/*      $NetBSD: kern_time.c,v 1.228 2025/03/19 14:27:05 pho Exp $      */

/*-
* Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
*     The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 1982, 1986, 1989, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)kern_time.c 8.4 (Berkeley) 5/26/95
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.228 2025/03/19 14:27:05 pho Exp $");

#include <sys/param.h>
#include <sys/types.h>

#include <sys/callout.h>
#include <sys/cpu.h>
#include <sys/errno.h>
#include <sys/intr.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/lwp.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/resourcevar.h>
#include <sys/signal.h>
#include <sys/signalvar.h>
#include <sys/syscallargs.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <sys/timetc.h>
#include <sys/timevar.h>
#include <sys/timex.h>
#include <sys/vnode.h>

#include <machine/limits.h>

kmutex_t        itimer_mutex __cacheline_aligned;       /* XXX static */
static struct itlist itimer_realtime_changed_notify;

static void     itimer_callout(void *);
static void     ptimer_intr(void *);
static void     *ptimer_sih __read_mostly;
static TAILQ_HEAD(, ptimer) ptimer_queue;

#define CLOCK_VIRTUAL_P(clockid)        \
       ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)

CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
CTASSERT(ITIMER_PROF == CLOCK_PROF);
CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);

/*
* Initialize timekeeping.
*/
void
time_init(void)
{

       mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
       LIST_INIT(&itimer_realtime_changed_notify);

       TAILQ_INIT(&ptimer_queue);
       ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
           ptimer_intr, NULL);
}

/*
* Check if the time will wrap if set to ts.
*
* ts - timespec describing the new time
* delta - the delta between the current time and ts
*/
bool
time_wraps(struct timespec *ts, struct timespec *delta)
{

       /*
        * Don't allow the time to be set forward so far it
        * will wrap and become negative, thus allowing an
        * attacker to bypass the next check below.  The
        * cutoff is 1 year before rollover occurs, so even
        * if the attacker uses adjtime(2) to move the time
        * past the cutoff, it will take a very long time
        * to get to the wrap point.
        */
       if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
           (delta->tv_sec < 0 || delta->tv_nsec < 0))
               return true;

       return false;
}

/*
* itimer_lock:
*
*      Acquire the interval timer data lock.
*/
void
itimer_lock(void)
{
       mutex_spin_enter(&itimer_mutex);
}

/*
* itimer_unlock:
*
*      Release the interval timer data lock.
*/
void
itimer_unlock(void)
{
       mutex_spin_exit(&itimer_mutex);
}

/*
* itimer_lock_held:
*
*      Check that the interval timer lock is held for diagnostic
*      assertions.
*/
inline bool __diagused
itimer_lock_held(void)
{
       return mutex_owned(&itimer_mutex);
}

/*
* Time of day and interval timer support.
*
* These routines provide the kernel entry points to get and set
* the time-of-day and per-process interval timers.  Subroutines
* here provide support for adding and subtracting timeval structures
* and decrementing interval timers, optionally reloading the interval
* timers when they expire.
*/

/* This function is used by clock_settime and settimeofday */
static int
settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
{
       struct timespec delta, now;

       /*
        * The time being set to an unreasonable value will cause
        * unreasonable system behaviour.
        */
       if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
               return EINVAL;

       nanotime(&now);
       timespecsub(ts, &now, &delta);

       if (check_kauth && kauth_authorize_system(kauth_cred_get(),
           KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
           &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
               return EPERM;
       }

#ifdef notyet
       if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
               return EPERM;
       }
#endif

       tc_setclock(ts);

       resettodr();

       /*
        * Notify pending CLOCK_REALTIME timers about the real time change.
        * There may be inactive timers on this list, but this happens
        * comparatively less often than timers firing, and so it's better
        * to put the extra checks here than to complicate the other code
        * path.
        */
       struct itimer *it;
       itimer_lock();
       LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
               KASSERT(it->it_ops->ito_realtime_changed != NULL);
               if (timespecisset(&it->it_time.it_value)) {
                       (*it->it_ops->ito_realtime_changed)(it);
               }
       }
       itimer_unlock();

       return 0;
}

int
settime(struct proc *p, struct timespec *ts)
{
       return settime1(p, ts, true);
}

/* ARGSUSED */
int
sys___clock_gettime50(struct lwp *l,
   const struct sys___clock_gettime50_args *uap, register_t *retval)
{
       /* {
               syscallarg(clockid_t) clock_id;
               syscallarg(struct timespec *) tp;
       } */
       int error;
       struct timespec ats;

       error = clock_gettime1(SCARG(uap, clock_id), &ats);
       if (error != 0)
               return error;

       return copyout(&ats, SCARG(uap, tp), sizeof(ats));
}

/* ARGSUSED */
int
sys___clock_settime50(struct lwp *l,
   const struct sys___clock_settime50_args *uap, register_t *retval)
{
       /* {
               syscallarg(clockid_t) clock_id;
               syscallarg(const struct timespec *) tp;
       } */
       int error;
       struct timespec ats;

       if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
               return error;

       return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
}


int
clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
   bool check_kauth)
{
       int error;

       if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
               return EINVAL;

       switch (clock_id) {
       case CLOCK_REALTIME:
               if ((error = settime1(p, tp, check_kauth)) != 0)
                       return error;
               break;
       case CLOCK_MONOTONIC:
               return EINVAL;  /* read-only clock */
       default:
               return EINVAL;
       }

