/*      $NetBSD: subr_thmap.c,v 1.15 2023/10/17 11:57:20 riastradh Exp $        */

/*-
* Copyright (c) 2018 Mindaugas Rasiukevicius <rmind at noxt eu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Upstream: https://github.com/rmind/thmap/
*/

/*
* Concurrent trie-hash map.
*
* The data structure is conceptually a radix trie on hashed keys.
* Keys are hashed using a 32-bit function.  The root level is a special
* case: it is managed using the compare-and-swap (CAS) atomic operation
* and has a fanout of 64.  The subsequent levels are constructed using
* intermediate nodes with a fanout of 16 (using 4 bits).  As more levels
* are created, more blocks of the 32-bit hash value might be generated
* by incrementing the seed parameter of the hash function.
*
* Concurrency
*
* - READERS: Descending is simply walking through the slot values of
*   the intermediate nodes.  It is lock-free as there is no intermediate
*   state: the slot is either empty or has a pointer to the child node.
*   The main assumptions here are the following:
*
*   i) modifications must preserve consistency with the respect to the
*   readers i.e. the readers can only see the valid node values;
*
*   ii) any invalid view must "fail" the reads, e.g. by making them
*   re-try from the root; this is a case for deletions and is achieved
*   using the NODE_DELETED flag.
*
*   iii) the node destruction must be synchronized with the readers,
*   e.g. by using the Epoch-based reclamation or other techniques.
*
* - WRITERS AND LOCKING: Each intermediate node has a spin-lock (which
*   is implemented using the NODE_LOCKED bit) -- it provides mutual
*   exclusion amongst concurrent writers.  The lock order for the nodes
*   is "bottom-up" i.e. they are locked as we ascend the trie.  A key
*   constraint here is that parent pointer never changes.
*
* - DELETES: In addition to writer's locking, the deletion keeps the
*   intermediate nodes in a valid state and sets the NODE_DELETED flag,
*   to indicate that the readers must re-start the walk from the root.
*   As the levels are collapsed, NODE_DELETED gets propagated up-tree.
*   The leaf nodes just stay as-is until they are reclaimed.
*
* - ROOT LEVEL: The root level is a special case, as it is implemented
*   as an array (rather than intermediate node).  The root-level slot can
*   only be set using CAS and it can only be set to a valid intermediate
*   node.  The root-level slot can only be cleared when the node it points
*   at becomes empty, is locked and marked as NODE_DELETED (this causes
*   the insert/delete operations to re-try until the slot is set to NULL).
*
* References:
*
*      W. Litwin, 1981, Trie Hashing.
*      Proceedings of the 1981 ACM SIGMOD, p. 19-29
*      https://dl.acm.org/citation.cfm?id=582322
*
*      P. L. Lehman and S. B. Yao.
*      Efficient locking for concurrent operations on B-trees.
*      ACM TODS, 6(4):650-670, 1981
*      https://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf
*/

#ifdef _KERNEL
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/thmap.h>
#include <sys/kmem.h>
#include <sys/lock.h>
#include <sys/atomic.h>
#include <sys/hash.h>
#include <sys/cprng.h>
#define THMAP_RCSID(a) __KERNEL_RCSID(0, a)
#else
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <stddef.h>
#include <inttypes.h>
#include <string.h>
#include <limits.h>
#define THMAP_RCSID(a) __RCSID(a)

#include "thmap.h"
#include "utils.h"
#endif

THMAP_RCSID("$NetBSD: subr_thmap.c,v 1.15 2023/10/17 11:57:20 riastradh Exp $");

#include <crypto/blake2/blake2s.h>

/*
* NetBSD kernel wrappers
*/
#ifdef _KERNEL
#define ASSERT KASSERT
#define atomic_thread_fence(x) membar_release() /* only used for release order */
#define atomic_compare_exchange_weak_explicit_32(p, e, n, m1, m2) \
   (atomic_cas_32((p), *(e), (n)) == *(e))
#define atomic_compare_exchange_weak_explicit_ptr(p, e, n, m1, m2) \
   (atomic_cas_ptr((p), *(void **)(e), (void *)(n)) == *(void **)(e))
#define atomic_exchange_explicit(o, n, m1) atomic_swap_ptr((o), (n))
#define murmurhash3 murmurhash2
#endif

