/*      $NetBSD: sysv_shm.c,v 1.142 2024/03/02 08:59:47 mlelstv Exp $   */

/*-
* Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center, and by Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 1994 Adam Glass and Charles M. Hannum.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by Adam Glass and Charles M.
*      Hannum.
* 4. The names of the authors may not be used to endorse or promote products
*    derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sysv_shm.c,v 1.142 2024/03/02 08:59:47 mlelstv Exp $");

#ifdef _KERNEL_OPT
#include "opt_sysv.h"
#endif

#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/shm.h>
#include <sys/mutex.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/mount.h>          /* XXX for <sys/syscallargs.h> */
#include <sys/syscallargs.h>
#include <sys/queue.h>
#include <sys/kauth.h>

#include <uvm/uvm_extern.h>
#include <uvm/uvm_object.h>

struct shmmap_entry {
       SLIST_ENTRY(shmmap_entry) next;
       vaddr_t va;
       int shmid;
};

int                     shm_nused               __cacheline_aligned;
struct shmid_ds *       shmsegs                 __read_mostly;

static kmutex_t         shm_lock                __cacheline_aligned;
static kcondvar_t *     shm_cv                  __cacheline_aligned;
static int              shm_last_free           __cacheline_aligned;
static size_t           shm_committed           __cacheline_aligned;
static int              shm_use_phys            __read_mostly;

static kcondvar_t       shm_realloc_cv;
static bool             shm_realloc_state;
static u_int            shm_realloc_disable;

struct shmmap_state {
       unsigned int nitems;
       unsigned int nrefs;
       SLIST_HEAD(, shmmap_entry) entries;
};

extern int kern_has_sysvshm;

SYSCTL_SETUP_PROTO(sysctl_ipc_shm_setup);

#ifdef SHMDEBUG
#define SHMPRINTF(a) printf a
#else
#define SHMPRINTF(a)
#endif

static int shmrealloc(int);

/*
* Find the shared memory segment permission by the index. Only used by
* compat_linux to implement SHM_STAT.
*/
int
shm_find_segment_perm_by_index(int index, struct ipc_perm *perm)
{
       struct shmid_ds *shmseg;

       mutex_enter(&shm_lock);
       if (index < 0 || index >= shminfo.shmmni) {
               mutex_exit(&shm_lock);
               return EINVAL;
       }
       shmseg = &shmsegs[index];
       memcpy(perm, &shmseg->shm_perm, sizeof(*perm));
       mutex_exit(&shm_lock);
       return 0;
}

/*
* Find the shared memory segment by the identifier.
*  => must be called with shm_lock held;
*/
static struct shmid_ds *
shm_find_segment_by_shmid(int shmid)
{
       int segnum;
       struct shmid_ds *shmseg;

       KASSERT(mutex_owned(&shm_lock));

       segnum = IPCID_TO_IX(shmid);
       if (segnum < 0 || segnum >= shminfo.shmmni)
               return NULL;
       shmseg = &shmsegs[segnum];
       if ((shmseg->shm_perm.mode & SHMSEG_ALLOCATED) == 0)
               return NULL;
       if ((shmseg->shm_perm.mode &
           (SHMSEG_REMOVED|SHMSEG_RMLINGER)) == SHMSEG_REMOVED)
               return NULL;
       if (shmseg->shm_perm._seq != IPCID_TO_SEQ(shmid))
               return NULL;

       return shmseg;
}

/*
* Free memory segment.
*  => must be called with shm_lock held;
*/
static void
shm_free_segment(int segnum)
{
       struct shmid_ds *shmseg;
       size_t size;
       bool wanted;

       KASSERT(mutex_owned(&shm_lock));

       shmseg = &shmsegs[segnum];
       SHMPRINTF(("shm freeing key 0x%lx seq 0x%x\n",
           shmseg->shm_perm._key, shmseg->shm_perm._seq));

       size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
       wanted = (shmseg->shm_perm.mode & SHMSEG_WANTED);

       shmseg->_shm_internal = NULL;
       shm_committed -= btoc(size);
       shm_nused--;
       shmseg->shm_perm.mode = SHMSEG_FREE;
       shm_last_free = segnum;
       if (wanted == true)
               cv_broadcast(&shm_cv[segnum]);
}

/*
* Delete entry from the shm map.
*  => must be called with shm_lock held;
*/
static struct uvm_object *
shm_delete_mapping(struct shmmap_state *shmmap_s,
   struct shmmap_entry *shmmap_se)
{
       struct uvm_object *uobj = NULL;
       struct shmid_ds *shmseg;
       int segnum;