       return 0;
}

int
sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(clockid_t) clock_id;
               syscallarg(struct timespec *) tp;
       } */
       struct timespec ts;
       int error;

       if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
               return error;

       if (SCARG(uap, tp))
               error = copyout(&ts, SCARG(uap, tp), sizeof(ts));

       return error;
}

int
clock_getres1(clockid_t clock_id, struct timespec *ts)
{

       switch (clock_id) {
       case CLOCK_REALTIME:
       case CLOCK_MONOTONIC:
       case CLOCK_PROCESS_CPUTIME_ID:
       case CLOCK_THREAD_CPUTIME_ID:
               ts->tv_sec = 0;
               if (tc_getfrequency() > 1000000000)
                       ts->tv_nsec = 1;
               else
                       ts->tv_nsec = 1000000000 / tc_getfrequency();
               break;
       default:
               return EINVAL;
       }

       return 0;
}

/* ARGSUSED */
int
sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(struct timespec *) rqtp;
               syscallarg(struct timespec *) rmtp;
       } */
       struct timespec rmt, rqt;
       int error, error1;

       error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
       if (error)
               return error;

       error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
           SCARG(uap, rmtp) ? &rmt : NULL);
       if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
               return error;

       error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
       return error1 ? error1 : error;
}

/* ARGSUSED */
int
sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(clockid_t) clock_id;
               syscallarg(int) flags;
               syscallarg(struct timespec *) rqtp;
               syscallarg(struct timespec *) rmtp;
       } */
       struct timespec rmt, rqt;
       int error, error1;

       error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
       if (error)
               goto out;

       error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
           SCARG(uap, rmtp) ? &rmt : NULL);
       if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
               goto out;

       if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
           (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
               error = error1;
out:
       *retval = error;
       return 0;
}

int
nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
   struct timespec *rmt)
{
       struct timespec rmtstart;
       int error, timo;

       if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
               if (error == ETIMEDOUT) {
                       error = 0;
                       if (rmt != NULL)
                               rmt->tv_sec = rmt->tv_nsec = 0;
               }
               return error;
       }

       /*
        * Avoid inadvertently sleeping forever
        */
       if (timo == 0)
               timo = 1;
again:
       error = kpause("nanoslp", true, timo, NULL);
       if (error == EWOULDBLOCK)
               error = 0;
       if (rmt != NULL || error == 0) {
               struct timespec rmtend;
               struct timespec t0;
               struct timespec *t;
               int err;

               err = clock_gettime1(clock_id, &rmtend);
               if (err != 0)
                       return err;

               t = (rmt != NULL) ? rmt : &t0;
               if (flags & TIMER_ABSTIME) {
                       timespecsub(rqt, &rmtend, t);
               } else {
                       if (timespeccmp(&rmtend, &rmtstart, <))
                               timespecclear(t); /* clock wound back */
                       else
                               timespecsub(&rmtend, &rmtstart, t);
                       if (timespeccmp(rqt, t, <))
                               timespecclear(t);
                       else
                               timespecsub(rqt, t, t);
               }
               if (t->tv_sec < 0)
                       timespecclear(t);
               if (error == 0) {
                       timo = tstohz(t);
                       if (timo > 0)
                               goto again;
               }
       }

       if (error == ERESTART)
               error = EINTR;

       return error;
}

int
sys_clock_getcpuclockid2(struct lwp *l,
   const struct sys_clock_getcpuclockid2_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(idtype_t idtype;
               syscallarg(id_t id);
               syscallarg(clockid_t *)clock_id;
       } */
       pid_t pid;
       lwpid_t lid;
       clockid_t clock_id;
       id_t id = SCARG(uap, id);

       switch (SCARG(uap, idtype)) {
       case P_PID:
               pid = id == 0 ? l->l_proc->p_pid : id;
               clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
               break;
       case P_LWPID:
               lid = id == 0 ? l->l_lid : id;
               clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
               break;
       default:
               return EINVAL;
       }
       return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
}

/* ARGSUSED */
int
sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(struct timeval *) tp;
               syscallarg(void *) tzp;         really "struct timezone *";
       } */
       struct timeval atv;
       int error = 0;
       struct timezone tzfake;

       if (SCARG(uap, tp)) {
               memset(&atv, 0, sizeof(atv));
               microtime(&atv);
               error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
               if (error)
                       return error;
       }
       if (SCARG(uap, tzp)) {
               /*
                * NetBSD has no kernel notion of time zone, so we just
                * fake up a timezone struct and return it if demanded.
                */
               tzfake.tz_minuteswest = 0;
               tzfake.tz_dsttime = 0;
               error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
       }
       return error;
}

/* ARGSUSED */
int
sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(const struct timeval *) tv;
               syscallarg(const void *) tzp; really "const struct timezone *";
       } */

       return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
}

int
settimeofday1(const struct timeval *utv, bool userspace,
   const void *utzp, struct lwp *l, bool check_kauth)
{
       struct timeval atv;
       struct timespec ts;
       int error;

       /* Verify all parameters before changing time. */

       /*
        * NetBSD has no kernel notion of time zone, and only an
        * obsolete program would try to set it, so we log a warning.
        */
       if (utzp)
               log(LOG_WARNING, "pid %d attempted to set the "
                   "(obsolete) kernel time zone\n", l->l_proc->p_pid);

       if (utv == NULL)
               return 0;

       if (userspace) {
               if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
                       return error;
               utv = &atv;
       }

       if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
               return EINVAL;