/*
* The root level fanout is 64 (indexed by the last 6 bits of the hash
* value XORed with the length).  Each subsequent level, represented by
* intermediate nodes, has a fanout of 16 (using 4 bits).
*
* The hash function produces 32-bit values.
*/

#define HASHVAL_SEEDLEN (16)
#define HASHVAL_BITS    (32)
#define HASHVAL_MOD     (HASHVAL_BITS - 1)
#define HASHVAL_SHIFT   (5)

#define ROOT_BITS       (6)
#define ROOT_SIZE       (1 << ROOT_BITS)
#define ROOT_MASK       (ROOT_SIZE - 1)
#define ROOT_MSBITS     (HASHVAL_BITS - ROOT_BITS)

#define LEVEL_BITS      (4)
#define LEVEL_SIZE      (1 << LEVEL_BITS)
#define LEVEL_MASK      (LEVEL_SIZE - 1)

/*
* Instead of raw pointers, we use offsets from the base address.
* This accommodates the use of this data structure in shared memory,
* where mappings can be in different address spaces.
*
* The pointers must be aligned, since pointer tagging is used to
* differentiate the intermediate nodes from leaves.  We reserve the
* least significant bit.
*/
typedef uintptr_t thmap_ptr_t;
typedef uintptr_t atomic_thmap_ptr_t;                   // C11 _Atomic

#define THMAP_NULL              ((thmap_ptr_t)0)

#define THMAP_LEAF_BIT          (0x1)

#define THMAP_ALIGNED_P(p)      (((uintptr_t)(p) & 3) == 0)
#define THMAP_ALIGN(p)          ((uintptr_t)(p) & ~(uintptr_t)3)
#define THMAP_INODE_P(p)        (((uintptr_t)(p) & THMAP_LEAF_BIT) == 0)

#define THMAP_GETPTR(th, p)     ((void *)((th)->baseptr + (uintptr_t)(p)))
#define THMAP_GETOFF(th, p)     ((thmap_ptr_t)((uintptr_t)(p) - (th)->baseptr))
#define THMAP_NODE(th, p)       THMAP_GETPTR(th, THMAP_ALIGN(p))

/*
* State field.
*/

#define NODE_LOCKED             (1U << 31)              // lock (writers)
#define NODE_DELETED            (1U << 30)              // node deleted
#define NODE_COUNT(s)           ((s) & 0x3fffffff)      // slot count mask

/*
* There are two types of nodes:
* - Intermediate nodes -- arrays pointing to another level or a leaf;
* - Leaves, which store a key-value pair.
*/

typedef struct {
       uint32_t                state;                  // C11 _Atomic
       thmap_ptr_t             parent;
       atomic_thmap_ptr_t      slots[LEVEL_SIZE];
} thmap_inode_t;

#define THMAP_INODE_LEN sizeof(thmap_inode_t)

typedef struct {
       thmap_ptr_t     key;
       size_t          len;
       void *          val;
} thmap_leaf_t;

typedef struct {
       const uint8_t * seed;           // secret seed
       unsigned        rslot;          // root-level slot index
       unsigned        level;          // current level in the tree
       unsigned        hashidx;        // current hash index (block of bits)
       uint32_t        hashval;        // current hash value
} thmap_query_t;

union thmap_align {
       void *          p;
       uint64_t        v;
};

typedef struct thmap_gc thmap_gc_t;
struct thmap_gc {
       size_t          len;
       thmap_gc_t *    next;
       char            data[] __aligned(sizeof(union thmap_align));
};

#define THMAP_ROOT_LEN  (sizeof(thmap_ptr_t) * ROOT_SIZE)

struct thmap {
       uintptr_t               baseptr;
       atomic_thmap_ptr_t *    root;
       unsigned                flags;
       const thmap_ops_t *     ops;
       thmap_gc_t *            gc_list;                // C11 _Atomic
       uint8_t                 seed[HASHVAL_SEEDLEN];
};

static void     stage_mem_gc(thmap_t *, uintptr_t, size_t);

