcast(&bp->b_busy);
               buf_destroy(bp);
#ifdef DEBUG
               memset((char *)bp, 0, sizeof(*bp));
#endif
               pool_cache_put(buf_cache, bp);
       } else
               cv_signal(&bp->b_busy);
}

void
brelse(buf_t *bp, int set)
{

       mutex_enter(&bufcache_lock);
       brelsel(bp, set);
       mutex_exit(&bufcache_lock);
}

/*
* Determine if a block is in the cache.
* Just look on what would be its hash chain.  If it's there, return
* a pointer to it, unless it's marked invalid.  If it's marked invalid,
* we normally don't return the buffer, unless the caller explicitly
* wants us to.
*/
buf_t *
incore(struct vnode *vp, daddr_t blkno)
{
       buf_t *bp;

       KASSERT(mutex_owned(&bufcache_lock));

       /* Search hash chain */
       LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
               if (bp->b_lblkno == blkno && bp->b_vp == vp &&
                   !ISSET(bp->b_cflags, BC_INVAL)) {
                       KASSERT(bp->b_objlock == vp->v_interlock);
                       return (bp);
               }
       }

       return NULL;
}

/*
* Get a block of requested size that is associated with
* a given vnode and block offset. If it is found in the
* block cache, mark it as having been found, make it busy
* and return it. Otherwise, return an empty block of the
* correct size. It is up to the caller to insure that the
* cached blocks be of the correct size.
*/
buf_t *
getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
{
       int err, preserve;
       buf_t *bp;

       mutex_enter(&bufcache_lock);
       SDT_PROBE3(io, kernel, , getblk__start,  vp, blkno, size);
loop:
       bp = incore(vp, blkno);
       if (bp != NULL) {
               err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
               if (err != 0) {
                       if (err == EPASSTHROUGH)
                               goto loop;
                       mutex_exit(&bufcache_lock);
                       SDT_PROBE4(io, kernel, , getblk__done,
                           vp, blkno, size, NULL);
                       return NULL;
               }
               KASSERT(!cv_has_waiters(&bp->b_done));
#ifdef DIAGNOSTIC
               if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
                   bp->b_bcount < size && vp->v_type != VBLK)
                       panic("getblk: block size invariant failed");
#endif
               bremfree(bp);
               preserve = 1;
       } else {
               if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
                       goto loop;

               if (incore(vp, blkno) != NULL) {
                       /* The block has come into memory in the meantime. */
                       brelsel(bp, 0);
                       goto loop;
               }

               LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
               bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
               mutex_enter(vp->v_interlock);
               bgetvp(vp, bp);
               mutex_exit(vp->v_interlock);
               preserve = 0;
       }
       mutex_exit(&bufcache_lock);

       /*
        * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
        * if we re-size buffers here.
        */
       if (ISSET(bp->b_flags, B_LOCKED)) {
               KASSERT(bp->b_bufsize >= size);
       } else {
               if (allocbuf(bp, size, preserve)) {
                       mutex_enter(&bufcache_lock);
                       LIST_REMOVE(bp, b_hash);
                       brelsel(bp, BC_INVAL);
                       mutex_exit(&bufcache_lock);
                       SDT_PROBE4(io, kernel, , getblk__done,
                           vp, blkno, size, NULL);
                       return NULL;
               }
       }
       BIO_SETPRIO(bp, BPRIO_DEFAULT);
       SDT_PROBE4(io, kernel, , getblk__done,  vp, blkno, size, bp);
       return bp;
}

/*
* Get an empty, disassociated buffer of given size.
*/
buf_t *
geteblk(int size)
{
       buf_t *bp;
       int error __diagused;

       mutex_enter(&bufcache_lock);
       while ((bp = getnewbuf(0, 0, 0)) == NULL)
               continue;

       SET(bp->b_cflags, BC_INVAL);
       LIST_INSERT_HEAD(&invalhash, bp, b_hash);
       mutex_exit(&bufcache_lock);
       BIO_SETPRIO(bp, BPRIO_DEFAULT);
       error = allocbuf(bp, size, 0);
       KASSERT(error == 0);
       return bp;
}