       KASSERT(mutex_owned(&shm_lock));

       segnum = IPCID_TO_IX(shmmap_se->shmid);
       shmseg = &shmsegs[segnum];
       SLIST_REMOVE(&shmmap_s->entries, shmmap_se, shmmap_entry, next);
       shmmap_s->nitems--;
       shmseg->shm_dtime = time_second;
       if ((--shmseg->shm_nattch <= 0) &&
           (shmseg->shm_perm.mode & SHMSEG_REMOVED)) {
               uobj = shmseg->_shm_internal;
               shm_free_segment(segnum);
       }

       return uobj;
}

/*
* Get a non-shared shm map for that vmspace.  Note, that memory
* allocation might be performed with lock held.
*/
static struct shmmap_state *
shmmap_getprivate(struct proc *p)
{
       struct shmmap_state *oshmmap_s, *shmmap_s;
       struct shmmap_entry *oshmmap_se, *shmmap_se;

       KASSERT(mutex_owned(&shm_lock));

       /* 1. A shm map with refcnt = 1, used by ourselves, thus return */
       oshmmap_s = (struct shmmap_state *)p->p_vmspace->vm_shm;
       if (oshmmap_s && oshmmap_s->nrefs == 1)
               return oshmmap_s;

       /* 2. No shm map preset - create a fresh one */
       shmmap_s = kmem_zalloc(sizeof(struct shmmap_state), KM_SLEEP);
       shmmap_s->nrefs = 1;
       SLIST_INIT(&shmmap_s->entries);
       p->p_vmspace->vm_shm = (void *)shmmap_s;

       if (oshmmap_s == NULL)
               return shmmap_s;

       SHMPRINTF(("shmmap_getprivate: vm %p split (%d entries), was used by %d\n",
           p->p_vmspace, oshmmap_s->nitems, oshmmap_s->nrefs));

       /* 3. A shared shm map, copy to a fresh one and adjust refcounts */
       SLIST_FOREACH(oshmmap_se, &oshmmap_s->entries, next) {
               shmmap_se = kmem_alloc(sizeof(struct shmmap_entry), KM_SLEEP);
               shmmap_se->va = oshmmap_se->va;
               shmmap_se->shmid = oshmmap_se->shmid;
               SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next);
       }
       shmmap_s->nitems = oshmmap_s->nitems;
       oshmmap_s->nrefs--;

       return shmmap_s;
}

/*
* Lock/unlock the memory.
*  => must be called with shm_lock held;
*/
static int
shm_memlock(struct shmid_ds *shmseg, int shmid, int cmd)
{
       size_t size;
       int error;

       KASSERT(mutex_owned(&shm_lock));

       size = round_page(shmseg->shm_segsz);

       if (cmd == SHM_LOCK && (shmseg->shm_perm.mode & SHMSEG_WIRED) == 0) {
               /* Wire the object and map, then tag it */
               error = uvm_obj_wirepages(shmseg->_shm_internal,
                   0, size, NULL);
               if (error)
                       return EIO;
               shmseg->shm_perm.mode |= SHMSEG_WIRED;

       } else if (cmd == SHM_UNLOCK &&
           (shmseg->shm_perm.mode & SHMSEG_WIRED) != 0) {
               /* Unwire the object, then untag it */
               uvm_obj_unwirepages(shmseg->_shm_internal, 0, size);
               shmseg->shm_perm.mode &= ~SHMSEG_WIRED;
       }

       return 0;
}

/*
* Unmap shared memory.
*/
int
sys_shmdt(struct lwp *l, const struct sys_shmdt_args *uap, register_t *retval)
{
       /* {
               syscallarg(const void *) shmaddr;
       } */
       struct proc *p = l->l_proc;
       struct shmmap_state *shmmap_s1, *shmmap_s;
       struct shmmap_entry *shmmap_se;
       struct uvm_object *uobj;
       struct shmid_ds *shmseg;
       size_t size;

       mutex_enter(&shm_lock);
       /* In case of reallocation, we will wait for completion */
       while (__predict_false(shm_realloc_state))
               cv_wait(&shm_realloc_cv, &shm_lock);

       shmmap_s1 = (struct shmmap_state *)p->p_vmspace->vm_shm;
       if (shmmap_s1 == NULL) {
               mutex_exit(&shm_lock);
               return EINVAL;
       }