       TIMEVAL_TO_TIMESPEC(utv, &ts);
       return settime1(l->l_proc, &ts, check_kauth);
}

int     time_adjusted;                  /* set if an adjustment is made */

/* ARGSUSED */
int
sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(const struct timeval *) delta;
               syscallarg(struct timeval *) olddelta;
       } */
       int error;
       struct timeval atv, oldatv;

       if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
           KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
               return error;

       if (SCARG(uap, delta)) {
               error = copyin(SCARG(uap, delta), &atv,
                   sizeof(*SCARG(uap, delta)));
               if (error)
                       return error;
       }
       adjtime1(SCARG(uap, delta) ? &atv : NULL,
           SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
       if (SCARG(uap, olddelta))
               error = copyout(&oldatv, SCARG(uap, olddelta),
                   sizeof(*SCARG(uap, olddelta)));
       return error;
}

void
adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
{

       if (olddelta) {
               memset(olddelta, 0, sizeof(*olddelta));
               mutex_spin_enter(&timecounter_lock);
               olddelta->tv_sec = time_adjtime / 1000000;
               olddelta->tv_usec = time_adjtime % 1000000;
               if (olddelta->tv_usec < 0) {
                       olddelta->tv_usec += 1000000;
                       olddelta->tv_sec--;
               }
               mutex_spin_exit(&timecounter_lock);
       }

       if (delta) {
               mutex_spin_enter(&timecounter_lock);
               /*
                * XXX This should maybe just report failure to
                * userland for nonsense deltas.
                */
               if (delta->tv_sec > INT64_MAX/1000000 - 1) {
                       time_adjtime = INT64_MAX;
               } else if (delta->tv_sec < INT64_MIN/1000000 + 1) {
                       time_adjtime = INT64_MIN;
               } else {
                       time_adjtime = delta->tv_sec * 1000000
                           + MAX(-999999, MIN(999999, delta->tv_usec));
               }

               if (time_adjtime) {
                       /* We need to save the system time during shutdown */
                       time_adjusted |= 1;
               }
               mutex_spin_exit(&timecounter_lock);
       }
}

/*
* Interval timer support.
*
* The itimer_*() routines provide generic support for interval timers,
* both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
* CLOCK_PROF).
*
* Real timers keep their deadline as an absolute time, and are fired
* by a callout.  Virtual timers are kept as a linked-list of deltas,
* and are processed by hardclock().
*
* Because the real time timer callout may be delayed in real time due
* to interrupt processing on the system, it is possible for the real
* time timeout routine (itimer_callout()) run past after its deadline.
* It does not suffice, therefore, to reload the real timer .it_value
* from the timer's .it_interval.  Rather, we compute the next deadline
* in absolute time based on the current time and the .it_interval value,
* and report any overruns.
*
* Note that while the virtual timers are supported in a generic fashion
* here, they only (currently) make sense as per-process timers, and thus
* only really work for that case.
*/

/*
* itimer_init:
*
*      Initialize the common data for an interval timer.
*/
void
itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
   clockid_t const id, struct itlist * const itl)
{

       KASSERT(itimer_lock_held());
       KASSERT(ops != NULL);

       timespecclear(&it->it_time.it_value);
       it->it_ops = ops;
       it->it_clockid = id;
       it->it_overruns = 0;
       it->it_dying = false;
       if (!CLOCK_VIRTUAL_P(id)) {
               KASSERT(itl == NULL);
               callout_init(&it->it_ch, CALLOUT_MPSAFE);
               callout_setfunc(&it->it_ch, itimer_callout, it);
               if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
                       LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
                           it, it_rtchgq);
               }
       } else {
               KASSERT(itl != NULL);
               it->it_vlist = itl;
               it->it_active = false;
       }
}

/*
* itimer_poison:
*
*      Poison an interval timer, preventing it from being scheduled
*      or processed, in preparation for freeing the timer.
*/
void
itimer_poison(struct itimer * const it)
{

       KASSERT(itimer_lock_held());

       it->it_dying = true;

       /*
        * For non-virtual timers, stop the callout, or wait for it to
        * run if it has already fired.  It cannot restart again after
        * this point: the callout won't restart itself when dying, no
        * other users holding the lock can restart it, and any other
        * users waiting for callout_halt concurrently (itimer_settime)
        * will restart from the top.
        */
       if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
               callout_halt(&it->it_ch, &itimer_mutex);
               if (it->it_clockid == CLOCK_REALTIME &&
                   it->it_ops->ito_realtime_changed != NULL) {
                       LIST_REMOVE(it, it_rtchgq);
               }
       }
}

/*
* itimer_fini:
*
*      Release resources used by an interval timer.
*
*      N.B. itimer_lock must be held on entry, and is released on exit.
*/
void
itimer_fini(struct itimer * const it)
{

       KASSERT(itimer_lock_held());

       /* All done with the global state. */
       itimer_unlock();

       /* Destroy the callout, if needed. */
       if (!CLOCK_VIRTUAL_P(it->it_clockid))
               callout_destroy(&it->it_ch);
}

/*
* itimer_decr:
*
*      Decrement an interval timer by a specified number of nanoseconds,
*      which must be less than a second, i.e. < 1000000000.  If the timer
*      expires, then reload it.  In this case, carry over (nsec - old value)
*      to reduce the value reloaded into the timer so that the timer does
*      not drift.  This routine assumes that it is called in a context where
*      the timers on which it is operating cannot change in value.
*
*      Returns true if the timer has expired.
*/
static bool
itimer_decr(struct itimer *it, int nsec)
{
       struct itimerspec *itp;
       int error __diagused;