/*
* Expand or contract the actual memory allocated to a buffer.
*
* If the buffer shrinks, data is lost, so it's up to the
* caller to have written it out *first*; this routine will not
* start a write.  If the buffer grows, it's the callers
* responsibility to fill out the buffer's additional contents.
*/
int
allocbuf(buf_t *bp, int size, int preserve)
{
       void *addr;
       vsize_t oldsize, desired_size;
       int oldcount;
       int delta;

       desired_size = buf_roundsize(size);
       if (desired_size > MAXBSIZE)
               printf("allocbuf: buffer larger than MAXBSIZE requested");

       oldcount = bp->b_bcount;

       bp->b_bcount = size;

       oldsize = bp->b_bufsize;
       if (oldsize == desired_size) {
               /*
                * Do not short cut the WAPBL resize, as the buffer length
                * could still have changed and this would corrupt the
                * tracking of the transaction length.
                */
               goto out;
       }

       /*
        * If we want a buffer of a different size, re-allocate the
        * buffer's memory; copy old content only if needed.
        */
       addr = buf_alloc(desired_size);
       if (addr == NULL)
               return SET_ERROR(ENOMEM);
       if (preserve)
               memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
       if (bp->b_data != NULL)
               buf_mrelease(bp->b_data, oldsize);
       bp->b_data = addr;
       bp->b_bufsize = desired_size;

       /*
        * Update overall buffer memory counter (protected by bufcache_lock)
        */
       delta = (long)desired_size - (long)oldsize;

       mutex_enter(&bufcache_lock);
       if ((bufmem += delta) > bufmem_hiwater) {
               /*
                * Need to trim overall memory usage.
                */
               while (buf_canrelease()) {
                       if (preempt_needed()) {
                               mutex_exit(&bufcache_lock);
                               preempt();
                               mutex_enter(&bufcache_lock);
                       }
                       if (buf_trim() == 0)
                               break;
               }
       }
       mutex_exit(&bufcache_lock);

out:
       if (wapbl_vphaswapbl(bp->b_vp)) {
               WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp,
                   oldsize, oldcount);
       }

       return 0;
}

/*
* Find a buffer which is available for use.
* Select something from a free list.
* Preference is to AGE list, then LRU list.
*
* Called with the buffer queues locked.
* Return buffer locked.
*/
static buf_t *
getnewbuf(int slpflag, int slptimeo, int from_bufq)
{
       buf_t *bp;
       struct vnode *vp;
       struct mount *transmp = NULL;

       SDT_PROBE0(io, kernel, , getnewbuf__start);

start:
       KASSERT(mutex_owned(&bufcache_lock));

       /*
        * Get a new buffer from the pool.
        */
       if (!from_bufq && buf_lotsfree()) {
               mutex_exit(&bufcache_lock);
               bp = pool_cache_get(buf_cache, PR_NOWAIT);
               if (bp != NULL) {
                       memset((char *)bp, 0, sizeof(*bp));
                       buf_init(bp);
                       SET(bp->b_cflags, BC_BUSY);     /* mark buffer busy */
                       mutex_enter(&bufcache_lock);
#if defined(DIAGNOSTIC)
                       bp->b_freelistindex = -1;
#endif /* defined(DIAGNOSTIC) */
                       SDT_PROBE1(io, kernel, , getnewbuf__done,  bp);
                       return bp;
               }
               mutex_enter(&bufcache_lock);
       }

       KASSERT(mutex_owned(&bufcache_lock));
       if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL) {
               KASSERT(!ISSET(bp->b_oflags, BO_DELWRI));
       } else {
               TAILQ_FOREACH(bp, &bufqueues[BQ_LRU].bq_queue, b_freelist) {
                       if (ISSET(bp->b_cflags, BC_VFLUSH) ||
                           !ISSET(bp->b_oflags, BO_DELWRI))
                               break;
                       if (fstrans_start_nowait(bp->b_vp->v_mount) == 0) {
                               KASSERT(transmp == NULL);
                               transmp = bp->b_vp->v_mount;
                               break;
                       }
               }
       }
       if (bp != NULL) {
               KASSERT(!ISSET(bp->b_cflags, BC_BUSY) ||
                   ISSET(bp->b_cflags, BC_VFLUSH));
               bremfree(bp);