       /* Find the map entry */
       SLIST_FOREACH(shmmap_se, &shmmap_s1->entries, next)
               if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr))
                       break;
       if (shmmap_se == NULL) {
               mutex_exit(&shm_lock);
               return EINVAL;
       }

       shmmap_s = shmmap_getprivate(p);
       if (shmmap_s != shmmap_s1) {
               /* Map has been copied, lookup entry in new map */
               SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
                       if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr))
                               break;
               if (shmmap_se == NULL) {
                       mutex_exit(&shm_lock);
                       return EINVAL;
               }
       }

       SHMPRINTF(("shmdt: vm %p: remove %d @%lx\n",
           p->p_vmspace, shmmap_se->shmid, shmmap_se->va));

       /* Delete the entry from shm map */
       uobj = shm_delete_mapping(shmmap_s, shmmap_se);
       shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)];
       size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
       mutex_exit(&shm_lock);

       uvm_deallocate(&p->p_vmspace->vm_map, shmmap_se->va, size);
       if (uobj != NULL) {
               uao_detach(uobj);
       }
       kmem_free(shmmap_se, sizeof(struct shmmap_entry));

       return 0;
}

/*
* Map shared memory.
*/
int
sys_shmat(struct lwp *l, const struct sys_shmat_args *uap, register_t *retval)
{
       /* {
               syscallarg(int) shmid;
               syscallarg(const void *) shmaddr;
               syscallarg(int) shmflg;
       } */
       int error, flags = 0;
       struct proc *p = l->l_proc;
       kauth_cred_t cred = l->l_cred;
       struct shmid_ds *shmseg;
       struct shmmap_state *shmmap_s;
       struct shmmap_entry *shmmap_se;
       struct uvm_object *uobj;
       struct vmspace *vm;
       vaddr_t attach_va;
       vm_prot_t prot;
       vsize_t size;

       /* Allocate a new map entry and set it */
       shmmap_se = kmem_alloc(sizeof(struct shmmap_entry), KM_SLEEP);
       shmmap_se->shmid = SCARG(uap, shmid);

       mutex_enter(&shm_lock);
       /* In case of reallocation, we will wait for completion */
       while (__predict_false(shm_realloc_state))
               cv_wait(&shm_realloc_cv, &shm_lock);

       shmseg = shm_find_segment_by_shmid(SCARG(uap, shmid));
       if (shmseg == NULL) {
               error = EINVAL;
               goto err;
       }
       error = ipcperm(cred, &shmseg->shm_perm,
           (SCARG(uap, shmflg) & SHM_RDONLY) ? IPC_R : IPC_R|IPC_W);
       if (error)
               goto err;

       vm = p->p_vmspace;
       shmmap_s = (struct shmmap_state *)vm->vm_shm;
       if (shmmap_s && shmmap_s->nitems >= shminfo.shmseg) {
               error = EMFILE;
               goto err;
       }

       size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
       prot = VM_PROT_READ;
       if ((SCARG(uap, shmflg) & SHM_RDONLY) == 0)
               prot |= VM_PROT_WRITE;
       if (SCARG(uap, shmaddr)) {
               flags |= UVM_FLAG_FIXED;
               if (SCARG(uap, shmflg) & SHM_RND)
                       attach_va =
                           (vaddr_t)SCARG(uap, shmaddr) & ~(SHMLBA-1);
               else if (((vaddr_t)SCARG(uap, shmaddr) & (SHMLBA-1)) == 0)
                       attach_va = (vaddr_t)SCARG(uap, shmaddr);
               else {
                       error = EINVAL;
                       goto err;
               }
       } else {
               /* This is just a hint to uvm_map() about where to put it. */
               attach_va = p->p_emul->e_vm_default_addr(p,
                   (vaddr_t)vm->vm_daddr, size,
                   p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
       }

       /*
        * Create a map entry, add it to the list and increase the counters.
        */
       shmmap_s = shmmap_getprivate(p);
       SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next);
       shmmap_s->nitems++;
       shmseg->shm_lpid = p->p_pid;
       shmseg->shm_nattch++;

       /*
        * Map the segment into the address space.
        */
       uobj = shmseg->_shm_internal;
       uao_reference(uobj);
       error = uvm_map(&vm->vm_map, &attach_va, size, uobj, 0, 0,
           UVM_MAPFLAG(prot, prot, UVM_INH_SHARE, UVM_ADV_RANDOM, flags));
       if (error)
               goto err_detach;

