/*      $NetBSD: subr_pool.c,v 1.295 2025/05/26 08:32:11 bouyer Exp $   */

/*
* Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
*     2020, 2021 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
* Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
* Maxime Villard.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.295 2025/05/26 08:32:11 bouyer Exp $");

#ifdef _KERNEL_OPT
#include "opt_ddb.h"
#include "opt_lockdebug.h"
#include "opt_pool.h"
#endif

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/bitops.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/vmem.h>
#include <sys/pool.h>
#include <sys/syslog.h>
#include <sys/debug.h>
#include <sys/lock.h>
#include <sys/lockdebug.h>
#include <sys/xcall.h>
#include <sys/cpu.h>
#include <sys/atomic.h>
#include <sys/asan.h>
#include <sys/msan.h>
#include <sys/fault.h>

#include <uvm/uvm_extern.h>

/*
* Pool resource management utility.
*
* Memory is allocated in pages which are split into pieces according to
* the pool item size. Each page is kept on one of three lists in the
* pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
* for empty, full and partially-full pages respectively. The individual
* pool items are on a linked list headed by `ph_itemlist' in each page
* header. The memory for building the page list is either taken from
* the allocated pages themselves (for small pool items) or taken from
* an internal pool of page headers (`phpool').
*/

/* List of all pools. Non static as needed by 'vmstat -m' */
TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);

/* Private pool for page header structures */
#define PHPOOL_MAX      8
static struct pool phpool[PHPOOL_MAX];
#define PHPOOL_FREELIST_NELEM(idx) \
       (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))

#if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
#define POOL_REDZONE
#endif

#if defined(POOL_QUARANTINE)
#define POOL_NOCACHE
#endif

#ifdef POOL_REDZONE
# ifdef KASAN
#  define POOL_REDZONE_SIZE 8
# else
#  define POOL_REDZONE_SIZE 2
# endif
static void pool_redzone_init(struct pool *, size_t);
static void pool_redzone_fill(struct pool *, void *);
static void pool_redzone_check(struct pool *, void *);
static void pool_cache_redzone_check(pool_cache_t, void *);
#else
# define pool_redzone_init(pp, sz)              __nothing
# define pool_redzone_fill(pp, ptr)             __nothing
# define pool_redzone_check(pp, ptr)            __nothing
# define pool_cache_redzone_check(pc, ptr)      __nothing
#endif

#ifdef KMSAN
static inline void pool_get_kmsan(struct pool *, void *);
static inline void pool_put_kmsan(struct pool *, void *);
static inline void pool_cache_get_kmsan(pool_cache_t, void *);
static inline void pool_cache_put_kmsan(pool_cache_t, void *);
#else
#define pool_get_kmsan(pp, ptr)         __nothing
#define pool_put_kmsan(pp, ptr)         __nothing
#define pool_cache_get_kmsan(pc, ptr)   __nothing
#define pool_cache_put_kmsan(pc, ptr)   __nothing
#endif

#ifdef POOL_QUARANTINE
static void pool_quarantine_init(struct pool *);
static void pool_quarantine_flush(struct pool *);
static bool pool_put_quarantine(struct pool *, void *,
   struct pool_pagelist *);
#else
#define pool_quarantine_init(a)                 __nothing
#define pool_quarantine_flush(a)                __nothing
#define pool_put_quarantine(a, b, c)            false
#endif

#ifdef POOL_NOCACHE
static bool pool_cache_put_nocache(pool_cache_t, void *);
#else
#define pool_cache_put_nocache(a, b)            false
#endif

#define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop)
#define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop)

#define pc_has_pser(pc) (((pc)->pc_roflags & PR_PSERIALIZE) != 0)
#define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
#define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)

#define pp_has_pser(pp) (((pp)->pr_roflags & PR_PSERIALIZE) != 0)

#define pool_barrier()  xc_barrier(0)

/*
* Pool backend allocators.
*
* Each pool has a backend allocator that handles allocation, deallocation,
* and any additional draining that might be needed.
*
* We provide two standard allocators:
*
*      pool_allocator_kmem - the default when no allocator is specified
*
*      pool_allocator_nointr - used for pools that will not be accessed
*      in interrupt context.
*/
void *pool_page_alloc(struct pool *, int);
void pool_page_free(struct pool *, void *);

static void *pool_page_alloc_meta(struct pool *, int);
static void pool_page_free_meta(struct pool *, void *);

struct pool_allocator pool_allocator_kmem = {
       .pa_alloc = pool_page_alloc,
       .pa_free = pool_page_free,
       .pa_pagesz = 0
};

struct pool_allocator pool_allocator_nointr = {
       .pa_alloc = pool_page_alloc,
       .pa_free = pool_page_free,
       .pa_pagesz = 0
};

struct pool_allocator pool_allocator_meta = {
       .pa_alloc = pool_page_alloc_meta,
       .pa_free = pool_page_free_meta,
       .pa_pagesz = 0
};

#define POOL_ALLOCATOR_BIG_BASE 13
static struct pool_allocator pool_allocator_big[] = {
       {
               .pa_alloc = pool_page_alloc,
               .pa_free = pool_page_free,
               .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
       },
       {
               .pa_alloc = pool_page_alloc,
               .pa_free = pool_page_free,
               .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
       },
       {
               .pa_alloc = pool_page_alloc,
               .pa_free = pool_page_free,
               .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
       },
       {
               .pa_alloc = pool_page_alloc,
               .pa_free = pool_page_free,
               .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
       },
       {
               .pa_alloc = pool_page_alloc,
               .pa_free = pool_page_free,
               .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
       },
       {
               .pa_alloc = pool_page_alloc,
               .pa_free = pool_page_free,
               .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
       },
       {
               .pa_alloc = pool_page_alloc,
               .pa_free = pool_page_free,
               .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
       },
       {
               .pa_alloc = pool_page_alloc,
               .pa_free = pool_page_free,
               .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
       },
       {
               .pa_alloc = pool_page_alloc,
               .pa_free = pool_page_free,
               .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8),
       },
       {
               .pa_alloc = pool_page_alloc,
               .pa_free = pool_page_free,
               .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9),
       },
       {
               .pa_alloc = pool_page_alloc,
               .pa_free = pool_page_free,
               .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10),
       },
       {
               .pa_alloc = pool_page_alloc,
               .pa_free = pool_page_free,
               .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11),
       }
};

static int pool_bigidx(size_t);

/* # of seconds to retain page after last use */
int pool_inactive_time = 10;

/* Next candidate for drainage (see pool_drain()) */
static struct pool *drainpp;

/* This lock protects both pool_head and drainpp. */
static kmutex_t pool_head_lock;
static kcondvar_t pool_busy;

/* This lock protects initialization of a potentially shared pool allocator */
static kmutex_t pool_allocator_lock;

static unsigned int poolid_counter = 0;

typedef uint32_t pool_item_bitmap_t;
#define BITMAP_SIZE     (CHAR_BIT * sizeof(pool_item_bitmap_t))
#define BITMAP_MASK     (BITMAP_SIZE - 1)
#define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))

struct pool_item_header {
       /* Page headers */
       LIST_ENTRY(pool_item_header)
                               ph_pagelist;    /* pool page list */
       union {
               /* !PR_PHINPAGE */
               struct {
                       SPLAY_ENTRY(pool_item_header)
                               phu_node;       /* off-page page headers */
               } phu_offpage;
               /* PR_PHINPAGE */
               struct {
                       unsigned int phu_poolid;
               } phu_onpage;
       } ph_u1;
       void *                  ph_page;        /* this page's address */
       uint32_t                ph_time;        /* last referenced */
       uint16_t                ph_nmissing;    /* # of chunks in use */
       uint16_t                ph_off;         /* start offset in page */
       union {
               /* !PR_USEBMAP */
               struct {
                       LIST_HEAD(, pool_item)
                               phu_itemlist;   /* chunk list for this page */
               } phu_normal;
               /* PR_USEBMAP */
               struct {
                       pool_item_bitmap_t phu_bitmap[1];
               } phu_notouch;
       } ph_u2;
};
#define ph_node         ph_u1.phu_offpage.phu_node
#define ph_poolid       ph_u1.phu_onpage.phu_poolid
#define ph_itemlist     ph_u2.phu_normal.phu_itemlist
#define ph_bitmap       ph_u2.phu_notouch.phu_bitmap

#define PHSIZE  ALIGN(sizeof(struct pool_item_header))

CTASSERT(offsetof(struct pool_item_header, ph_u2) +
   BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));

#if defined(DIAGNOSTIC) && !defined(KASAN)
#define POOL_CHECK_MAGIC
#endif

struct pool_item {
#ifdef POOL_CHECK_MAGIC
       u_int pi_magic;
#endif
#define PI_MAGIC 0xdeaddeadU
       /* Other entries use only this list entry */
       LIST_ENTRY(pool_item)   pi_list;
};

#define POOL_NEEDS_CATCHUP(pp)                                          \
       ((pp)->pr_nitems < (pp)->pr_minitems ||                         \
        (pp)->pr_npages < (pp)->pr_minpages)
#define POOL_OBJ_TO_PAGE(pp, v)                                         \
       (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)

/*
* Pool cache management.
*
* Pool caches provide a way for constructed objects to be cached by the
* pool subsystem.  This can lead to performance improvements by avoiding
* needless object construction/destruction; it is deferred until absolutely
* necessary.
*
* Caches are grouped into cache groups.  Each cache group references up
* to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
* object from the pool, it calls the object's constructor and places it
* into a cache group.  When a cache group frees an object back to the
* pool, it first calls the object's destructor.  This allows the object
* to persist in constructed form while freed to the cache.
*
* The pool references each cache, so that when a pool is drained by the
* pagedaemon, it can drain each individual cache as well.  Each time a
* cache is drained, the most idle cache group is freed to the pool in
* its entirety.
*
* Pool caches are laid on top of pools.  By layering them, we can avoid
* the complexity of cache management for pools which would not benefit
* from it.
*/

static struct pool pcg_normal_pool;
static struct pool pcg_large_pool;
static struct pool cache_pool;
static struct pool cache_cpu_pool;

static pcg_t *volatile pcg_large_cache __cacheline_aligned;
static pcg_t *volatile pcg_normal_cache __cacheline_aligned;

/* List of all caches. */
TAILQ_HEAD(,pool_cache) pool_cache_head =
   TAILQ_HEAD_INITIALIZER(pool_cache_head);

int pool_cache_disable;         /* global disable for caching */
static const pcg_t pcg_dummy;   /* zero sized: always empty, yet always full */

static bool     pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
                                   void *);
static bool     pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
                                   void **, paddr_t *, int);
static void     pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
static int      pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
static void     pool_cache_invalidate_cpu(pool_cache_t, u_int);
static void     pool_cache_transfer(pool_cache_t);
static int      pool_pcg_get(pcg_t *volatile *, pcg_t **);
static int      pool_pcg_put(pcg_t *volatile *, pcg_t *);
static pcg_t *  pool_pcg_trunc(pcg_t *volatile *);

static int      pool_catchup(struct pool *);
static void     pool_prime_page(struct pool *, void *,
                   struct pool_item_header *);
static void     pool_update_curpage(struct pool *);

static int      pool_grow(struct pool *, int);
static void     *pool_allocator_alloc(struct pool *, int);
static void     pool_allocator_free(struct pool *, void *);

static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
       void (*)(const char *, ...) __printflike(1, 2));
static void pool_print1(struct pool *, const char *,
       void (*)(const char *, ...) __printflike(1, 2));

static int pool_chk_page(struct pool *, const char *,
                        struct pool_item_header *);

