/* $NetBSD: subr_autoconf.c,v 1.314 2023/07/18 11:57:37 riastradh Exp $ */

/*
* Copyright (c) 1996, 2000 Christopher G. Demetriou
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*          This product includes software developed for the
*          NetBSD Project.  See http://www.NetBSD.org/ for
*          information about NetBSD.
* 4. The name of the author may not be used to endorse or promote products
*    derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
*/

/*
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
*      This product includes software developed by the University of
*      California, Lawrence Berkeley Laboratories.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
*
*      @(#)subr_autoconf.c     8.3 (Berkeley) 5/17/94
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.314 2023/07/18 11:57:37 riastradh Exp $");

#ifdef _KERNEL_OPT
#include "opt_ddb.h"
#include "drvctl.h"
#endif

#include <sys/param.h>
#include <sys/device.h>
#include <sys/device_impl.h>
#include <sys/disklabel.h>
#include <sys/conf.h>
#include <sys/kauth.h>
#include <sys/kmem.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/kthread.h>
#include <sys/buf.h>
#include <sys/dirent.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/unistd.h>
#include <sys/fcntl.h>
#include <sys/lockf.h>
#include <sys/callout.h>
#include <sys/devmon.h>
#include <sys/cpu.h>
#include <sys/sysctl.h>
#include <sys/stdarg.h>
#include <sys/localcount.h>

#include <sys/disk.h>

#include <sys/rndsource.h>

#include <machine/limits.h>

/*
* Autoconfiguration subroutines.
*/

/*
* Device autoconfiguration timings are mixed into the entropy pool.
*/
static krndsource_t rnd_autoconf_source;

/*
* ioconf.c exports exactly two names: cfdata and cfroots.  All system
* devices and drivers are found via these tables.
*/
extern struct cfdata cfdata[];
extern const short cfroots[];

/*
* List of all cfdriver structures.  We use this to detect duplicates
* when other cfdrivers are loaded.
*/
struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
extern struct cfdriver * const cfdriver_list_initial[];

/*
* Initial list of cfattach's.
*/
extern const struct cfattachinit cfattachinit[];

/*
* List of cfdata tables.  We always have one such list -- the one
* built statically when the kernel was configured.
*/
struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
static struct cftable initcftable;

#define ROOT ((device_t)NULL)

struct matchinfo {
       cfsubmatch_t fn;
       device_t parent;
       const int *locs;
       void    *aux;
       struct  cfdata *match;
       int     pri;
};

struct alldevs_foray {
       int                     af_s;
       struct devicelist       af_garbage;
};

/*
* Internal version of the cfargs structure; all versions are
* canonicalized to this.
*/
struct cfargs_internal {
       union {
               cfsubmatch_t    submatch;/* submatch function (direct config) */
               cfsearch_t      search;  /* search function (indirect config) */
       };
       const char *    iattr;          /* interface attribute */
       const int *     locators;       /* locators array */
       devhandle_t     devhandle;      /* devhandle_t (by value) */
};

static char *number(char *, int);
static void mapply(struct matchinfo *, cfdata_t);
static void config_devdelete(device_t);
static void config_devunlink(device_t, struct devicelist *);
static void config_makeroom(int, struct cfdriver *);
static void config_devlink(device_t);
static void config_alldevs_enter(struct alldevs_foray *);
static void config_alldevs_exit(struct alldevs_foray *);
static void config_add_attrib_dict(device_t);
static device_t config_attach_internal(device_t, cfdata_t, void *,
                   cfprint_t, const struct cfargs_internal *);

static void config_collect_garbage(struct devicelist *);
static void config_dump_garbage(struct devicelist *);

static void pmflock_debug(device_t, const char *, int);

static device_t deviter_next1(deviter_t *);
static void deviter_reinit(deviter_t *);

struct deferred_config {
       TAILQ_ENTRY(deferred_config) dc_queue;
       device_t dc_dev;
       void (*dc_func)(device_t);
};

TAILQ_HEAD(deferred_config_head, deferred_config);

static struct deferred_config_head deferred_config_queue =
       TAILQ_HEAD_INITIALIZER(deferred_config_queue);
static struct deferred_config_head interrupt_config_queue =
       TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
static int interrupt_config_threads = 8;
static struct deferred_config_head mountroot_config_queue =
       TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
static int mountroot_config_threads = 2;
static lwp_t **mountroot_config_lwpids;
static size_t mountroot_config_lwpids_size;
bool root_is_mounted = false;

static void config_process_deferred(struct deferred_config_head *, device_t);

/* Hooks to finalize configuration once all real devices have been found. */
struct finalize_hook {
       TAILQ_ENTRY(finalize_hook) f_list;
       int (*f_func)(device_t);
       device_t f_dev;
};
static TAILQ_HEAD(, finalize_hook) config_finalize_list =
       TAILQ_HEAD_INITIALIZER(config_finalize_list);
static int config_finalize_done;

/* list of all devices */
static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
static kmutex_t alldevs_lock __cacheline_aligned;
static devgen_t alldevs_gen = 1;
static int alldevs_nread = 0;
static int alldevs_nwrite = 0;
static bool alldevs_garbage = false;

static struct devicelist config_pending =
   TAILQ_HEAD_INITIALIZER(config_pending);
static kmutex_t config_misc_lock;
static kcondvar_t config_misc_cv;

static bool detachall = false;

#define STREQ(s1, s2)                   \
       (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)

static bool config_initialized = false; /* config_init() has been called. */

static int config_do_twiddle;
static callout_t config_twiddle_ch;

static void sysctl_detach_setup(struct sysctllog **);

int no_devmon_insert(const char *, prop_dictionary_t);
int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;

typedef int (*cfdriver_fn)(struct cfdriver *);
static int
frob_cfdrivervec(struct cfdriver * const *cfdriverv,
       cfdriver_fn drv_do, cfdriver_fn drv_undo,
       const char *style, bool dopanic)
{
       void (*pr)(const char *, ...) __printflike(1, 2) =
           dopanic ? panic : printf;
       int i, error = 0, e2 __diagused;

       for (i = 0; cfdriverv[i] != NULL; i++) {
               if ((error = drv_do(cfdriverv[i])) != 0) {
                       pr("configure: `%s' driver %s failed: %d",
                           cfdriverv[i]->cd_name, style, error);
                       goto bad;
               }
       }

       KASSERT(error == 0);
       return 0;

bad:
       printf("\n");
       for (i--; i >= 0; i--) {
               e2 = drv_undo(cfdriverv[i]);
               KASSERT(e2 == 0);
       }

       return error;
}

typedef int (*cfattach_fn)(const char *, struct cfattach *);
static int
frob_cfattachvec(const struct cfattachinit *cfattachv,
       cfattach_fn att_do, cfattach_fn att_undo,
       const char *style, bool dopanic)
{
       const struct cfattachinit *cfai = NULL;
       void (*pr)(const char *, ...) __printflike(1, 2) =
           dopanic ? panic : printf;
       int j = 0, error = 0, e2 __diagused;

       for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
               for (j = 0; cfai->cfai_list[j] != NULL; j++) {
                       if ((error = att_do(cfai->cfai_name,
                           cfai->cfai_list[j])) != 0) {
                               pr("configure: attachment `%s' "
                                   "of `%s' driver %s failed: %d",
                                   cfai->cfai_list[j]->ca_name,
                                   cfai->cfai_name, style, error);
                               goto bad;
                       }
               }
       }

       KASSERT(error == 0);
       return 0;

bad:
       /*
        * Rollback in reverse order.  dunno if super-important, but
        * do that anyway.  Although the code looks a little like
        * someone did a little integration (in the math sense).
        */
       printf("\n");
       if (cfai) {
               bool last;

               for (last = false; last == false; ) {
                       if (cfai == &cfattachv[0])
                               last = true;
                       for (j--; j >= 0; j--) {
                               e2 = att_undo(cfai->cfai_name,
                                   cfai->cfai_list[j]);
                               KASSERT(e2 == 0);
                       }
                       if (!last) {
                               cfai--;
                               for (j = 0; cfai->cfai_list[j] != NULL; j++)
                                       ;
                       }
               }
       }

       return error;
}

/*
* Initialize the autoconfiguration data structures.  Normally this
* is done by configure(), but some platforms need to do this very
* early (to e.g. initialize the console).
*/
void
config_init(void)
{

       KASSERT(config_initialized == false);

       mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);

       mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
       cv_init(&config_misc_cv, "cfgmisc");

       callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);

       frob_cfdrivervec(cfdriver_list_initial,
           config_cfdriver_attach, NULL, "bootstrap", true);
       frob_cfattachvec(cfattachinit,
           config_cfattach_attach, NULL, "bootstrap", true);

       initcftable.ct_cfdata = cfdata;
       TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);

       rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
           RND_FLAG_COLLECT_TIME);

       config_initialized = true;
}

/*
* Init or fini drivers and attachments.  Either all or none
* are processed (via rollback).  It would be nice if this were
* atomic to outside consumers, but with the current state of
* locking ...
*/
int
config_init_component(struct cfdriver * const *cfdriverv,
       const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
{
       int error;

       KERNEL_LOCK(1, NULL);

       if ((error = frob_cfdrivervec(cfdriverv,
           config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
               goto out;
       if ((error = frob_cfattachvec(cfattachv,
           config_cfattach_attach, config_cfattach_detach,
           "init", false)) != 0) {
               frob_cfdrivervec(cfdriverv,
                   config_cfdriver_detach, NULL, "init rollback", true);
               goto out;
       }
       if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
               frob_cfattachvec(cfattachv,
                   config_cfattach_detach, NULL, "init rollback", true);
               frob_cfdrivervec(cfdriverv,
                   config_cfdriver_detach, NULL, "init rollback", true);
               goto out;
       }

       /* Success!  */
       error = 0;

out:    KERNEL_UNLOCK_ONE(NULL);
       return error;
}

int
config_fini_component(struct cfdriver * const *cfdriverv,
       const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
{
       int error;

       KERNEL_LOCK(1, NULL);

       if ((error = config_cfdata_detach(cfdatav)) != 0)
               goto out;
       if ((error = frob_cfattachvec(cfattachv,
           config_cfattach_detach, config_cfattach_attach,
           "fini", false)) != 0) {
               if (config_cfdata_attach(cfdatav, 0) != 0)
                       panic("config_cfdata fini rollback failed");
               goto out;
       }
       if ((error = frob_cfdrivervec(cfdriverv,
           config_cfdriver_detach, config_cfdriver_attach,
           "fini", false)) != 0) {
               frob_cfattachvec(cfattachv,
                   config_cfattach_attach, NULL, "fini rollback", true);
               if (config_cfdata_attach(cfdatav, 0) != 0)
                       panic("config_cfdata fini rollback failed");
               goto out;
       }

       /* Success!  */
       error = 0;

out:    KERNEL_UNLOCK_ONE(NULL);
       return error;
}

void
config_init_mi(void)
{

       if (!config_initialized)
               config_init();

       sysctl_detach_setup(NULL);
}

void
config_deferred(device_t dev)
{

       KASSERT(KERNEL_LOCKED_P());

       config_process_deferred(&deferred_config_queue, dev);
       config_process_deferred(&interrupt_config_queue, dev);
       config_process_deferred(&mountroot_config_queue, dev);
}

static void
config_interrupts_thread(void *cookie)
{
       struct deferred_config *dc;
       device_t dev;

       mutex_enter(&config_misc_lock);
       while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
               TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
               mutex_exit(&config_misc_lock);

               dev = dc->dc_dev;
               (*dc->dc_func)(dev);
               if (!device_pmf_is_registered(dev))
                       aprint_debug_dev(dev,
                           "WARNING: power management not supported\n");
               config_pending_decr(dev);
               kmem_free(dc, sizeof(*dc));

               mutex_enter(&config_misc_lock);
       }
       mutex_exit(&config_misc_lock);

       kthread_exit(0);
}

void
config_create_interruptthreads(void)
{
       int i;

       for (i = 0; i < interrupt_config_threads; i++) {
               (void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
                   config_interrupts_thread, NULL, NULL, "configintr");
       }
}

static void
config_mountroot_thread(void *cookie)
{
       struct deferred_config *dc;

       mutex_enter(&config_misc_lock);
       while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
               TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
               mutex_exit(&config_misc_lock);