       /* Set the new address, and update the time */
       shmmap_se->va = attach_va;
       shmseg->shm_atime = time_second;
       retval[0] = attach_va;
       SHMPRINTF(("shmat: vm %p: add %d @%lx\n",
           p->p_vmspace, shmmap_se->shmid, attach_va));
err:
       mutex_exit(&shm_lock);
       if (error && shmmap_se) {
               kmem_free(shmmap_se, sizeof(struct shmmap_entry));
       }
       return error;

err_detach:
       uao_detach(uobj);
       uobj = shm_delete_mapping(shmmap_s, shmmap_se);
       mutex_exit(&shm_lock);
       if (uobj != NULL) {
               uao_detach(uobj);
       }
       kmem_free(shmmap_se, sizeof(struct shmmap_entry));
       return error;
}

/*
* Shared memory control operations.
*/
int
sys___shmctl50(struct lwp *l, const struct sys___shmctl50_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(int) shmid;
               syscallarg(int) cmd;
               syscallarg(struct shmid_ds *) buf;
       } */
       struct shmid_ds shmbuf;
       int cmd, error;

       cmd = SCARG(uap, cmd);
       if (cmd == IPC_SET) {
               error = copyin(SCARG(uap, buf), &shmbuf, sizeof(shmbuf));
               if (error)
                       return error;
       }

       error = shmctl1(l, SCARG(uap, shmid), cmd,
           (cmd == IPC_SET || cmd == IPC_STAT) ? &shmbuf : NULL);

       if (error == 0 && cmd == IPC_STAT)
               error = copyout(&shmbuf, SCARG(uap, buf), sizeof(shmbuf));

       return error;
}

int
shmctl1(struct lwp *l, int shmid, int cmd, struct shmid_ds *shmbuf)
{
       struct uvm_object *uobj = NULL;
       kauth_cred_t cred = l->l_cred;
       struct shmid_ds *shmseg;
       int error = 0;

       mutex_enter(&shm_lock);
       /* In case of reallocation, we will wait for completion */
       while (__predict_false(shm_realloc_state))
               cv_wait(&shm_realloc_cv, &shm_lock);

       shmseg = shm_find_segment_by_shmid(shmid);
       if (shmseg == NULL) {
               mutex_exit(&shm_lock);
               return EINVAL;
       }

       switch (cmd) {
       case IPC_STAT:
               if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_R)) != 0)
                       break;
               memset(shmbuf, 0, sizeof *shmbuf);
               shmbuf->shm_perm = shmseg->shm_perm;
               shmbuf->shm_perm.mode &= 0777;
               shmbuf->shm_segsz = shmseg->shm_segsz;
               shmbuf->shm_lpid = shmseg->shm_lpid;
               shmbuf->shm_cpid = shmseg->shm_cpid;
               shmbuf->shm_nattch = shmseg->shm_nattch;
               shmbuf->shm_atime = shmseg->shm_atime;
               shmbuf->shm_dtime = shmseg->shm_dtime;
               shmbuf->shm_ctime = shmseg->shm_ctime;
               break;
       case IPC_SET:
               if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0)
                       break;
               shmseg->shm_perm.uid = shmbuf->shm_perm.uid;
               shmseg->shm_perm.gid = shmbuf->shm_perm.gid;
               shmseg->shm_perm.mode =
                   (shmseg->shm_perm.mode & ~ACCESSPERMS) |
                   (shmbuf->shm_perm.mode & ACCESSPERMS);
               shmseg->shm_ctime = time_second;
               break;
       case IPC_RMID:
               if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0)
                       break;
               shmseg->shm_perm._key = IPC_PRIVATE;
               shmseg->shm_perm.mode |= SHMSEG_REMOVED;
               if (shmseg->shm_nattch <= 0) {
                       uobj = shmseg->_shm_internal;
                       shm_free_segment(IPCID_TO_IX(shmid));
               }
               break;
       case SHM_LOCK:
       case SHM_UNLOCK:
               if ((error = kauth_authorize_system(cred,
                   KAUTH_SYSTEM_SYSVIPC,
                   (cmd == SHM_LOCK) ? KAUTH_REQ_SYSTEM_SYSVIPC_SHM_LOCK :
                   KAUTH_REQ_SYSTEM_SYSVIPC_SHM_UNLOCK, NULL, NULL, NULL)) != 0)
                       break;
               error = shm_memlock(shmseg, shmid, cmd);
               break;
       default:
               error = EINVAL;
       }

       mutex_exit(&shm_lock);
       if (uobj != NULL)
               uao_detach(uobj);
       return error;
}