/*
* A few low-level helper routines.
*/

static uintptr_t
alloc_wrapper(size_t len)
{
       return (uintptr_t)kmem_intr_alloc(len, KM_NOSLEEP);
}

static void
free_wrapper(uintptr_t addr, size_t len)
{
       kmem_intr_free((void *)addr, len);
}

static const thmap_ops_t thmap_default_ops = {
       .alloc = alloc_wrapper,
       .free = free_wrapper
};

static uintptr_t
gc_alloc(const thmap_t *thmap, size_t len)
{
       const size_t alloclen = offsetof(struct thmap_gc, data[len]);
       const uintptr_t gcaddr = thmap->ops->alloc(alloclen);

       if (!gcaddr)
               return 0;

       thmap_gc_t *const gc = THMAP_GETPTR(thmap, gcaddr);
       gc->len = len;
       return THMAP_GETOFF(thmap, &gc->data[0]);
}

static void
gc_free(const thmap_t *thmap, uintptr_t addr, size_t len)
{
       const size_t alloclen = offsetof(struct thmap_gc, data[len]);
       char *const ptr = THMAP_GETPTR(thmap, addr);
       thmap_gc_t *const gc = container_of(ptr, struct thmap_gc, data[0]);
       const uintptr_t gcaddr = THMAP_GETOFF(thmap, gc);

       KASSERTMSG(gc->len == len, "thmap=%p ops=%p addr=%p len=%zu"
           " gc=%p gc->len=%zu",
           thmap, thmap->ops, (void *)addr, len, gc, gc->len);
       thmap->ops->free(gcaddr, alloclen);
}

/*
* NODE LOCKING.
*/

static inline bool __diagused
node_locked_p(thmap_inode_t *node)
{
       return (atomic_load_relaxed(&node->state) & NODE_LOCKED) != 0;
}

static void
lock_node(thmap_inode_t *node)
{
       unsigned bcount = SPINLOCK_BACKOFF_MIN;
       uint32_t s;
again:
       s = atomic_load_relaxed(&node->state);
       if (s & NODE_LOCKED) {
               SPINLOCK_BACKOFF(bcount);
               goto again;
       }
       /* Acquire from prior release in unlock_node.() */
       if (!atomic_compare_exchange_weak_explicit_32(&node->state,
           &s, s | NODE_LOCKED, memory_order_acquire, memory_order_relaxed)) {
               bcount = SPINLOCK_BACKOFF_MIN;
               goto again;
       }
}

static void
unlock_node(thmap_inode_t *node)
{
       uint32_t s = atomic_load_relaxed(&node->state) & ~NODE_LOCKED;

       ASSERT(node_locked_p(node));
       /* Release to subsequent acquire in lock_node(). */
       atomic_store_release(&node->state, s);
}

/*
* HASH VALUE AND KEY OPERATIONS.
*/

static inline uint32_t
hash(const uint8_t seed[static HASHVAL_SEEDLEN], const void *key, size_t len,
   uint32_t level)
{
       struct blake2s B;
       uint32_t h;

       if (level == 0)
               return murmurhash3(key, len, 0);

       /*
        * Byte order is not significant here because this is
        * intentionally secret and independent for each thmap.
        *
        * XXX We get 32 bytes of output at a time; we could march
        * through them sequentially rather than throwing away 28 bytes
        * and recomputing BLAKE2 each time.  But the number of
        * iterations ought to be geometric in the collision
        * probability at each level which should be very small anyway.
        */
       blake2s_init(&B, sizeof h, seed, HASHVAL_SEEDLEN);
       blake2s_update(&B, &level, sizeof level);
       blake2s_update(&B, key, len);
       blake2s_final(&B, &h);

       return h;
}

static inline void
hashval_init(thmap_query_t *query, const uint8_t seed[static HASHVAL_SEEDLEN],
   const void * restrict key, size_t len)
{
       const uint32_t hashval = hash(seed, key, len, 0);

       query->seed = seed;
       query->rslot = ((hashval >> ROOT_MSBITS) ^ len) & ROOT_MASK;
       query->level = 0;
       query->hashval = hashval;
       query->hashidx = 0;
}