               (*dc->dc_func)(dc->dc_dev);
               kmem_free(dc, sizeof(*dc));

               mutex_enter(&config_misc_lock);
       }
       mutex_exit(&config_misc_lock);

       kthread_exit(0);
}

void
config_create_mountrootthreads(void)
{
       int i;

       if (!root_is_mounted)
               root_is_mounted = true;

       mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
                                      mountroot_config_threads;
       mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
                                            KM_NOSLEEP);
       KASSERT(mountroot_config_lwpids);
       for (i = 0; i < mountroot_config_threads; i++) {
               mountroot_config_lwpids[i] = 0;
               (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
                                    NULL, config_mountroot_thread, NULL,
                                    &mountroot_config_lwpids[i],
                                    "configroot");
       }
}

void
config_finalize_mountroot(void)
{
       int i, error;

       for (i = 0; i < mountroot_config_threads; i++) {
               if (mountroot_config_lwpids[i] == 0)
                       continue;

               error = kthread_join(mountroot_config_lwpids[i]);
               if (error)
                       printf("%s: thread %x joined with error %d\n",
                              __func__, i, error);
       }
       kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
}

/*
* Announce device attach/detach to userland listeners.
*/

int
no_devmon_insert(const char *name, prop_dictionary_t p)
{

       return ENODEV;
}

static void
devmon_report_device(device_t dev, bool isattach)
{
       prop_dictionary_t ev, dict = device_properties(dev);
       const char *parent;
       const char *what;
       const char *where;
       device_t pdev = device_parent(dev);

       /* If currently no drvctl device, just return */
       if (devmon_insert_vec == no_devmon_insert)
               return;

       ev = prop_dictionary_create();
       if (ev == NULL)
               return;

       what = (isattach ? "device-attach" : "device-detach");
       parent = (pdev == NULL ? "root" : device_xname(pdev));
       if (prop_dictionary_get_string(dict, "location", &where)) {
               prop_dictionary_set_string(ev, "location", where);
               aprint_debug("ev: %s %s at %s in [%s]\n",
                   what, device_xname(dev), parent, where);
       }
       if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
           !prop_dictionary_set_string(ev, "parent", parent)) {
               prop_object_release(ev);
               return;
       }

       if ((*devmon_insert_vec)(what, ev) != 0)
               prop_object_release(ev);
}

/*
* Add a cfdriver to the system.
*/
int
config_cfdriver_attach(struct cfdriver *cd)
{
       struct cfdriver *lcd;

       /* Make sure this driver isn't already in the system. */
       LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
               if (STREQ(lcd->cd_name, cd->cd_name))
                       return EEXIST;
       }

       LIST_INIT(&cd->cd_attach);
       LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);

       return 0;
}

/*
* Remove a cfdriver from the system.
*/
int
config_cfdriver_detach(struct cfdriver *cd)
{
       struct alldevs_foray af;
       int i, rc = 0;

       config_alldevs_enter(&af);
       /* Make sure there are no active instances. */
       for (i = 0; i < cd->cd_ndevs; i++) {
               if (cd->cd_devs[i] != NULL) {
                       rc = EBUSY;
                       break;
               }
       }
       config_alldevs_exit(&af);

       if (rc != 0)
               return rc;

       /* ...and no attachments loaded. */
       if (LIST_EMPTY(&cd->cd_attach) == 0)
               return EBUSY;

       LIST_REMOVE(cd, cd_list);

       KASSERT(cd->cd_devs == NULL);

       return 0;
}

/*
* Look up a cfdriver by name.
*/
struct cfdriver *
config_cfdriver_lookup(const char *name)
{
       struct cfdriver *cd;

       LIST_FOREACH(cd, &allcfdrivers, cd_list) {
               if (STREQ(cd->cd_name, name))
                       return cd;
       }

       return NULL;
}

/*
* Add a cfattach to the specified driver.
*/
int
config_cfattach_attach(const char *driver, struct cfattach *ca)
{
       struct cfattach *lca;
       struct cfdriver *cd;

       cd = config_cfdriver_lookup(driver);
       if (cd == NULL)
               return ESRCH;

       /* Make sure this attachment isn't already on this driver. */
       LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
               if (STREQ(lca->ca_name, ca->ca_name))
                       return EEXIST;
       }

       LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);

       return 0;
}

/*
* Remove a cfattach from the specified driver.
*/
int
config_cfattach_detach(const char *driver, struct cfattach *ca)
{
       struct alldevs_foray af;
       struct cfdriver *cd;
       device_t dev;
       int i, rc = 0;

       cd = config_cfdriver_lookup(driver);
       if (cd == NULL)
               return ESRCH;

       config_alldevs_enter(&af);
       /* Make sure there are no active instances. */
       for (i = 0; i < cd->cd_ndevs; i++) {
               if ((dev = cd->cd_devs[i]) == NULL)
                       continue;
               if (dev->dv_cfattach == ca) {
                       rc = EBUSY;
                       break;
               }
       }
       config_alldevs_exit(&af);

       if (rc != 0)
               return rc;

       LIST_REMOVE(ca, ca_list);

       return 0;
}

/*
* Look up a cfattach by name.
*/
static struct cfattach *
config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
{
       struct cfattach *ca;

       LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
               if (STREQ(ca->ca_name, atname))
                       return ca;
       }

       return NULL;
}

/*
* Look up a cfattach by driver/attachment name.
*/
struct cfattach *
config_cfattach_lookup(const char *name, const char *atname)
{
       struct cfdriver *cd;

       cd = config_cfdriver_lookup(name);
       if (cd == NULL)
               return NULL;

       return config_cfattach_lookup_cd(cd, atname);
}

/*
* Apply the matching function and choose the best.  This is used
* a few times and we want to keep the code small.
*/
static void
mapply(struct matchinfo *m, cfdata_t cf)
{
       int pri;

       if (m->fn != NULL) {
               pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
       } else {
               pri = config_match(m->parent, cf, m->aux);
       }
       if (pri > m->pri) {
               m->match = cf;
               m->pri = pri;
       }
}

int
config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
{
       const struct cfiattrdata *ci;
       const struct cflocdesc *cl;
       int nlocs, i;

       ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
       KASSERT(ci);
       nlocs = ci->ci_loclen;
       KASSERT(!nlocs || locs);
       for (i = 0; i < nlocs; i++) {
               cl = &ci->ci_locdesc[i];
               if (cl->cld_defaultstr != NULL &&
                   cf->cf_loc[i] == cl->cld_default)
                       continue;
               if (cf->cf_loc[i] == locs[i])
                       continue;
               return 0;
       }

       return config_match(parent, cf, aux);
}

/*
* Helper function: check whether the driver supports the interface attribute
* and return its descriptor structure.
*/
static const struct cfiattrdata *
cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
{
       const struct cfiattrdata * const *cpp;

       if (cd->cd_attrs == NULL)
               return 0;

       for (cpp = cd->cd_attrs; *cpp; cpp++) {
               if (STREQ((*cpp)->ci_name, ia)) {
                       /* Match. */
                       return *cpp;
               }
       }
       return 0;
}

static int __diagused
cfdriver_iattr_count(const struct cfdriver *cd)
{
       const struct cfiattrdata * const *cpp;
       int i;

       if (cd->cd_attrs == NULL)
               return 0;

       for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
               i++;
       }
       return i;
}

/*
* Lookup an interface attribute description by name.
* If the driver is given, consider only its supported attributes.
*/
const struct cfiattrdata *
cfiattr_lookup(const char *name, const struct cfdriver *cd)
{
       const struct cfdriver *d;
       const struct cfiattrdata *ia;

       if (cd)
               return cfdriver_get_iattr(cd, name);

       LIST_FOREACH(d, &allcfdrivers, cd_list) {
               ia = cfdriver_get_iattr(d, name);
               if (ia)
                       return ia;
       }
       return 0;
}

/*
* Determine if `parent' is a potential parent for a device spec based
* on `cfp'.
*/
static int
cfparent_match(const device_t parent, const struct cfparent *cfp)
{
       struct cfdriver *pcd;

       /* We don't match root nodes here. */
       if (cfp == NULL)
               return 0;

       pcd = parent->dv_cfdriver;
       KASSERT(pcd != NULL);

       /*
        * First, ensure this parent has the correct interface
        * attribute.
        */
       if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
               return 0;

       /*
        * If no specific parent device instance was specified (i.e.
        * we're attaching to the attribute only), we're done!
        */
       if (cfp->cfp_parent == NULL)
               return 1;

       /*
        * Check the parent device's name.
        */
       if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
               return 0;       /* not the same parent */

       /*
        * Make sure the unit number matches.
        */
       if (cfp->cfp_unit == DVUNIT_ANY ||      /* wildcard */
           cfp->cfp_unit == parent->dv_unit)
               return 1;

       /* Unit numbers don't match. */
       return 0;
}

/*
* Helper for config_cfdata_attach(): check all devices whether it could be
* parent any attachment in the config data table passed, and rescan.
*/
static void
rescan_with_cfdata(const struct cfdata *cf)
{
       device_t d;
       const struct cfdata *cf1;
       deviter_t di;

       KASSERT(KERNEL_LOCKED_P());

       /*
        * "alldevs" is likely longer than a modules's cfdata, so make it
        * the outer loop.
        */
       for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {

               if (!(d->dv_cfattach->ca_rescan))
                       continue;

               for (cf1 = cf; cf1->cf_name; cf1++) {

                       if (!cfparent_match(d, cf1->cf_pspec))
                               continue;

                       (*d->dv_cfattach->ca_rescan)(d,
                               cfdata_ifattr(cf1), cf1->cf_loc);

                       config_deferred(d);
               }
       }
       deviter_release(&di);
}

/*
* Attach a supplemental config data table and rescan potential
* parent devices if required.
*/
int
config_cfdata_attach(cfdata_t cf, int scannow)
{
       struct cftable *ct;

       KERNEL_LOCK(1, NULL);

       ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
       ct->ct_cfdata = cf;
       TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);

       if (scannow)
               rescan_with_cfdata(cf);

       KERNEL_UNLOCK_ONE(NULL);

       return 0;
}

/*
* Helper for config_cfdata_detach: check whether a device is
* found through any attachment in the config data table.
*/
static int
dev_in_cfdata(device_t d, cfdata_t cf)
{
       const struct cfdata *cf1;

       for (cf1 = cf; cf1->cf_name; cf1++)
               if (d->dv_cfdata == cf1)
                       return 1;

       return 0;
}

/*
* Detach a supplemental config data table. Detach all devices found
* through that table (and thus keeping references to it) before.
*/
int
config_cfdata_detach(cfdata_t cf)
{
       device_t d;
       int error = 0;
       struct cftable *ct;
       deviter_t di;

       KERNEL_LOCK(1, NULL);

       for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
            d = deviter_next(&di)) {
               if (!dev_in_cfdata(d, cf))
                       continue;
               if ((error = config_detach(d, 0)) != 0)
                       break;
       }
       deviter_release(&di);
       if (error) {
               aprint_error_dev(d, "unable to detach instance\n");
               goto out;
       }

       TAILQ_FOREACH(ct, &allcftables, ct_list) {
               if (ct->ct_cfdata == cf) {
                       TAILQ_REMOVE(&allcftables, ct, ct_list);
                       kmem_free(ct, sizeof(*ct));
                       error = 0;
                       goto out;
               }
       }

       /* not found -- shouldn't happen */
       error = EINVAL;

out:    KERNEL_UNLOCK_ONE(NULL);
       return error;
}

/*
* Invoke the "match" routine for a cfdata entry on behalf of
* an external caller, usually a direct config "submatch" routine.
*/
int
config_match(device_t parent, cfdata_t cf, void *aux)
{
       struct cfattach *ca;

       KASSERT(KERNEL_LOCKED_P());

       ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
       if (ca == NULL) {
               /* No attachment for this entry, oh well. */
               return 0;
       }

       return (*ca->ca_match)(parent, cf, aux);
}

/*
* Invoke the "probe" routine for a cfdata entry on behalf of
* an external caller, usually an indirect config "search" routine.
*/
int
config_probe(device_t parent, cfdata_t cf, void *aux)
{
       /*
        * This is currently a synonym for config_match(), but this
        * is an implementation detail; "match" and "probe" routines
        * have different behaviors.
        *
        * XXX config_probe() should return a bool, because there is
        * XXX no match score for probe -- it's either there or it's
        * XXX not, but some ports abuse the return value as a way
        * XXX to attach "critical" devices before "non-critical"
        * XXX devices.
        */
       return config_match(parent, cf, aux);
}

static struct cfargs_internal *
cfargs_canonicalize(const struct cfargs * const cfargs,
   struct cfargs_internal * const store)
{
       struct cfargs_internal *args = store;

       memset(args, 0, sizeof(*args));