       KASSERT(itimer_lock_held());
       KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));

       itp = &it->it_time;
       if (itp->it_value.tv_nsec < nsec) {
               if (itp->it_value.tv_sec == 0) {
                       /* expired, and already in next interval */
                       nsec -= itp->it_value.tv_nsec;
                       goto expire;
               }
               itp->it_value.tv_nsec += 1000000000;
               itp->it_value.tv_sec--;
       }
       itp->it_value.tv_nsec -= nsec;
       nsec = 0;
       if (timespecisset(&itp->it_value))
               return false;
       /* expired, exactly at end of interval */
expire:
       if (timespecisset(&itp->it_interval)) {
               itp->it_value = itp->it_interval;
               itp->it_value.tv_nsec -= nsec;
               if (itp->it_value.tv_nsec < 0) {
                       itp->it_value.tv_nsec += 1000000000;
                       itp->it_value.tv_sec--;
               }
               error = itimer_settime(it);
               KASSERT(error == 0); /* virtual, never fails */
       } else
               itp->it_value.tv_nsec = 0;              /* sec is already 0 */
       return true;
}

/*
* itimer_arm_real:
*
*      Arm a non-virtual timer.
*/
static void
itimer_arm_real(struct itimer * const it)
{

       KASSERT(!it->it_dying);
       KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
       KASSERT(!callout_pending(&it->it_ch));

       /*
        * Don't need to check tshzto() return value, here.
        * callout_schedule() does it for us.
        */
       callout_schedule(&it->it_ch,
           (it->it_clockid == CLOCK_MONOTONIC
               ? tshztoup(&it->it_time.it_value)
               : tshzto(&it->it_time.it_value)));
}

/*
* itimer_callout:
*
*      Callout to expire a non-virtual timer.  Queue it up for processing,
*      and then reload, if it is configured to do so.
*
*      N.B. A delay in processing this callout causes multiple
*      SIGALRM calls to be compressed into one.
*/
static void
itimer_callout(void *arg)
{
       struct timespec now, next;
       struct itimer * const it = arg;
       int overruns;

       itimer_lock();
       (*it->it_ops->ito_fire)(it);

       if (!timespecisset(&it->it_time.it_interval)) {
               timespecclear(&it->it_time.it_value);
               itimer_unlock();
               return;
       }

       if (it->it_clockid == CLOCK_MONOTONIC) {
               getnanouptime(&now);
       } else {
               getnanotime(&now);
       }

       /*
        * Given the current itimer value and interval and the time
        * now, compute the next itimer value and count overruns.
        */
       itimer_transition(&it->it_time, &now, &next, &overruns);
       it->it_time.it_value = next;
       it->it_overruns += overruns;

       /*
        * Reset the callout, if it's not going away.
        */
       if (!it->it_dying)
               itimer_arm_real(it);
       itimer_unlock();
}

/*
* itimer_settime:
*
*      Set up the given interval timer. The value in it->it_time.it_value
*      is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
*      timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
*
*      If the callout had already fired but not yet run, fails with
*      ERESTART -- caller must restart from the top to look up a timer.
*
*      Caller is responsible for validating it->it_value and
*      it->it_interval, e.g. with itimerfix or itimespecfix.
*/
int
itimer_settime(struct itimer *it)
{
       struct itimer *itn, *pitn;
       struct itlist *itl;

       KASSERT(itimer_lock_held());
       KASSERT(!it->it_dying);
       KASSERT(it->it_time.it_value.tv_sec >= 0);
       KASSERT(it->it_time.it_value.tv_nsec >= 0);
       KASSERT(it->it_time.it_value.tv_nsec < 1000000000);
       KASSERT(it->it_time.it_interval.tv_sec >= 0);
       KASSERT(it->it_time.it_interval.tv_nsec >= 0);
       KASSERT(it->it_time.it_interval.tv_nsec < 1000000000);

       if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
               /*
                * Try to stop the callout.  However, if it had already
                * fired, we have to drop the lock to wait for it, so
                * the world may have changed and pt may not be there
                * any more.  In that case, tell the caller to start
                * over from the top.
                */
               if (callout_halt(&it->it_ch, &itimer_mutex))
                       return ERESTART;
               KASSERT(!it->it_dying);

               /* Now we can touch it and start it up again. */
               if (timespecisset(&it->it_time.it_value))
                       itimer_arm_real(it);
       } else {
               if (it->it_active) {
                       itn = LIST_NEXT(it, it_list);
                       LIST_REMOVE(it, it_list);
                       for ( ; itn; itn = LIST_NEXT(itn, it_list))
                               timespecadd(&it->it_time.it_value,
                                   &itn->it_time.it_value,
                                   &itn->it_time.it_value);
               }
               if (timespecisset(&it->it_time.it_value)) {
                       itl = it->it_vlist;
                       for (itn = LIST_FIRST(itl), pitn = NULL;
                            itn && timespeccmp(&it->it_time.it_value,
                                &itn->it_time.it_value, >);
                            pitn = itn, itn = LIST_NEXT(itn, it_list))
                               timespecsub(&it->it_time.it_value,
                                   &itn->it_time.it_value,
                                   &it->it_time.it_value);

                       if (pitn)
                               LIST_INSERT_AFTER(pitn, it, it_list);
                       else
                               LIST_INSERT_HEAD(itl, it, it_list);

                       for ( ; itn ; itn = LIST_NEXT(itn, it_list))
                               timespecsub(&itn->it_time.it_value,
                                   &it->it_time.it_value,
                                   &itn->it_time.it_value);

                       it->it_active = true;
               } else {
                       it->it_active = false;
               }
       }