               /* Buffer is no longer on free lists. */
               SET(bp->b_cflags, BC_BUSY);

               /* Wake anyone trying to lock the old identity. */
               cv_broadcast(&bp->b_busy);
       } else {
               /*
                * XXX: !from_bufq should be removed.
                */
               if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
                       /* wait for a free buffer of any kind */
                       if ((slpflag & PCATCH) != 0)
                               (void)cv_timedwait_sig(&needbuffer_cv,
                                   &bufcache_lock, slptimeo);
                       else
                               (void)cv_timedwait(&needbuffer_cv,
                                   &bufcache_lock, slptimeo);
               }
               SDT_PROBE1(io, kernel, , getnewbuf__done,  NULL);
               return NULL;
       }

#ifdef DIAGNOSTIC
       if (bp->b_bufsize <= 0)
               panic("buffer %p: on queue but empty", bp);
#endif

       if (ISSET(bp->b_cflags, BC_VFLUSH)) {
               /*
                * This is a delayed write buffer being flushed to disk.  Make
                * sure it gets aged out of the queue when it's finished, and
                * leave it off the LRU queue.
                */
               CLR(bp->b_cflags, BC_VFLUSH);
               SET(bp->b_cflags, BC_AGE);
               goto start;
       }

       KASSERT(ISSET(bp->b_cflags, BC_BUSY));
       KASSERT(!cv_has_waiters(&bp->b_done));

       /*
        * If buffer was a delayed write, start it and return NULL
        * (since we might sleep while starting the write).
        */
       if (ISSET(bp->b_oflags, BO_DELWRI)) {
               /*
                * This buffer has gone through the LRU, so make sure it gets
                * reused ASAP.
                */
               SET(bp->b_cflags, BC_AGE);
               mutex_exit(&bufcache_lock);
               bawrite(bp);
               KASSERT(transmp != NULL);
               fstrans_done(transmp);
               mutex_enter(&bufcache_lock);
               SDT_PROBE1(io, kernel, , getnewbuf__done,  NULL);
               return NULL;
       }

       KASSERT(transmp == NULL);

       vp = bp->b_vp;

       /* clear out various other fields */
       bp->b_cflags = BC_BUSY;
       bp->b_oflags = 0;
       bp->b_flags = 0;
       bp->b_dev = NODEV;
       bp->b_blkno = 0;
       bp->b_lblkno = 0;
       bp->b_rawblkno = 0;
       bp->b_iodone = 0;
       bp->b_error = 0;
       bp->b_resid = 0;
       bp->b_bcount = 0;

       LIST_REMOVE(bp, b_hash);

       /* Disassociate us from our vnode, if we had one... */
       if (vp != NULL) {
               mutex_enter(vp->v_interlock);
               brelvp(bp);
               mutex_exit(vp->v_interlock);
       }

       SDT_PROBE1(io, kernel, , getnewbuf__done,  bp);
       return bp;
}

/*
* Invalidate the specified buffer if it exists.
*/
void
binvalbuf(struct vnode *vp, daddr_t blkno)
{
       buf_t *bp;
       int err;

       mutex_enter(&bufcache_lock);

loop:
       bp = incore(vp, blkno);
       if (bp != NULL) {
               err = bbusy(bp, 0, 0, NULL);
               if (err == EPASSTHROUGH)
                       goto loop;
               bremfree(bp);
               if (ISSET(bp->b_oflags, BO_DELWRI)) {
                       SET(bp->b_cflags, BC_NOCACHE);
                       mutex_exit(&bufcache_lock);
                       bwrite(bp);
               } else {
                       brelsel(bp, BC_INVAL);
                       mutex_exit(&bufcache_lock);
               }
       } else
               mutex_exit(&bufcache_lock);
}