       /* If none specified, are all-NULL pointers are good. */
       if (cfargs == NULL) {
               return args;
       }

       /*
        * Only one arguments version is recognized at this time.
        */
       if (cfargs->cfargs_version != CFARGS_VERSION) {
               panic("cfargs_canonicalize: unknown version %lu\n",
                   (unsigned long)cfargs->cfargs_version);
       }

       /*
        * submatch and search are mutually-exclusive.
        */
       if (cfargs->submatch != NULL && cfargs->search != NULL) {
               panic("cfargs_canonicalize: submatch and search are "
                     "mutually-exclusive");
       }
       if (cfargs->submatch != NULL) {
               args->submatch = cfargs->submatch;
       } else if (cfargs->search != NULL) {
               args->search = cfargs->search;
       }

       args->iattr = cfargs->iattr;
       args->locators = cfargs->locators;
       args->devhandle = cfargs->devhandle;

       return args;
}

/*
* Iterate over all potential children of some device, calling the given
* function (default being the child's match function) for each one.
* Nonzero returns are matches; the highest value returned is considered
* the best match.  Return the `found child' if we got a match, or NULL
* otherwise.  The `aux' pointer is simply passed on through.
*
* Note that this function is designed so that it can be used to apply
* an arbitrary function to all potential children (its return value
* can be ignored).
*/
static cfdata_t
config_search_internal(device_t parent, void *aux,
   const struct cfargs_internal * const args)
{
       struct cftable *ct;
       cfdata_t cf;
       struct matchinfo m;

       KASSERT(config_initialized);
       KASSERTMSG((!args->iattr ||
               cfdriver_get_iattr(parent->dv_cfdriver, args->iattr)),
           "%s searched for child at interface attribute %s,"
           " but device %s(4) has no such interface attribute in config(5)",
           device_xname(parent), args->iattr,
           parent->dv_cfdriver->cd_name);
       KASSERTMSG((args->iattr ||
               cfdriver_iattr_count(parent->dv_cfdriver) < 2),
           "%s searched for child without interface attribute,"
           " needed to disambiguate among the %d declared for in %s(4)"
           " in config(5)",
           device_xname(parent),
           cfdriver_iattr_count(parent->dv_cfdriver),
           parent->dv_cfdriver->cd_name);

       m.fn = args->submatch;          /* N.B. union */
       m.parent = parent;
       m.locs = args->locators;
       m.aux = aux;
       m.match = NULL;
       m.pri = 0;

       TAILQ_FOREACH(ct, &allcftables, ct_list) {
               for (cf = ct->ct_cfdata; cf->cf_name; cf++) {

                       /* We don't match root nodes here. */
                       if (!cf->cf_pspec)
                               continue;

                       /*
                        * Skip cf if no longer eligible, otherwise scan
                        * through parents for one matching `parent', and
                        * try match function.
                        */
                       if (cf->cf_fstate == FSTATE_FOUND)
                               continue;
                       if (cf->cf_fstate == FSTATE_DNOTFOUND ||
                           cf->cf_fstate == FSTATE_DSTAR)
                               continue;

                       /*
                        * If an interface attribute was specified,
                        * consider only children which attach to
                        * that attribute.
                        */
                       if (args->iattr != NULL &&
                           !STREQ(args->iattr, cfdata_ifattr(cf)))
                               continue;

                       if (cfparent_match(parent, cf->cf_pspec))
                               mapply(&m, cf);
               }
       }
       rnd_add_uint32(&rnd_autoconf_source, 0);
       return m.match;
}

cfdata_t
config_search(device_t parent, void *aux, const struct cfargs *cfargs)
{
       cfdata_t cf;
       struct cfargs_internal store;

       cf = config_search_internal(parent, aux,
           cfargs_canonicalize(cfargs, &store));

       return cf;
}

/*
* Find the given root device.
* This is much like config_search, but there is no parent.
* Don't bother with multiple cfdata tables; the root node
* must always be in the initial table.
*/
cfdata_t
config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
{
       cfdata_t cf;
       const short *p;
       struct matchinfo m;

       m.fn = fn;
       m.parent = ROOT;
       m.aux = aux;
       m.match = NULL;
       m.pri = 0;
       m.locs = 0;
       /*
        * Look at root entries for matching name.  We do not bother
        * with found-state here since only one root should ever be
        * searched (and it must be done first).
        */
       for (p = cfroots; *p >= 0; p++) {
               cf = &cfdata[*p];
               if (strcmp(cf->cf_name, rootname) == 0)
                       mapply(&m, cf);
       }
       return m.match;
}

static const char * const msgs[] = {
[QUIET]         =       "",
[UNCONF]        =       " not configured\n",
[UNSUPP]        =       " unsupported\n",
};

/*
* The given `aux' argument describes a device that has been found
* on the given parent, but not necessarily configured.  Locate the
* configuration data for that device (using the submatch function
* provided, or using candidates' cd_match configuration driver
* functions) and attach it, and return its device_t.  If the device was
* not configured, call the given `print' function and return NULL.
*/
device_t
config_found_acquire(device_t parent, void *aux, cfprint_t print,
   const struct cfargs * const cfargs)
{
       cfdata_t cf;
       struct cfargs_internal store;
       const struct cfargs_internal * const args =
           cfargs_canonicalize(cfargs, &store);
       device_t dev;

       KERNEL_LOCK(1, NULL);

       cf = config_search_internal(parent, aux, args);
       if (cf != NULL) {
               dev = config_attach_internal(parent, cf, aux, print, args);
               goto out;
       }

       if (print) {
               if (config_do_twiddle && cold)
                       twiddle();

               const int pret = (*print)(aux, device_xname(parent));
               KASSERT(pret >= 0);
               KASSERT(pret < __arraycount(msgs));
               KASSERT(msgs[pret] != NULL);
               aprint_normal("%s", msgs[pret]);
       }

       dev = NULL;

out:    KERNEL_UNLOCK_ONE(NULL);
       return dev;
}

/*
* config_found(parent, aux, print, cfargs)
*
*      Legacy entry point for callers whose use of the returned
*      device_t is not delimited by device_release.
*
*      The caller is required to hold the kernel lock as a fragile
*      defence against races.
*
*      Callers should ignore the return value or be converted to
*      config_found_acquire with a matching device_release once they
*      have finished with the returned device_t.
*/
device_t
config_found(device_t parent, void *aux, cfprint_t print,
   const struct cfargs * const cfargs)
{
       device_t dev;

       KASSERT(KERNEL_LOCKED_P());

       dev = config_found_acquire(parent, aux, print, cfargs);
       if (dev == NULL)
               return NULL;
       device_release(dev);

       return dev;
}

/*
* As above, but for root devices.
*/
device_t
config_rootfound(const char *rootname, void *aux)
{
       cfdata_t cf;
       device_t dev = NULL;

       KERNEL_LOCK(1, NULL);
       if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
               dev = config_attach(ROOT, cf, aux, NULL, CFARGS_NONE);
       else
               aprint_error("root device %s not configured\n", rootname);
       KERNEL_UNLOCK_ONE(NULL);
       return dev;
}

/* just like sprintf(buf, "%d") except that it works from the end */
static char *
number(char *ep, int n)
{

       *--ep = 0;
       while (n >= 10) {
               *--ep = (n % 10) + '0';
               n /= 10;
       }
       *--ep = n + '0';
       return ep;
}

/*
* Expand the size of the cd_devs array if necessary.
*
* The caller must hold alldevs_lock. config_makeroom() may release and
* re-acquire alldevs_lock, so callers should re-check conditions such
* as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
* returns.
*/
static void
config_makeroom(int n, struct cfdriver *cd)
{
       int ondevs, nndevs;
       device_t *osp, *nsp;

       KASSERT(mutex_owned(&alldevs_lock));
       alldevs_nwrite++;

       /* XXX arithmetic overflow */
       for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
               ;

       while (n >= cd->cd_ndevs) {
               /*
                * Need to expand the array.
                */
               ondevs = cd->cd_ndevs;
               osp = cd->cd_devs;

               /*
                * Release alldevs_lock around allocation, which may
                * sleep.
                */
               mutex_exit(&alldevs_lock);
               nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
               mutex_enter(&alldevs_lock);

               /*
                * If another thread moved the array while we did
                * not hold alldevs_lock, try again.
                */
               if (cd->cd_devs != osp || cd->cd_ndevs != ondevs) {
                       mutex_exit(&alldevs_lock);
                       kmem_free(nsp, sizeof(device_t) * nndevs);
                       mutex_enter(&alldevs_lock);
                       continue;
               }

               memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
               if (ondevs != 0)
                       memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);

               cd->cd_ndevs = nndevs;
               cd->cd_devs = nsp;
               if (ondevs != 0) {
                       mutex_exit(&alldevs_lock);
                       kmem_free(osp, sizeof(device_t) * ondevs);
                       mutex_enter(&alldevs_lock);
               }
       }
       KASSERT(mutex_owned(&alldevs_lock));
       alldevs_nwrite--;
}

/*
* Put dev into the devices list.
*/
static void
config_devlink(device_t dev)
{

       mutex_enter(&alldevs_lock);

       KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);

       dev->dv_add_gen = alldevs_gen;
       /* It is safe to add a device to the tail of the list while
        * readers and writers are in the list.
        */
       TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
       mutex_exit(&alldevs_lock);
}

static void
config_devfree(device_t dev)
{

       KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
       KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);

       if (dev->dv_cfattach->ca_devsize > 0)
               kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
       kmem_free(dev, sizeof(*dev));
}

/*
* Caller must hold alldevs_lock.
*/
static void
config_devunlink(device_t dev, struct devicelist *garbage)
{
       struct device_garbage *dg = &dev->dv_garbage;
       cfdriver_t cd = device_cfdriver(dev);
       int i;

       KASSERT(mutex_owned(&alldevs_lock));
       KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);

       /* Unlink from device list.  Link to garbage list. */
       TAILQ_REMOVE(&alldevs, dev, dv_list);
       TAILQ_INSERT_TAIL(garbage, dev, dv_list);

       /* Remove from cfdriver's array. */
       cd->cd_devs[dev->dv_unit] = NULL;

       /*
        * If the device now has no units in use, unlink its softc array.
        */
       for (i = 0; i < cd->cd_ndevs; i++) {
               if (cd->cd_devs[i] != NULL)
                       break;
       }
       /* Nothing found.  Unlink, now.  Deallocate, later. */
       if (i == cd->cd_ndevs) {
               dg->dg_ndevs = cd->cd_ndevs;
               dg->dg_devs = cd->cd_devs;
               cd->cd_devs = NULL;
               cd->cd_ndevs = 0;
       }
}

static void
config_devdelete(device_t dev)
{
       struct device_garbage *dg = &dev->dv_garbage;
       device_lock_t dvl = device_getlock(dev);

       KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);

       if (dg->dg_devs != NULL)
               kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);

       localcount_fini(dev->dv_localcount);
       kmem_free(dev->dv_localcount, sizeof(*dev->dv_localcount));

       cv_destroy(&dvl->dvl_cv);
       mutex_destroy(&dvl->dvl_mtx);

       KASSERT(dev->dv_properties != NULL);
       prop_object_release(dev->dv_properties);

       if (dev->dv_activity_handlers)
               panic("%s with registered handlers", __func__);

       if (dev->dv_locators) {
               size_t amount = *--dev->dv_locators;
               kmem_free(dev->dv_locators, amount);
       }

       config_devfree(dev);
}

static int
config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
{
       int unit = cf->cf_unit;