/* -------------------------------------------------------------------------- */

static inline unsigned int
pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
   const void *v)
{
       const char *cp = v;
       unsigned int idx;

       KASSERT(pp->pr_roflags & PR_USEBMAP);
       idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;

       if (__predict_false(idx >= pp->pr_itemsperpage)) {
               panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
                   pp->pr_itemsperpage);
       }

       return idx;
}

static inline void
pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
   void *obj)
{
       unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
       pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
       pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);

       if (__predict_false((*bitmap & mask) != 0)) {
               panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
       }

       *bitmap |= mask;
}

static inline void *
pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
{
       pool_item_bitmap_t *bitmap = ph->ph_bitmap;
       unsigned int idx;
       int i;

       for (i = 0; ; i++) {
               int bit;

               KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
               bit = ffs32(bitmap[i]);
               if (bit) {
                       pool_item_bitmap_t mask;

                       bit--;
                       idx = (i * BITMAP_SIZE) + bit;
                       mask = 1U << bit;
                       KASSERT((bitmap[i] & mask) != 0);
                       bitmap[i] &= ~mask;
                       break;
               }
       }
       KASSERT(idx < pp->pr_itemsperpage);
       return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
}

static inline void
pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
{
       pool_item_bitmap_t *bitmap = ph->ph_bitmap;
       const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
       int i;

       for (i = 0; i < n; i++) {
               bitmap[i] = (pool_item_bitmap_t)-1;
       }
}

/* -------------------------------------------------------------------------- */

static inline void
pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
   void *obj)
{
       struct pool_item *pi = obj;

       KASSERT(!pp_has_pser(pp));

#ifdef POOL_CHECK_MAGIC
       pi->pi_magic = PI_MAGIC;
#endif

       if (pp->pr_redzone) {
               /*
                * Mark the pool_item as valid. The rest is already
                * invalid.
                */
               kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
       }

       LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
}

static inline void *
pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
{
       struct pool_item *pi;
       void *v;

       v = pi = LIST_FIRST(&ph->ph_itemlist);
       if (__predict_false(v == NULL)) {
               mutex_exit(&pp->pr_lock);
               panic("%s: [%s] page empty", __func__, pp->pr_wchan);
       }
       KASSERTMSG((pp->pr_nitems > 0),
           "%s: [%s] nitems %u inconsistent on itemlist",
           __func__, pp->pr_wchan, pp->pr_nitems);
#ifdef POOL_CHECK_MAGIC
       KASSERTMSG((pi->pi_magic == PI_MAGIC),
           "%s: [%s] free list modified: "
           "magic=%x; page %p; item addr %p", __func__,
           pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
#endif

       /*
        * Remove from item list.
        */
       LIST_REMOVE(pi, pi_list);

       return v;
}

/* -------------------------------------------------------------------------- */

static inline void
pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
   void *object)
{
       if (__predict_false((void *)ph->ph_page != page)) {
               panic("%s: [%s] item %p not part of pool", __func__,
                   pp->pr_wchan, object);
       }
       if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
               panic("%s: [%s] item %p below item space", __func__,
                   pp->pr_wchan, object);
       }
       if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
               panic("%s: [%s] item %p poolid %u != %u", __func__,
                   pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
       }
}

static inline void
pc_phinpage_check(pool_cache_t pc, void *object)
{
       struct pool_item_header *ph;
       struct pool *pp;
       void *page;

       pp = &pc->pc_pool;
       page = POOL_OBJ_TO_PAGE(pp, object);
       ph = (struct pool_item_header *)page;

       pr_phinpage_check(pp, ph, page, object);
}

/* -------------------------------------------------------------------------- */

static inline int
phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
{

       /*
        * We consider pool_item_header with smaller ph_page bigger. This
        * unnatural ordering is for the benefit of pr_find_pagehead.
        */
       if (a->ph_page < b->ph_page)
               return 1;
       else if (a->ph_page > b->ph_page)
               return -1;
       else
               return 0;
}

SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);

static inline struct pool_item_header *
pr_find_pagehead_noalign(struct pool *pp, void *v)
{
       struct pool_item_header *ph, tmp;

       tmp.ph_page = (void *)(uintptr_t)v;
       ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
       if (ph == NULL) {
               ph = SPLAY_ROOT(&pp->pr_phtree);
               if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
                       ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
               }
               KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
       }

       return ph;
}

/*
* Return the pool page header based on item address.
*/
static inline struct pool_item_header *
pr_find_pagehead(struct pool *pp, void *v)
{
       struct pool_item_header *ph, tmp;

       if ((pp->pr_roflags & PR_NOALIGN) != 0) {
               ph = pr_find_pagehead_noalign(pp, v);
       } else {
               void *page = POOL_OBJ_TO_PAGE(pp, v);
               if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
                       ph = (struct pool_item_header *)page;
                       pr_phinpage_check(pp, ph, page, v);
               } else {
                       tmp.ph_page = page;
                       ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
               }
       }

       KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
           ((char *)ph->ph_page <= (char *)v &&
           (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
       return ph;
}

static void
pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
{
       struct pool_item_header *ph;

       while ((ph = LIST_FIRST(pq)) != NULL) {
               LIST_REMOVE(ph, ph_pagelist);
               pool_allocator_free(pp, ph->ph_page);
               if ((pp->pr_roflags & PR_PHINPAGE) == 0)
                       pool_put(pp->pr_phpool, ph);
       }
}

/*
* Remove a page from the pool.
*/
static inline void
pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    struct pool_pagelist *pq)
{

       KASSERT(mutex_owned(&pp->pr_lock));

       /*
        * If the page was idle, decrement the idle page count.
        */
       if (ph->ph_nmissing == 0) {
               KASSERT(pp->pr_nidle != 0);
               KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
                   "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
                   pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
               pp->pr_nidle--;
       }

       pp->pr_nitems -= pp->pr_itemsperpage;

       /*
        * Unlink the page from the pool and queue it for release.
        */
       LIST_REMOVE(ph, ph_pagelist);
       if (pp->pr_roflags & PR_PHINPAGE) {
               if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
                       panic("%s: [%s] ph %p poolid %u != %u",
                           __func__, pp->pr_wchan, ph, ph->ph_poolid,
                           pp->pr_poolid);
               }
       } else {
               SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
       }
       LIST_INSERT_HEAD(pq, ph, ph_pagelist);

       pp->pr_npages--;
       pp->pr_npagefree++;

       pool_update_curpage(pp);
}

/*
* Initialize all the pools listed in the "pools" link set.
*/
void
pool_subsystem_init(void)
{
       size_t size;
       int idx;

       mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
       mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
       cv_init(&pool_busy, "poolbusy");

       /*
        * Initialize private page header pool and cache magazine pool if we
        * haven't done so yet.
        */
       for (idx = 0; idx < PHPOOL_MAX; idx++) {
               static char phpool_names[PHPOOL_MAX][6+1+6+1];
               int nelem;
               size_t sz;

               nelem = PHPOOL_FREELIST_NELEM(idx);
               KASSERT(nelem != 0);
               snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
                   "phpool-%d", nelem);
               sz = offsetof(struct pool_item_header,
                   ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
               pool_init(&phpool[idx], sz, 0, 0, 0,
                   phpool_names[idx], &pool_allocator_meta, IPL_VM);
       }

       size = sizeof(pcg_t) +
           (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
       pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
           "pcgnormal", &pool_allocator_meta, IPL_VM);

       size = sizeof(pcg_t) +
           (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
       pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
           "pcglarge", &pool_allocator_meta, IPL_VM);

       pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
           0, 0, "pcache", &pool_allocator_meta, IPL_NONE);

       pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
           0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
}

static inline bool
pool_init_is_phinpage(const struct pool *pp)
{
       size_t pagesize;

       if (pp->pr_roflags & PR_PHINPAGE) {
               return true;
       }
       if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
               return false;
       }

       pagesize = pp->pr_alloc->pa_pagesz;

       /*
        * Threshold: the item size is below 1/16 of a page size, and below
        * 8 times the page header size. The latter ensures we go off-page
        * if the page header would make us waste a rather big item.
        */
       if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
               return true;
       }

       /* Put the header into the page if it doesn't waste any items. */
       if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
               return true;
       }

       return false;
}

static inline bool
pool_init_is_usebmap(const struct pool *pp)
{
       size_t bmapsize;

       if (pp->pr_roflags & PR_NOTOUCH) {
               return true;
       }

       /*
        * If we're off-page, go with a bitmap.
        */
       if (!(pp->pr_roflags & PR_PHINPAGE)) {
               return true;
       }

       /*
        * If we're on-page, and the page header can already contain a bitmap
        * big enough to cover all the items of the page, go with a bitmap.
        */
       bmapsize = roundup(PHSIZE, pp->pr_align) -
           offsetof(struct pool_item_header, ph_bitmap[0]);
       KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
       if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
               return true;
       }

       return false;
}

/*
* Initialize the given pool resource structure.
*
* We export this routine to allow other kernel parts to declare
* static pools that must be initialized before kmem(9) is available.
*/
void
pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
   const char *wchan, struct pool_allocator *palloc, int ipl)
{
       struct pool *pp1;
       size_t prsize;
       int itemspace, slack;

       /* XXX ioff will be removed. */
       KASSERT(ioff == 0);

#ifdef DEBUG
       if (__predict_true(!cold))
               mutex_enter(&pool_head_lock);
       /*
        * Check that the pool hasn't already been initialised and
        * added to the list of all pools.
        */
       TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
               if (pp == pp1)
                       panic("%s: [%s] already initialised", __func__,
                           wchan);
       }
       if (__predict_true(!cold))
               mutex_exit(&pool_head_lock);
#endif

       if (palloc == NULL) {
               if (size > PAGE_SIZE) {
                       int bigidx = pool_bigidx(size);

                       palloc = &pool_allocator_big[bigidx];
                       flags |= PR_NOALIGN;
               } else if (ipl == IPL_NONE) {
                       palloc = &pool_allocator_nointr;
               } else {
                       palloc = &pool_allocator_kmem;
               }
       }

       if (!cold)
               mutex_enter(&pool_allocator_lock);
       if (palloc->pa_refcnt++ == 0) {
               if (palloc->pa_pagesz == 0)
                       palloc->pa_pagesz = PAGE_SIZE;

               TAILQ_INIT(&palloc->pa_list);

               mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
               palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
               palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
       }
       if (!cold)
               mutex_exit(&pool_allocator_lock);

       /*
        * PR_PSERIALIZE implies PR_NOTOUCH; freed objects must remain
        * valid until the the backing page is returned to the system.
        */
       if (flags & PR_PSERIALIZE) {
               flags |= PR_NOTOUCH;
       }

       if (align == 0)
               align = ALIGN(1);

       prsize = size;
       if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
               prsize = sizeof(struct pool_item);

       prsize = roundup(prsize, align);
       KASSERTMSG((prsize <= palloc->pa_pagesz),
           "%s: [%s] pool item size (%zu) larger than page size (%u)",
           __func__, wchan, prsize, palloc->pa_pagesz);

