/*      $NetBSD: kern_softint.c,v 1.76 2024/03/01 04:32:38 mrg Exp $    */

/*-
* Copyright (c) 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Generic software interrupt framework.
*
* Overview
*
*      The soft interrupt framework provides a mechanism to schedule a
*      low priority callback that runs with thread context.  It allows
*      for dynamic registration of software interrupts, and for fair
*      queueing and prioritization of those interrupts.  The callbacks
*      can be scheduled to run from nearly any point in the kernel: by
*      code running with thread context, by code running from a
*      hardware interrupt handler, and at any interrupt priority
*      level.
*
* Priority levels
*
*      Since soft interrupt dispatch can be tied to the underlying
*      architecture's interrupt dispatch code, it can be limited
*      both by the capabilities of the hardware and the capabilities
*      of the interrupt dispatch code itself.  The number of priority
*      levels is restricted to four.  In order of priority (lowest to
*      highest) the levels are: clock, bio, net, serial.
*
*      The names are symbolic and in isolation do not have any direct
*      connection with a particular kind of device activity: they are
*      only meant as a guide.
*
*      The four priority levels map directly to scheduler priority
*      levels, and where the architecture implements 'fast' software
*      interrupts, they also map onto interrupt priorities.  The
*      interrupt priorities are intended to be hidden from machine
*      independent code, which should use thread-safe mechanisms to
*      synchronize with software interrupts (for example: mutexes).
*
* Capabilities
*
*      Software interrupts run with limited machine context.  In
*      particular, they do not posess any address space context.  They
*      should not try to operate on user space addresses, or to use
*      virtual memory facilities other than those noted as interrupt
*      safe.
*
*      Unlike hardware interrupts, software interrupts do have thread
*      context.  They may block on synchronization objects, sleep, and
*      resume execution at a later time.
*
*      Since software interrupts are a limited resource and run with
*      higher priority than most other LWPs in the system, all
*      block-and-resume activity by a software interrupt must be kept
*      short to allow further processing at that level to continue.  By
*      extension, code running with process context must take care to
*      ensure that any lock that may be taken from a software interrupt
*      can not be held for more than a short period of time.
*
*      The kernel does not allow software interrupts to use facilities
*      or perform actions that may block for a significant amount of
*      time.  This means that it's not valid for a software interrupt
*      to sleep on condition variables or wait for resources to become
*      available (for example, memory).
*
* Per-CPU operation
*
*      If a soft interrupt is triggered on a CPU, it can only be
*      dispatched on the same CPU.  Each LWP dedicated to handling a
*      soft interrupt is bound to its home CPU, so if the LWP blocks
*      and needs to run again, it can only run there.  Nearly all data
*      structures used to manage software interrupts are per-CPU.
*
*      The per-CPU requirement is intended to reduce "ping-pong" of
*      cache lines between CPUs: lines occupied by data structures
*      used to manage the soft interrupts, and lines occupied by data
*      items being passed down to the soft interrupt.  As a positive
*      side effect, this also means that the soft interrupt dispatch
*      code does not need to to use spinlocks to synchronize.
*
* Generic implementation
*
*      A generic, low performance implementation is provided that
*      works across all architectures, with no machine-dependent
*      modifications needed.  This implementation uses the scheduler,
*      and so has a number of restrictions:
*
*      1) The software interrupts are not currently preemptive, so
*      must wait for the currently executing LWP to yield the CPU.
*      This can introduce latency.
*
*      2) An expensive context switch is required for a software
*      interrupt to be handled.
*
* 'Fast' software interrupts
*
*      If an architectures defines __HAVE_FAST_SOFTINTS, it implements
*      the fast mechanism.  Threads running either in the kernel or in
*      userspace will be interrupted, but will not be preempted.  When
*      the soft interrupt completes execution, the interrupted LWP
*      is resumed.  Interrupt dispatch code must provide the minimum
*      level of context necessary for the soft interrupt to block and
*      be resumed at a later time.  The machine-dependent dispatch
*      path looks something like the following:
*
*      softintr()
*      {
*              go to IPL_HIGH if necessary for switch;
*              save any necessary registers in a format that can be
*                  restored by cpu_switchto if the softint blocks;
*              arrange for cpu_switchto() to restore into the
*                  trampoline function;
*              identify LWP to handle this interrupt;
*              switch to the LWP's stack;
*              switch register stacks, if necessary;
*              assign new value of curlwp;
*              call MI softint_dispatch, passing old curlwp and IPL
*                  to execute interrupt at;
*              switch back to old stack;
*              switch back to old register stack, if necessary;
*              restore curlwp;
*              return to interrupted LWP;
*      }
*
*      If the soft interrupt blocks, a trampoline function is returned
*      to in the context of the interrupted LWP, as arranged for by
*      softint():
*
*      softint_ret()
*      {
*              unlock soft interrupt LWP;
*              resume interrupt processing, likely returning to
*                  interrupted LWP or dispatching another, different
*                  interrupt;
*      }
*
*      Once the soft interrupt has fired (and even if it has blocked),
*      no further soft interrupts at that level will be triggered by
*      MI code until the soft interrupt handler has ceased execution.
*      If a soft interrupt handler blocks and is resumed, it resumes
*      execution as a normal LWP (kthread) and gains VM context.  Only
*      when it has completed and is ready to fire again will it
*      interrupt other threads.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.76 2024/03/01 04:32:38 mrg Exp $");