       KASSERT(mutex_owned(&alldevs_lock));

       if (unit < 0)
               return -1;
       if (cf->cf_fstate == FSTATE_STAR) {
               for (; unit < cd->cd_ndevs; unit++)
                       if (cd->cd_devs[unit] == NULL)
                               break;
               /*
                * unit is now the unit of the first NULL device pointer,
                * or max(cd->cd_ndevs,cf->cf_unit).
                */
       } else {
               if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
                       unit = -1;
       }
       return unit;
}

static int
config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
{
       struct alldevs_foray af;
       int unit;

       config_alldevs_enter(&af);
       for (;;) {
               unit = config_unit_nextfree(cd, cf);
               if (unit == -1)
                       break;
               if (unit < cd->cd_ndevs) {
                       cd->cd_devs[unit] = dev;
                       dev->dv_unit = unit;
                       break;
               }
               config_makeroom(unit, cd);
       }
       config_alldevs_exit(&af);

       return unit;
}

static device_t
config_devalloc(const device_t parent, const cfdata_t cf,
   const struct cfargs_internal * const args)
{
       cfdriver_t cd;
       cfattach_t ca;
       size_t lname, lunit;
       const char *xunit;
       int myunit;
       char num[10];
       device_t dev;
       void *dev_private;
       const struct cfiattrdata *ia;
       device_lock_t dvl;

       cd = config_cfdriver_lookup(cf->cf_name);
       if (cd == NULL)
               return NULL;

       ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
       if (ca == NULL)
               return NULL;

       /* get memory for all device vars */
       KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
       if (ca->ca_devsize > 0) {
               dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
       } else {
               dev_private = NULL;
       }
       dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);

       dev->dv_handle = args->devhandle;

       dev->dv_class = cd->cd_class;
       dev->dv_cfdata = cf;
       dev->dv_cfdriver = cd;
       dev->dv_cfattach = ca;
       dev->dv_activity_count = 0;
       dev->dv_activity_handlers = NULL;
       dev->dv_private = dev_private;
       dev->dv_flags = ca->ca_flags;   /* inherit flags from class */
       dev->dv_attaching = curlwp;

       myunit = config_unit_alloc(dev, cd, cf);
       if (myunit == -1) {
               config_devfree(dev);
               return NULL;
       }

       /* compute length of name and decimal expansion of unit number */
       lname = strlen(cd->cd_name);
       xunit = number(&num[sizeof(num)], myunit);
       lunit = &num[sizeof(num)] - xunit;
       if (lname + lunit > sizeof(dev->dv_xname))
               panic("config_devalloc: device name too long");

       dvl = device_getlock(dev);

       mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
       cv_init(&dvl->dvl_cv, "pmfsusp");

       memcpy(dev->dv_xname, cd->cd_name, lname);
       memcpy(dev->dv_xname + lname, xunit, lunit);
       dev->dv_parent = parent;
       if (parent != NULL)
               dev->dv_depth = parent->dv_depth + 1;
       else
               dev->dv_depth = 0;
       dev->dv_flags |= DVF_ACTIVE;    /* always initially active */
       if (args->locators) {
               KASSERT(parent); /* no locators at root */
               ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
               dev->dv_locators =
                   kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
               *dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
               memcpy(dev->dv_locators, args->locators,
                   sizeof(int) * ia->ci_loclen);
       }
       dev->dv_properties = prop_dictionary_create();
       KASSERT(dev->dv_properties != NULL);

       prop_dictionary_set_string_nocopy(dev->dv_properties,
           "device-driver", dev->dv_cfdriver->cd_name);
       prop_dictionary_set_uint16(dev->dv_properties,
           "device-unit", dev->dv_unit);
       if (parent != NULL) {
               prop_dictionary_set_string(dev->dv_properties,
                   "device-parent", device_xname(parent));
       }

       dev->dv_localcount = kmem_zalloc(sizeof(*dev->dv_localcount),
           KM_SLEEP);
       localcount_init(dev->dv_localcount);

       if (dev->dv_cfdriver->cd_attrs != NULL)
               config_add_attrib_dict(dev);

       return dev;
}

/*
* Create an array of device attach attributes and add it
* to the device's dv_properties dictionary.
*
* <key>interface-attributes</key>
* <array>
*    <dict>
*       <key>attribute-name</key>
*       <string>foo</string>
*       <key>locators</key>
*       <array>
*          <dict>
*             <key>loc-name</key>
*             <string>foo-loc1</string>
*          </dict>
*          <dict>
*             <key>loc-name</key>
*             <string>foo-loc2</string>
*             <key>default</key>
*             <string>foo-loc2-default</string>
*          </dict>
*          ...
*       </array>
*    </dict>
*    ...
* </array>
*/

static void
config_add_attrib_dict(device_t dev)
{
       int i, j;
       const struct cfiattrdata *ci;
       prop_dictionary_t attr_dict, loc_dict;
       prop_array_t attr_array, loc_array;

       if ((attr_array = prop_array_create()) == NULL)
               return;

       for (i = 0; ; i++) {
               if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
                       break;
               if ((attr_dict = prop_dictionary_create()) == NULL)
                       break;
               prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
                   ci->ci_name);

               /* Create an array of the locator names and defaults */

               if (ci->ci_loclen != 0 &&
                   (loc_array = prop_array_create()) != NULL) {
                       for (j = 0; j < ci->ci_loclen; j++) {
                               loc_dict = prop_dictionary_create();
                               if (loc_dict == NULL)
                                       continue;
                               prop_dictionary_set_string_nocopy(loc_dict,
                                   "loc-name", ci->ci_locdesc[j].cld_name);
                               if (ci->ci_locdesc[j].cld_defaultstr != NULL)
                                       prop_dictionary_set_string_nocopy(
                                           loc_dict, "default",
                                           ci->ci_locdesc[j].cld_defaultstr);
                               prop_array_set(loc_array, j, loc_dict);
                               prop_object_release(loc_dict);
                       }
                       prop_dictionary_set_and_rel(attr_dict, "locators",
                           loc_array);
               }
               prop_array_add(attr_array, attr_dict);
               prop_object_release(attr_dict);
       }
       if (i == 0)
               prop_object_release(attr_array);
       else
               prop_dictionary_set_and_rel(dev->dv_properties,
                   "interface-attributes", attr_array);

       return;
}

/*
* Attach a found device.
*
* Returns the device referenced, to be released with device_release.
*/
static device_t
config_attach_internal(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   const struct cfargs_internal * const args)
{
       device_t dev;
       struct cftable *ct;
       const char *drvname;
       bool deferred;

       KASSERT(KERNEL_LOCKED_P());

       dev = config_devalloc(parent, cf, args);
       if (!dev)
               panic("config_attach: allocation of device softc failed");

       /* XXX redundant - see below? */
       if (cf->cf_fstate != FSTATE_STAR) {
               KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
               cf->cf_fstate = FSTATE_FOUND;
       }

       config_devlink(dev);

       if (config_do_twiddle && cold)
               twiddle();
       else
               aprint_naive("Found ");
       /*
        * We want the next two printfs for normal, verbose, and quiet,
        * but not silent (in which case, we're twiddling, instead).
        */
       if (parent == ROOT) {
               aprint_naive("%s (root)", device_xname(dev));
               aprint_normal("%s (root)", device_xname(dev));
       } else {
               aprint_naive("%s at %s", device_xname(dev),
                   device_xname(parent));
               aprint_normal("%s at %s", device_xname(dev),
                   device_xname(parent));
               if (print)
                       (void) (*print)(aux, NULL);
       }

       /*
        * Before attaching, clobber any unfound devices that are
        * otherwise identical.
        * XXX code above is redundant?
        */
       drvname = dev->dv_cfdriver->cd_name;
       TAILQ_FOREACH(ct, &allcftables, ct_list) {
               for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
                       if (STREQ(cf->cf_name, drvname) &&
                           cf->cf_unit == dev->dv_unit) {
                               if (cf->cf_fstate == FSTATE_NOTFOUND)
                                       cf->cf_fstate = FSTATE_FOUND;
                       }
               }
       }
       device_register(dev, aux);

       /* Let userland know */
       devmon_report_device(dev, true);

       /*
        * Prevent detach until the driver's attach function, and all
        * deferred actions, have finished.
        */
       config_pending_incr(dev);

       /*
        * Prevent concurrent detach from destroying the device_t until
        * the caller has released the device.
        */
       device_acquire(dev);

       /* Call the driver's attach function.  */
       (*dev->dv_cfattach->ca_attach)(parent, dev, aux);

       /*
        * Allow other threads to acquire references to the device now
        * that the driver's attach function is done.
        */
       mutex_enter(&config_misc_lock);
       KASSERT(dev->dv_attaching == curlwp);
       dev->dv_attaching = NULL;
       cv_broadcast(&config_misc_cv);
       mutex_exit(&config_misc_lock);

       /*
        * Synchronous parts of attach are done.  Allow detach, unless
        * the driver's attach function scheduled deferred actions.
        */
       config_pending_decr(dev);

       mutex_enter(&config_misc_lock);
       deferred = (dev->dv_pending != 0);
       mutex_exit(&config_misc_lock);

       if (!deferred && !device_pmf_is_registered(dev))
               aprint_debug_dev(dev,
                   "WARNING: power management not supported\n");

       config_process_deferred(&deferred_config_queue, dev);

       device_register_post_config(dev, aux);
       rnd_add_uint32(&rnd_autoconf_source, 0);
       return dev;
}

device_t
config_attach_acquire(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   const struct cfargs *cfargs)
{
       struct cfargs_internal store;
       device_t dev;

       KERNEL_LOCK(1, NULL);
       dev = config_attach_internal(parent, cf, aux, print,
           cfargs_canonicalize(cfargs, &store));
       KERNEL_UNLOCK_ONE(NULL);

       return dev;
}

/*
* config_attach(parent, cf, aux, print, cfargs)
*
*      Legacy entry point for callers whose use of the returned
*      device_t is not delimited by device_release.
*
*      The caller is required to hold the kernel lock as a fragile
*      defence against races.
*
*      Callers should ignore the return value or be converted to
*      config_attach_acquire with a matching device_release once they
*      have finished with the returned device_t.
*/
device_t
config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
   const struct cfargs *cfargs)
{
       device_t dev;

       KASSERT(KERNEL_LOCKED_P());

       dev = config_attach_acquire(parent, cf, aux, print, cfargs);
       if (dev == NULL)
               return NULL;
       device_release(dev);

       return dev;
}

/*
* As above, but for pseudo-devices.  Pseudo-devices attached in this
* way are silently inserted into the device tree, and their children
* attached.
*
* Note that because pseudo-devices are attached silently, any information
* the attach routine wishes to print should be prefixed with the device
* name by the attach routine.
*/
device_t
config_attach_pseudo_acquire(cfdata_t cf, void *aux)
{
       device_t dev;

       KERNEL_LOCK(1, NULL);

       struct cfargs_internal args = { };
       dev = config_devalloc(ROOT, cf, &args);
       if (!dev)
               goto out;

       /* XXX mark busy in cfdata */

       if (cf->cf_fstate != FSTATE_STAR) {
               KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
               cf->cf_fstate = FSTATE_FOUND;
       }

       config_devlink(dev);

#if 0   /* XXXJRT not yet */
       device_register(dev, NULL);     /* like a root node */
#endif

       /* Let userland know */
       devmon_report_device(dev, true);

       /*
        * Prevent detach until the driver's attach function, and all
        * deferred actions, have finished.
        */
       config_pending_incr(dev);

       /*
        * Prevent concurrent detach from destroying the device_t until
        * the caller has released the device.
        */
       device_acquire(dev);

       /* Call the driver's attach function.  */
       (*dev->dv_cfattach->ca_attach)(ROOT, dev, aux);

       /*
        * Allow other threads to acquire references to the device now
        * that the driver's attach function is done.
        */
       mutex_enter(&config_misc_lock);
       KASSERT(dev->dv_attaching == curlwp);
       dev->dv_attaching = NULL;
       cv_broadcast(&config_misc_cv);
       mutex_exit(&config_misc_lock);

       /*
        * Synchronous parts of attach are done.  Allow detach, unless
        * the driver's attach function scheduled deferred actions.
        */
       config_pending_decr(dev);

       config_process_deferred(&deferred_config_queue, dev);

out:    KERNEL_UNLOCK_ONE(NULL);
       return dev;
}

/*
* config_attach_pseudo(cf)
*
*      Legacy entry point for callers whose use of the returned
*      device_t is not delimited by device_release.
*
*      The caller is required to hold the kernel lock as a fragile
*      defence against races.
*
*      Callers should ignore the return value or be converted to
*      config_attach_pseudo_acquire with a matching device_release
*      once they have finished with the returned device_t.  As a
*      bonus, config_attach_pseudo_acquire can pass a non-null aux
*      argument into the driver's attach routine.
*/
device_t
config_attach_pseudo(cfdata_t cf)
{
       device_t dev;

       dev = config_attach_pseudo_acquire(cf, NULL);
       if (dev == NULL)
               return dev;
       device_release(dev);

       return dev;
}

/*
* Caller must hold alldevs_lock.
*/
static void
config_collect_garbage(struct devicelist *garbage)
{
       device_t dv;