       /*
        * Initialize the pool structure.
        */
       LIST_INIT(&pp->pr_emptypages);
       LIST_INIT(&pp->pr_fullpages);
       LIST_INIT(&pp->pr_partpages);
       pp->pr_cache = NULL;
       pp->pr_curpage = NULL;
       pp->pr_npages = 0;
       pp->pr_minitems = 0;
       pp->pr_minpages = 0;
       pp->pr_maxitems = UINT_MAX;
       pp->pr_maxpages = UINT_MAX;
       pp->pr_roflags = flags;
       pp->pr_flags = 0;
       pp->pr_size = prsize;
       pp->pr_reqsize = size;
       pp->pr_align = align;
       pp->pr_wchan = wchan;
       pp->pr_alloc = palloc;
       pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
       pp->pr_nitems = 0;
       pp->pr_nout = 0;
       pp->pr_hardlimit = UINT_MAX;
       pp->pr_hardlimit_warning = NULL;
       pp->pr_hardlimit_ratecap.tv_sec = 0;
       pp->pr_hardlimit_ratecap.tv_usec = 0;
       pp->pr_hardlimit_warning_last.tv_sec = 0;
       pp->pr_hardlimit_warning_last.tv_usec = 0;
       pp->pr_drain_hook = NULL;
       pp->pr_drain_hook_arg = NULL;
       pp->pr_freecheck = NULL;
       pp->pr_redzone = false;
       pool_redzone_init(pp, size);
       pool_quarantine_init(pp);

       /*
        * Decide whether to put the page header off-page to avoid wasting too
        * large a part of the page or too big an item. Off-page page headers
        * go on a hash table, so we can match a returned item with its header
        * based on the page address.
        */
       if (pool_init_is_phinpage(pp)) {
               /* Use the beginning of the page for the page header */
               itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
               pp->pr_itemoffset = roundup(PHSIZE, align);
               pp->pr_roflags |= PR_PHINPAGE;
       } else {
               /* The page header will be taken from our page header pool */
               itemspace = palloc->pa_pagesz;
               pp->pr_itemoffset = 0;
               SPLAY_INIT(&pp->pr_phtree);
       }

       pp->pr_itemsperpage = itemspace / pp->pr_size;
       KASSERT(pp->pr_itemsperpage != 0);

       /*
        * Decide whether to use a bitmap or a linked list to manage freed
        * items.
        */
       if (pool_init_is_usebmap(pp)) {
               pp->pr_roflags |= PR_USEBMAP;
       }

       /*
        * If we're off-page, then we're using a bitmap; choose the appropriate
        * pool to allocate page headers, whose size varies depending on the
        * bitmap. If we're on-page, nothing to do.
        */
       if (!(pp->pr_roflags & PR_PHINPAGE)) {
               int idx;

               KASSERT(pp->pr_roflags & PR_USEBMAP);

               for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
                   idx++) {
                       /* nothing */
               }
               if (idx >= PHPOOL_MAX) {
                       /*
                        * if you see this panic, consider to tweak
                        * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
                        */
                       panic("%s: [%s] too large itemsperpage(%d) for "
                           "PR_USEBMAP", __func__,
                           pp->pr_wchan, pp->pr_itemsperpage);
               }
               pp->pr_phpool = &phpool[idx];
       } else {
               pp->pr_phpool = NULL;
       }

       /*
        * Use the slack between the chunks and the page header
        * for "cache coloring".
        */
       slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
       pp->pr_maxcolor = rounddown(slack, align);
       pp->pr_curcolor = 0;

       pp->pr_nget = 0;
       pp->pr_nfail = 0;
       pp->pr_nput = 0;
       pp->pr_npagealloc = 0;
       pp->pr_npagefree = 0;
       pp->pr_hiwat = 0;
       pp->pr_nidle = 0;
       pp->pr_refcnt = 0;

       mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
       cv_init(&pp->pr_cv, wchan);
       pp->pr_ipl = ipl;

       /* Insert into the list of all pools. */
       if (!cold)
               mutex_enter(&pool_head_lock);
       TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
               if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
                       break;
       }
       if (pp1 == NULL)
               TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
       else
               TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
       if (!cold)
               mutex_exit(&pool_head_lock);

       /* Insert this into the list of pools using this allocator. */
       if (!cold)
               mutex_enter(&palloc->pa_lock);
       TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
       if (!cold)
               mutex_exit(&palloc->pa_lock);
}

/*
* De-commission a pool resource.
*/
void
pool_destroy(struct pool *pp)
{
       struct pool_pagelist pq;
       struct pool_item_header *ph;

       pool_quarantine_flush(pp);

       /* Remove from global pool list */
       mutex_enter(&pool_head_lock);
       while (pp->pr_refcnt != 0)
               cv_wait(&pool_busy, &pool_head_lock);
       TAILQ_REMOVE(&pool_head, pp, pr_poollist);
       if (drainpp == pp)
               drainpp = NULL;
       mutex_exit(&pool_head_lock);

       /* Remove this pool from its allocator's list of pools. */
       mutex_enter(&pp->pr_alloc->pa_lock);
       TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
       mutex_exit(&pp->pr_alloc->pa_lock);

       mutex_enter(&pool_allocator_lock);
       if (--pp->pr_alloc->pa_refcnt == 0)
               mutex_destroy(&pp->pr_alloc->pa_lock);
       mutex_exit(&pool_allocator_lock);

       mutex_enter(&pp->pr_lock);

       KASSERT(pp->pr_cache == NULL);
       KASSERTMSG((pp->pr_nout == 0),
           "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
           pp->pr_nout);
       KASSERT(LIST_EMPTY(&pp->pr_fullpages));
       KASSERT(LIST_EMPTY(&pp->pr_partpages));

       /* Remove all pages */
       LIST_INIT(&pq);
       while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
               pr_rmpage(pp, ph, &pq);

       mutex_exit(&pp->pr_lock);

       pr_pagelist_free(pp, &pq);
       cv_destroy(&pp->pr_cv);
       mutex_destroy(&pp->pr_lock);
}

void
pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
{

       /* XXX no locking -- must be used just after pool_init() */
       KASSERTMSG((pp->pr_drain_hook == NULL),
           "%s: [%s] already set", __func__, pp->pr_wchan);
       pp->pr_drain_hook = fn;
       pp->pr_drain_hook_arg = arg;
}

static struct pool_item_header *
pool_alloc_item_header(struct pool *pp, void *storage, int flags)
{
       struct pool_item_header *ph;

       if ((pp->pr_roflags & PR_PHINPAGE) != 0)
               ph = storage;
       else
               ph = pool_get(pp->pr_phpool, flags);

       return ph;
}

/*
* Grab an item from the pool.
*/
void *
pool_get(struct pool *pp, int flags)
{
       struct pool_item_header *ph;
       void *v;

       KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
       KASSERTMSG((pp->pr_itemsperpage != 0),
           "%s: [%s] pr_itemsperpage is zero, "
           "pool not initialized?", __func__, pp->pr_wchan);
       KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
               || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
           "%s: [%s] is IPL_NONE, but called from interrupt context",
           __func__, pp->pr_wchan);
       if (flags & PR_WAITOK) {
               ASSERT_SLEEPABLE();
       }

       if (flags & PR_NOWAIT) {
               if (fault_inject())
                       return NULL;
       }

       mutex_enter(&pp->pr_lock);
startover:
       /*
        * Check to see if we've reached the hard limit.  If we have,
        * and we can wait, then wait until an item has been returned to
        * the pool.
        */
       KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
           "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
       if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
               if (pp->pr_drain_hook != NULL) {
                       /*
                        * Since the drain hook is going to free things
                        * back to the pool, unlock, call the hook, re-lock,
                        * and check the hardlimit condition again.
                        */
                       mutex_exit(&pp->pr_lock);
                       (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
                       mutex_enter(&pp->pr_lock);
                       if (pp->pr_nout < pp->pr_hardlimit)
                               goto startover;
               }

               if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
                       /*
                        * XXX: A warning isn't logged in this case.  Should
                        * it be?
                        */
                       pp->pr_flags |= PR_WANTED;
                       do {
                               cv_wait(&pp->pr_cv, &pp->pr_lock);
                       } while (pp->pr_flags & PR_WANTED);
                       goto startover;
               }

               /*
                * Log a message that the hard limit has been hit.
                */
               if (pp->pr_hardlimit_warning != NULL &&
                   ratecheck(&pp->pr_hardlimit_warning_last,
                             &pp->pr_hardlimit_ratecap))
                       log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);

               pp->pr_nfail++;

               mutex_exit(&pp->pr_lock);
               KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
               return NULL;
       }

       /*
        * The convention we use is that if `curpage' is not NULL, then
        * it points at a non-empty bucket. In particular, `curpage'
        * never points at a page header which has PR_PHINPAGE set and
        * has no items in its bucket.
        */
       if ((ph = pp->pr_curpage) == NULL) {
               int error;

               KASSERTMSG((pp->pr_nitems == 0),
                   "%s: [%s] curpage NULL, inconsistent nitems %u",
                   __func__, pp->pr_wchan, pp->pr_nitems);

               /*
                * Call the back-end page allocator for more memory.
                * Release the pool lock, as the back-end page allocator
                * may block.
                */
               error = pool_grow(pp, flags);
               if (error != 0) {
                       /*
                        * pool_grow aborts when another thread
                        * is allocating a new page. Retry if it
                        * waited for it.
                        */
                       if (error == ERESTART)
                               goto startover;

                       /*
                        * We were unable to allocate a page or item
                        * header, but we released the lock during
                        * allocation, so perhaps items were freed
                        * back to the pool.  Check for this case.
                        */
                       if (pp->pr_curpage != NULL)
                               goto startover;

                       pp->pr_nfail++;
                       mutex_exit(&pp->pr_lock);
                       KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
                       return NULL;
               }

               /* Start the allocation process over. */
               goto startover;
       }
       if (pp->pr_roflags & PR_USEBMAP) {
               KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
                   "%s: [%s] pool page empty", __func__, pp->pr_wchan);
               v = pr_item_bitmap_get(pp, ph);
       } else {
               v = pr_item_linkedlist_get(pp, ph);
       }
       pp->pr_nitems--;
       pp->pr_nout++;
       if (ph->ph_nmissing == 0) {
               KASSERT(pp->pr_nidle > 0);
               pp->pr_nidle--;

               /*
                * This page was previously empty.  Move it to the list of
                * partially-full pages.  This page is already curpage.
                */
               LIST_REMOVE(ph, ph_pagelist);
               LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
       }
       ph->ph_nmissing++;
       if (ph->ph_nmissing == pp->pr_itemsperpage) {
               KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
                       LIST_EMPTY(&ph->ph_itemlist)),
                   "%s: [%s] nmissing (%u) inconsistent", __func__,
                       pp->pr_wchan, ph->ph_nmissing);
               /*
                * This page is now full.  Move it to the full list
                * and select a new current page.
                */
               LIST_REMOVE(ph, ph_pagelist);
               LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
               pool_update_curpage(pp);
       }

       pp->pr_nget++;

       /*
        * If we have a low water mark and we are now below that low
        * water mark, add more items to the pool.
        */
       if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
               /*
                * XXX: Should we log a warning?  Should we set up a timeout
                * to try again in a second or so?  The latter could break
                * a caller's assumptions about interrupt protection, etc.
                */
       }

       mutex_exit(&pp->pr_lock);
       KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
       FREECHECK_OUT(&pp->pr_freecheck, v);
       pool_redzone_fill(pp, v);
       pool_get_kmsan(pp, v);
       if (flags & PR_ZERO)
               memset(v, 0, pp->pr_reqsize);
       return v;
}

/*
* Internal version of pool_put().  Pool is already locked/entered.
*/
static void
pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
{
       struct pool_item_header *ph;

       KASSERT(mutex_owned(&pp->pr_lock));
       pool_redzone_check(pp, v);
       pool_put_kmsan(pp, v);
       FREECHECK_IN(&pp->pr_freecheck, v);
       LOCKDEBUG_MEM_CHECK(v, pp->pr_size);