/*
* Attempt to free an aged buffer off the queues.
* Called with queue lock held.
* Returns the amount of buffer memory freed.
*/
static int
buf_trim(void)
{
       buf_t *bp;
       long size;

       KASSERT(mutex_owned(&bufcache_lock));

       /* Instruct getnewbuf() to get buffers off the queues */
       if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
               return 0;

       KASSERT((bp->b_cflags & BC_WANTED) == 0);
       size = bp->b_bufsize;
       bufmem -= size;
       if (size > 0) {
               buf_mrelease(bp->b_data, size);
               bp->b_bcount = bp->b_bufsize = 0;
       }
       /* brelse() will return the buffer to the global buffer pool */
       brelsel(bp, 0);
       return size;
}

int
buf_drain(int n)
{
       int size = 0, sz;

       KASSERT(mutex_owned(&bufcache_lock));

       while (size < n && bufmem > bufmem_lowater) {
               sz = buf_trim();
               if (sz <= 0)
                       break;
               size += sz;
       }

       return size;
}

/*
* Wait for operations on the buffer to complete.
* When they do, extract and return the I/O's error value.
*/
int
biowait(buf_t *bp)
{

       BIOHIST_FUNC(__func__);

       KASSERT(ISSET(bp->b_cflags, BC_BUSY));

       SDT_PROBE1(io, kernel, , wait__start, bp);

       mutex_enter(bp->b_objlock);

       BIOHIST_CALLARGS(biohist, "bp=%#jx, oflags=0x%jx, ret_addr=%#jx",
           (uintptr_t)bp, bp->b_oflags,
           (uintptr_t)__builtin_return_address(0), 0);

       while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI)) {
               BIOHIST_LOG(biohist, "waiting bp=%#jx",
                   (uintptr_t)bp, 0, 0, 0);
               cv_wait(&bp->b_done, bp->b_objlock);
       }
       mutex_exit(bp->b_objlock);

       SDT_PROBE1(io, kernel, , wait__done, bp);

       BIOHIST_LOG(biohist, "return %jd", bp->b_error, 0, 0, 0);

       return bp->b_error;
}

/*
* Mark I/O complete on a buffer.
*
* If a callback has been requested, e.g. the pageout
* daemon, do so. Otherwise, awaken waiting processes.
*
* [ Leffler, et al., says on p.247:
*      "This routine wakes up the blocked process, frees the buffer
*      for an asynchronous write, or, for a request by the pagedaemon
*      process, invokes a procedure specified in the buffer structure" ]
*
* In real life, the pagedaemon (or other system processes) wants
* to do async stuff too, and doesn't want the buffer brelse()'d.
* (for swap pager, that puts swap buffers on the free lists (!!!),
* for the vn device, that puts allocated buffers on the free lists!)
*/
void
biodone(buf_t *bp)
{
       int s;

       BIOHIST_FUNC(__func__);

       KASSERT(!ISSET(bp->b_oflags, BO_DONE));

       if (cpu_intr_p()) {
               /* From interrupt mode: defer to a soft interrupt. */
               s = splvm();
               TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);

               BIOHIST_CALLARGS(biohist, "bp=%#jx, softint scheduled",
                   (uintptr_t)bp, 0, 0, 0);
               softint_schedule(biodone_sih);
               splx(s);
       } else {
               /* Process now - the buffer may be freed soon. */
               biodone2(bp);
       }
}

SDT_PROBE_DEFINE1(io, kernel, , done, "struct buf *"/*bp*/);

static void
biodone2(buf_t *bp)
{
       void (*callout)(buf_t *);

       SDT_PROBE1(io, kernel, ,done, bp);

       BIOHIST_FUNC(__func__);
       BIOHIST_CALLARGS(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);

       mutex_enter(bp->b_objlock);
       /* Note that the transfer is done. */
       if (ISSET(bp->b_oflags, BO_DONE))
               panic("biodone2 already");
       CLR(bp->b_flags, B_COWDONE);
       SET(bp->b_oflags, BO_DONE);
       BIO_SETPRIO(bp, BPRIO_DEFAULT);