       KASSERT(!cpu_intr_p());
       KASSERT(!cpu_softintr_p());
       KASSERT(mutex_owned(&alldevs_lock));

       while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
               TAILQ_FOREACH(dv, &alldevs, dv_list) {
                       if (dv->dv_del_gen != 0)
                               break;
               }
               if (dv == NULL) {
                       alldevs_garbage = false;
                       break;
               }
               config_devunlink(dv, garbage);
       }
       KASSERT(mutex_owned(&alldevs_lock));
}

static void
config_dump_garbage(struct devicelist *garbage)
{
       device_t dv;

       while ((dv = TAILQ_FIRST(garbage)) != NULL) {
               TAILQ_REMOVE(garbage, dv, dv_list);
               config_devdelete(dv);
       }
}

static int
config_detach_enter(device_t dev)
{
       struct lwp *l __diagused;
       int error = 0;

       mutex_enter(&config_misc_lock);

       /*
        * Wait until attach has fully completed, and until any
        * concurrent detach (e.g., drvctl racing with USB event
        * thread) has completed.
        *
        * Caller must hold alldevs_nread or alldevs_nwrite (e.g., via
        * deviter) to ensure the winner of the race doesn't free the
        * device leading the loser of the race into use-after-free.
        *
        * XXX Not all callers do this!
        */
       while (dev->dv_pending || dev->dv_detaching) {
               KASSERTMSG(dev->dv_detaching != curlwp,
                   "recursively detaching %s", device_xname(dev));
               error = cv_wait_sig(&config_misc_cv, &config_misc_lock);
               if (error)
                       goto out;
       }

       /*
        * Attach has completed, and no other concurrent detach is
        * running.  Claim the device for detaching.  This will cause
        * all new attempts to acquire references to block.
        */
       KASSERTMSG((l = dev->dv_attaching) == NULL,
           "lwp %ld [%s] @ %p attaching %s",
           (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
           device_xname(dev));
       KASSERTMSG((l = dev->dv_detaching) == NULL,
           "lwp %ld [%s] @ %p detaching %s",
           (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
           device_xname(dev));
       dev->dv_detaching = curlwp;

out:    mutex_exit(&config_misc_lock);
       return error;
}

static void
config_detach_exit(device_t dev)
{
       struct lwp *l __diagused;

       mutex_enter(&config_misc_lock);
       KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s",
           device_xname(dev));
       KASSERTMSG((l = dev->dv_detaching) == curlwp,
           "lwp %ld [%s] @ %p detaching %s",
           (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
           device_xname(dev));
       dev->dv_detaching = NULL;
       cv_broadcast(&config_misc_cv);
       mutex_exit(&config_misc_lock);
}

/*
* Detach a device.  Optionally forced (e.g. because of hardware
* removal) and quiet.  Returns zero if successful, non-zero
* (an error code) otherwise.
*
* Note that this code wants to be run from a process context, so
* that the detach can sleep to allow processes which have a device
* open to run and unwind their stacks.
*
* Caller must hold a reference with device_acquire or
* device_lookup_acquire.
*/
int
config_detach_release(device_t dev, int flags)
{
       struct alldevs_foray af;
       struct cftable *ct;
       cfdata_t cf;
       const struct cfattach *ca;
       struct cfdriver *cd;
       device_t d __diagused;
       int rv = 0;

       KERNEL_LOCK(1, NULL);

       cf = dev->dv_cfdata;
       KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
               cf->cf_fstate == FSTATE_STAR),
           "config_detach: %s: bad device fstate: %d",
           device_xname(dev), cf ? cf->cf_fstate : -1);

       cd = dev->dv_cfdriver;
       KASSERT(cd != NULL);

       ca = dev->dv_cfattach;
       KASSERT(ca != NULL);

       /*
        * Only one detach at a time, please -- and not until fully
        * attached.
        */
       rv = config_detach_enter(dev);
       device_release(dev);
       if (rv) {
               KERNEL_UNLOCK_ONE(NULL);
               return rv;
       }

       mutex_enter(&alldevs_lock);
       if (dev->dv_del_gen != 0) {
               mutex_exit(&alldevs_lock);
#ifdef DIAGNOSTIC
               printf("%s: %s is already detached\n", __func__,
                   device_xname(dev));
#endif /* DIAGNOSTIC */
               config_detach_exit(dev);
               KERNEL_UNLOCK_ONE(NULL);
               return ENOENT;
       }
       alldevs_nwrite++;
       mutex_exit(&alldevs_lock);

       /*
        * Call the driver's .ca_detach function, unless it has none or
        * we are skipping it because it's unforced shutdown time and
        * the driver didn't ask to detach on shutdown.
        */
       if (!detachall &&
           (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
           (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
               rv = EOPNOTSUPP;
       } else if (ca->ca_detach != NULL) {
               rv = (*ca->ca_detach)(dev, flags);
       } else
               rv = EOPNOTSUPP;

       KASSERTMSG(!dev->dv_detach_done, "%s detached twice, error=%d",
           device_xname(dev), rv);

       /*
        * If it was not possible to detach the device, then we either
        * panic() (for the forced but failed case), or return an error.
        */
       if (rv) {
               /*
                * Detach failed -- likely EOPNOTSUPP or EBUSY.  Driver
                * must not have called config_detach_commit.
                */
               KASSERTMSG(!dev->dv_detach_committed,
                   "%s committed to detaching and then backed out, error=%d",
                   device_xname(dev), rv);
               if (flags & DETACH_FORCE) {
                       panic("config_detach: forced detach of %s failed (%d)",
                           device_xname(dev), rv);
               }
               goto out;
       }

       /*
        * The device has now been successfully detached.
        */
       dev->dv_detach_done = true;

       /*
        * If .ca_detach didn't commit to detach, then do that for it.
        * This wakes any pending device_lookup_acquire calls so they
        * will fail.
        */
       config_detach_commit(dev);

       /*
        * If it was possible to detach the device, ensure that the
        * device is deactivated.
        */
       dev->dv_flags &= ~DVF_ACTIVE; /* XXXSMP */

       /*
        * Wait for all device_lookup_acquire references -- mostly, for
        * all attempts to open the device -- to drain.  It is the
        * responsibility of .ca_detach to ensure anything with open
        * references will be interrupted and release them promptly,
        * not block indefinitely.  All new attempts to acquire
        * references will fail, as config_detach_commit has arranged
        * by now.
        */
       mutex_enter(&config_misc_lock);
       localcount_drain(dev->dv_localcount,
           &config_misc_cv, &config_misc_lock);
       mutex_exit(&config_misc_lock);

       /* Let userland know */
       devmon_report_device(dev, false);

#ifdef DIAGNOSTIC
       /*
        * Sanity: If you're successfully detached, you should have no
        * children.  (Note that because children must be attached
        * after parents, we only need to search the latter part of
        * the list.)
        */
       mutex_enter(&alldevs_lock);
       for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
           d = TAILQ_NEXT(d, dv_list)) {
               if (d->dv_parent == dev && d->dv_del_gen == 0) {
                       printf("config_detach: detached device %s"
                           " has children %s\n", device_xname(dev),
                           device_xname(d));
                       panic("config_detach");
               }
       }
       mutex_exit(&alldevs_lock);
#endif

       /* notify the parent that the child is gone */
       if (dev->dv_parent) {
               device_t p = dev->dv_parent;
               if (p->dv_cfattach->ca_childdetached)
                       (*p->dv_cfattach->ca_childdetached)(p, dev);
       }

       /*
        * Mark cfdata to show that the unit can be reused, if possible.
        */
       TAILQ_FOREACH(ct, &allcftables, ct_list) {
               for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
                       if (STREQ(cf->cf_name, cd->cd_name)) {
                               if (cf->cf_fstate == FSTATE_FOUND &&
                                   cf->cf_unit == dev->dv_unit)
                                       cf->cf_fstate = FSTATE_NOTFOUND;
                       }
               }
       }

       if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
               aprint_normal_dev(dev, "detached\n");

out:
       config_detach_exit(dev);

       config_alldevs_enter(&af);
       KASSERT(alldevs_nwrite != 0);
       --alldevs_nwrite;
       if (rv == 0 && dev->dv_del_gen == 0) {
               if (alldevs_nwrite == 0 && alldevs_nread == 0)
                       config_devunlink(dev, &af.af_garbage);
               else {
                       dev->dv_del_gen = alldevs_gen;
                       alldevs_garbage = true;
               }
       }
       config_alldevs_exit(&af);

       KERNEL_UNLOCK_ONE(NULL);

       return rv;
}

/*
* config_detach(dev, flags)
*
*      Legacy entry point for callers that have not acquired a
*      reference to dev.
*
*      The caller is required to hold the kernel lock as a fragile
*      defence against races.
*
*      Callers should be converted to use device_acquire under a lock
*      taken also by .ca_childdetached to synchronize access to the
*      device_t, and then config_detach_release ouside the lock.
*      Alternatively, most drivers detach children only in their own
*      detach routines, which can be done with config_detach_children
*      instead.
*/
int
config_detach(device_t dev, int flags)
{

       device_acquire(dev);
       return config_detach_release(dev, flags);
}

/*
* config_detach_commit(dev)
*
*      Issued by a driver's .ca_detach routine to notify anyone
*      waiting in device_lookup_acquire that the driver is committed
*      to detaching the device, which allows device_lookup_acquire to
*      wake up and fail immediately.
*
*      Safe to call multiple times -- idempotent.  Must be called
*      during config_detach_enter/exit.  Safe to use with
*      device_lookup because the device is not actually removed from
*      the table until after config_detach_exit.
*/
void
config_detach_commit(device_t dev)
{
       struct lwp *l __diagused;

       mutex_enter(&config_misc_lock);
       KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s",
           device_xname(dev));
       KASSERTMSG((l = dev->dv_detaching) == curlwp,
           "lwp %ld [%s] @ %p detaching %s",
           (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
           device_xname(dev));
       dev->dv_detach_committed = true;
       cv_broadcast(&config_misc_cv);
       mutex_exit(&config_misc_lock);
}

int
config_detach_children(device_t parent, int flags)
{
       device_t dv;
       deviter_t di;
       int error = 0;

       KASSERT(KERNEL_LOCKED_P());

       for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
            dv = deviter_next(&di)) {
               if (device_parent(dv) != parent)
                       continue;
               if ((error = config_detach(dv, flags)) != 0)
                       break;
       }
       deviter_release(&di);
       return error;
}

device_t
shutdown_first(struct shutdown_state *s)
{
       if (!s->initialized) {
               deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
               s->initialized = true;
       }
       return shutdown_next(s);
}

device_t
shutdown_next(struct shutdown_state *s)
{
       device_t dv;

       while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
               ;

       if (dv == NULL)
               s->initialized = false;

       return dv;
}

bool
config_detach_all(int how)
{
       static struct shutdown_state s;
       device_t curdev;
       bool progress = false;
       int flags;

       KERNEL_LOCK(1, NULL);

       if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
               goto out;

       if ((how & RB_POWERDOWN) == RB_POWERDOWN)
               flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
       else
               flags = DETACH_SHUTDOWN;

       for (curdev = shutdown_first(&s); curdev != NULL;
            curdev = shutdown_next(&s)) {
               aprint_debug(" detaching %s, ", device_xname(curdev));
               if (config_detach(curdev, flags) == 0) {
                       progress = true;
                       aprint_debug("success.");
               } else
                       aprint_debug("failed.");
       }

out:    KERNEL_UNLOCK_ONE(NULL);
       return progress;
}

static bool
device_is_ancestor_of(device_t ancestor, device_t descendant)
{
       device_t dv;

       for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
               if (device_parent(dv) == ancestor)
                       return true;
       }
       return false;
}

int
config_deactivate(device_t dev)
{
       deviter_t di;
       const struct cfattach *ca;
       device_t descendant;
       int s, rv = 0, oflags;

       for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
            descendant != NULL;
            descendant = deviter_next(&di)) {
               if (dev != descendant &&
                   !device_is_ancestor_of(dev, descendant))
                       continue;

               if ((descendant->dv_flags & DVF_ACTIVE) == 0)
                       continue;

               ca = descendant->dv_cfattach;
               oflags = descendant->dv_flags;

               descendant->dv_flags &= ~DVF_ACTIVE;
               if (ca->ca_activate == NULL)
                       continue;
               s = splhigh();
               rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
               splx(s);
               if (rv != 0)
                       descendant->dv_flags = oflags;
       }
       deviter_release(&di);
       return rv;
}