/*
* hashval_getslot: given the key, compute the hash (if not already cached)
* and return the offset for the current level.
*/
static unsigned
hashval_getslot(thmap_query_t *query, const void * restrict key, size_t len)
{
       const unsigned offset = query->level * LEVEL_BITS;
       const unsigned shift = offset & HASHVAL_MOD;
       const unsigned i = offset >> HASHVAL_SHIFT;

       if (query->hashidx != i) {
               /* Generate a hash value for a required range. */
               query->hashval = hash(query->seed, key, len, i);
               query->hashidx = i;
       }
       return (query->hashval >> shift) & LEVEL_MASK;
}

static unsigned
hashval_getleafslot(const thmap_t *thmap,
   const thmap_leaf_t *leaf, unsigned level)
{
       const void *key = THMAP_GETPTR(thmap, leaf->key);
       const unsigned offset = level * LEVEL_BITS;
       const unsigned shift = offset & HASHVAL_MOD;
       const unsigned i = offset >> HASHVAL_SHIFT;

       return (hash(thmap->seed, key, leaf->len, i) >> shift) & LEVEL_MASK;
}

static inline unsigned
hashval_getl0slot(const thmap_t *thmap, const thmap_query_t *query,
   const thmap_leaf_t *leaf)
{
       if (__predict_true(query->hashidx == 0)) {
               return query->hashval & LEVEL_MASK;
       }
       return hashval_getleafslot(thmap, leaf, 0);
}

static bool
key_cmp_p(const thmap_t *thmap, const thmap_leaf_t *leaf,
   const void * restrict key, size_t len)
{
       const void *leafkey = THMAP_GETPTR(thmap, leaf->key);
       return len == leaf->len && memcmp(key, leafkey, len) == 0;
}

/*
* INTER-NODE OPERATIONS.
*/

static thmap_inode_t *
node_create(thmap_t *thmap, thmap_inode_t *parent)
{
       thmap_inode_t *node;
       uintptr_t p;

       p = gc_alloc(thmap, THMAP_INODE_LEN);
       if (!p) {
               return NULL;
       }
       node = THMAP_GETPTR(thmap, p);
       ASSERT(THMAP_ALIGNED_P(node));

       memset(node, 0, THMAP_INODE_LEN);
       if (parent) {
               /* Not yet published, no need for ordering. */
               atomic_store_relaxed(&node->state, NODE_LOCKED);
               node->parent = THMAP_GETOFF(thmap, parent);
       }
       return node;
}

static void
node_insert(thmap_inode_t *node, unsigned slot, thmap_ptr_t child)
{
       ASSERT(node_locked_p(node) || node->parent == THMAP_NULL);
       ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0);
       ASSERT(atomic_load_relaxed(&node->slots[slot]) == THMAP_NULL);

       ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) < LEVEL_SIZE);

       /*
        * If node is public already, caller is responsible for issuing
        * release fence; if node is not public, no ordering is needed.
        * Hence relaxed ordering.
        */
       atomic_store_relaxed(&node->slots[slot], child);
       atomic_store_relaxed(&node->state,
           atomic_load_relaxed(&node->state) + 1);
}

static void
node_remove(thmap_inode_t *node, unsigned slot)
{
       ASSERT(node_locked_p(node));
       ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0);
       ASSERT(atomic_load_relaxed(&node->slots[slot]) != THMAP_NULL);

       ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) > 0);
       ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) <= LEVEL_SIZE);

       /* Element will be GC-ed later; no need for ordering here. */
       atomic_store_relaxed(&node->slots[slot], THMAP_NULL);
       atomic_store_relaxed(&node->state,
           atomic_load_relaxed(&node->state) - 1);
}