       /* Wake up waiting writers. */
       if (!ISSET(bp->b_flags, B_READ))
               vwakeup(bp);

       if ((callout = bp->b_iodone) != NULL) {
               BIOHIST_LOG(biohist, "callout %#jx", (uintptr_t)callout,
                   0, 0, 0);

               /* Note callout done, then call out. */
               KASSERT(!cv_has_waiters(&bp->b_done));
               bp->b_iodone = NULL;
               mutex_exit(bp->b_objlock);
               (*callout)(bp);
       } else if (ISSET(bp->b_flags, B_ASYNC)) {
               /* If async, release. */
               BIOHIST_LOG(biohist, "async", 0, 0, 0, 0);
               KASSERT(!cv_has_waiters(&bp->b_done));
               mutex_exit(bp->b_objlock);
               brelse(bp, 0);
       } else {
               /* Otherwise just wake up waiters in biowait(). */
               BIOHIST_LOG(biohist, "wake-up", 0, 0, 0, 0);
               cv_broadcast(&bp->b_done);
               mutex_exit(bp->b_objlock);
       }
}

static void
biointr(void *cookie)
{
       struct cpu_info *ci;
       buf_t *bp;
       int s;

       BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);

       ci = curcpu();

       s = splvm();
       while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
               KASSERT(curcpu() == ci);

               bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
               TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
               splx(s);

               BIOHIST_LOG(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
               biodone2(bp);

               s = splvm();
       }
       splx(s);
}

static void
sysctl_fillbuf(const buf_t *i, struct buf_sysctl *o)
{
       const bool allowaddr = get_expose_address(curproc);

       memset(o, 0, sizeof(*o));

       o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
       o->b_error = i->b_error;
       o->b_prio = i->b_prio;
       o->b_dev = i->b_dev;
       o->b_bufsize = i->b_bufsize;
       o->b_bcount = i->b_bcount;
       o->b_resid = i->b_resid;
       COND_SET_VALUE(o->b_addr, PTRTOUINT64(i->b_data), allowaddr);
       o->b_blkno = i->b_blkno;
       o->b_rawblkno = i->b_rawblkno;
       COND_SET_VALUE(o->b_iodone, PTRTOUINT64(i->b_iodone), allowaddr);
       COND_SET_VALUE(o->b_proc, PTRTOUINT64(i->b_proc), allowaddr);
       COND_SET_VALUE(o->b_vp, PTRTOUINT64(i->b_vp), allowaddr);
       COND_SET_VALUE(o->b_saveaddr, PTRTOUINT64(i->b_saveaddr), allowaddr);
       o->b_lblkno = i->b_lblkno;
}

static int
sysctl_dobuf(SYSCTLFN_ARGS)
{
       buf_t *bp;
       struct buf_sysctl bs;
       struct bqueue *bq;
       char *dp;
       u_int i, op, arg;
       size_t len, needed, elem_size, out_size;
       int error, elem_count, retries;

       if (namelen == 1 && name[0] == CTL_QUERY)
               return sysctl_query(SYSCTLFN_CALL(rnode));

       if (namelen != 4)
               return SET_ERROR(EINVAL);

       retries = 100;
retry:
       dp = oldp;
       len = (oldp != NULL) ? *oldlenp : 0;
       op = name[0];
       arg = name[1];
       elem_size = name[2];
       elem_count = name[3];
       out_size = MIN(sizeof(bs), elem_size);