/*
* Defer the configuration of the specified device until all
* of its parent's devices have been attached.
*/
void
config_defer(device_t dev, void (*func)(device_t))
{
       struct deferred_config *dc;

       if (dev->dv_parent == NULL)
               panic("config_defer: can't defer config of a root device");

       dc = kmem_alloc(sizeof(*dc), KM_SLEEP);

       config_pending_incr(dev);

       mutex_enter(&config_misc_lock);
#ifdef DIAGNOSTIC
       struct deferred_config *odc;
       TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
               if (odc->dc_dev == dev)
                       panic("config_defer: deferred twice");
       }
#endif
       dc->dc_dev = dev;
       dc->dc_func = func;
       TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
       mutex_exit(&config_misc_lock);
}

/*
* Defer some autoconfiguration for a device until after interrupts
* are enabled.
*/
void
config_interrupts(device_t dev, void (*func)(device_t))
{
       struct deferred_config *dc;

       /*
        * If interrupts are enabled, callback now.
        */
       if (cold == 0) {
               (*func)(dev);
               return;
       }

       dc = kmem_alloc(sizeof(*dc), KM_SLEEP);

       config_pending_incr(dev);

       mutex_enter(&config_misc_lock);
#ifdef DIAGNOSTIC
       struct deferred_config *odc;
       TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
               if (odc->dc_dev == dev)
                       panic("config_interrupts: deferred twice");
       }
#endif
       dc->dc_dev = dev;
       dc->dc_func = func;
       TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
       mutex_exit(&config_misc_lock);
}

/*
* Defer some autoconfiguration for a device until after root file system
* is mounted (to load firmware etc).
*/
void
config_mountroot(device_t dev, void (*func)(device_t))
{
       struct deferred_config *dc;

       /*
        * If root file system is mounted, callback now.
        */
       if (root_is_mounted) {
               (*func)(dev);
               return;
       }

       dc = kmem_alloc(sizeof(*dc), KM_SLEEP);

       mutex_enter(&config_misc_lock);
#ifdef DIAGNOSTIC
       struct deferred_config *odc;
       TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
               if (odc->dc_dev == dev)
                       panic("%s: deferred twice", __func__);
       }
#endif

       dc->dc_dev = dev;
       dc->dc_func = func;
       TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
       mutex_exit(&config_misc_lock);
}

/*
* Process a deferred configuration queue.
*/
static void
config_process_deferred(struct deferred_config_head *queue, device_t parent)
{
       struct deferred_config *dc;

       KASSERT(KERNEL_LOCKED_P());

       mutex_enter(&config_misc_lock);
       dc = TAILQ_FIRST(queue);
       while (dc) {
               if (parent == NULL || dc->dc_dev->dv_parent == parent) {
                       TAILQ_REMOVE(queue, dc, dc_queue);
                       mutex_exit(&config_misc_lock);

                       (*dc->dc_func)(dc->dc_dev);
                       config_pending_decr(dc->dc_dev);
                       kmem_free(dc, sizeof(*dc));

                       mutex_enter(&config_misc_lock);
                       /* Restart, queue might have changed */
                       dc = TAILQ_FIRST(queue);
               } else {
                       dc = TAILQ_NEXT(dc, dc_queue);
               }
       }
       mutex_exit(&config_misc_lock);
}

/*
* Manipulate the config_pending semaphore.
*/
void
config_pending_incr(device_t dev)
{

       mutex_enter(&config_misc_lock);
       KASSERTMSG(dev->dv_pending < INT_MAX,
           "%s: excess config_pending_incr", device_xname(dev));
       if (dev->dv_pending++ == 0)
               TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
#ifdef DEBUG_AUTOCONF
       printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
#endif
       mutex_exit(&config_misc_lock);
}

void
config_pending_decr(device_t dev)
{

       mutex_enter(&config_misc_lock);
       KASSERTMSG(dev->dv_pending > 0,
           "%s: excess config_pending_decr", device_xname(dev));
       if (--dev->dv_pending == 0) {
               TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
               cv_broadcast(&config_misc_cv);
       }
#ifdef DEBUG_AUTOCONF
       printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
#endif
       mutex_exit(&config_misc_lock);
}

/*
* Register a "finalization" routine.  Finalization routines are
* called iteratively once all real devices have been found during
* autoconfiguration, for as long as any one finalizer has done
* any work.
*/
int
config_finalize_register(device_t dev, int (*fn)(device_t))
{
       struct finalize_hook *f;
       int error = 0;

       KERNEL_LOCK(1, NULL);

       /*
        * If finalization has already been done, invoke the
        * callback function now.
        */
       if (config_finalize_done) {
               while ((*fn)(dev) != 0)
                       /* loop */ ;
               goto out;
       }

       /* Ensure this isn't already on the list. */
       TAILQ_FOREACH(f, &config_finalize_list, f_list) {
               if (f->f_func == fn && f->f_dev == dev) {
                       error = EEXIST;
                       goto out;
               }
       }

       f = kmem_alloc(sizeof(*f), KM_SLEEP);
       f->f_func = fn;
       f->f_dev = dev;
       TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);

       /* Success!  */
       error = 0;

out:    KERNEL_UNLOCK_ONE(NULL);
       return error;
}

void
config_finalize(void)
{
       struct finalize_hook *f;
       struct pdevinit *pdev;
       extern struct pdevinit pdevinit[];
       unsigned t0 = getticks();
       int errcnt, rv;

       /*
        * Now that device driver threads have been created, wait for
        * them to finish any deferred autoconfiguration.
        */
       mutex_enter(&config_misc_lock);
       while (!TAILQ_EMPTY(&config_pending)) {
               const unsigned t1 = getticks();

               if (t1 - t0 >= hz) {
                       void (*pr)(const char *, ...) __printflike(1,2);
                       device_t dev;

                       if (t1 - t0 >= 60*hz) {
                               pr = aprint_normal;
                               t0 = t1;
                       } else {
                               pr = aprint_debug;
                       }

                       (*pr)("waiting for devices:");
                       TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
                               (*pr)(" %s", device_xname(dev));
                       (*pr)("\n");
               }

               (void)cv_timedwait(&config_misc_cv, &config_misc_lock,
                   mstohz(1000));
       }
       mutex_exit(&config_misc_lock);

       KERNEL_LOCK(1, NULL);

       /* Attach pseudo-devices. */
       for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
               (*pdev->pdev_attach)(pdev->pdev_count);

       /* Run the hooks until none of them does any work. */
       do {
               rv = 0;
               TAILQ_FOREACH(f, &config_finalize_list, f_list)
                       rv |= (*f->f_func)(f->f_dev);
       } while (rv != 0);

       config_finalize_done = 1;

       /* Now free all the hooks. */
       while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
               TAILQ_REMOVE(&config_finalize_list, f, f_list);
               kmem_free(f, sizeof(*f));
       }

       KERNEL_UNLOCK_ONE(NULL);

       errcnt = aprint_get_error_count();
       if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
           (boothowto & AB_VERBOSE) == 0) {
               mutex_enter(&config_misc_lock);
               if (config_do_twiddle) {
                       config_do_twiddle = 0;
                       printf_nolog(" done.\n");
               }
               mutex_exit(&config_misc_lock);
       }
       if (errcnt != 0) {
               printf("WARNING: %d error%s while detecting hardware; "
                   "check system log.\n", errcnt,
                   errcnt == 1 ? "" : "s");
       }
}

void
config_twiddle_init(void)
{

       if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
               config_do_twiddle = 1;
       }
       callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
}

void
config_twiddle_fn(void *cookie)
{

       mutex_enter(&config_misc_lock);
       if (config_do_twiddle) {
               twiddle();
               callout_schedule(&config_twiddle_ch, mstohz(100));
       }
       mutex_exit(&config_misc_lock);
}

static void
config_alldevs_enter(struct alldevs_foray *af)
{
       TAILQ_INIT(&af->af_garbage);
       mutex_enter(&alldevs_lock);
       config_collect_garbage(&af->af_garbage);
}

static void
config_alldevs_exit(struct alldevs_foray *af)
{
       mutex_exit(&alldevs_lock);
       config_dump_garbage(&af->af_garbage);
}

/*
* device_lookup:
*
*      Look up a device instance for a given driver.
*
*      Caller is responsible for ensuring the device's state is
*      stable, either by holding a reference already obtained with
*      device_lookup_acquire or by otherwise ensuring the device is
*      attached and can't be detached (e.g., holding an open device
*      node and ensuring *_detach calls vdevgone).
*
*      XXX Find a way to assert this.
*
*      Safe for use up to and including interrupt context at IPL_VM.
*      Never sleeps.
*/
device_t
device_lookup(cfdriver_t cd, int unit)
{
       device_t dv;

       mutex_enter(&alldevs_lock);
       if (unit < 0 || unit >= cd->cd_ndevs)
               dv = NULL;
       else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
               dv = NULL;
       mutex_exit(&alldevs_lock);

       return dv;
}

/*
* device_lookup_private:
*
*      Look up a softc instance for a given driver.
*/
void *
device_lookup_private(cfdriver_t cd, int unit)
{

       return device_private(device_lookup(cd, unit));
}

/*
* device_lookup_acquire:
*
*      Look up a device instance for a given driver, and return a
*      reference to it that must be released by device_release.
*
*      => If the device is still attaching, blocks until *_attach has
*         returned.
*
*      => If the device is detaching, blocks until *_detach has
*         returned.  May succeed or fail in that case, depending on
*         whether *_detach has backed out (EBUSY) or committed to
*         detaching.
*
*      May sleep.
*/
device_t
device_lookup_acquire(cfdriver_t cd, int unit)
{
       device_t dv;

       ASSERT_SLEEPABLE();

       /* XXX This should have a pserialized fast path -- TBD.  */
       mutex_enter(&config_misc_lock);
       mutex_enter(&alldevs_lock);
retry:  if (unit < 0 || unit >= cd->cd_ndevs ||
           (dv = cd->cd_devs[unit]) == NULL ||
           dv->dv_del_gen != 0 ||
           dv->dv_detach_committed) {
               dv = NULL;
       } else {
               /*
                * Wait for the device to stabilize, if attaching or
                * detaching.  Either way we must wait for *_attach or
                * *_detach to complete, and either way we must retry:
                * even if detaching, *_detach might fail (EBUSY) so
                * the device may still be there.
                */
               if ((dv->dv_attaching != NULL && dv->dv_attaching != curlwp) ||
                   dv->dv_detaching != NULL) {
                       mutex_exit(&alldevs_lock);
                       cv_wait(&config_misc_cv, &config_misc_lock);
                       mutex_enter(&alldevs_lock);
                       goto retry;
               }
               device_acquire(dv);
       }
       mutex_exit(&alldevs_lock);
       mutex_exit(&config_misc_lock);

       return dv;
}

/*
* device_acquire:
*
*      Acquire a reference to a device.  It is the caller's
*      responsibility to ensure that the device's .ca_detach routine
*      cannot return before calling this.  Caller must release the
*      reference with device_release or config_detach_release.
*/
void
device_acquire(device_t dv)
{

       /*
        * No lock because the caller has promised that this can't
        * change concurrently with device_acquire.
        */
       KASSERTMSG(!dv->dv_detach_done, "%s",
           dv == NULL ? "(null)" : device_xname(dv));
       localcount_acquire(dv->dv_localcount);
}

/*
* device_release:
*
*      Release a reference to a device acquired with device_acquire or
*      device_lookup_acquire.
*/
void
device_release(device_t dv)
{

       localcount_release(dv->dv_localcount,
           &config_misc_cv, &config_misc_lock);
}