/*
* LEAF OPERATIONS.
*/

static thmap_leaf_t *
leaf_create(const thmap_t *thmap, const void *key, size_t len, void *val)
{
       thmap_leaf_t *leaf;
       uintptr_t leaf_off, key_off;

       leaf_off = gc_alloc(thmap, sizeof(thmap_leaf_t));
       if (!leaf_off) {
               return NULL;
       }
       leaf = THMAP_GETPTR(thmap, leaf_off);
       ASSERT(THMAP_ALIGNED_P(leaf));

       if ((thmap->flags & THMAP_NOCOPY) == 0) {
               /*
                * Copy the key.
                */
               key_off = gc_alloc(thmap, len);
               if (!key_off) {
                       gc_free(thmap, leaf_off, sizeof(thmap_leaf_t));
                       return NULL;
               }
               memcpy(THMAP_GETPTR(thmap, key_off), key, len);
               leaf->key = key_off;
       } else {
               /* Otherwise, we use a reference. */
               leaf->key = (uintptr_t)key;
       }
       leaf->len = len;
       leaf->val = val;
       return leaf;
}

static void
leaf_free(const thmap_t *thmap, thmap_leaf_t *leaf)
{
       if ((thmap->flags & THMAP_NOCOPY) == 0) {
               gc_free(thmap, leaf->key, leaf->len);
       }
       gc_free(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
}

static thmap_leaf_t *
get_leaf(const thmap_t *thmap, thmap_inode_t *parent, unsigned slot)
{
       thmap_ptr_t node;

       /* Consume from prior release in thmap_put(). */
       node = atomic_load_consume(&parent->slots[slot]);
       if (THMAP_INODE_P(node)) {
               return NULL;
       }
       return THMAP_NODE(thmap, node);
}

/*
* ROOT OPERATIONS.
*/

/*
* root_try_put: Try to set a root pointer at query->rslot.
*
* => Implies release operation on success.
* => Implies no ordering on failure.
*/
static inline int
root_try_put(thmap_t *thmap, const thmap_query_t *query, thmap_leaf_t *leaf)
{
       thmap_ptr_t expected;
       const unsigned i = query->rslot;
       thmap_inode_t *node;
       thmap_ptr_t nptr;
       unsigned slot;

       /*
        * Must pre-check first.  No ordering required because we will
        * check again before taking any actions, and start over if
        * this changes from null.
        */
       if (atomic_load_relaxed(&thmap->root[i])) {
               return EEXIST;
       }

       /*
        * Create an intermediate node.  Since there is no parent set,
        * it will be created unlocked and the CAS operation will
        * release it to readers.
        */
       node = node_create(thmap, NULL);
       if (__predict_false(node == NULL)) {
               return ENOMEM;
       }
       slot = hashval_getl0slot(thmap, query, leaf);
       node_insert(node, slot, THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT);
       nptr = THMAP_GETOFF(thmap, node);
again:
       if (atomic_load_relaxed(&thmap->root[i])) {
               gc_free(thmap, nptr, THMAP_INODE_LEN);
               return EEXIST;
       }
       /* Release to subsequent consume in find_edge_node(). */
       expected = THMAP_NULL;
       if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->root[i], &expected,
           nptr, memory_order_release, memory_order_relaxed)) {
               goto again;
       }
       return 0;
}

/*
* find_edge_node: given the hash, traverse the tree to find the edge node.
*
* => Returns an aligned (clean) pointer to the parent node.
* => Returns the slot number and sets current level.
*/
static thmap_inode_t *
find_edge_node(const thmap_t *thmap, thmap_query_t *query,
   const void * restrict key, size_t len, unsigned *slot)
{
       thmap_ptr_t root_slot;
       thmap_inode_t *parent;
       thmap_ptr_t node;
       unsigned off;

       ASSERT(query->level == 0);

       /* Consume from prior release in root_try_put(). */
       root_slot = atomic_load_consume(&thmap->root[query->rslot]);
       parent = THMAP_NODE(thmap, root_slot);
       if (!parent) {
               return NULL;
       }
descend:
       off = hashval_getslot(query, key, len);
       /* Consume from prior release in thmap_put(). */
       node = atomic_load_consume(&parent->slots[off]);

       /* Descend the tree until we find a leaf or empty slot. */
       if (node && THMAP_INODE_P(node)) {
               parent = THMAP_NODE(thmap, node);
               query->level++;
               goto descend;
       }
       /*
        * NODE_DELETED does not become stale until GC runs, which
        * cannot happen while we are in the middle of an operation,
        * hence relaxed ordering.
        */
       if (atomic_load_relaxed(&parent->state) & NODE_DELETED) {
               return NULL;
       }
       *slot = off;
       return parent;
}