       KASSERTMSG((pp->pr_nout > 0),
           "%s: [%s] putting with none out", __func__, pp->pr_wchan);

       if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
               panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
       }

       /*
        * Return to item list.
        */
       if (pp->pr_roflags & PR_USEBMAP) {
               pr_item_bitmap_put(pp, ph, v);
       } else {
               pr_item_linkedlist_put(pp, ph, v);
       }
       KDASSERT(ph->ph_nmissing != 0);
       ph->ph_nmissing--;
       pp->pr_nput++;
       pp->pr_nitems++;
       pp->pr_nout--;

       /* Cancel "pool empty" condition if it exists */
       if (pp->pr_curpage == NULL)
               pp->pr_curpage = ph;

       if (pp->pr_flags & PR_WANTED) {
               pp->pr_flags &= ~PR_WANTED;
               cv_broadcast(&pp->pr_cv);
       }

       /*
        * If this page is now empty, do one of two things:
        *
        *      (1) If we have more pages than the page high water mark,
        *          free the page back to the system.  ONLY CONSIDER
        *          FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
        *          CLAIM.
        *
        *      (2) Otherwise, move the page to the empty page list.
        *
        * Either way, select a new current page (so we use a partially-full
        * page if one is available).
        */
       if (ph->ph_nmissing == 0) {
               pp->pr_nidle++;
               if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
                   pp->pr_npages > pp->pr_minpages &&
                   (pp->pr_npages > pp->pr_maxpages ||
                    pp->pr_nitems > pp->pr_maxitems)) {
                       pr_rmpage(pp, ph, pq);
               } else {
                       LIST_REMOVE(ph, ph_pagelist);
                       LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);

                       /*
                        * Update the timestamp on the page.  A page must
                        * be idle for some period of time before it can
                        * be reclaimed by the pagedaemon.  This minimizes
                        * ping-pong'ing for memory.
                        *
                        * note for 64-bit time_t: truncating to 32-bit is not
                        * a problem for our usage.
                        */
                       ph->ph_time = time_uptime;
               }
               pool_update_curpage(pp);
       }

       /*
        * If the page was previously completely full, move it to the
        * partially-full list and make it the current page.  The next
        * allocation will get the item from this page, instead of
        * further fragmenting the pool.
        */
       else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
               LIST_REMOVE(ph, ph_pagelist);
               LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
               pp->pr_curpage = ph;
       }
}

void
pool_put(struct pool *pp, void *v)
{
       struct pool_pagelist pq;

       LIST_INIT(&pq);

       mutex_enter(&pp->pr_lock);
       if (!pool_put_quarantine(pp, v, &pq)) {
               pool_do_put(pp, v, &pq);
       }
       mutex_exit(&pp->pr_lock);

       pr_pagelist_free(pp, &pq);
}

/*
* pool_grow: grow a pool by a page.
*
* => called with pool locked.
* => unlock and relock the pool.
* => return with pool locked.
*/

static int
pool_grow(struct pool *pp, int flags)
{
       struct pool_item_header *ph;
       char *storage;

       /*
        * If there's a pool_grow in progress, wait for it to complete
        * and try again from the top.
        */
       if (pp->pr_flags & PR_GROWING) {
               if (flags & PR_WAITOK) {
                       do {
                               cv_wait(&pp->pr_cv, &pp->pr_lock);
                       } while (pp->pr_flags & PR_GROWING);
                       return ERESTART;
               } else {
                       if (pp->pr_flags & PR_GROWINGNOWAIT) {
                               /*
                                * This needs an unlock/relock dance so
                                * that the other caller has a chance to
                                * run and actually do the thing.  Note
                                * that this is effectively a busy-wait.
                                */
                               mutex_exit(&pp->pr_lock);
                               mutex_enter(&pp->pr_lock);
                               return ERESTART;
                       }
                       return EWOULDBLOCK;
               }
       }
       pp->pr_flags |= PR_GROWING;
       if (flags & PR_WAITOK)
               mutex_exit(&pp->pr_lock);
       else
               pp->pr_flags |= PR_GROWINGNOWAIT;

       storage = pool_allocator_alloc(pp, flags);
       if (__predict_false(storage == NULL))
               goto out;

       ph = pool_alloc_item_header(pp, storage, flags);
       if (__predict_false(ph == NULL)) {
               pool_allocator_free(pp, storage);
               goto out;
       }

       if (flags & PR_WAITOK)
               mutex_enter(&pp->pr_lock);
       pool_prime_page(pp, storage, ph);
       pp->pr_npagealloc++;
       KASSERT(pp->pr_flags & PR_GROWING);
       pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
       /*
        * If anyone was waiting for pool_grow, notify them that we
        * may have just done it.
        */
       cv_broadcast(&pp->pr_cv);
       return 0;
out:
       if (flags & PR_WAITOK)
               mutex_enter(&pp->pr_lock);
       KASSERT(pp->pr_flags & PR_GROWING);
       pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
       return ENOMEM;
}

void
pool_prime(struct pool *pp, int n)
{

       mutex_enter(&pp->pr_lock);
       pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
       if (pp->pr_maxpages <= pp->pr_minpages)
               pp->pr_maxpages = pp->pr_minpages + 1;  /* XXX */
       while (pp->pr_npages < pp->pr_minpages)
               (void) pool_grow(pp, PR_WAITOK);
       mutex_exit(&pp->pr_lock);
}

/*
* Add a page worth of items to the pool.
*
* Note, we must be called with the pool descriptor LOCKED.
*/
static void
pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
{
       const unsigned int align = pp->pr_align;
       struct pool_item *pi;
       void *cp = storage;
       int n;

       KASSERT(mutex_owned(&pp->pr_lock));
       KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
               (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
           "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);

       /*
        * Insert page header.
        */
       LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
       LIST_INIT(&ph->ph_itemlist);
       ph->ph_page = storage;
       ph->ph_nmissing = 0;
       ph->ph_time = time_uptime;
       if (pp->pr_roflags & PR_PHINPAGE)
               ph->ph_poolid = pp->pr_poolid;
       else
               SPLAY_INSERT(phtree, &pp->pr_phtree, ph);

       pp->pr_nidle++;

       /*
        * The item space starts after the on-page header, if any.
        */
       ph->ph_off = pp->pr_itemoffset;

       /*
        * Color this page.
        */
       ph->ph_off += pp->pr_curcolor;
       cp = (char *)cp + ph->ph_off;
       if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
               pp->pr_curcolor = 0;

       KASSERT((((vaddr_t)cp) & (align - 1)) == 0);

       /*
        * Insert remaining chunks on the bucket list.
        */
       n = pp->pr_itemsperpage;
       pp->pr_nitems += n;

       if (pp->pr_roflags & PR_USEBMAP) {
               pr_item_bitmap_init(pp, ph);
       } else {
               while (n--) {
                       pi = (struct pool_item *)cp;

                       KASSERT((((vaddr_t)pi) & (align - 1)) == 0);

                       /* Insert on page list */
                       LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
#ifdef POOL_CHECK_MAGIC
                       pi->pi_magic = PI_MAGIC;
#endif
                       cp = (char *)cp + pp->pr_size;

                       KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
               }
       }

       /*
        * If the pool was depleted, point at the new page.
        */
       if (pp->pr_curpage == NULL)
               pp->pr_curpage = ph;

       if (++pp->pr_npages > pp->pr_hiwat)
               pp->pr_hiwat = pp->pr_npages;
}

/*
* Used by pool_get() when nitems drops below the low water mark.  This
* is used to catch up pr_nitems with the low water mark.
*
* Note 1, we never wait for memory here, we let the caller decide what to do.
*
* Note 2, we must be called with the pool already locked, and we return
* with it locked.
*/
static int
pool_catchup(struct pool *pp)
{
       int error = 0;

       while (POOL_NEEDS_CATCHUP(pp)) {
               error = pool_grow(pp, PR_NOWAIT);
               if (error) {
                       if (error == ERESTART)
                               continue;
                       break;
               }
       }
       return error;
}

static void
pool_update_curpage(struct pool *pp)
{

       pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
       if (pp->pr_curpage == NULL) {
               pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
       }
       KASSERTMSG((pp->pr_curpage == NULL) == (pp->pr_nitems == 0),
           "pp=%p curpage=%p nitems=%u", pp, pp->pr_curpage, pp->pr_nitems);
}

void
pool_setlowat(struct pool *pp, int n)
{

       mutex_enter(&pp->pr_lock);
       pp->pr_minitems = n;

       /* Make sure we're caught up with the newly-set low water mark. */
       if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
               /*
                * XXX: Should we log a warning?  Should we set up a timeout
                * to try again in a second or so?  The latter could break
                * a caller's assumptions about interrupt protection, etc.
                */
       }

       mutex_exit(&pp->pr_lock);
}

void
pool_sethiwat(struct pool *pp, int n)
{

       mutex_enter(&pp->pr_lock);

       pp->pr_maxitems = n;

       mutex_exit(&pp->pr_lock);
}

void
pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
{

       mutex_enter(&pp->pr_lock);

       pp->pr_hardlimit = n;
       pp->pr_hardlimit_warning = warnmess;
       pp->pr_hardlimit_ratecap.tv_sec = ratecap;
       pp->pr_hardlimit_warning_last.tv_sec = 0;
       pp->pr_hardlimit_warning_last.tv_usec = 0;

       pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;

       mutex_exit(&pp->pr_lock);
}

unsigned int
pool_nget(struct pool *pp)
{

       return pp->pr_nget;
}

unsigned int
pool_nput(struct pool *pp)
{

       return pp->pr_nput;
}

/*
* Release all complete pages that have not been used recently.
*
* Must not be called from interrupt context.
*/
int
pool_reclaim(struct pool *pp)
{
       struct pool_item_header *ph, *phnext;
       struct pool_pagelist pq;
       struct pool_cache *pc;
       uint32_t curtime;
       bool klock;
       int rv;

       KASSERT(!cpu_intr_p());
       KASSERT(!cpu_softintr_p());

       if (pp->pr_drain_hook != NULL) {
               /*
                * The drain hook must be called with the pool unlocked.
                */
               (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
       }

       /*
        * XXXSMP Because we do not want to cause non-MPSAFE code
        * to block.
        */
       if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
           pp->pr_ipl == IPL_SOFTSERIAL) {
               KERNEL_LOCK(1, NULL);
               klock = true;
       } else
               klock = false;

       /* Reclaim items from the pool's cache (if any). */
       if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL)
               pool_cache_invalidate(pc);

       if (mutex_tryenter(&pp->pr_lock) == 0) {
               if (klock) {
                       KERNEL_UNLOCK_ONE(NULL);
               }
               return 0;
       }

       LIST_INIT(&pq);

       curtime = time_uptime;

       for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
               phnext = LIST_NEXT(ph, ph_pagelist);

               /* Check our minimum page claim */
               if (pp->pr_npages <= pp->pr_minpages)
                       break;

               KASSERT(ph->ph_nmissing == 0);
               if (curtime - ph->ph_time < pool_inactive_time)
                       continue;

               /*
                * If freeing this page would put us below the minimum free items
                * or the minimum pages, stop now.
                */
               if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
                   pp->pr_npages - 1 < pp->pr_minpages)
                       break;

               pr_rmpage(pp, ph, &pq);
       }

       mutex_exit(&pp->pr_lock);

       if (LIST_EMPTY(&pq))
               rv = 0;
       else {
               pr_pagelist_free(pp, &pq);
               rv = 1;
       }

       if (klock) {
               KERNEL_UNLOCK_ONE(NULL);
       }

       return rv;
}

/*
* Drain pools, one at a time. The drained pool is returned within ppp.
*
* Note, must never be called from interrupt context.
*/
bool
pool_drain(struct pool **ppp)
{
       bool reclaimed;
       struct pool *pp;