#include <sys/param.h>
#include <sys/proc.h>
#include <sys/intr.h>
#include <sys/ipi.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/evcnt.h>
#include <sys/cpu.h>
#include <sys/xcall.h>
#include <sys/psref.h>
#include <sys/sdt.h>

#include <uvm/uvm_extern.h>

/* This could overlap with signal info in struct lwp. */
typedef struct softint {
       SIMPLEQ_HEAD(, softhand) si_q;
       struct lwp              *si_lwp;
       struct cpu_info         *si_cpu;
       uintptr_t               si_machdep;
       struct evcnt            si_evcnt;
       struct evcnt            si_evcnt_block;
       volatile int            si_active;
       int                     si_ipl;
       char                    si_name[8];
       char                    si_name_block[8+6];
} softint_t;

typedef struct softhand {
       SIMPLEQ_ENTRY(softhand) sh_q;
       void                    (*sh_func)(void *);
       void                    *sh_arg;
       softint_t               *sh_isr;
       u_int                   sh_flags;
       u_int                   sh_ipi_id;
} softhand_t;

typedef struct softcpu {
       struct cpu_info         *sc_cpu;
       softint_t               sc_int[SOFTINT_COUNT];
       softhand_t              sc_hand[1];
} softcpu_t;

static void     softint_thread(void *);

u_int           softint_bytes = 32768;
u_int           softint_timing;
static u_int    softint_max;
static kmutex_t softint_lock;

SDT_PROBE_DEFINE4(sdt, kernel, softint, establish,
   "void *"/*sih*/,
   "void (*)(void *)"/*func*/,
   "void *"/*arg*/,
   "unsigned"/*flags*/);

SDT_PROBE_DEFINE1(sdt, kernel, softint, disestablish,
   "void *"/*sih*/);

SDT_PROBE_DEFINE2(sdt, kernel, softint, schedule,
   "void *"/*sih*/,
   "struct cpu_info *"/*ci*/);

SDT_PROBE_DEFINE4(sdt, kernel, softint, entry,
   "void *"/*sih*/,
   "void (*)(void *)"/*func*/,
   "void *"/*arg*/,
   "unsigned"/*flags*/);

SDT_PROBE_DEFINE4(sdt, kernel, softint, return,
   "void *"/*sih*/,
   "void (*)(void *)"/*func*/,
   "void *"/*arg*/,
   "unsigned"/*flags*/);

/*
* softint_init_isr:
*
*      Initialize a single interrupt level for a single CPU.
*/
static void
softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level,
   int ipl)
{
       struct cpu_info *ci;
       softint_t *si;
       int error;

       si = &sc->sc_int[level];
       ci = sc->sc_cpu;
       si->si_cpu = ci;

       SIMPLEQ_INIT(&si->si_q);

       error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
           KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
           "soft%s/%u", desc, ci->ci_index);
       if (error != 0)
               panic("softint_init_isr: error %d", error);

       snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
           ci->ci_index);
       evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
          "softint", si->si_name);
       snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
           desc, ci->ci_index);
       evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
          "softint", si->si_name_block);

       si->si_ipl = ipl;
       si->si_lwp->l_private = si;
       softint_init_md(si->si_lwp, level, &si->si_machdep);
}