       /*
        * at the moment, these are just "placeholders" to make the
        * API for retrieving kern.buf data more extensible in the
        * future.
        *
        * XXX kern.buf currently has "netbsd32" issues.  hopefully
        * these will be resolved at a later point.
        */
       if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
           elem_size < 1 || elem_count < 0)
               return SET_ERROR(EINVAL);

       if (oldp == NULL) {
               /* count only, don't run through the buffer queues */
               needed = pool_cache_nget(buf_cache) -
                   pool_cache_nput(buf_cache);
               *oldlenp = (needed + KERN_BUFSLOP) * elem_size;

               return 0;
       }

       error = 0;
       needed = 0;
       sysctl_unlock();
       mutex_enter(&bufcache_lock);
       for (i = 0; i < BQUEUES; i++) {
               bq = &bufqueues[i];
               TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
                       bq->bq_marker = bp;
                       if (len >= elem_size && elem_count > 0) {
                               sysctl_fillbuf(bp, &bs);
                               mutex_exit(&bufcache_lock);
                               error = copyout(&bs, dp, out_size);
                               mutex_enter(&bufcache_lock);
                               if (error)
                                       break;
                               if (bq->bq_marker != bp) {
                                       /*
                                        * This sysctl node is only for
                                        * statistics.  Retry; if the
                                        * queue keeps changing, then
                                        * bail out.
                                        */
                                       if (retries-- == 0) {
                                               error = SET_ERROR(EAGAIN);
                                               break;
                                       }
                                       mutex_exit(&bufcache_lock);
                                       sysctl_relock();
                                       goto retry;
                               }
                               dp += elem_size;
                               len -= elem_size;
                       }
                       needed += elem_size;
                       if (elem_count > 0 && elem_count != INT_MAX)
                               elem_count--;
               }
               if (error != 0)
                       break;
       }
       mutex_exit(&bufcache_lock);
       sysctl_relock();

       *oldlenp = needed;

       return error;
}

static int
sysctl_bufvm_update(SYSCTLFN_ARGS)
{
       int error, rv;
       struct sysctlnode node;
       unsigned int temp_bufcache;
       unsigned long temp_water;

       /* Take a copy of the supplied node and its data */
       node = *rnode;
       if (node.sysctl_data == &bufcache) {
               node.sysctl_data = &temp_bufcache;
               temp_bufcache = *(unsigned int *)rnode->sysctl_data;
       } else {
               node.sysctl_data = &temp_water;
               temp_water = *(unsigned long *)rnode->sysctl_data;
       }

       /* Update the copy */
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       if (rnode->sysctl_data == &bufcache) {
               if (temp_bufcache > 100)
                       return SET_ERROR(EINVAL);
               bufcache = temp_bufcache;
               buf_setwm();
       } else if (rnode->sysctl_data == &bufmem_lowater) {
               if (bufmem_hiwater - temp_water < 16)
                       return SET_ERROR(EINVAL);
               bufmem_lowater = temp_water;
       } else if (rnode->sysctl_data == &bufmem_hiwater) {
               if (temp_water - bufmem_lowater < 16)
                       return SET_ERROR(EINVAL);
               bufmem_hiwater = temp_water;
       } else
               return SET_ERROR(EINVAL);

       /* Drain until below new high water mark */
       sysctl_unlock();
       mutex_enter(&bufcache_lock);
       while (bufmem > bufmem_hiwater) {
               rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
               if (rv <= 0)
                       break;
       }
       mutex_exit(&bufcache_lock);
       sysctl_relock();

       return 0;
}

static struct sysctllog *vfsbio_sysctllog;

static void
sysctl_kern_buf_setup(void)
{

       sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
           CTLFLAG_PERMANENT,
           CTLTYPE_NODE, "buf",
           SYSCTL_DESCR("Kernel buffer cache information"),
           sysctl_dobuf, 0, NULL, 0,
           CTL_KERN, KERN_BUF, CTL_EOL);
}