       /* Success!  */
       return 0;
}

/*
* itimer_gettime:
*
*      Return the remaining time of an interval timer.
*/
void
itimer_gettime(const struct itimer *it, struct itimerspec *aits)
{
       struct timespec now;
       struct itimer *itn;

       KASSERT(itimer_lock_held());
       KASSERT(!it->it_dying);

       *aits = it->it_time;
       if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
               /*
                * Convert from absolute to relative time in .it_value
                * part of real time timer.  If time for real time
                * timer has passed return 0, else return difference
                * between current time and time for the timer to go
                * off.
                */
               if (timespecisset(&aits->it_value)) {
                       if (it->it_clockid == CLOCK_REALTIME) {
                               getnanotime(&now);
                       } else { /* CLOCK_MONOTONIC */
                               getnanouptime(&now);
                       }
                       if (timespeccmp(&aits->it_value, &now, <))
                               timespecclear(&aits->it_value);
                       else
                               timespecsub(&aits->it_value, &now,
                                   &aits->it_value);
               }
       } else if (it->it_active) {
               for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
                    itn = LIST_NEXT(itn, it_list))
                       timespecadd(&aits->it_value,
                           &itn->it_time.it_value, &aits->it_value);
               KASSERT(itn != NULL); /* it should be findable on the list */
       } else
               timespecclear(&aits->it_value);
}

/*
* Per-process timer support.
*
* Both the BSD getitimer() family and the POSIX timer_*() family of
* routines are supported.
*
* All timers are kept in an array pointed to by p_timers, which is
* allocated on demand - many processes don't use timers at all. The
* first four elements in this array are reserved for the BSD timers:
* element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
* 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
* allocated by the timer_create() syscall.
*
* These timers are a "sub-class" of interval timer.
*/

/*
* ptimer_free:
*
*      Free the per-process timer at the specified index.
*/
static void
ptimer_free(struct ptimers *pts, int index)
{
       struct itimer *it;
       struct ptimer *pt;

       KASSERT(itimer_lock_held());

       it = pts->pts_timers[index];
       pt = container_of(it, struct ptimer, pt_itimer);
       pts->pts_timers[index] = NULL;
       itimer_poison(it);

       /*
        * Remove it from the queue to be signalled.  Must be done
        * after itimer is poisoned, because we may have had to wait
        * for the callout to complete.
        */
       if (pt->pt_queued) {
               TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
               pt->pt_queued = false;
       }

       itimer_fini(it);        /* releases itimer_lock */
       kmem_free(pt, sizeof(*pt));
}

/*
* ptimers_alloc:
*
*      Allocate a ptimers for the specified process.
*/
static struct ptimers *
ptimers_alloc(struct proc *p)
{
       struct ptimers *pts;
       int i;

       pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
       LIST_INIT(&pts->pts_virtual);
       LIST_INIT(&pts->pts_prof);
       for (i = 0; i < TIMER_MAX; i++)
               pts->pts_timers[i] = NULL;
       itimer_lock();
       if (p->p_timers == NULL) {
               p->p_timers = pts;
               itimer_unlock();
               return pts;
       }
       itimer_unlock();
       kmem_free(pts, sizeof(*pts));
       return p->p_timers;
}

/*
* ptimers_free:
*
*      Clean up the per-process timers. If "which" is set to TIMERS_ALL,
*      then clean up all timers and free all the data structures. If
*      "which" is set to TIMERS_POSIX, only clean up the timers allocated
*      by timer_create(), not the BSD setitimer() timers, and only free the
*      structure if none of those remain.
*
*      This function is exported because it is needed in the exec and
*      exit code paths.
*/
void
ptimers_free(struct proc *p, int which)
{
       struct ptimers *pts;
       struct itimer *itn;
       struct timespec ts;
       int i;

       if (p->p_timers == NULL)
               return;

       pts = p->p_timers;
       itimer_lock();
       if (which == TIMERS_ALL) {
               p->p_timers = NULL;
               i = 0;
       } else {
               timespecclear(&ts);
               for (itn = LIST_FIRST(&pts->pts_virtual);
                    itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
                    itn = LIST_NEXT(itn, it_list)) {
                       KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
                       timespecadd(&ts, &itn->it_time.it_value, &ts);
               }
               LIST_FIRST(&pts->pts_virtual) = NULL;
               if (itn) {
                       KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
                       timespecadd(&ts, &itn->it_time.it_value,
                           &itn->it_time.it_value);
                       LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
               }
               timespecclear(&ts);
               for (itn = LIST_FIRST(&pts->pts_prof);
                    itn && itn != pts->pts_timers[ITIMER_PROF];
                    itn = LIST_NEXT(itn, it_list)) {
                       KASSERT(itn->it_clockid == CLOCK_PROF);
                       timespecadd(&ts, &itn->it_time.it_value, &ts);
               }
               LIST_FIRST(&pts->pts_prof) = NULL;
               if (itn) {
                       KASSERT(itn->it_clockid == CLOCK_PROF);
                       timespecadd(&ts, &itn->it_time.it_value,
                           &itn->it_time.it_value);
                       LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
               }
               i = TIMER_MIN;
       }
       for ( ; i < TIMER_MAX; i++) {
               if (pts->pts_timers[i] != NULL) {
                       /* Free the timer and release the lock.  */
                       ptimer_free(pts, i);
                       /* Reacquire the lock for the next one.  */
                       itimer_lock();
               }
       }
       if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
           pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
               p->p_timers = NULL;
               itimer_unlock();
               kmem_free(pts, sizeof(*pts));
       } else
               itimer_unlock();
}