/*
* find_edge_node_locked: traverse the tree, like find_edge_node(),
* but attempt to lock the edge node.
*
* => Returns NULL if the deleted node is found.  This indicates that
*    the caller must re-try from the root, as the root slot might have
*    changed too.
*/
static thmap_inode_t *
find_edge_node_locked(const thmap_t *thmap, thmap_query_t *query,
   const void * restrict key, size_t len, unsigned *slot)
{
       thmap_inode_t *node;
       thmap_ptr_t target;
retry:
       /*
        * Find the edge node and lock it!  Re-check the state since
        * the tree might change by the time we acquire the lock.
        */
       node = find_edge_node(thmap, query, key, len, slot);
       if (!node) {
               /* The root slot is empty -- let the caller decide. */
               query->level = 0;
               return NULL;
       }
       lock_node(node);
       if (__predict_false(atomic_load_relaxed(&node->state) & NODE_DELETED)) {
               /*
                * The node has been deleted.  The tree might have a new
                * shape now, therefore we must re-start from the root.
                */
               unlock_node(node);
               query->level = 0;
               return NULL;
       }
       target = atomic_load_relaxed(&node->slots[*slot]);
       if (__predict_false(target && THMAP_INODE_P(target))) {
               /*
                * The target slot has been changed and it is now an
                * intermediate node.  Re-start from the top internode.
                */
               unlock_node(node);
               query->level = 0;
               goto retry;
       }
       return node;
}

/*
* thmap_get: lookup a value given the key.
*/
void *
thmap_get(thmap_t *thmap, const void *key, size_t len)
{
       thmap_query_t query;
       thmap_inode_t *parent;
       thmap_leaf_t *leaf;
       unsigned slot;

       hashval_init(&query, thmap->seed, key, len);
       parent = find_edge_node(thmap, &query, key, len, &slot);
       if (!parent) {
               return NULL;
       }
       leaf = get_leaf(thmap, parent, slot);
       if (!leaf) {
               return NULL;
       }
       if (!key_cmp_p(thmap, leaf, key, len)) {
               return NULL;
       }
       return leaf->val;
}

/*
* thmap_put: insert a value given the key.
*
* => If the key is already present, return the associated value.
* => Otherwise, on successful insert, return the given value.
*/
void *
thmap_put(thmap_t *thmap, const void *key, size_t len, void *val)
{
       thmap_query_t query;
       thmap_leaf_t *leaf, *other;
       thmap_inode_t *parent, *child;
       unsigned slot, other_slot;
       thmap_ptr_t target;

       /*
        * First, pre-allocate and initialize the leaf node.
        */
       leaf = leaf_create(thmap, key, len, val);
       if (__predict_false(!leaf)) {
               return NULL;
       }
       hashval_init(&query, thmap->seed, key, len);
retry:
       /*
        * Try to insert into the root first, if its slot is empty.
        */
       switch (root_try_put(thmap, &query, leaf)) {
       case 0:
               /* Success: the leaf was inserted; no locking involved. */
               return val;
       case EEXIST:
               break;
       case ENOMEM:
               return NULL;
       default:
               __unreachable();
       }

       /*
        * Release node via store in node_insert (*) to subsequent
        * consume in get_leaf() or find_edge_node().
        */
       atomic_thread_fence(memory_order_release);

       /*
        * Find the edge node and the target slot.
        */
       parent = find_edge_node_locked(thmap, &query, key, len, &slot);
       if (!parent) {
               goto retry;
       }
       target = atomic_load_relaxed(&parent->slots[slot]); // tagged offset
       if (THMAP_INODE_P(target)) {
               /*
                * Empty slot: simply insert the new leaf.  The release
                * fence is already issued for us.
                */
               target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
               node_insert(parent, slot, target); /* (*) */
               goto out;
       }

       /*
        * Collision or duplicate.
        */
       other = THMAP_NODE(thmap, target);
       if (key_cmp_p(thmap, other, key, len)) {
               /*
                * Duplicate.  Free the pre-allocated leaf and
                * return the present value.
                */
               leaf_free(thmap, leaf);
               val = other->val;
               goto out;
       }
descend:
       /*
        * Collision -- expand the tree.  Create an intermediate node
        * which will be locked (NODE_LOCKED) for us.  At this point,
        * we advance to the next level.
        */
       child = node_create(thmap, parent);
       if (__predict_false(!child)) {
               leaf_free(thmap, leaf);
               val = NULL;
               goto out;
       }
       query.level++;