static void
sysctl_vm_buf_setup(void)
{

       sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
           CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
           CTLTYPE_INT, "bufcache",
           SYSCTL_DESCR("Percentage of physical memory to use for "
               "buffer cache"),
           sysctl_bufvm_update, 0, &bufcache, 0,
           CTL_VM, CTL_CREATE, CTL_EOL);
       sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
           CTLFLAG_PERMANENT|CTLFLAG_READONLY,
           CTLTYPE_LONG, "bufmem",
           SYSCTL_DESCR("Amount of kernel memory used by buffer cache"),
           NULL, 0, &bufmem, 0,
           CTL_VM, CTL_CREATE, CTL_EOL);
       sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
           CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
           CTLTYPE_LONG, "bufmem_lowater",
           SYSCTL_DESCR("Minimum amount of kernel memory to reserve for "
               "buffer cache"),
           sysctl_bufvm_update, 0, &bufmem_lowater, 0,
           CTL_VM, CTL_CREATE, CTL_EOL);
       sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
           CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
           CTLTYPE_LONG, "bufmem_hiwater",
           SYSCTL_DESCR("Maximum amount of kernel memory to use for "
               "buffer cache"),
           sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
           CTL_VM, CTL_CREATE, CTL_EOL);
}

static int
bufhash_stats(struct hashstat_sysctl *hs, bool fill)
{
       buf_t *bp;
       uint64_t chain;

       strlcpy(hs->hash_name, "bufhash", sizeof(hs->hash_name));
       strlcpy(hs->hash_desc, "buffer hash", sizeof(hs->hash_desc));
       if (!fill)
               return 0;

       hs->hash_size = bufhash + 1;

       for (size_t i = 0; i < hs->hash_size; i++) {
               chain = 0;

               mutex_enter(&bufcache_lock);
               LIST_FOREACH(bp, &bufhashtbl[i], b_hash) {
                       chain++;
               }
               mutex_exit(&bufcache_lock);

               if (chain > 0) {
                       hs->hash_used++;
                       hs->hash_items += chain;
                       if (chain > hs->hash_maxchain)
                               hs->hash_maxchain = chain;
               }
               preempt_point();
       }

       return 0;
}

#ifdef DEBUG
/*
* Print out statistics on the current allocation of the buffer pool.
* Can be enabled to print out on every ``sync'' by setting "syncprt"
* in vfs_syscalls.c using sysctl.
*/
void
vfs_bufstats(void)
{
       int i, j, count;
       buf_t *bp;
       struct bqueue *dp;
       int counts[MAXBSIZE / MIN_PAGE_SIZE + 1];
       static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };

       for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
               count = 0;
               memset(counts, 0, sizeof(counts));
               TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
                       counts[bp->b_bufsize / PAGE_SIZE]++;
                       count++;
               }
               printf("%s: total-%d", bname[i], count);
               for (j = 0; j <= MAXBSIZE / PAGE_SIZE; j++)
                       if (counts[j] != 0)
                               printf(", %d-%d", j * PAGE_SIZE, counts[j]);
               printf("\n");
       }
}
#endif /* DEBUG */

/* ------------------------------ */

buf_t *
getiobuf(struct vnode *vp, bool waitok)
{
       buf_t *bp;

       bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
       if (bp == NULL)
               return bp;

       buf_init(bp);

       if ((bp->b_vp = vp) != NULL) {
               bp->b_objlock = vp->v_interlock;
       } else {
               KASSERT(bp->b_objlock == &buffer_lock);
       }

       return bp;
}

void
putiobuf(buf_t *bp)
{

       buf_destroy(bp);
       pool_cache_put(bufio_cache, bp);
}

/*
* nestiobuf_iodone: b_iodone callback for nested buffers.
*/

void
nestiobuf_iodone(buf_t *bp)
{
       buf_t *mbp = bp->b_private;
       int error;
       int donebytes;

       KASSERT(bp->b_bcount <= bp->b_bufsize);
       KASSERT(mbp != bp);

       error = bp->b_error;
       if (bp->b_error == 0 &&
           (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
               /*
                * Not all got transferred, raise an error. We have no way to
                * propagate these conditions to mbp.
                */
               error = SET_ERROR(EIO);
       }

       donebytes = bp->b_bufsize;

       putiobuf(bp);
       nestiobuf_done(mbp, donebytes, error);
}

/*
* nestiobuf_setup: setup a "nested" buffer.
*
* => 'mbp' is a "master" buffer which is being divided into sub pieces.
* => 'bp' should be a buffer allocated by getiobuf.
* => 'offset' is a byte offset in the master buffer.
* => 'size' is a size in bytes of this nested buffer.
*/

void
nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
{
       const int b_pass = mbp->b_flags & (B_READ|B_PHYS|B_RAW|B_MEDIA_FLAGS);
       struct vnode *vp = mbp->b_vp;