       KASSERT(!TAILQ_EMPTY(&pool_head));

       pp = NULL;

       /* Find next pool to drain, and add a reference. */
       mutex_enter(&pool_head_lock);
       do {
               if (drainpp == NULL) {
                       drainpp = TAILQ_FIRST(&pool_head);
               }
               if (drainpp != NULL) {
                       pp = drainpp;
                       drainpp = TAILQ_NEXT(pp, pr_poollist);
               }
               /*
                * Skip completely idle pools.  We depend on at least
                * one pool in the system being active.
                */
       } while (pp == NULL || pp->pr_npages == 0);
       pp->pr_refcnt++;
       mutex_exit(&pool_head_lock);

       /* Drain the cache (if any) and pool.. */
       reclaimed = pool_reclaim(pp);

       /* Finally, unlock the pool. */
       mutex_enter(&pool_head_lock);
       pp->pr_refcnt--;
       cv_broadcast(&pool_busy);
       mutex_exit(&pool_head_lock);

       if (ppp != NULL)
               *ppp = pp;

       return reclaimed;
}

/*
* Calculate the total number of pages consumed by pools.
*/
int
pool_totalpages(void)
{

       mutex_enter(&pool_head_lock);
       int pages = pool_totalpages_locked();
       mutex_exit(&pool_head_lock);

       return pages;
}

int
pool_totalpages_locked(void)
{
       struct pool *pp;
       uint64_t total = 0;

       TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
               uint64_t bytes =
                   (uint64_t)pp->pr_npages * pp->pr_alloc->pa_pagesz;

               if ((pp->pr_roflags & PR_RECURSIVE) != 0)
                       bytes -= ((uint64_t)pp->pr_nout * pp->pr_size);
               total += bytes;
       }

       return atop(total);
}

/*
* Diagnostic helpers.
*/

void
pool_printall(const char *modif, void (*pr)(const char *, ...))
{
       struct pool *pp;

       TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
               pool_printit(pp, modif, pr);
       }
}

void
pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
{

       if (pp == NULL) {
               (*pr)("Must specify a pool to print.\n");
               return;
       }

       pool_print1(pp, modif, pr);
}

static void
pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   void (*pr)(const char *, ...))
{
       struct pool_item_header *ph;

       LIST_FOREACH(ph, pl, ph_pagelist) {
               (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
                   ph->ph_page, ph->ph_nmissing, ph->ph_time);
#ifdef POOL_CHECK_MAGIC
               struct pool_item *pi;
               if (!(pp->pr_roflags & PR_USEBMAP)) {
                       LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
                               if (pi->pi_magic != PI_MAGIC) {
                                       (*pr)("\t\t\titem %p, magic 0x%x\n",
                                           pi, pi->pi_magic);
                               }
                       }
               }
#endif
       }
}

static void
pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
{
       struct pool_item_header *ph;
       pool_cache_t pc;
       pcg_t *pcg;
       pool_cache_cpu_t *cc;
       uint64_t cpuhit, cpumiss, pchit, pcmiss;
       uint32_t nfull;
       int i;
       bool print_log = false, print_pagelist = false, print_cache = false;
       bool print_short = false, skip_empty = false;
       char c;

       while ((c = *modif++) != '\0') {
               if (c == 'l')
                       print_log = true;
               if (c == 'p')
                       print_pagelist = true;
               if (c == 'c')
                       print_cache = true;
               if (c == 's')
                       print_short = true;
               if (c == 'S')
                       skip_empty = true;
       }

       if (skip_empty && pp->pr_nget == 0)
               return;

       if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
               (*pr)("POOLCACHE");
       } else {
               (*pr)("POOL");
       }

       /* Single line output. */
       if (print_short) {
               (*pr)(" %s:%p:%u:%u:%u:%u:%u:%u:%u:%u:%u:%u:%zu\n",
                   pp->pr_wchan, pp, pp->pr_size, pp->pr_align, pp->pr_npages,
                   pp->pr_nitems, pp->pr_nout, pp->pr_nget, pp->pr_nput,
                   pp->pr_npagealloc, pp->pr_npagefree, pp->pr_nidle,
                   (size_t)pp->pr_npagealloc * pp->pr_alloc->pa_pagesz);
               return;
       }

       (*pr)(" %s: itemsize %u, totalmem %zu align %u, ioff %u, roflags 0x%08x\n",
           pp->pr_wchan, pp->pr_size,
           (size_t)pp->pr_npagealloc * pp->pr_alloc->pa_pagesz,
           pp->pr_align, pp->pr_itemoffset, pp->pr_roflags);
       (*pr)("\tpool %p, alloc %p\n", pp, pp->pr_alloc);
       (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
           pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
       (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
           pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);

       (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
           pp->pr_nget, pp->pr_nfail, pp->pr_nput);
       (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
           pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);

       if (!print_pagelist)
               goto skip_pagelist;

       if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
               (*pr)("\n\tempty page list:\n");
       pool_print_pagelist(pp, &pp->pr_emptypages, pr);
       if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
               (*pr)("\n\tfull page list:\n");
       pool_print_pagelist(pp, &pp->pr_fullpages, pr);
       if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
               (*pr)("\n\tpartial-page list:\n");
       pool_print_pagelist(pp, &pp->pr_partpages, pr);

       if (pp->pr_curpage == NULL)
               (*pr)("\tno current page\n");
       else
               (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);

skip_pagelist:
       if (print_log)
               goto skip_log;

       (*pr)("\n");

skip_log:

#define PR_GROUPLIST(pcg)                                               \
       (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);         \
       for (i = 0; i < pcg->pcg_size; i++) {                           \
               if (pcg->pcg_objects[i].pcgo_pa !=                      \
                   POOL_PADDR_INVALID) {                               \
                       (*pr)("\t\t\t%p, 0x%llx\n",                     \
                           pcg->pcg_objects[i].pcgo_va,                \
                           (unsigned long long)                        \
                           pcg->pcg_objects[i].pcgo_pa);               \
               } else {                                                \
                       (*pr)("\t\t\t%p\n",                             \
                           pcg->pcg_objects[i].pcgo_va);               \
               }                                                       \
       }

       if (pc != NULL) {
               cpuhit = 0;
               cpumiss = 0;
               pcmiss = 0;
               nfull = 0;
               for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
                       if ((cc = pc->pc_cpus[i]) == NULL)
                               continue;
                       cpuhit += cc->cc_hits;
                       cpumiss += cc->cc_misses;
                       pcmiss += cc->cc_pcmisses;
                       nfull += cc->cc_nfull;
               }
               pchit = cpumiss - pcmiss;
               (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
               (*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
               (*pr)("\tcache layer full groups %u\n", nfull);
               if (print_cache) {
                       (*pr)("\tfull cache groups:\n");
                       for (pcg = pc->pc_fullgroups; pcg != NULL;
                           pcg = pcg->pcg_next) {
                               PR_GROUPLIST(pcg);
                       }
               }
       }
#undef PR_GROUPLIST
}

static int
pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
{
       struct pool_item *pi;
       void *page;
       int n;

       if ((pp->pr_roflags & PR_NOALIGN) == 0) {
               page = POOL_OBJ_TO_PAGE(pp, ph);
               if (page != ph->ph_page &&
                   (pp->pr_roflags & PR_PHINPAGE) != 0) {
                       if (label != NULL)
                               printf("%s: ", label);
                       printf("pool(%p:%s): page inconsistency: page %p;"
                              " at page head addr %p (p %p)\n", pp,
                               pp->pr_wchan, ph->ph_page,
                               ph, page);
                       return 1;
               }
       }

       if ((pp->pr_roflags & PR_USEBMAP) != 0)
               return 0;

       for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
            pi != NULL;
            pi = LIST_NEXT(pi,pi_list), n++) {

#ifdef POOL_CHECK_MAGIC
               if (pi->pi_magic != PI_MAGIC) {
                       if (label != NULL)
                               printf("%s: ", label);
                       printf("pool(%s): free list modified: magic=%x;"
                              " page %p; item ordinal %d; addr %p\n",
                               pp->pr_wchan, pi->pi_magic, ph->ph_page,
                               n, pi);
                       panic("pool");
               }
#endif
               if ((pp->pr_roflags & PR_NOALIGN) != 0) {
                       continue;
               }
               page = POOL_OBJ_TO_PAGE(pp, pi);
               if (page == ph->ph_page)
                       continue;

               if (label != NULL)
                       printf("%s: ", label);
               printf("pool(%p:%s): page inconsistency: page %p;"
                      " item ordinal %d; addr %p (p %p)\n", pp,
                       pp->pr_wchan, ph->ph_page,
                       n, pi, page);
               return 1;
       }
       return 0;
}


int
pool_chk(struct pool *pp, const char *label)
{
       struct pool_item_header *ph;
       int r = 0;

       mutex_enter(&pp->pr_lock);
       LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
               r = pool_chk_page(pp, label, ph);
               if (r) {
                       goto out;
               }
       }
       LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
               r = pool_chk_page(pp, label, ph);
               if (r) {
                       goto out;
               }
       }
       LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
               r = pool_chk_page(pp, label, ph);
               if (r) {
                       goto out;
               }
       }

out:
       mutex_exit(&pp->pr_lock);
       return r;
}

/*
* pool_cache_init:
*
*      Initialize a pool cache.
*/
pool_cache_t
pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   const char *wchan, struct pool_allocator *palloc, int ipl,
   int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
{
       pool_cache_t pc;

       pc = pool_get(&cache_pool, PR_WAITOK);
       if (pc == NULL)
               return NULL;

       pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
          palloc, ipl, ctor, dtor, arg);

       return pc;
}

/*
* pool_cache_bootstrap:
*
*      Kernel-private version of pool_cache_init().  The caller
*      provides initial storage.
*/
void
pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   u_int align_offset, u_int flags, const char *wchan,
   struct pool_allocator *palloc, int ipl,
   int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   void *arg)
{
       CPU_INFO_ITERATOR cii;
       pool_cache_t pc1;
       struct cpu_info *ci;
       struct pool *pp;
       unsigned int ppflags;

       pp = &pc->pc_pool;
       ppflags = flags;
       if (ctor == NULL) {
               ctor = NO_CTOR;
       }
       if (dtor == NULL) {
               dtor = NO_DTOR;
       } else {
               /*
                * If we have a destructor, then the pool layer does not
                * need to worry about PR_PSERIALIZE.
                */
               ppflags &= ~PR_PSERIALIZE;
       }

       pool_init(pp, size, align, align_offset, ppflags, wchan, palloc, ipl);

       pc->pc_fullgroups = NULL;
       pc->pc_partgroups = NULL;
       pc->pc_ctor = ctor;
       pc->pc_dtor = dtor;
       pc->pc_arg  = arg;
       pc->pc_refcnt = 0;
       pc->pc_roflags = flags;
       pc->pc_freecheck = NULL;

       if ((flags & PR_LARGECACHE) != 0) {
               pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
               pc->pc_pcgpool = &pcg_large_pool;
               pc->pc_pcgcache = &pcg_large_cache;
       } else {
               pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
               pc->pc_pcgpool = &pcg_normal_pool;
               pc->pc_pcgcache = &pcg_normal_cache;
       }