/*
* device_find_by_xname:
*
*      Returns the device of the given name or NULL if it doesn't exist.
*/
device_t
device_find_by_xname(const char *name)
{
       device_t dv;
       deviter_t di;

       for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
               if (strcmp(device_xname(dv), name) == 0)
                       break;
       }
       deviter_release(&di);

       return dv;
}

/*
* device_find_by_driver_unit:
*
*      Returns the device of the given driver name and unit or
*      NULL if it doesn't exist.
*/
device_t
device_find_by_driver_unit(const char *name, int unit)
{
       struct cfdriver *cd;

       if ((cd = config_cfdriver_lookup(name)) == NULL)
               return NULL;
       return device_lookup(cd, unit);
}

static bool
match_strcmp(const char * const s1, const char * const s2)
{
       return strcmp(s1, s2) == 0;
}

static bool
match_pmatch(const char * const s1, const char * const s2)
{
       return pmatch(s1, s2, NULL) == 2;
}

static bool
strarray_match_internal(const char ** const strings,
   unsigned int const nstrings, const char * const str,
   unsigned int * const indexp,
   bool (*match_fn)(const char *, const char *))
{
       unsigned int i;

       if (strings == NULL || nstrings == 0) {
               return false;
       }

       for (i = 0; i < nstrings; i++) {
               if ((*match_fn)(strings[i], str)) {
                       *indexp = i;
                       return true;
               }
       }

       return false;
}

static int
strarray_match(const char ** const strings, unsigned int const nstrings,
   const char * const str)
{
       unsigned int idx;

       if (strarray_match_internal(strings, nstrings, str, &idx,
                                   match_strcmp)) {
               return (int)(nstrings - idx);
       }
       return 0;
}

static int
strarray_pmatch(const char ** const strings, unsigned int const nstrings,
   const char * const pattern)
{
       unsigned int idx;

       if (strarray_match_internal(strings, nstrings, pattern, &idx,
                                   match_pmatch)) {
               return (int)(nstrings - idx);
       }
       return 0;
}

static int
device_compatible_match_strarray_internal(
   const char **device_compats, int ndevice_compats,
   const struct device_compatible_entry *driver_compats,
   const struct device_compatible_entry **matching_entryp,
   int (*match_fn)(const char **, unsigned int, const char *))
{
       const struct device_compatible_entry *dce = NULL;
       int rv;

       if (ndevice_compats == 0 || device_compats == NULL ||
           driver_compats == NULL)
               return 0;

       for (dce = driver_compats; dce->compat != NULL; dce++) {
               rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
               if (rv != 0) {
                       if (matching_entryp != NULL) {
                               *matching_entryp = dce;
                       }
                       return rv;
               }
       }
       return 0;
}

/*
* device_compatible_match:
*
*      Match a driver's "compatible" data against a device's
*      "compatible" strings.  Returns resulted weighted by
*      which device "compatible" string was matched.
*/
int
device_compatible_match(const char **device_compats, int ndevice_compats,
   const struct device_compatible_entry *driver_compats)
{
       return device_compatible_match_strarray_internal(device_compats,
           ndevice_compats, driver_compats, NULL, strarray_match);
}

/*
* device_compatible_pmatch:
*
*      Like device_compatible_match(), but uses pmatch(9) to compare
*      the device "compatible" strings against patterns in the
*      driver's "compatible" data.
*/
int
device_compatible_pmatch(const char **device_compats, int ndevice_compats,
   const struct device_compatible_entry *driver_compats)
{
       return device_compatible_match_strarray_internal(device_compats,
           ndevice_compats, driver_compats, NULL, strarray_pmatch);
}

static int
device_compatible_match_strlist_internal(
   const char * const device_compats, size_t const device_compatsize,
   const struct device_compatible_entry *driver_compats,
   const struct device_compatible_entry **matching_entryp,
   int (*match_fn)(const char *, size_t, const char *))
{
       const struct device_compatible_entry *dce = NULL;
       int rv;

       if (device_compats == NULL || device_compatsize == 0 ||
           driver_compats == NULL)
               return 0;

       for (dce = driver_compats; dce->compat != NULL; dce++) {
               rv = (*match_fn)(device_compats, device_compatsize,
                   dce->compat);
               if (rv != 0) {
                       if (matching_entryp != NULL) {
                               *matching_entryp = dce;
                       }
                       return rv;
               }
       }
       return 0;
}

/*
* device_compatible_match_strlist:
*
*      Like device_compatible_match(), but take the device
*      "compatible" strings as an OpenFirmware-style string
*      list.
*/
int
device_compatible_match_strlist(
   const char * const device_compats, size_t const device_compatsize,
   const struct device_compatible_entry *driver_compats)
{
       return device_compatible_match_strlist_internal(device_compats,
           device_compatsize, driver_compats, NULL, strlist_match);
}

/*
* device_compatible_pmatch_strlist:
*
*      Like device_compatible_pmatch(), but take the device
*      "compatible" strings as an OpenFirmware-style string
*      list.
*/
int
device_compatible_pmatch_strlist(
   const char * const device_compats, size_t const device_compatsize,
   const struct device_compatible_entry *driver_compats)
{
       return device_compatible_match_strlist_internal(device_compats,
           device_compatsize, driver_compats, NULL, strlist_pmatch);
}

static int
device_compatible_match_id_internal(
   uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
   const struct device_compatible_entry *driver_compats,
   const struct device_compatible_entry **matching_entryp)
{
       const struct device_compatible_entry *dce = NULL;

       if (mask == 0)
               return 0;

       for (dce = driver_compats; dce->id != sentinel_id; dce++) {
               if ((id & mask) == dce->id) {
                       if (matching_entryp != NULL) {
                               *matching_entryp = dce;
                       }
                       return 1;
               }
       }
       return 0;
}

/*
* device_compatible_match_id:
*
*      Like device_compatible_match(), but takes a single
*      unsigned integer device ID.
*/
int
device_compatible_match_id(
   uintptr_t const id, uintptr_t const sentinel_id,
   const struct device_compatible_entry *driver_compats)
{
       return device_compatible_match_id_internal(id, (uintptr_t)-1,
           sentinel_id, driver_compats, NULL);
}

/*
* device_compatible_lookup:
*
*      Look up and return the device_compatible_entry, using the
*      same matching criteria used by device_compatible_match().
*/
const struct device_compatible_entry *
device_compatible_lookup(const char **device_compats, int ndevice_compats,
                        const struct device_compatible_entry *driver_compats)
{
       const struct device_compatible_entry *dce;

       if (device_compatible_match_strarray_internal(device_compats,
           ndevice_compats, driver_compats, &dce, strarray_match)) {
               return dce;
       }
       return NULL;
}

/*
* device_compatible_plookup:
*
*      Look up and return the device_compatible_entry, using the
*      same matching criteria used by device_compatible_pmatch().
*/
const struct device_compatible_entry *
device_compatible_plookup(const char **device_compats, int ndevice_compats,
                         const struct device_compatible_entry *driver_compats)
{
       const struct device_compatible_entry *dce;

       if (device_compatible_match_strarray_internal(device_compats,
           ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
               return dce;
       }
       return NULL;
}

/*
* device_compatible_lookup_strlist:
*
*      Like device_compatible_lookup(), but take the device
*      "compatible" strings as an OpenFirmware-style string
*      list.
*/
const struct device_compatible_entry *
device_compatible_lookup_strlist(
   const char * const device_compats, size_t const device_compatsize,
   const struct device_compatible_entry *driver_compats)
{
       const struct device_compatible_entry *dce;

       if (device_compatible_match_strlist_internal(device_compats,
           device_compatsize, driver_compats, &dce, strlist_match)) {
               return dce;
       }
       return NULL;
}

/*
* device_compatible_plookup_strlist:
*
*      Like device_compatible_plookup(), but take the device
*      "compatible" strings as an OpenFirmware-style string
*      list.
*/
const struct device_compatible_entry *
device_compatible_plookup_strlist(
   const char * const device_compats, size_t const device_compatsize,
   const struct device_compatible_entry *driver_compats)
{
       const struct device_compatible_entry *dce;

       if (device_compatible_match_strlist_internal(device_compats,
           device_compatsize, driver_compats, &dce, strlist_pmatch)) {
               return dce;
       }
       return NULL;
}

/*
* device_compatible_lookup_id:
*
*      Like device_compatible_lookup(), but takes a single
*      unsigned integer device ID.
*/
const struct device_compatible_entry *
device_compatible_lookup_id(
   uintptr_t const id, uintptr_t const sentinel_id,
   const struct device_compatible_entry *driver_compats)
{
       const struct device_compatible_entry *dce;

       if (device_compatible_match_id_internal(id, (uintptr_t)-1,
           sentinel_id, driver_compats, &dce)) {
               return dce;
       }
       return NULL;
}

/*
* Power management related functions.
*/

bool
device_pmf_is_registered(device_t dev)
{
       return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
}

bool
device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
{
       if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
               return true;
       if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
               return false;
       if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
           dev->dv_driver_suspend != NULL &&
           !(*dev->dv_driver_suspend)(dev, qual))
               return false;

       dev->dv_flags |= DVF_DRIVER_SUSPENDED;
       return true;
}

bool
device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
{
       if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
               return true;
       if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
               return false;
       if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
           dev->dv_driver_resume != NULL &&
           !(*dev->dv_driver_resume)(dev, qual))
               return false;

       dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
       return true;
}

bool
device_pmf_driver_shutdown(device_t dev, int how)
{

       if (*dev->dv_driver_shutdown != NULL &&
           !(*dev->dv_driver_shutdown)(dev, how))
               return false;
       return true;
}

void
device_pmf_driver_register(device_t dev,
   bool (*suspend)(device_t, const pmf_qual_t *),
   bool (*resume)(device_t, const pmf_qual_t *),
   bool (*shutdown)(device_t, int))
{

       dev->dv_driver_suspend = suspend;
       dev->dv_driver_resume = resume;
       dev->dv_driver_shutdown = shutdown;
       dev->dv_flags |= DVF_POWER_HANDLERS;
}

void
device_pmf_driver_deregister(device_t dev)
{
       device_lock_t dvl = device_getlock(dev);

       dev->dv_driver_suspend = NULL;
       dev->dv_driver_resume = NULL;

       mutex_enter(&dvl->dvl_mtx);
       dev->dv_flags &= ~DVF_POWER_HANDLERS;
       while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
               /* Wake a thread that waits for the lock.  That
                * thread will fail to acquire the lock, and then
                * it will wake the next thread that waits for the
                * lock, or else it will wake us.
                */
               cv_signal(&dvl->dvl_cv);
               pmflock_debug(dev, __func__, __LINE__);
               cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
               pmflock_debug(dev, __func__, __LINE__);
       }
       mutex_exit(&dvl->dvl_mtx);
}

void
device_pmf_driver_child_register(device_t dev)
{
       device_t parent = device_parent(dev);

       if (parent == NULL || parent->dv_driver_child_register == NULL)
               return;
       (*parent->dv_driver_child_register)(dev);
}

void
device_pmf_driver_set_child_register(device_t dev,
   void (*child_register)(device_t))
{
       dev->dv_driver_child_register = child_register;
}

static void
pmflock_debug(device_t dev, const char *func, int line)
{
#ifdef PMFLOCK_DEBUG
       device_lock_t dvl = device_getlock(dev);
       const char *curlwp_name;

       if (curlwp->l_name != NULL)
               curlwp_name = curlwp->l_name;
       else
               curlwp_name = curlwp->l_proc->p_comm;

       aprint_debug_dev(dev,
           "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
           curlwp_name, dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
#endif  /* PMFLOCK_DEBUG */
}

static bool
device_pmf_lock1(device_t dev)
{
       device_lock_t dvl = device_getlock(dev);

       while (device_pmf_is_registered(dev) &&
           dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
               dvl->dvl_nwait++;
               pmflock_debug(dev, __func__, __LINE__);
               cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
               pmflock_debug(dev, __func__, __LINE__);
               dvl->dvl_nwait--;
       }
       if (!device_pmf_is_registered(dev)) {
               pmflock_debug(dev, __func__, __LINE__);
               /* We could not acquire the lock, but some other thread may
                * wait for it, also.  Wake that thread.
                */
               cv_signal(&dvl->dvl_cv);
               return false;
       }
       dvl->dvl_nlock++;
       dvl->dvl_holder = curlwp;
       pmflock_debug(dev, __func__, __LINE__);
       return true;
}

bool
device_pmf_lock(device_t dev)
{
       bool rc;
       device_lock_t dvl = device_getlock(dev);

       mutex_enter(&dvl->dvl_mtx);
       rc = device_pmf_lock1(dev);
       mutex_exit(&dvl->dvl_mtx);

       return rc;
}

void
device_pmf_unlock(device_t dev)
{
       device_lock_t dvl = device_getlock(dev);