/*
* Try to take an already existing segment.
*  => must be called with shm_lock held;
*  => called from one place, thus, inline;
*/
static inline int
shmget_existing(struct lwp *l, const struct sys_shmget_args *uap, int mode,
   register_t *retval)
{
       struct shmid_ds *shmseg;
       kauth_cred_t cred = l->l_cred;
       int segnum, error;
again:
       KASSERT(mutex_owned(&shm_lock));

       /* Find segment by key */
       for (segnum = 0; segnum < shminfo.shmmni; segnum++)
               if ((shmsegs[segnum].shm_perm.mode & SHMSEG_ALLOCATED) &&
                   shmsegs[segnum].shm_perm._key == SCARG(uap, key))
                       break;
       if (segnum == shminfo.shmmni) {
               /* Not found */
               return -1;
       }

       shmseg = &shmsegs[segnum];
       if (shmseg->shm_perm.mode & SHMSEG_REMOVED) {
               /*
                * This segment is in the process of being allocated.  Wait
                * until it's done, and look the key up again (in case the
                * allocation failed or it was freed).
                */
               shmseg->shm_perm.mode |= SHMSEG_WANTED;
               error = cv_wait_sig(&shm_cv[segnum], &shm_lock);
               if (error)
                       return error;
               goto again;
       }

       /*
        * First check the flags, to generate a useful error when a
        * segment already exists.
        */
       if ((SCARG(uap, shmflg) & (IPC_CREAT | IPC_EXCL)) ==
           (IPC_CREAT | IPC_EXCL))
               return EEXIST;

       /* Check the permission and segment size. */
       error = ipcperm(cred, &shmseg->shm_perm, mode);
       if (error)
               return error;
       if (SCARG(uap, size) && SCARG(uap, size) > shmseg->shm_segsz)
               return EINVAL;

       *retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);
       return 0;
}

int
sys_shmget(struct lwp *l, const struct sys_shmget_args *uap, register_t *retval)
{
       /* {
               syscallarg(key_t) key;
               syscallarg(size_t) size;
               syscallarg(int) shmflg;
       } */
       struct shmid_ds *shmseg;
       kauth_cred_t cred = l->l_cred;
       key_t key = SCARG(uap, key);
       size_t size;
       int error, mode, segnum;
       bool lockmem;

       mode = SCARG(uap, shmflg) & ACCESSPERMS;
       if (SCARG(uap, shmflg) & _SHM_RMLINGER)
               mode |= SHMSEG_RMLINGER;

       SHMPRINTF(("shmget: key 0x%lx size 0x%zx shmflg 0x%x mode 0x%x\n",
           SCARG(uap, key), SCARG(uap, size), SCARG(uap, shmflg), mode));

       mutex_enter(&shm_lock);
       /* In case of reallocation, we will wait for completion */
       while (__predict_false(shm_realloc_state))
               cv_wait(&shm_realloc_cv, &shm_lock);

       if (key != IPC_PRIVATE) {
               error = shmget_existing(l, uap, mode, retval);
               if (error != -1) {
                       mutex_exit(&shm_lock);
                       return error;
               }
               if ((SCARG(uap, shmflg) & IPC_CREAT) == 0) {
                       mutex_exit(&shm_lock);
                       return ENOENT;
               }
       }
       error = 0;

       /*
        * Check the for the limits.
        */
       size = SCARG(uap, size);
       if (size < shminfo.shmmin || size > shminfo.shmmax) {
               mutex_exit(&shm_lock);
               return EINVAL;
       }
       if (shm_nused >= shminfo.shmmni) {
               mutex_exit(&shm_lock);
               return ENOSPC;
       }
       size = round_page(size);
       if (shm_committed + btoc(size) > shminfo.shmall) {
               mutex_exit(&shm_lock);
               return ENOMEM;
       }

       /* Find the first available segment */
       if (shm_last_free < 0) {
               for (segnum = 0; segnum < shminfo.shmmni; segnum++)
                       if (shmsegs[segnum].shm_perm.mode & SHMSEG_FREE)
                               break;
               KASSERT(segnum < shminfo.shmmni);
       } else {
               segnum = shm_last_free;
               shm_last_free = -1;
       }

       /*
        * Initialize the segment.
        * We will drop the lock while allocating the memory, thus mark the
        * segment present, but removed, that no other thread could take it.
        * Also, disable reallocation, while lock is dropped.
        */
       shmseg = &shmsegs[segnum];
       shmseg->shm_perm.mode = SHMSEG_ALLOCATED | SHMSEG_REMOVED;
       shm_committed += btoc(size);
       shm_nused++;
       lockmem = shm_use_phys;
       shm_realloc_disable++;
       mutex_exit(&shm_lock);