       /*
        * Insert the other (colliding) leaf first.  The new child is
        * not yet published, so memory order is relaxed.
        */
       other_slot = hashval_getleafslot(thmap, other, query.level);
       target = THMAP_GETOFF(thmap, other) | THMAP_LEAF_BIT;
       node_insert(child, other_slot, target);

       /*
        * Insert the intermediate node into the parent node.
        * It becomes the new parent for the our new leaf.
        *
        * Ensure that stores to the child (and leaf) reach global
        * visibility before it gets inserted to the parent, as
        * consumed by get_leaf() or find_edge_node().
        */
       atomic_store_release(&parent->slots[slot], THMAP_GETOFF(thmap, child));

       unlock_node(parent);
       ASSERT(node_locked_p(child));
       parent = child;

       /*
        * Get the new slot and check for another collision
        * at the next level.
        */
       slot = hashval_getslot(&query, key, len);
       if (slot == other_slot) {
               /* Another collision -- descend and expand again. */
               goto descend;
       }

       /*
        * Insert our new leaf once we expanded enough.  The release
        * fence is already issued for us.
        */
       target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
       node_insert(parent, slot, target); /* (*) */
out:
       unlock_node(parent);
       return val;
}

/*
* thmap_del: remove the entry given the key.
*/
void *
thmap_del(thmap_t *thmap, const void *key, size_t len)
{
       thmap_query_t query;
       thmap_leaf_t *leaf;
       thmap_inode_t *parent;
       unsigned slot;
       void *val;

       hashval_init(&query, thmap->seed, key, len);
       parent = find_edge_node_locked(thmap, &query, key, len, &slot);
       if (!parent) {
               /* Root slot empty: not found. */
               return NULL;
       }
       leaf = get_leaf(thmap, parent, slot);
       if (!leaf || !key_cmp_p(thmap, leaf, key, len)) {
               /* Not found. */
               unlock_node(parent);
               return NULL;
       }

       /* Remove the leaf. */
       ASSERT(THMAP_NODE(thmap, atomic_load_relaxed(&parent->slots[slot]))
           == leaf);
       node_remove(parent, slot);

       /*
        * Collapse the levels if removing the last item.
        */
       while (query.level &&
           NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) {
               thmap_inode_t *node = parent;

               ASSERT(atomic_load_relaxed(&node->state) == NODE_LOCKED);

               /*
                * Ascend one level up.
                * => Mark our current parent as deleted.
                * => Lock the parent one level up.
                */
               query.level--;
               slot = hashval_getslot(&query, key, len);
               parent = THMAP_NODE(thmap, node->parent);
               ASSERT(parent != NULL);

               lock_node(parent);
               ASSERT((atomic_load_relaxed(&parent->state) & NODE_DELETED)
                   == 0);

               /*
                * Lock is exclusive, so nobody else can be writing at
                * the same time, and no need for atomic R/M/W, but
                * readers may read without the lock and so need atomic
                * load/store.  No ordering here needed because the
                * entry itself stays valid until GC.
                */
               atomic_store_relaxed(&node->state,
                   atomic_load_relaxed(&node->state) | NODE_DELETED);
               unlock_node(node); // memory_order_release

               ASSERT(THMAP_NODE(thmap,
                   atomic_load_relaxed(&parent->slots[slot])) == node);
               node_remove(parent, slot);

               /* Stage the removed node for G/C. */
               stage_mem_gc(thmap, THMAP_GETOFF(thmap, node), THMAP_INODE_LEN);
       }

       /*
        * If the top node is empty, then we need to remove it from the
        * root level.  Mark the node as deleted and clear the slot.
        *
        * Note: acquiring the lock on the top node effectively prevents
        * the root slot from changing.
        */
       if (NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) {
               const unsigned rslot = query.rslot;
               const thmap_ptr_t nptr =
                   atomic_load_relaxed(&thmap->root[rslot]);