       KASSERT(dvl->dvl_nlock > 0);
       mutex_enter(&dvl->dvl_mtx);
       if (--dvl->dvl_nlock == 0)
               dvl->dvl_holder = NULL;
       cv_signal(&dvl->dvl_cv);
       pmflock_debug(dev, __func__, __LINE__);
       mutex_exit(&dvl->dvl_mtx);
}

device_lock_t
device_getlock(device_t dev)
{
       return &dev->dv_lock;
}

void *
device_pmf_bus_private(device_t dev)
{
       return dev->dv_bus_private;
}

bool
device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
{
       if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
               return true;
       if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
           (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
               return false;
       if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
           dev->dv_bus_suspend != NULL &&
           !(*dev->dv_bus_suspend)(dev, qual))
               return false;

       dev->dv_flags |= DVF_BUS_SUSPENDED;
       return true;
}

bool
device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
{
       if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
               return true;
       if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
           dev->dv_bus_resume != NULL &&
           !(*dev->dv_bus_resume)(dev, qual))
               return false;

       dev->dv_flags &= ~DVF_BUS_SUSPENDED;
       return true;
}

bool
device_pmf_bus_shutdown(device_t dev, int how)
{

       if (*dev->dv_bus_shutdown != NULL &&
           !(*dev->dv_bus_shutdown)(dev, how))
               return false;
       return true;
}

void
device_pmf_bus_register(device_t dev, void *priv,
   bool (*suspend)(device_t, const pmf_qual_t *),
   bool (*resume)(device_t, const pmf_qual_t *),
   bool (*shutdown)(device_t, int), void (*deregister)(device_t))
{
       dev->dv_bus_private = priv;
       dev->dv_bus_resume = resume;
       dev->dv_bus_suspend = suspend;
       dev->dv_bus_shutdown = shutdown;
       dev->dv_bus_deregister = deregister;
}

void
device_pmf_bus_deregister(device_t dev)
{
       if (dev->dv_bus_deregister == NULL)
               return;
       (*dev->dv_bus_deregister)(dev);
       dev->dv_bus_private = NULL;
       dev->dv_bus_suspend = NULL;
       dev->dv_bus_resume = NULL;
       dev->dv_bus_deregister = NULL;
}

void *
device_pmf_class_private(device_t dev)
{
       return dev->dv_class_private;
}

bool
device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
{
       if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
               return true;
       if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
           dev->dv_class_suspend != NULL &&
           !(*dev->dv_class_suspend)(dev, qual))
               return false;

       dev->dv_flags |= DVF_CLASS_SUSPENDED;
       return true;
}

bool
device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
{
       if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
               return true;
       if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
           (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
               return false;
       if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
           dev->dv_class_resume != NULL &&
           !(*dev->dv_class_resume)(dev, qual))
               return false;

       dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
       return true;
}

void
device_pmf_class_register(device_t dev, void *priv,
   bool (*suspend)(device_t, const pmf_qual_t *),
   bool (*resume)(device_t, const pmf_qual_t *),
   void (*deregister)(device_t))
{
       dev->dv_class_private = priv;
       dev->dv_class_suspend = suspend;
       dev->dv_class_resume = resume;
       dev->dv_class_deregister = deregister;
}

void
device_pmf_class_deregister(device_t dev)
{
       if (dev->dv_class_deregister == NULL)
               return;
       (*dev->dv_class_deregister)(dev);
       dev->dv_class_private = NULL;
       dev->dv_class_suspend = NULL;
       dev->dv_class_resume = NULL;
       dev->dv_class_deregister = NULL;
}

bool
device_active(device_t dev, devactive_t type)
{
       size_t i;

       if (dev->dv_activity_count == 0)
               return false;

       for (i = 0; i < dev->dv_activity_count; ++i) {
               if (dev->dv_activity_handlers[i] == NULL)
                       break;
               (*dev->dv_activity_handlers[i])(dev, type);
       }

       return true;
}

bool
device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
{
       void (**new_handlers)(device_t, devactive_t);
       void (**old_handlers)(device_t, devactive_t);
       size_t i, old_size, new_size;
       int s;

       old_handlers = dev->dv_activity_handlers;
       old_size = dev->dv_activity_count;

       KASSERT(old_size == 0 || old_handlers != NULL);

       for (i = 0; i < old_size; ++i) {
               KASSERT(old_handlers[i] != handler);
               if (old_handlers[i] == NULL) {
                       old_handlers[i] = handler;
                       return true;
               }
       }

       new_size = old_size + 4;
       new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);

       for (i = 0; i < old_size; ++i)
               new_handlers[i] = old_handlers[i];
       new_handlers[old_size] = handler;
       for (i = old_size+1; i < new_size; ++i)
               new_handlers[i] = NULL;

       s = splhigh();
       dev->dv_activity_count = new_size;
       dev->dv_activity_handlers = new_handlers;
       splx(s);

       if (old_size > 0)
               kmem_free(old_handlers, sizeof(void *) * old_size);

       return true;
}

void
device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
{
       void (**old_handlers)(device_t, devactive_t);
       size_t i, old_size;
       int s;

       old_handlers = dev->dv_activity_handlers;
       old_size = dev->dv_activity_count;

       for (i = 0; i < old_size; ++i) {
               if (old_handlers[i] == handler)
                       break;
               if (old_handlers[i] == NULL)
                       return; /* XXX panic? */
       }

       if (i == old_size)
               return; /* XXX panic? */

       for (; i < old_size - 1; ++i) {
               if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
                       continue;

               if (i == 0) {
                       s = splhigh();
                       dev->dv_activity_count = 0;
                       dev->dv_activity_handlers = NULL;
                       splx(s);
                       kmem_free(old_handlers, sizeof(void *) * old_size);
               }
               return;
       }
       old_handlers[i] = NULL;
}

/* Return true iff the device_t `dev' exists at generation `gen'. */
static bool
device_exists_at(device_t dv, devgen_t gen)
{
       return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
           dv->dv_add_gen <= gen;
}

static bool
deviter_visits(const deviter_t *di, device_t dv)
{
       return device_exists_at(dv, di->di_gen);
}

/*
* Device Iteration
*
* deviter_t: a device iterator.  Holds state for a "walk" visiting
*     each device_t's in the device tree.
*
* deviter_init(di, flags): initialize the device iterator `di'
*     to "walk" the device tree.  deviter_next(di) will return
*     the first device_t in the device tree, or NULL if there are
*     no devices.
*
*     `flags' is one or more of DEVITER_F_RW, indicating that the
*     caller intends to modify the device tree by calling
*     config_detach(9) on devices in the order that the iterator
*     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
*     nearest the "root" of the device tree to be returned, first;
*     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
*     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
*     indicating both that deviter_init() should not respect any
*     locks on the device tree, and that deviter_next(di) may run
*     in more than one LWP before the walk has finished.
*
*     Only one DEVITER_F_RW iterator may be in the device tree at
*     once.
*
*     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
*
*     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
*     DEVITER_F_LEAVES_FIRST are used in combination.
*
* deviter_first(di, flags): initialize the device iterator `di'
*     and return the first device_t in the device tree, or NULL
*     if there are no devices.  The statement
*
*         dv = deviter_first(di);
*
*     is shorthand for
*
*         deviter_init(di);
*         dv = deviter_next(di);
*
* deviter_next(di): return the next device_t in the device tree,
*     or NULL if there are no more devices.  deviter_next(di)
*     is undefined if `di' was not initialized with deviter_init() or
*     deviter_first().
*
* deviter_release(di): stops iteration (subsequent calls to
*     deviter_next() will return NULL), releases any locks and
*     resources held by the device iterator.
*
* Device iteration does not return device_t's in any particular
* order.  An iterator will never return the same device_t twice.
* Device iteration is guaranteed to complete---i.e., if deviter_next(di)
* is called repeatedly on the same `di', it will eventually return
* NULL.  It is ok to attach/detach devices during device iteration.
*/
void
deviter_init(deviter_t *di, deviter_flags_t flags)
{
       device_t dv;

       memset(di, 0, sizeof(*di));

       if ((flags & DEVITER_F_SHUTDOWN) != 0)
               flags |= DEVITER_F_RW;

       mutex_enter(&alldevs_lock);
       if ((flags & DEVITER_F_RW) != 0)
               alldevs_nwrite++;
       else
               alldevs_nread++;
       di->di_gen = alldevs_gen++;
       di->di_flags = flags;

       switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
       case DEVITER_F_LEAVES_FIRST:
               TAILQ_FOREACH(dv, &alldevs, dv_list) {
                       if (!deviter_visits(di, dv))
                               continue;
                       di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
               }
               break;
       case DEVITER_F_ROOT_FIRST:
               TAILQ_FOREACH(dv, &alldevs, dv_list) {
                       if (!deviter_visits(di, dv))
                               continue;
                       di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
               }
               break;
       default:
               break;
       }

       deviter_reinit(di);
       mutex_exit(&alldevs_lock);
}

static void
deviter_reinit(deviter_t *di)
{

       KASSERT(mutex_owned(&alldevs_lock));
       if ((di->di_flags & DEVITER_F_RW) != 0)
               di->di_prev = TAILQ_LAST(&alldevs, devicelist);
       else
               di->di_prev = TAILQ_FIRST(&alldevs);
}

device_t
deviter_first(deviter_t *di, deviter_flags_t flags)
{

       deviter_init(di, flags);
       return deviter_next(di);
}

static device_t
deviter_next2(deviter_t *di)
{
       device_t dv;

       KASSERT(mutex_owned(&alldevs_lock));

       dv = di->di_prev;

       if (dv == NULL)
               return NULL;

       if ((di->di_flags & DEVITER_F_RW) != 0)
               di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
       else
               di->di_prev = TAILQ_NEXT(dv, dv_list);

       return dv;
}

static device_t
deviter_next1(deviter_t *di)
{
       device_t dv;

       KASSERT(mutex_owned(&alldevs_lock));

       do {
               dv = deviter_next2(di);
       } while (dv != NULL && !deviter_visits(di, dv));

       return dv;
}

device_t
deviter_next(deviter_t *di)
{
       device_t dv = NULL;

       mutex_enter(&alldevs_lock);
       switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
       case 0:
               dv = deviter_next1(di);
               break;
       case DEVITER_F_LEAVES_FIRST:
               while (di->di_curdepth >= 0) {
                       if ((dv = deviter_next1(di)) == NULL) {
                               di->di_curdepth--;
                               deviter_reinit(di);
                       } else if (dv->dv_depth == di->di_curdepth)
                               break;
               }
               break;
       case DEVITER_F_ROOT_FIRST:
               while (di->di_curdepth <= di->di_maxdepth) {
                       if ((dv = deviter_next1(di)) == NULL) {
                               di->di_curdepth++;
                               deviter_reinit(di);
                       } else if (dv->dv_depth == di->di_curdepth)
                               break;
               }
               break;
       default:
               break;
       }
       mutex_exit(&alldevs_lock);

       return dv;
}

void
deviter_release(deviter_t *di)
{
       bool rw = (di->di_flags & DEVITER_F_RW) != 0;

       mutex_enter(&alldevs_lock);
       if (rw)
               --alldevs_nwrite;
       else
               --alldevs_nread;
       /* XXX wake a garbage-collection thread */
       mutex_exit(&alldevs_lock);
}

const char *
cfdata_ifattr(const struct cfdata *cf)
{
       return cf->cf_pspec->cfp_iattr;
}

bool
ifattr_match(const char *snull, const char *t)
{
       return (snull == NULL) || strcmp(snull, t) == 0;
}

void
null_childdetached(device_t self, device_t child)
{
       /* do nothing */
}

static void
sysctl_detach_setup(struct sysctllog **clog)
{

       sysctl_createv(clog, 0, NULL, NULL,
               CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
               CTLTYPE_BOOL, "detachall",
               SYSCTL_DESCR("Detach all devices at shutdown"),
               NULL, 0, &detachall, 0,
               CTL_KERN, CTL_CREATE, CTL_EOL);
}