/*
* ptimer_fire:
*
*      Fire a per-process timer.
*/
static void
ptimer_fire(struct itimer *it)
{
       struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);

       KASSERT(itimer_lock_held());

       /*
        * XXX Can overrun, but we don't do signal queueing yet, anyway.
        * XXX Relying on the clock interrupt is stupid.
        */
       if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
               return;
       }

       if (!pt->pt_queued) {
               TAILQ_INSERT_TAIL(&ptimer_queue, pt, pt_chain);
               pt->pt_queued = true;
               softint_schedule(ptimer_sih);
       }
}

/*
* Operations vector for per-process timers (BSD and POSIX).
*/
static const struct itimer_ops ptimer_itimer_ops = {
       .ito_fire = ptimer_fire,
};

/*
* sys_timer_create:
*
*      System call to create a POSIX timer.
*/
int
sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(clockid_t) clock_id;
               syscallarg(struct sigevent *) evp;
               syscallarg(timer_t *) timerid;
       } */

       return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
           SCARG(uap, evp), copyin, l);
}

int
timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
   copyin_t fetch_event, struct lwp *l)
{
       int error;
       timer_t timerid;
       struct itlist *itl;
       struct ptimers *pts;
       struct ptimer *pt;
       struct proc *p;

       p = l->l_proc;

       if ((u_int)id > CLOCK_MONOTONIC)
               return EINVAL;

       if ((pts = p->p_timers) == NULL)
               pts = ptimers_alloc(p);

       pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
       if (evp != NULL) {
               if (((error =
                   (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
                   ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
                       (pt->pt_ev.sigev_notify > SIGEV_SA)) ||
                       (pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
                        (pt->pt_ev.sigev_signo <= 0 ||
                         pt->pt_ev.sigev_signo >= NSIG))) {
                       kmem_free(pt, sizeof(*pt));
                       return (error ? error : EINVAL);
               }
       }

       /* Find a free timer slot, skipping those reserved for setitimer(). */
       itimer_lock();
       for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
               if (pts->pts_timers[timerid] == NULL)
                       break;
       if (timerid == TIMER_MAX) {
               itimer_unlock();
               kmem_free(pt, sizeof(*pt));
               return EAGAIN;
       }
       if (evp == NULL) {
               pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
               switch (id) {
               case CLOCK_REALTIME:
               case CLOCK_MONOTONIC:
                       pt->pt_ev.sigev_signo = SIGALRM;
                       break;
               case CLOCK_VIRTUAL:
                       pt->pt_ev.sigev_signo = SIGVTALRM;
                       break;
               case CLOCK_PROF:
                       pt->pt_ev.sigev_signo = SIGPROF;
                       break;
               }
               pt->pt_ev.sigev_value.sival_int = timerid;
       }

       switch (id) {
       case CLOCK_VIRTUAL:
               itl = &pts->pts_virtual;
               break;
       case CLOCK_PROF:
               itl = &pts->pts_prof;
               break;
       default:
               itl = NULL;
       }

       itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
       pt->pt_proc = p;
       pt->pt_poverruns = 0;
       pt->pt_entry = timerid;
       pt->pt_queued = false;

       pts->pts_timers[timerid] = &pt->pt_itimer;
       itimer_unlock();

       return copyout(&timerid, tid, sizeof(timerid));
}

/*
* sys_timer_delete:
*
*      System call to delete a POSIX timer.
*/
int
sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(timer_t) timerid;
       } */
       struct proc *p = l->l_proc;
       timer_t timerid;
       struct ptimers *pts;
       struct itimer *it, *itn;

       timerid = SCARG(uap, timerid);
       pts = p->p_timers;

       if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
               return EINVAL;

       itimer_lock();
       if ((it = pts->pts_timers[timerid]) == NULL) {
               itimer_unlock();
               return EINVAL;
       }

       if (CLOCK_VIRTUAL_P(it->it_clockid)) {
               if (it->it_active) {
                       itn = LIST_NEXT(it, it_list);
                       LIST_REMOVE(it, it_list);
                       for ( ; itn; itn = LIST_NEXT(itn, it_list))
                               timespecadd(&it->it_time.it_value,
                                   &itn->it_time.it_value,
                                   &itn->it_time.it_value);
                       it->it_active = false;
               }
       }