               ASSERT(query.level == 0);
               ASSERT(parent->parent == THMAP_NULL);
               ASSERT(THMAP_GETOFF(thmap, parent) == nptr);

               /* Mark as deleted and remove from the root-level slot. */
               atomic_store_relaxed(&parent->state,
                   atomic_load_relaxed(&parent->state) | NODE_DELETED);
               atomic_store_relaxed(&thmap->root[rslot], THMAP_NULL);

               stage_mem_gc(thmap, nptr, THMAP_INODE_LEN);
       }
       unlock_node(parent);

       /*
        * Save the value and stage the leaf for G/C.
        */
       val = leaf->val;
       if ((thmap->flags & THMAP_NOCOPY) == 0) {
               stage_mem_gc(thmap, leaf->key, leaf->len);
       }
       stage_mem_gc(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
       return val;
}

/*
* G/C routines.
*/

static void
stage_mem_gc(thmap_t *thmap, uintptr_t addr, size_t len)
{
       char *const ptr = THMAP_GETPTR(thmap, addr);
       thmap_gc_t *head, *gc;

       gc = container_of(ptr, struct thmap_gc, data[0]);
       KASSERTMSG(gc->len == len,
           "thmap=%p ops=%p ptr=%p len=%zu gc=%p gc->len=%zu",
           thmap, thmap->ops, (char *)addr, len, gc, gc->len);
retry:
       head = atomic_load_relaxed(&thmap->gc_list);
       gc->next = head; // not yet published

       /* Release to subsequent acquire in thmap_stage_gc(). */
       if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->gc_list, &head, gc,
           memory_order_release, memory_order_relaxed)) {
               goto retry;
       }
}

void *
thmap_stage_gc(thmap_t *thmap)
{
       /* Acquire from prior release in stage_mem_gc(). */
       return atomic_exchange_explicit(&thmap->gc_list, NULL,
           memory_order_acquire);
}

void
thmap_gc(thmap_t *thmap, void *ref)
{
       thmap_gc_t *gc = ref;

       while (gc) {
               thmap_gc_t *next = gc->next;
               gc_free(thmap, THMAP_GETOFF(thmap, &gc->data[0]), gc->len);
               gc = next;
       }
}

/*
* thmap_create: construct a new trie-hash map object.
*/
thmap_t *
thmap_create(uintptr_t baseptr, const thmap_ops_t *ops, unsigned flags)
{
       thmap_t *thmap;
       uintptr_t root;

       /*
        * Setup the map object.
        */
       if (!THMAP_ALIGNED_P(baseptr)) {
               return NULL;
       }
       thmap = kmem_zalloc(sizeof(thmap_t), KM_SLEEP);
       thmap->baseptr = baseptr;
       thmap->ops = ops ? ops : &thmap_default_ops;
       thmap->flags = flags;

       if ((thmap->flags & THMAP_SETROOT) == 0) {
               /* Allocate the root level. */
               root = gc_alloc(thmap, THMAP_ROOT_LEN);
               if (!root) {
                       kmem_free(thmap, sizeof(thmap_t));
                       return NULL;
               }
               thmap->root = THMAP_GETPTR(thmap, root);
               memset(thmap->root, 0, THMAP_ROOT_LEN);
       }

       cprng_strong(kern_cprng, thmap->seed, sizeof thmap->seed, 0);

       return thmap;
}

int
thmap_setroot(thmap_t *thmap, uintptr_t root_off)
{
       if (thmap->root) {
               return -1;
       }
       thmap->root = THMAP_GETPTR(thmap, root_off);
       return 0;
}

uintptr_t
thmap_getroot(const thmap_t *thmap)
{
       return THMAP_GETOFF(thmap, thmap->root);
}

void
thmap_destroy(thmap_t *thmap)
{
       uintptr_t root = THMAP_GETOFF(thmap, thmap->root);
       void *ref;

       ref = thmap_stage_gc(thmap);
       thmap_gc(thmap, ref);

       if ((thmap->flags & THMAP_SETROOT) == 0) {
               gc_free(thmap, root, THMAP_ROOT_LEN);
       }
       kmem_free(thmap, sizeof(thmap_t));
}