       /* Allocate the memory object and lock it if needed */
       shmseg->_shm_internal = uao_create(size, 0);
       if (lockmem) {
               /* Wire the pages and tag it */
               error = uvm_obj_wirepages(shmseg->_shm_internal, 0, size, NULL);
               if (error) {
                       uao_detach(shmseg->_shm_internal);
                       mutex_enter(&shm_lock);
                       shm_free_segment(segnum);
                       shm_realloc_disable--;
                       mutex_exit(&shm_lock);
                       return error;
               }
       }

       /*
        * Please note, while segment is marked, there are no need to hold the
        * lock, while setting it (except shm_perm.mode).
        */
       shmseg->shm_perm._key = SCARG(uap, key);
       shmseg->shm_perm._seq = (shmseg->shm_perm._seq + 1) & 0x7fff;
       *retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);

       shmseg->shm_perm.cuid = shmseg->shm_perm.uid = kauth_cred_geteuid(cred);
       shmseg->shm_perm.cgid = shmseg->shm_perm.gid = kauth_cred_getegid(cred);
       shmseg->shm_segsz = SCARG(uap, size);
       shmseg->shm_cpid = l->l_proc->p_pid;
       shmseg->shm_lpid = shmseg->shm_nattch = 0;
       shmseg->shm_atime = shmseg->shm_dtime = 0;
       shmseg->shm_ctime = time_second;

       /*
        * Segment is initialized.
        * Enter the lock, mark as allocated, and notify waiters (if any).
        * Also, unmark the state of reallocation.
        */
       mutex_enter(&shm_lock);
       shmseg->shm_perm.mode = (shmseg->shm_perm.mode & SHMSEG_WANTED) |
           (mode & (ACCESSPERMS | SHMSEG_RMLINGER)) |
           SHMSEG_ALLOCATED | (lockmem ? SHMSEG_WIRED : 0);
       if (shmseg->shm_perm.mode & SHMSEG_WANTED) {
               shmseg->shm_perm.mode &= ~SHMSEG_WANTED;
               cv_broadcast(&shm_cv[segnum]);
       }
       shm_realloc_disable--;
       cv_broadcast(&shm_realloc_cv);
       mutex_exit(&shm_lock);

       return error;
}

void
shmfork(struct vmspace *vm1, struct vmspace *vm2)
{
       struct shmmap_state *shmmap_s;
       struct shmmap_entry *shmmap_se;

       SHMPRINTF(("shmfork %p->%p\n", vm1, vm2));
       mutex_enter(&shm_lock);
       vm2->vm_shm = vm1->vm_shm;
       if (vm1->vm_shm) {
               shmmap_s = (struct shmmap_state *)vm1->vm_shm;
               SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
                       shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch++;
               shmmap_s->nrefs++;
       }
       mutex_exit(&shm_lock);
}

void
shmexit(struct vmspace *vm)
{
       struct shmmap_state *shmmap_s;
       struct shmmap_entry *shmmap_se;

       mutex_enter(&shm_lock);
       shmmap_s = (struct shmmap_state *)vm->vm_shm;
       if (shmmap_s == NULL) {
               mutex_exit(&shm_lock);
               return;
       }
       vm->vm_shm = NULL;

       if (--shmmap_s->nrefs > 0) {
               SHMPRINTF(("shmexit: vm %p drop ref (%d entries), refs = %d\n",
                   vm, shmmap_s->nitems, shmmap_s->nrefs));
               SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) {
                       shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch--;
               }
               mutex_exit(&shm_lock);
               return;
       }

       SHMPRINTF(("shmexit: vm %p cleanup (%d entries)\n", vm, shmmap_s->nitems));
       if (shmmap_s->nitems == 0) {
               mutex_exit(&shm_lock);
               kmem_free(shmmap_s, sizeof(struct shmmap_state));
               return;
       }

       /*
        * Delete the entry from shm map.
        */
       for (;;) {
               struct shmid_ds *shmseg;
               struct uvm_object *uobj;
               size_t sz;

               shmmap_se = SLIST_FIRST(&shmmap_s->entries);
               KASSERT(shmmap_se != NULL);

               shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)];
               sz = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
               /* shm_delete_mapping() removes from the list. */
               uobj = shm_delete_mapping(shmmap_s, shmmap_se);
               mutex_exit(&shm_lock);

               uvm_deallocate(&vm->vm_map, shmmap_se->va, sz);
               if (uobj != NULL) {
                       uao_detach(uobj);
               }
               kmem_free(shmmap_se, sizeof(struct shmmap_entry));

               if (SLIST_EMPTY(&shmmap_s->entries)) {
                       break;
               }
               mutex_enter(&shm_lock);
               KASSERT(!SLIST_EMPTY(&shmmap_s->entries));
       }
       kmem_free(shmmap_s, sizeof(struct shmmap_state));
}

static int
shmrealloc(int newshmni)
{
       vaddr_t v;
       struct shmid_ds *oldshmsegs, *newshmsegs;
       kcondvar_t *newshm_cv, *oldshm_cv;
       size_t sz;
       int i, lsegid, oldshmni;

       if (newshmni < 1)
               return EINVAL;