       /* Free the timer and release the lock.  */
       ptimer_free(pts, timerid);

       return 0;
}

/*
* sys___timer_settime50:
*
*      System call to set/arm a POSIX timer.
*/
int
sys___timer_settime50(struct lwp *l,
   const struct sys___timer_settime50_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(timer_t) timerid;
               syscallarg(int) flags;
               syscallarg(const struct itimerspec *) value;
               syscallarg(struct itimerspec *) ovalue;
       } */
       int error;
       struct itimerspec value, ovalue, *ovp = NULL;

       if ((error = copyin(SCARG(uap, value), &value,
           sizeof(struct itimerspec))) != 0)
               return error;

       if (SCARG(uap, ovalue))
               ovp = &ovalue;

       if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
           SCARG(uap, flags), l->l_proc)) != 0)
               return error;

       if (ovp)
               return copyout(&ovalue, SCARG(uap, ovalue),
                   sizeof(struct itimerspec));
       return 0;
}

int
dotimer_settime(int timerid, struct itimerspec *value,
   struct itimerspec *ovalue, int flags, struct proc *p)
{
       struct timespec now;
       struct itimerspec val;
       struct ptimers *pts;
       struct itimer *it;
       int error;

       pts = p->p_timers;

       if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
               return EINVAL;
       val = *value;
       if (itimespecfix(&val.it_value) != 0 ||
           itimespecfix(&val.it_interval) != 0)
               return EINVAL;

       itimer_lock();
restart:
       if ((it = pts->pts_timers[timerid]) == NULL) {
               itimer_unlock();
               return EINVAL;
       }

       if (ovalue)
               itimer_gettime(it, ovalue);
       it->it_time = val;

       /*
        * If we've been passed a relative time for a realtime timer,
        * convert it to absolute; if an absolute time for a virtual
        * timer, convert it to relative and make sure we don't set it
        * to zero, which would cancel the timer, or let it go
        * negative, which would confuse the comparison tests.
        */
       if (timespecisset(&it->it_time.it_value)) {
               if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
                       if ((flags & TIMER_ABSTIME) == 0) {
                               if (it->it_clockid == CLOCK_REALTIME) {
                                       getnanotime(&now);
                               } else { /* CLOCK_MONOTONIC */
                                       getnanouptime(&now);
                               }
                               timespecadd(&it->it_time.it_value, &now,
                                   &it->it_time.it_value);
                       }
               } else {
                       if ((flags & TIMER_ABSTIME) != 0) {
                               getnanotime(&now);
                               timespecsub(&it->it_time.it_value, &now,
                                   &it->it_time.it_value);
                               if (!timespecisset(&it->it_time.it_value) ||
                                   it->it_time.it_value.tv_sec < 0) {
                                       it->it_time.it_value.tv_sec = 0;
                                       it->it_time.it_value.tv_nsec = 1;
                               }
                       }
               }
       }

       error = itimer_settime(it);
       if (error == ERESTART) {
               KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
               goto restart;
       }
       KASSERT(error == 0);
       itimer_unlock();

       return 0;
}

/*
* sys___timer_gettime50:
*
*      System call to return the time remaining until a POSIX timer fires.
*/
int
sys___timer_gettime50(struct lwp *l,
   const struct sys___timer_gettime50_args *uap, register_t *retval)
{
       /* {
               syscallarg(timer_t) timerid;
               syscallarg(struct itimerspec *) value;
       } */
       struct itimerspec its;
       int error;

       if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
           &its)) != 0)
               return error;

       return copyout(&its, SCARG(uap, value), sizeof(its));
}

int
dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
{
       struct itimer *it;
       struct ptimers *pts;

       pts = p->p_timers;
       if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
               return EINVAL;
       itimer_lock();
       if ((it = pts->pts_timers[timerid]) == NULL) {
               itimer_unlock();
               return EINVAL;
       }
       itimer_gettime(it, its);
       itimer_unlock();

       return 0;
}

/*
* sys_timer_getoverrun:
*
*      System call to return the number of times a POSIX timer has
*      expired while a notification was already pending.  The counter
*      is reset when a timer expires and a notification can be posted.
*/
int
sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(timer_t) timerid;
       } */
       struct proc *p = l->l_proc;
       struct ptimers *pts;
       int timerid;
       struct itimer *it;
       struct ptimer *pt;

       timerid = SCARG(uap, timerid);

       pts = p->p_timers;
       if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
               return EINVAL;
       itimer_lock();
       if ((it = pts->pts_timers[timerid]) == NULL) {
               itimer_unlock();
               return EINVAL;
       }
       pt = container_of(it, struct ptimer, pt_itimer);
       *retval = pt->pt_poverruns;
       if (*retval >= DELAYTIMER_MAX)
               *retval = DELAYTIMER_MAX;
       itimer_unlock();

       return 0;
}

/*
* sys___getitimer50:
*
*      System call to get the time remaining before a BSD timer fires.
*/
int
sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(int) which;
               syscallarg(struct itimerval *) itv;
       } */
       struct proc *p = l->l_proc;
       struct itimerval aitv;
       int error;

       memset(&aitv, 0, sizeof(aitv));
       error = dogetitimer(p, SCARG(uap, which), &aitv);
       if (error)
               return error;
       return copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval));
}

int
dogetitimer(struct proc *p, int which, struct itimerval *itvp)
{
       struct ptimers *pts;
       struct itimer *it;
       struct itimerspec its;

       if ((u_int)which > ITIMER_MONOTONIC)
               return EINVAL;

       itimer_lock();
       pts = p->p_timers;
       if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
               timerclear(&itvp->it_value);
               timerclear(&itvp->it_interval);
       } else {
               itimer_gettime(it, &its);
               TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
               TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
       }
       itimer_unlock();

       return 0;
}

/*
* sys___setitimer50:
*
*      System call to set/arm a BSD timer.
*/
int
sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(int) which;
               syscallarg(const struct itimerval *) itv;
               syscallarg(struct itimerval *) oitv;
       } */
       struct proc *p = l->l_proc;
       int which = SCARG(uap, which);
       struct sys___getitimer50_args getargs;
       const struct itimerval *itvp;
       struct itimerval aitv;
       int error;