       /* Allocate per-CPU caches. */
       memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
       pc->pc_ncpu = 0;
       if (ncpu < 2) {
               /* XXX For sparc: boot CPU is not attached yet. */
               pool_cache_cpu_init1(curcpu(), pc);
       } else {
               for (CPU_INFO_FOREACH(cii, ci)) {
                       pool_cache_cpu_init1(ci, pc);
               }
       }

       /* Add to list of all pools. */
       if (__predict_true(!cold))
               mutex_enter(&pool_head_lock);
       TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
               if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
                       break;
       }
       if (pc1 == NULL)
               TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
       else
               TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
       if (__predict_true(!cold))
               mutex_exit(&pool_head_lock);

       atomic_store_release(&pp->pr_cache, pc);
}

/*
* pool_cache_destroy:
*
*      Destroy a pool cache.
*/
void
pool_cache_destroy(pool_cache_t pc)
{

       pool_cache_bootstrap_destroy(pc);
       pool_put(&cache_pool, pc);
}

/*
* pool_cache_bootstrap_destroy:
*
*      Destroy a pool cache.
*/
void
pool_cache_bootstrap_destroy(pool_cache_t pc)
{
       struct pool *pp = &pc->pc_pool;
       u_int i;

       /* Remove it from the global list. */
       mutex_enter(&pool_head_lock);
       while (pc->pc_refcnt != 0)
               cv_wait(&pool_busy, &pool_head_lock);
       TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
       mutex_exit(&pool_head_lock);

       /* First, invalidate the entire cache. */
       pool_cache_invalidate(pc);

       /* Disassociate it from the pool. */
       mutex_enter(&pp->pr_lock);
       atomic_store_relaxed(&pp->pr_cache, NULL);
       mutex_exit(&pp->pr_lock);

       /* Destroy per-CPU data */
       for (i = 0; i < __arraycount(pc->pc_cpus); i++)
               pool_cache_invalidate_cpu(pc, i);

       /* Finally, destroy it. */
       pool_destroy(pp);
}

/*
* pool_cache_cpu_init1:
*
*      Called for each pool_cache whenever a new CPU is attached.
*/
static void
pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
{
       pool_cache_cpu_t *cc;
       int index;

       index = ci->ci_index;

       KASSERT(index < __arraycount(pc->pc_cpus));

       if ((cc = pc->pc_cpus[index]) != NULL) {
               return;
       }

       /*
        * The first CPU is 'free'.  This needs to be the case for
        * bootstrap - we may not be able to allocate yet.
        */
       if (pc->pc_ncpu == 0) {
               cc = &pc->pc_cpu0;
               pc->pc_ncpu = 1;
       } else {
               pc->pc_ncpu++;
               cc = pool_get(&cache_cpu_pool, PR_WAITOK);
       }

       cc->cc_current = __UNCONST(&pcg_dummy);
       cc->cc_previous = __UNCONST(&pcg_dummy);
       cc->cc_pcgcache = pc->pc_pcgcache;
       cc->cc_hits = 0;
       cc->cc_misses = 0;
       cc->cc_pcmisses = 0;
       cc->cc_contended = 0;
       cc->cc_nfull = 0;
       cc->cc_npart = 0;

       pc->pc_cpus[index] = cc;
}

/*
* pool_cache_cpu_init:
*
*      Called whenever a new CPU is attached.
*/
void
pool_cache_cpu_init(struct cpu_info *ci)
{
       pool_cache_t pc;

       mutex_enter(&pool_head_lock);
       TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
               pc->pc_refcnt++;
               mutex_exit(&pool_head_lock);

               pool_cache_cpu_init1(ci, pc);

               mutex_enter(&pool_head_lock);
               pc->pc_refcnt--;
               cv_broadcast(&pool_busy);
       }
       mutex_exit(&pool_head_lock);
}

/*
* pool_cache_reclaim:
*
*      Reclaim memory from a pool cache.
*/
bool
pool_cache_reclaim(pool_cache_t pc)
{

       return pool_reclaim(&pc->pc_pool);
}

static inline void
pool_cache_pre_destruct(pool_cache_t pc)
{
       /*
        * Perform a passive serialization barrier before destructing
        * a batch of one or more objects.
        */
       if (__predict_false(pc_has_pser(pc))) {
               pool_barrier();
       }
}

static void
pool_cache_destruct_object1(pool_cache_t pc, void *object)
{
       (*pc->pc_dtor)(pc->pc_arg, object);
       pool_put(&pc->pc_pool, object);
}

/*
* pool_cache_destruct_object:
*
*      Force destruction of an object and its release back into
*      the pool.
*/
void
pool_cache_destruct_object(pool_cache_t pc, void *object)
{

       FREECHECK_IN(&pc->pc_freecheck, object);

       pool_cache_pre_destruct(pc);
       pool_cache_destruct_object1(pc, object);
}

/*
* pool_cache_invalidate_groups:
*
*      Invalidate a chain of groups and destruct all objects.  Return the
*      number of groups that were invalidated.
*/
static int
pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
{
       void *object;
       pcg_t *next;
       int i, n;

       if (pcg == NULL) {
               return 0;
       }

       pool_cache_pre_destruct(pc);

       for (n = 0; pcg != NULL; pcg = next, n++) {
               next = pcg->pcg_next;

               for (i = 0; i < pcg->pcg_avail; i++) {
                       object = pcg->pcg_objects[i].pcgo_va;
                       pool_cache_destruct_object1(pc, object);
               }

               if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
                       pool_put(&pcg_large_pool, pcg);
               } else {
                       KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
                       pool_put(&pcg_normal_pool, pcg);
               }
       }
       return n;
}

/*
* pool_cache_invalidate:
*
*      Invalidate a pool cache (destruct and release all of the
*      cached objects).  Does not reclaim objects from the pool.
*
*      Note: For pool caches that provide constructed objects, there
*      is an assumption that another level of synchronization is occurring
*      between the input to the constructor and the cache invalidation.
*
*      Invalidation is a costly process and should not be called from
*      interrupt context.
*/
void
pool_cache_invalidate(pool_cache_t pc)
{
       uint64_t where;
       pcg_t *pcg;
       int n, s;

       KASSERT(!cpu_intr_p());
       KASSERT(!cpu_softintr_p());

       if (ncpu < 2 || !mp_online) {
               /*
                * We might be called early enough in the boot process
                * for the CPU data structures to not be fully initialized.
                * In this case, transfer the content of the local CPU's
                * cache back into global cache as only this CPU is currently
                * running.
                */
               pool_cache_transfer(pc);
       } else {
               /*
                * Signal all CPUs that they must transfer their local
                * cache back to the global pool then wait for the xcall to
                * complete.
                */
               where = xc_broadcast(0,
                   __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
               xc_wait(where);
       }

       /* Now dequeue and invalidate everything. */
       pcg = pool_pcg_trunc(&pcg_normal_cache);
       (void)pool_cache_invalidate_groups(pc, pcg);

       pcg = pool_pcg_trunc(&pcg_large_cache);
       (void)pool_cache_invalidate_groups(pc, pcg);

       pcg = pool_pcg_trunc(&pc->pc_fullgroups);
       n = pool_cache_invalidate_groups(pc, pcg);
       s = splvm();
       ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
       splx(s);

       pcg = pool_pcg_trunc(&pc->pc_partgroups);
       n = pool_cache_invalidate_groups(pc, pcg);
       s = splvm();
       ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
       splx(s);
}

/*
* pool_cache_invalidate_cpu:
*
*      Invalidate all CPU-bound cached objects in pool cache, the CPU being
*      identified by its associated index.
*      It is caller's responsibility to ensure that no operation is
*      taking place on this pool cache while doing this invalidation.
*      WARNING: as no inter-CPU locking is enforced, trying to invalidate
*      pool cached objects from a CPU different from the one currently running
*      may result in an undefined behaviour.
*/
static void
pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
{
       pool_cache_cpu_t *cc;
       pcg_t *pcg;

       if ((cc = pc->pc_cpus[index]) == NULL)
               return;

       if ((pcg = cc->cc_current) != &pcg_dummy) {
               pcg->pcg_next = NULL;
               pool_cache_invalidate_groups(pc, pcg);
       }
       if ((pcg = cc->cc_previous) != &pcg_dummy) {
               pcg->pcg_next = NULL;
               pool_cache_invalidate_groups(pc, pcg);
       }
       if (cc != &pc->pc_cpu0)
               pool_put(&cache_cpu_pool, cc);

}

void
pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
{

       pool_set_drain_hook(&pc->pc_pool, fn, arg);
}

void
pool_cache_setlowat(pool_cache_t pc, int n)
{

       pool_setlowat(&pc->pc_pool, n);
}

void
pool_cache_sethiwat(pool_cache_t pc, int n)
{

       pool_sethiwat(&pc->pc_pool, n);
}

void
pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
{

       pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
}

void
pool_cache_prime(pool_cache_t pc, int n)
{

       pool_prime(&pc->pc_pool, n);
}

unsigned int
pool_cache_nget(pool_cache_t pc)
{

       return pool_nget(&pc->pc_pool);
}

unsigned int
pool_cache_nput(pool_cache_t pc)
{

       return pool_nput(&pc->pc_pool);
}

/*
* pool_pcg_get:
*
*      Get a cache group from the specified list.  Return true if
*      contention was encountered.  Must be called at IPL_VM because
*      of spin wait vs. kernel_lock.
*/
static int
pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
{
       int count = SPINLOCK_BACKOFF_MIN;
       pcg_t *o, *n;

       for (o = atomic_load_relaxed(head);; o = n) {
               if (__predict_false(o == &pcg_dummy)) {
                       /* Wait for concurrent get to complete. */
                       SPINLOCK_BACKOFF(count);
                       n = atomic_load_relaxed(head);
                       continue;
               }
               if (__predict_false(o == NULL)) {
                       break;
               }
               /* Lock out concurrent get/put. */
               n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
               if (o == n) {
                       /* Fetch pointer to next item and then unlock. */
                       membar_datadep_consumer(); /* alpha */
                       n = atomic_load_relaxed(&o->pcg_next);
                       atomic_store_release(head, n);
                       break;
               }
       }
       *pcgp = o;
       return count != SPINLOCK_BACKOFF_MIN;
}

/*
* pool_pcg_trunc:
*
*      Chop out entire list of pool cache groups.
*/
static pcg_t *
pool_pcg_trunc(pcg_t *volatile *head)
{
       int count = SPINLOCK_BACKOFF_MIN, s;
       pcg_t *o, *n;

       s = splvm();
       for (o = atomic_load_relaxed(head);; o = n) {
               if (__predict_false(o == &pcg_dummy)) {
                       /* Wait for concurrent get to complete. */
                       SPINLOCK_BACKOFF(count);
                       n = atomic_load_relaxed(head);
                       continue;
               }
               n = atomic_cas_ptr(head, o, NULL);
               if (o == n) {
                       splx(s);
                       membar_datadep_consumer(); /* alpha */
                       return o;
               }
       }
}

/*
* pool_pcg_put:
*
*      Put a pool cache group to the specified list.  Return true if
*      contention was encountered.  Must be called at IPL_VM because of
*      spin wait vs. kernel_lock.
*/
static int
pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
{
       int count = SPINLOCK_BACKOFF_MIN;
       pcg_t *o, *n;

       for (o = atomic_load_relaxed(head);; o = n) {
               if (__predict_false(o == &pcg_dummy)) {
                       /* Wait for concurrent get to complete. */
                       SPINLOCK_BACKOFF(count);
                       n = atomic_load_relaxed(head);
                       continue;
               }
               pcg->pcg_next = o;
               membar_release();
               n = atomic_cas_ptr(head, o, pcg);
               if (o == n) {
                       return count != SPINLOCK_BACKOFF_MIN;
               }
       }
}

static bool __noinline
pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
   void **objectp, paddr_t *pap, int flags)
{
       pcg_t *pcg, *cur;
       void *object;