       /* Allocate new memory area */
       sz = ALIGN(newshmni * sizeof(struct shmid_ds)) +
           ALIGN(newshmni * sizeof(kcondvar_t));
       sz = round_page(sz);
       v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
       if (v == 0)
               return ENOMEM;

       mutex_enter(&shm_lock);
       while (shm_realloc_state || shm_realloc_disable)
               cv_wait(&shm_realloc_cv, &shm_lock);

       /*
        * Get the number of last segment.  Fail we are trying to
        * reallocate less memory than we use.
        */
       lsegid = 0;
       for (i = 0; i < shminfo.shmmni; i++)
               if ((shmsegs[i].shm_perm.mode & SHMSEG_FREE) == 0)
                       lsegid = i;
       if (lsegid >= newshmni) {
               mutex_exit(&shm_lock);
               uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
               return EBUSY;
       }
       shm_realloc_state = true;

       newshmsegs = (void *)v;
       newshm_cv = (void *)((uintptr_t)newshmsegs +
           ALIGN(newshmni * sizeof(struct shmid_ds)));

       /* Copy all memory to the new area */
       for (i = 0; i < shm_nused; i++) {
               cv_init(&newshm_cv[i], "shmwait");
               (void)memcpy(&newshmsegs[i], &shmsegs[i],
                   sizeof(newshmsegs[0]));
       }

       /* Mark as free all new segments, if there is any */
       for (; i < newshmni; i++) {
               cv_init(&newshm_cv[i], "shmwait");
               newshmsegs[i].shm_perm.mode = SHMSEG_FREE;
               newshmsegs[i].shm_perm._seq = 0;
       }

       oldshmsegs = shmsegs;
       oldshmni = shminfo.shmmni;
       shminfo.shmmni = newshmni;
       shmsegs = newshmsegs;
       shm_cv = newshm_cv;

       /* Reallocation completed - notify all waiters, if any */
       shm_realloc_state = false;
       cv_broadcast(&shm_realloc_cv);
       mutex_exit(&shm_lock);

       /* Release now unused resources. */
       oldshm_cv = (void *)((uintptr_t)oldshmsegs +
           ALIGN(oldshmni * sizeof(struct shmid_ds)));
       for (i = 0; i < oldshmni; i++)
               cv_destroy(&oldshm_cv[i]);

       sz = ALIGN(oldshmni * sizeof(struct shmid_ds)) +
           ALIGN(oldshmni * sizeof(kcondvar_t));
       sz = round_page(sz);
       uvm_km_free(kernel_map, (vaddr_t)oldshmsegs, sz, UVM_KMF_WIRED);

       return 0;
}

int
shminit(void)
{
       vaddr_t v;
       size_t sz;
       int i;

       mutex_init(&shm_lock, MUTEX_DEFAULT, IPL_NONE);
       cv_init(&shm_realloc_cv, "shmrealc");

       /* Allocate the wired memory for our structures */
       sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) +
           ALIGN(shminfo.shmmni * sizeof(kcondvar_t));
       sz = round_page(sz);
       v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
       if (v == 0) {
               printf("sysv_shm: cannot allocate memory");
               return ENOMEM;
       }
       shmsegs = (void *)v;
       shm_cv = (void *)((uintptr_t)shmsegs +
           ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)));

       if (shminfo.shmmax == 0)
               shminfo.shmall = uimax(physmem / 4, 1024);
       else
               shminfo.shmall = shminfo.shmmax / PAGE_SIZE;
       shminfo.shmmax = (uint64_t)shminfo.shmall * PAGE_SIZE;

       for (i = 0; i < shminfo.shmmni; i++) {
               cv_init(&shm_cv[i], "shmwait");
               shmsegs[i].shm_perm.mode = SHMSEG_FREE;
               shmsegs[i].shm_perm._seq = 0;
       }
       shm_last_free = 0;
       shm_nused = 0;
       shm_committed = 0;
       shm_realloc_disable = 0;
       shm_realloc_state = false;

       kern_has_sysvshm = 1;