/*
* softint_init:
*
*      Initialize per-CPU data structures.  Called from mi_cpu_attach().
*/
void
softint_init(struct cpu_info *ci)
{
       static struct cpu_info *first;
       softcpu_t *sc, *scfirst;
       softhand_t *sh, *shmax;

       if (first == NULL) {
               /* Boot CPU. */
               first = ci;
               mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
               softint_bytes = round_page(softint_bytes);
               softint_max = (softint_bytes - sizeof(softcpu_t)) /
                   sizeof(softhand_t);
       }

       /* Use uvm_km(9) for persistent, page-aligned allocation. */
       sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
           UVM_KMF_WIRED | UVM_KMF_ZERO);
       if (sc == NULL)
               panic("softint_init_cpu: cannot allocate memory");

       ci->ci_data.cpu_softcpu = sc;
       ci->ci_data.cpu_softints = 0;
       sc->sc_cpu = ci;

       softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET,
           IPL_SOFTNET);
       softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO,
           IPL_SOFTBIO);
       softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK,
           IPL_SOFTCLOCK);
       softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL,
           IPL_SOFTSERIAL);

       if (first != ci) {
               mutex_enter(&softint_lock);
               scfirst = first->ci_data.cpu_softcpu;
               sh = sc->sc_hand;
               memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
               /* Update pointers for this CPU. */
               for (shmax = sh + softint_max; sh < shmax; sh++) {
                       if (sh->sh_func == NULL)
                               continue;
                       sh->sh_isr =
                           &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
               }
               mutex_exit(&softint_lock);
       }
}

/*
* softint_establish:
*
*      Register a software interrupt handler.
*/
void *
softint_establish(u_int flags, void (*func)(void *), void *arg)
{
       CPU_INFO_ITERATOR cii;
       struct cpu_info *ci;
       softcpu_t *sc;
       softhand_t *sh;
       u_int level, index;
       u_int ipi_id = 0;
       void *sih;

       level = (flags & SOFTINT_LVLMASK);
       KASSERT(level < SOFTINT_COUNT);
       KASSERT((flags & SOFTINT_IMPMASK) == 0);

       mutex_enter(&softint_lock);

       /* Find a free slot. */
       sc = curcpu()->ci_data.cpu_softcpu;
       for (index = 1; index < softint_max; index++) {
               if (sc->sc_hand[index].sh_func == NULL)
                       break;
       }
       if (index == softint_max) {
               mutex_exit(&softint_lock);
               printf("WARNING: softint_establish: table full, "
                   "increase softint_bytes\n");
               return NULL;
       }
       sih = (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);

       if (flags & SOFTINT_RCPU) {
               if ((ipi_id = ipi_register(softint_schedule, sih)) == 0) {
                       mutex_exit(&softint_lock);
                       return NULL;
               }
       }

       /* Set up the handler on each CPU. */
       if (ncpu < 2) {
               /* XXX hack for machines with no CPU_INFO_FOREACH() early on */
               sc = curcpu()->ci_data.cpu_softcpu;
               sh = &sc->sc_hand[index];
               sh->sh_isr = &sc->sc_int[level];
               sh->sh_func = func;
               sh->sh_arg = arg;
               sh->sh_flags = flags;
               sh->sh_ipi_id = ipi_id;
       } else for (CPU_INFO_FOREACH(cii, ci)) {
               sc = ci->ci_data.cpu_softcpu;
               sh = &sc->sc_hand[index];
               sh->sh_isr = &sc->sc_int[level];
               sh->sh_func = func;
               sh->sh_arg = arg;
               sh->sh_flags = flags;
               sh->sh_ipi_id = ipi_id;
       }
       mutex_exit(&softint_lock);