       KASSERT(cc->cc_current->pcg_avail == 0);
       KASSERT(cc->cc_previous->pcg_avail == 0);

       cc->cc_misses++;

       /*
        * If there's a full group, release our empty group back to the
        * cache.  Install the full group as cc_current and return.
        */
       cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
       if (__predict_true(pcg != NULL)) {
               KASSERT(pcg->pcg_avail == pcg->pcg_size);
               if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
                       KASSERT(cur->pcg_avail == 0);
                       (void)pool_pcg_put(cc->cc_pcgcache, cur);
               }
               cc->cc_nfull--;
               cc->cc_current = pcg;
               return true;
       }

       /*
        * Nothing available locally or in cache.  Take the slow
        * path: fetch a new object from the pool and construct
        * it.
        */
       cc->cc_pcmisses++;
       splx(s);

       object = pool_get(&pc->pc_pool, flags);
       *objectp = object;
       if (__predict_false(object == NULL)) {
               KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
               return false;
       }

       if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
               pool_put(&pc->pc_pool, object);
               *objectp = NULL;
               return false;
       }

       KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);

       if (pap != NULL) {
#ifdef POOL_VTOPHYS
               *pap = POOL_VTOPHYS(object);
#else
               *pap = POOL_PADDR_INVALID;
#endif
       }

       FREECHECK_OUT(&pc->pc_freecheck, object);
       return false;
}

/*
* pool_cache_get{,_paddr}:
*
*      Get an object from a pool cache (optionally returning
*      the physical address of the object).
*/
void *
pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
{
       pool_cache_cpu_t *cc;
       pcg_t *pcg;
       void *object;
       int s;

       KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
       if (pc->pc_pool.pr_ipl == IPL_NONE &&
           __predict_true(!cold) &&
           __predict_true(panicstr == NULL)) {
               KASSERTMSG(!cpu_intr_p(),
                   "%s: [%s] is IPL_NONE, but called from interrupt context",
                   __func__, pc->pc_pool.pr_wchan);
               KASSERTMSG(!cpu_softintr_p(),
                   "%s: [%s] is IPL_NONE,"
                   " but called from soft interrupt context",
                   __func__, pc->pc_pool.pr_wchan);
       }

       if (flags & PR_WAITOK) {
               ASSERT_SLEEPABLE();
       }

       if (flags & PR_NOWAIT) {
               if (fault_inject())
                       return NULL;
       }

       /* Lock out interrupts and disable preemption. */
       s = splvm();
       while (/* CONSTCOND */ true) {
               /* Try and allocate an object from the current group. */
               cc = pc->pc_cpus[curcpu()->ci_index];
               pcg = cc->cc_current;
               if (__predict_true(pcg->pcg_avail > 0)) {
                       object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
                       if (__predict_false(pap != NULL))
                               *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
#if defined(DIAGNOSTIC)
                       pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
                       KASSERT(pcg->pcg_avail < pcg->pcg_size);
                       KASSERT(object != NULL);
#endif
                       cc->cc_hits++;
                       splx(s);
                       FREECHECK_OUT(&pc->pc_freecheck, object);
                       pool_redzone_fill(&pc->pc_pool, object);
                       pool_cache_get_kmsan(pc, object);
                       return object;
               }

               /*
                * That failed.  If the previous group isn't empty, swap
                * it with the current group and allocate from there.
                */
               pcg = cc->cc_previous;
               if (__predict_true(pcg->pcg_avail > 0)) {
                       cc->cc_previous = cc->cc_current;
                       cc->cc_current = pcg;
                       continue;
               }

               /*
                * Can't allocate from either group: try the slow path.
                * If get_slow() allocated an object for us, or if
                * no more objects are available, it will return false.
                * Otherwise, we need to retry.
                */
               if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
                       if (object != NULL) {
                               kmsan_orig(object, pc->pc_pool.pr_size,
                                   KMSAN_TYPE_POOL, __RET_ADDR);
                       }
                       break;
               }
       }

       /*
        * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
        * pool_cache_get can fail even in the PR_WAITOK case, if the
        * constructor fails.
        */
       return object;
}

static bool __noinline
pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
{
       pcg_t *pcg, *cur;

       KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
       KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);

       cc->cc_misses++;

       /*
        * Try to get an empty group from the cache.  If there are no empty
        * groups in the cache then allocate one.
        */
       (void)pool_pcg_get(cc->cc_pcgcache, &pcg);
       if (__predict_false(pcg == NULL)) {
               if (__predict_true(!pool_cache_disable)) {
                       pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
               }
               if (__predict_true(pcg != NULL)) {
                       pcg->pcg_avail = 0;
                       pcg->pcg_size = pc->pc_pcgsize;
               }
       }

       /*
        * If there's a empty group, release our full group back to the
        * cache.  Install the empty group to the local CPU and return.
        */
       if (pcg != NULL) {
               KASSERT(pcg->pcg_avail == 0);
               if (__predict_false(cc->cc_previous == &pcg_dummy)) {
                       cc->cc_previous = pcg;
               } else {
                       cur = cc->cc_current;
                       if (__predict_true(cur != &pcg_dummy)) {
                               KASSERT(cur->pcg_avail == cur->pcg_size);
                               cc->cc_contended +=
                                   pool_pcg_put(&pc->pc_fullgroups, cur);
                               cc->cc_nfull++;
                       }
                       cc->cc_current = pcg;
               }
               return true;
       }

       /*
        * Nothing available locally or in cache, and we didn't
        * allocate an empty group.  Take the slow path and destroy
        * the object here and now.
        */
       cc->cc_pcmisses++;
       splx(s);
       pool_cache_destruct_object(pc, object);

       return false;
}

/*
* pool_cache_put{,_paddr}:
*
*      Put an object back to the pool cache (optionally caching the
*      physical address of the object).
*/
void
pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
{
       pool_cache_cpu_t *cc;
       pcg_t *pcg;
       int s;

       KASSERT(object != NULL);
       pool_cache_put_kmsan(pc, object);
       pool_cache_redzone_check(pc, object);
       FREECHECK_IN(&pc->pc_freecheck, object);

       if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
               pc_phinpage_check(pc, object);
       }

       if (pool_cache_put_nocache(pc, object)) {
               return;
       }

       /* Lock out interrupts and disable preemption. */
       s = splvm();
       while (/* CONSTCOND */ true) {
               /* If the current group isn't full, release it there. */
               cc = pc->pc_cpus[curcpu()->ci_index];
               pcg = cc->cc_current;
               if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
                       pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
                       pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
                       pcg->pcg_avail++;
                       cc->cc_hits++;
                       splx(s);
                       return;
               }

               /*
                * That failed.  If the previous group isn't full, swap
                * it with the current group and try again.
                */
               pcg = cc->cc_previous;
               if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
                       cc->cc_previous = cc->cc_current;
                       cc->cc_current = pcg;
                       continue;
               }

               /*
                * Can't free to either group: try the slow path.
                * If put_slow() releases the object for us, it
                * will return false.  Otherwise we need to retry.
                */
               if (!pool_cache_put_slow(pc, cc, s, object))
                       break;
       }
}

/*
* pool_cache_transfer:
*
*      Transfer objects from the per-CPU cache to the global cache.
*      Run within a cross-call thread.
*/
static void
pool_cache_transfer(pool_cache_t pc)
{
       pool_cache_cpu_t *cc;
       pcg_t *prev, *cur;
       int s;

       s = splvm();
       cc = pc->pc_cpus[curcpu()->ci_index];
       cur = cc->cc_current;
       cc->cc_current = __UNCONST(&pcg_dummy);
       prev = cc->cc_previous;
       cc->cc_previous = __UNCONST(&pcg_dummy);
       if (cur != &pcg_dummy) {
               if (cur->pcg_avail == cur->pcg_size) {
                       (void)pool_pcg_put(&pc->pc_fullgroups, cur);
                       cc->cc_nfull++;
               } else if (cur->pcg_avail == 0) {
                       (void)pool_pcg_put(pc->pc_pcgcache, cur);
               } else {
                       (void)pool_pcg_put(&pc->pc_partgroups, cur);
                       cc->cc_npart++;
               }
       }
       if (prev != &pcg_dummy) {
               if (prev->pcg_avail == prev->pcg_size) {
                       (void)pool_pcg_put(&pc->pc_fullgroups, prev);
                       cc->cc_nfull++;
               } else if (prev->pcg_avail == 0) {
                       (void)pool_pcg_put(pc->pc_pcgcache, prev);
               } else {
                       (void)pool_pcg_put(&pc->pc_partgroups, prev);
                       cc->cc_npart++;
               }
       }
       splx(s);
}

static int
pool_bigidx(size_t size)
{
       int i;

       for (i = 0; i < __arraycount(pool_allocator_big); i++) {
               if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
                       return i;
       }
       panic("pool item size %zu too large, use a custom allocator", size);
}

static void *
pool_allocator_alloc(struct pool *pp, int flags)
{
       struct pool_allocator *pa = pp->pr_alloc;
       void *res;

       res = (*pa->pa_alloc)(pp, flags);
       return res;
}

static void
pool_allocator_free(struct pool *pp, void *v)
{
       struct pool_allocator *pa = pp->pr_alloc;

       if (pp->pr_redzone) {
               KASSERT(!pp_has_pser(pp));
               kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
       } else if (__predict_false(pp_has_pser(pp))) {
               /*
                * Perform a passive serialization barrier before freeing
                * the pool page back to the system.
                */
               pool_barrier();
       }
       (*pa->pa_free)(pp, v);
}

void *
pool_page_alloc(struct pool *pp, int flags)
{
       const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
       vmem_addr_t va;
       int ret;

       ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
           vflags | VM_INSTANTFIT, &va);

       return ret ? NULL : (void *)va;
}

void
pool_page_free(struct pool *pp, void *v)
{

       uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
}

static void *
pool_page_alloc_meta(struct pool *pp, int flags)
{
       const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
       vmem_addr_t va;
       int ret;

       ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
           vflags | VM_INSTANTFIT, &va);

       return ret ? NULL : (void *)va;
}

static void
pool_page_free_meta(struct pool *pp, void *v)
{

       vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
}

#ifdef KMSAN
static inline void
pool_get_kmsan(struct pool *pp, void *p)
{
       kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
       kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
}

static inline void
pool_put_kmsan(struct pool *pp, void *p)
{
       kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
}

static inline void
pool_cache_get_kmsan(pool_cache_t pc, void *p)
{
       if (__predict_false(pc_has_ctor(pc))) {
               return;
       }
       pool_get_kmsan(&pc->pc_pool, p);
}

static inline void
pool_cache_put_kmsan(pool_cache_t pc, void *p)
{
       pool_put_kmsan(&pc->pc_pool, p);
}
#endif

#ifdef POOL_QUARANTINE
static void
pool_quarantine_init(struct pool *pp)
{
       pp->pr_quar.rotor = 0;
       memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
}

static void
pool_quarantine_flush(struct pool *pp)
{
       pool_quar_t *quar = &pp->pr_quar;
       struct pool_pagelist pq;
       size_t i;