       KASSERT(mbp->b_bcount >= offset + size);
       bp->b_vp = vp;
       bp->b_dev = mbp->b_dev;
       bp->b_objlock = mbp->b_objlock;
       bp->b_cflags = BC_BUSY;
       bp->b_flags = B_ASYNC | b_pass;
       bp->b_iodone = nestiobuf_iodone;
       bp->b_data = (char *)mbp->b_data + offset;
       bp->b_resid = bp->b_bcount = size;
       bp->b_bufsize = bp->b_bcount;
       bp->b_private = mbp;
       BIO_COPYPRIO(bp, mbp);
       if (BUF_ISWRITE(bp) && vp != NULL) {
               mutex_enter(vp->v_interlock);
               vp->v_numoutput++;
               mutex_exit(vp->v_interlock);
       }
}

/*
* nestiobuf_done: propagate completion to the master buffer.
*
* => 'donebytes' specifies how many bytes in the 'mbp' is completed.
* => 'error' is an errno(2) that 'donebytes' has been completed with.
*/

void
nestiobuf_done(buf_t *mbp, int donebytes, int error)
{

       if (donebytes == 0) {
               return;
       }
       mutex_enter(mbp->b_objlock);
       KASSERT(mbp->b_resid >= donebytes);
       mbp->b_resid -= donebytes;
       if (error)
               mbp->b_error = error;
       if (mbp->b_resid == 0) {
               if (mbp->b_error)
                       mbp->b_resid = mbp->b_bcount;
               mutex_exit(mbp->b_objlock);
               biodone(mbp);
       } else
               mutex_exit(mbp->b_objlock);
}

void
buf_init(buf_t *bp)
{

       cv_init(&bp->b_busy, "biolock");
       cv_init(&bp->b_done, "biowait");
       bp->b_dev = NODEV;
       bp->b_error = 0;
       bp->b_flags = 0;
       bp->b_cflags = 0;
       bp->b_oflags = 0;
       bp->b_objlock = &buffer_lock;
       bp->b_iodone = NULL;
       bp->b_dev = NODEV;
       bp->b_vnbufs.le_next = NOLIST;
       BIO_SETPRIO(bp, BPRIO_DEFAULT);
}

void
buf_destroy(buf_t *bp)
{

       cv_destroy(&bp->b_done);
       cv_destroy(&bp->b_busy);
}

int
bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
{
       int error;

       KASSERT(mutex_owned(&bufcache_lock));

       SDT_PROBE4(io, kernel, , bbusy__start,  bp, intr, timo, interlock);

       if ((bp->b_cflags & BC_BUSY) != 0) {
               if (curlwp == uvm.pagedaemon_lwp) {
                       error = SET_ERROR(EDEADLK);
                       goto out;
               }
               bp->b_cflags |= BC_WANTED;
               if (interlock != NULL)
                       mutex_exit(interlock);
               if (intr) {
                       error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
                           timo);
               } else {
                       error = cv_timedwait(&bp->b_busy, &bufcache_lock,
                           timo);
               }
               /*
                * At this point the buffer may be gone: don't touch it
                * again.  The caller needs to find it again and retry.
                */
               if (interlock != NULL)
                       mutex_enter(interlock);
               if (error == 0)
                       error = SET_ERROR(EPASSTHROUGH);
       } else {
               bp->b_cflags |= BC_BUSY;
               error = 0;
       }

out:    SDT_PROBE5(io, kernel, , bbusy__done,
           bp, intr, timo, interlock, error);
       return error;
}

/*
* Nothing outside this file should really need to know about nbuf,
* but a few things still want to read it, so give them a way to do that.
*/
u_int
buf_nbuf(void)
{

       return nbuf;
}