       /* Load the callback function pointers for the uvm subsystem */
       uvm_shmexit = shmexit;
       uvm_shmfork = shmfork;

       return 0;
}

int
shmfini(void)
{
       size_t sz;
       int i;
       vaddr_t v = (vaddr_t)shmsegs;

       mutex_enter(&shm_lock);
       if (shm_nused) {
               mutex_exit(&shm_lock);
               return 1;
       }

       /* Clear the callback function pointers for the uvm subsystem */
       uvm_shmexit = NULL;
       uvm_shmfork = NULL;

       /* Destroy all condvars */
       for (i = 0; i < shminfo.shmmni; i++)
               cv_destroy(&shm_cv[i]);
       cv_destroy(&shm_realloc_cv);

       /* Free the allocated/wired memory */
       sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) +
           ALIGN(shminfo.shmmni * sizeof(kcondvar_t));
       sz = round_page(sz);
       uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);

       /* Release and destroy our mutex */
       mutex_exit(&shm_lock);
       mutex_destroy(&shm_lock);

       kern_has_sysvshm = 0;

       return 0;
}

static int
sysctl_ipc_shmmni(SYSCTLFN_ARGS)
{
       int newsize, error;
       struct sysctlnode node;
       node = *rnode;
       node.sysctl_data = &newsize;

       newsize = shminfo.shmmni;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       sysctl_unlock();
       error = shmrealloc(newsize);
       sysctl_relock();
       return error;
}

static int
sysctl_ipc_shmmaxpgs(SYSCTLFN_ARGS)
{
       uint32_t newsize;
       int error;
       struct sysctlnode node;
       node = *rnode;
       node.sysctl_data = &newsize;

       newsize = shminfo.shmall;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       if (newsize < 1)
               return EINVAL;

       shminfo.shmall = newsize;
       shminfo.shmmax = (uint64_t)shminfo.shmall * PAGE_SIZE;

       return 0;
}

static int
sysctl_ipc_shmmax(SYSCTLFN_ARGS)
{
       uint64_t newsize;
       int error;
       struct sysctlnode node;
       node = *rnode;
       node.sysctl_data = &newsize;

       newsize = shminfo.shmmax;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       if (newsize < PAGE_SIZE)
               return EINVAL;

       shminfo.shmmax = round_page(newsize);
       shminfo.shmall = shminfo.shmmax / PAGE_SIZE;

       return 0;
}

SYSCTL_SETUP(sysctl_ipc_shm_setup, "sysctl kern.ipc subtree setup")
{

       sysctl_createv(clog, 0, NULL, NULL,
               CTLFLAG_PERMANENT,
               CTLTYPE_NODE, "ipc",
               SYSCTL_DESCR("SysV IPC options"),
               NULL, 0, NULL, 0,
               CTL_KERN, KERN_SYSVIPC, CTL_EOL);
       sysctl_createv(clog, 0, NULL, NULL,
               CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
               CTLTYPE_QUAD, "shmmax",
               SYSCTL_DESCR("Max shared memory segment size in bytes"),
               sysctl_ipc_shmmax, 0, &shminfo.shmmax, 0,
               CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAX, CTL_EOL);
       sysctl_createv(clog, 0, NULL, NULL,
               CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
               CTLTYPE_INT, "shmmni",
               SYSCTL_DESCR("Max number of shared memory identifiers"),
               sysctl_ipc_shmmni, 0, &shminfo.shmmni, 0,
               CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMNI, CTL_EOL);
       sysctl_createv(clog, 0, NULL, NULL,
               CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
               CTLTYPE_INT, "shmseg",
               SYSCTL_DESCR("Max shared memory segments per process"),
               NULL, 0, &shminfo.shmseg, 0,
               CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMSEG, CTL_EOL);
       sysctl_createv(clog, 0, NULL, NULL,
               CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
               CTLTYPE_INT, "shmmaxpgs",
               SYSCTL_DESCR("Max amount of shared memory in pages"),
               sysctl_ipc_shmmaxpgs, 0, &shminfo.shmall, 0,
               CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAXPGS, CTL_EOL);
       sysctl_createv(clog, 0, NULL, NULL,
               CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
               CTLTYPE_INT, "shm_use_phys",
               SYSCTL_DESCR("Enable/disable locking of shared memory in "
                   "physical memory"), NULL, 0, &shm_use_phys, 0,
               CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMUSEPHYS, CTL_EOL);
}