       itvp = SCARG(uap, itv);
       if (itvp &&
           (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
               return error;
       if (SCARG(uap, oitv) != NULL) {
               SCARG(&getargs, which) = which;
               SCARG(&getargs, itv) = SCARG(uap, oitv);
               if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
                       return error;
       }
       if (itvp == 0)
               return 0;

       return dosetitimer(p, which, &aitv);
}

int
dosetitimer(struct proc *p, int which, struct itimerval *itvp)
{
       struct timespec now;
       struct ptimers *pts;
       struct ptimer *spare;
       struct itimer *it;
       struct itlist *itl;
       int error;

       if ((u_int)which > ITIMER_MONOTONIC)
               return EINVAL;
       if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
               return EINVAL;

       /*
        * Don't bother allocating data structures if the process just
        * wants to clear the timer.
        */
       spare = NULL;
       pts = p->p_timers;
retry:
       if (!timerisset(&itvp->it_value) && (pts == NULL ||
           pts->pts_timers[which] == NULL))
               return 0;
       if (pts == NULL)
               pts = ptimers_alloc(p);
       itimer_lock();
restart:
       it = pts->pts_timers[which];
       if (it == NULL) {
               struct ptimer *pt;

               if (spare == NULL) {
                       itimer_unlock();
                       spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
                       goto retry;
               }
               pt = spare;
               spare = NULL;

               it = &pt->pt_itimer;
               pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
               pt->pt_ev.sigev_value.sival_int = which;

               switch (which) {
               case ITIMER_REAL:
               case ITIMER_MONOTONIC:
                       itl = NULL;
                       pt->pt_ev.sigev_signo = SIGALRM;
                       break;
               case ITIMER_VIRTUAL:
                       itl = &pts->pts_virtual;
                       pt->pt_ev.sigev_signo = SIGVTALRM;
                       break;
               case ITIMER_PROF:
                       itl = &pts->pts_prof;
                       pt->pt_ev.sigev_signo = SIGPROF;
                       break;
               default:
                       panic("%s: can't happen %d", __func__, which);
               }
               itimer_init(it, &ptimer_itimer_ops, which, itl);
               pt->pt_proc = p;
               pt->pt_entry = which;

               pts->pts_timers[which] = it;
       }

       TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
       TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);

       error = 0;
       if (timespecisset(&it->it_time.it_value)) {
               /* Convert to absolute time */
               /* XXX need to wrap in splclock for timecounters case? */
               switch (which) {
               case ITIMER_REAL:
                       getnanotime(&now);
                       if (!timespecaddok(&it->it_time.it_value, &now)) {
                               error = EINVAL;
                               goto out;
                       }
                       timespecadd(&it->it_time.it_value, &now,
                           &it->it_time.it_value);
                       break;
               case ITIMER_MONOTONIC:
                       getnanouptime(&now);
                       if (!timespecaddok(&it->it_time.it_value, &now)) {
                               error = EINVAL;
                               goto out;
                       }
                       timespecadd(&it->it_time.it_value, &now,
                           &it->it_time.it_value);
                       break;
               default:
                       break;
               }
       }

       error = itimer_settime(it);
       if (error == ERESTART) {
               KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
               goto restart;
       }
       KASSERT(error == 0);
out:
       itimer_unlock();
       if (spare != NULL)
               kmem_free(spare, sizeof(*spare));

       return error;
}

/*
* ptimer_tick:
*
*      Called from hardclock() to decrement per-process virtual timers.
*/
void
ptimer_tick(lwp_t *l, bool user)
{
       struct ptimers *pts;
       struct itimer *it;
       proc_t *p;

       p = l->l_proc;
       if (p->p_timers == NULL)
               return;

       itimer_lock();
       if ((pts = l->l_proc->p_timers) != NULL) {
               /*
                * Run current process's virtual and profile time, as needed.
                */
               if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
                       if (itimer_decr(it, tick * 1000))
                               (*it->it_ops->ito_fire)(it);
               if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
                       if (itimer_decr(it, tick * 1000))
                               (*it->it_ops->ito_fire)(it);
       }
       itimer_unlock();
}

/*
* ptimer_intr:
*
*      Software interrupt handler for processing per-process
*      timer expiration.
*/
static void
ptimer_intr(void *cookie)
{
       ksiginfo_t ksi;
       struct itimer *it;
       struct ptimer *pt;
       proc_t *p;

       mutex_enter(&proc_lock);
       itimer_lock();
       while ((pt = TAILQ_FIRST(&ptimer_queue)) != NULL) {
               it = &pt->pt_itimer;

               TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
               KASSERT(pt->pt_queued);
               pt->pt_queued = false;

               p = pt->pt_proc;
               if (p->p_timers == NULL) {
                       /* Process is dying. */
                       continue;
               }
               if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
                       continue;
               }
               if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
                       it->it_overruns++;
                       continue;
               }

               KSI_INIT(&ksi);
               ksi.ksi_signo = pt->pt_ev.sigev_signo;
               ksi.ksi_code = SI_TIMER;
               ksi.ksi_value = pt->pt_ev.sigev_value;
               pt->pt_poverruns = it->it_overruns;
               it->it_overruns = 0;
               itimer_unlock();
               kpsignal(p, &ksi, NULL);
               itimer_lock();
       }
       itimer_unlock();
       mutex_exit(&proc_lock);
}