       LIST_INIT(&pq);

       mutex_enter(&pp->pr_lock);
       for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
               if (quar->list[i] == 0)
                       continue;
               pool_do_put(pp, (void *)quar->list[i], &pq);
       }
       mutex_exit(&pp->pr_lock);

       pr_pagelist_free(pp, &pq);
}

static bool
pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
{
       pool_quar_t *quar = &pp->pr_quar;
       uintptr_t old;

       if (pp->pr_roflags & PR_NOTOUCH) {
               return false;
       }

       pool_redzone_check(pp, v);

       old = quar->list[quar->rotor];
       quar->list[quar->rotor] = (uintptr_t)v;
       quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
       if (old != 0) {
               pool_do_put(pp, (void *)old, pq);
       }

       return true;
}
#endif

#ifdef POOL_NOCACHE
static bool
pool_cache_put_nocache(pool_cache_t pc, void *p)
{
       pool_cache_destruct_object(pc, p);
       return true;
}
#endif

#ifdef POOL_REDZONE
#if defined(_LP64)
# define PRIME 0x9e37fffffffc0000UL
#else /* defined(_LP64) */
# define PRIME 0x9e3779b1
#endif /* defined(_LP64) */
#define STATIC_BYTE     0xFE
CTASSERT(POOL_REDZONE_SIZE > 1);

#ifndef KASAN
static inline uint8_t
pool_pattern_generate(const void *p)
{
       return (uint8_t)(((uintptr_t)p) * PRIME
          >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
}
#endif

static void
pool_redzone_init(struct pool *pp, size_t requested_size)
{
       size_t redzsz;
       size_t nsz;

#ifdef KASAN
       redzsz = requested_size;
       kasan_add_redzone(&redzsz);
       redzsz -= requested_size;
#else
       redzsz = POOL_REDZONE_SIZE;
#endif

       if (pp->pr_roflags & PR_NOTOUCH) {
               pp->pr_redzone = false;
               return;
       }

       /*
        * We may have extended the requested size earlier; check if
        * there's naturally space in the padding for a red zone.
        */
       if (pp->pr_size - requested_size >= redzsz) {
               pp->pr_reqsize_with_redzone = requested_size + redzsz;
               pp->pr_redzone = true;
               return;
       }

       /*
        * No space in the natural padding; check if we can extend a
        * bit the size of the pool.
        *
        * Avoid using redzone for allocations half of a page or larger.
        * For pagesize items, we'd waste a whole new page (could be
        * unmapped?), and for half pagesize items, approximately half
        * the space is lost (eg, 4K pages, you get one 2K allocation.)
        */
       nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
       if (nsz <= (pp->pr_alloc->pa_pagesz / 2)) {
               /* Ok, we can */
               pp->pr_size = nsz;
               pp->pr_reqsize_with_redzone = requested_size + redzsz;
               pp->pr_redzone = true;
       } else {
               /* No space for a red zone... snif :'( */
               pp->pr_redzone = false;
               aprint_debug("pool redzone disabled for '%s'\n", pp->pr_wchan);
       }
}

static void
pool_redzone_fill(struct pool *pp, void *p)
{
       if (!pp->pr_redzone)
               return;
       KASSERT(!pp_has_pser(pp));
#ifdef KASAN
       kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
           KASAN_POOL_REDZONE);
#else
       uint8_t *cp, pat;
       const uint8_t *ep;

       cp = (uint8_t *)p + pp->pr_reqsize;
       ep = cp + POOL_REDZONE_SIZE;

       /*
        * We really don't want the first byte of the red zone to be '\0';
        * an off-by-one in a string may not be properly detected.
        */
       pat = pool_pattern_generate(cp);
       *cp = (pat == '\0') ? STATIC_BYTE: pat;
       cp++;

       while (cp < ep) {
               *cp = pool_pattern_generate(cp);
               cp++;
       }
#endif
}

static void
pool_redzone_check(struct pool *pp, void *p)
{
       if (!pp->pr_redzone)
               return;
       KASSERT(!pp_has_pser(pp));
#ifdef KASAN
       kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
#else
       uint8_t *cp, pat, expected;
       const uint8_t *ep;

       cp = (uint8_t *)p + pp->pr_reqsize;
       ep = cp + POOL_REDZONE_SIZE;

       pat = pool_pattern_generate(cp);
       expected = (pat == '\0') ? STATIC_BYTE: pat;
       if (__predict_false(*cp != expected)) {
               panic("%s: [%s] 0x%02x != 0x%02x", __func__,
                   pp->pr_wchan, *cp, expected);
       }
       cp++;

       while (cp < ep) {
               expected = pool_pattern_generate(cp);
               if (__predict_false(*cp != expected)) {
                       panic("%s: [%s] 0x%02x != 0x%02x", __func__,
                           pp->pr_wchan, *cp, expected);
               }
               cp++;
       }
#endif
}

static void
pool_cache_redzone_check(pool_cache_t pc, void *p)
{
#ifdef KASAN
       /*
        * If there is a ctor/dtor, or if the cache objects use
        * passive serialization, leave the data as valid.
        */
       if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc) ||
           pc_has_pser(pc))) {
               return;
       }
#endif
       pool_redzone_check(&pc->pc_pool, p);
}

#endif /* POOL_REDZONE */

#if defined(DDB)
static bool
pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
{

       return (uintptr_t)ph->ph_page <= addr &&
           addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
}

static bool
pool_in_item(struct pool *pp, void *item, uintptr_t addr)
{

       return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
}

static bool
pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
{
       int i;

       if (pcg == NULL) {
               return false;
       }
       for (i = 0; i < pcg->pcg_avail; i++) {
               if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
                       return true;
               }
       }
       return false;
}

static bool
pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
{

       if ((pp->pr_roflags & PR_USEBMAP) != 0) {
               unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
               pool_item_bitmap_t *bitmap =
                   ph->ph_bitmap + (idx / BITMAP_SIZE);
               pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);

               return (*bitmap & mask) == 0;
       } else {
               struct pool_item *pi;

               LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
                       if (pool_in_item(pp, pi, addr)) {
                               return false;
                       }
               }
               return true;
       }
}

void
pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
{
       struct pool *pp;

       TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
               struct pool_item_header *ph;
               struct pool_cache *pc;
               uintptr_t item;
               bool allocated = true;
               bool incache = false;
               bool incpucache = false;
               char cpucachestr[32];

               if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
                       LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
                               if (pool_in_page(pp, ph, addr)) {
                                       goto found;
                               }
                       }
                       LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
                               if (pool_in_page(pp, ph, addr)) {
                                       allocated =
                                           pool_allocated(pp, ph, addr);
                                       goto found;
                               }
                       }
                       LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
                               if (pool_in_page(pp, ph, addr)) {
                                       allocated = false;
                                       goto found;
                               }
                       }
                       continue;
               } else {
                       ph = pr_find_pagehead_noalign(pp, (void *)addr);
                       if (ph == NULL || !pool_in_page(pp, ph, addr)) {
                               continue;
                       }
                       allocated = pool_allocated(pp, ph, addr);
               }
found:
               if (allocated &&
                   (pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
                       struct pool_cache_group *pcg;
                       int i;

                       for (pcg = pc->pc_fullgroups; pcg != NULL;
                           pcg = pcg->pcg_next) {
                               if (pool_in_cg(pp, pcg, addr)) {
                                       incache = true;
                                       goto print;
                               }
                       }
                       for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
                               pool_cache_cpu_t *cc;

                               if ((cc = pc->pc_cpus[i]) == NULL) {
                                       continue;
                               }
                               if (pool_in_cg(pp, cc->cc_current, addr) ||
                                   pool_in_cg(pp, cc->cc_previous, addr)) {
                                       struct cpu_info *ci =
                                           cpu_lookup(i);

                                       incpucache = true;
                                       snprintf(cpucachestr,
                                           sizeof(cpucachestr),
                                           "cached by CPU %u",
                                           ci->ci_index);
                                       goto print;
                               }
                       }
               }
print:
               item = (uintptr_t)ph->ph_page + ph->ph_off;
               item = item + rounddown(addr - item, pp->pr_size);
               (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
                   (void *)addr, item, (size_t)(addr - item),
                   pp->pr_wchan,
                   incpucache ? cpucachestr :
                   incache ? "cached" : allocated ? "allocated" : "free");
       }
}
#endif /* defined(DDB) */

static int
pool_sysctl(SYSCTLFN_ARGS)
{
       struct pool_sysctl data;
       struct pool *pp;
       struct pool_cache *pc;
       pool_cache_cpu_t *cc;
       int error;
       size_t i, written;

       if (oldp == NULL) {
               *oldlenp = 0;
               TAILQ_FOREACH(pp, &pool_head, pr_poollist)
                       *oldlenp += sizeof(data);
               return 0;
       }

       memset(&data, 0, sizeof(data));
       error = 0;
       written = 0;
       mutex_enter(&pool_head_lock);
       TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
               if (written + sizeof(data) > *oldlenp)
                       break;
               pp->pr_refcnt++;
               strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
               data.pr_pagesize = pp->pr_alloc->pa_pagesz;
               data.pr_flags = pp->pr_roflags | pp->pr_flags;
#define COPY(field) data.field = pp->field
               COPY(pr_size);

               COPY(pr_itemsperpage);
               COPY(pr_nitems);
               COPY(pr_nout);
               COPY(pr_hardlimit);
               COPY(pr_npages);
               COPY(pr_minpages);
               COPY(pr_maxpages);

               COPY(pr_nget);
               COPY(pr_nfail);
               COPY(pr_nput);
               COPY(pr_npagealloc);
               COPY(pr_npagefree);
               COPY(pr_hiwat);
               COPY(pr_nidle);
#undef COPY

               data.pr_cache_nmiss_pcpu = 0;
               data.pr_cache_nhit_pcpu = 0;
               data.pr_cache_nmiss_global = 0;
               data.pr_cache_nempty = 0;
               data.pr_cache_ncontended = 0;
               data.pr_cache_npartial = 0;
               if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
                       uint32_t nfull = 0;
                       data.pr_cache_meta_size = pc->pc_pcgsize;
                       for (i = 0; i < pc->pc_ncpu; ++i) {
                               cc = pc->pc_cpus[i];
                               if (cc == NULL)
                                       continue;
                               data.pr_cache_ncontended += cc->cc_contended;
                               data.pr_cache_nmiss_pcpu += cc->cc_misses;
                               data.pr_cache_nhit_pcpu += cc->cc_hits;
                               data.pr_cache_nmiss_global += cc->cc_pcmisses;
                               nfull += cc->cc_nfull; /* 32-bit rollover! */
                               data.pr_cache_npartial += cc->cc_npart;
                       }
                       data.pr_cache_nfull = nfull;
               } else {
                       data.pr_cache_meta_size = 0;
                       data.pr_cache_nfull = 0;
               }
               data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
                   data.pr_cache_nmiss_global;

               if (pp->pr_refcnt == UINT_MAX) /* XXX possible? */
                       continue;
               mutex_exit(&pool_head_lock);
               error = sysctl_copyout(l, &data, oldp, sizeof(data));
               mutex_enter(&pool_head_lock);
               if (--pp->pr_refcnt == 0)
                       cv_broadcast(&pool_busy);
               if (error)
                       break;
               written += sizeof(data);
               oldp = (char *)oldp + sizeof(data);
       }
       mutex_exit(&pool_head_lock);

       *oldlenp = written;
       return error;
}

SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
{
       const struct sysctlnode *rnode = NULL;

       sysctl_createv(clog, 0, NULL, &rnode,
                      CTLFLAG_PERMANENT,
                      CTLTYPE_STRUCT, "pool",
                      SYSCTL_DESCR("Get pool statistics"),
                      pool_sysctl, 0, NULL, 0,
                      CTL_KERN, CTL_CREATE, CTL_EOL);
}