       SDT_PROBE4(sdt, kernel, softint, establish,  sih, func, arg, flags);

       return sih;
}

/*
* softint_disestablish:
*
*      Unregister a software interrupt handler.  The soft interrupt could
*      still be active at this point, but the caller commits not to try
*      and trigger it again once this call is made.  The caller must not
*      hold any locks that could be taken from soft interrupt context,
*      because we will wait for the softint to complete if it's still
*      running.
*/
void
softint_disestablish(void *arg)
{
       CPU_INFO_ITERATOR cii;
       struct cpu_info *ci;
       softcpu_t *sc;
       softhand_t *sh;
       uintptr_t offset;

       offset = (uintptr_t)arg;
       KASSERT(offset != 0);
       KASSERTMSG(offset < softint_bytes, "%"PRIuPTR" %u",
           offset, softint_bytes);

       /*
        * Unregister IPI handler if there is any.  Note: there is no need
        * to disable preemption here - ID is stable.
        */
       sc = curcpu()->ci_data.cpu_softcpu;
       sh = (softhand_t *)((uint8_t *)sc + offset);
       if (sh->sh_ipi_id) {
               ipi_unregister(sh->sh_ipi_id);
       }

       /*
        * Run a dummy softint at the same level on all CPUs and wait for
        * completion, to make sure this softint is no longer running
        * anywhere.
        */
       xc_barrier(XC_HIGHPRI_IPL(sh->sh_isr->si_ipl));

       /*
        * Notify dtrace probe when the old softint can't be running
        * any more, but before it can be recycled for a new softint.
        */
       SDT_PROBE1(sdt, kernel, softint, disestablish,  arg);

       /* Clear the handler on each CPU. */
       mutex_enter(&softint_lock);
       for (CPU_INFO_FOREACH(cii, ci)) {
               sc = ci->ci_data.cpu_softcpu;
               sh = (softhand_t *)((uint8_t *)sc + offset);
               KASSERT(sh->sh_func != NULL);
               sh->sh_func = NULL;
       }
       mutex_exit(&softint_lock);
}

/*
* softint_schedule:
*
*      Trigger a software interrupt.  Must be called from a hardware
*      interrupt handler, or with preemption disabled (since we are
*      using the value of curcpu()).
*/
void
softint_schedule(void *arg)
{
       softhand_t *sh;
       softint_t *si;
       uintptr_t offset;
       int s;

       SDT_PROBE2(sdt, kernel, softint, schedule,  arg, /*ci*/NULL);

       /*
        * If this assert fires, rather than disabling preemption explicitly
        * to make it stop, consider that you are probably using a softint
        * when you don't need to.
        */
       KASSERT(kpreempt_disabled());

       /* Find the handler record for this CPU. */
       offset = (uintptr_t)arg;
       KASSERT(offset != 0);
       KASSERTMSG(offset < softint_bytes, "%"PRIuPTR" %u",
           offset, softint_bytes);
       sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);

       /* If it's already pending there's nothing to do. */
       if ((sh->sh_flags & SOFTINT_PENDING) != 0) {
               return;
       }

       /*
        * Enqueue the handler into the LWP's pending list.
        * If the LWP is completely idle, then make it run.
        */
       s = splhigh();
       if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
               si = sh->sh_isr;
               sh->sh_flags |= SOFTINT_PENDING;
               SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
               if (si->si_active == 0) {
                       si->si_active = 1;
                       softint_trigger(si->si_machdep);
               }
       }
       splx(s);
}

/*
* softint_schedule_cpu:
*
*      Trigger a software interrupt on a target CPU.  This invokes
*      softint_schedule() for the local CPU or send an IPI to invoke
*      this routine on the remote CPU.  Preemption must be disabled.
*/
void
softint_schedule_cpu(void *arg, struct cpu_info *ci)
{
       KASSERT(kpreempt_disabled());

       if (curcpu() != ci) {
               const softcpu_t *sc = ci->ci_data.cpu_softcpu;
               const uintptr_t offset = (uintptr_t)arg;
               const softhand_t *sh;

               SDT_PROBE2(sdt, kernel, softint, schedule,  arg, ci);
               sh = (const softhand_t *)((const uint8_t *)sc + offset);
               KASSERT((sh->sh_flags & SOFTINT_RCPU) != 0);
               ipi_trigger(sh->sh_ipi_id, ci);
               return;
       }

       /* Just a local CPU. */
       softint_schedule(arg);
}

/*
* softint_execute:
*
*      Invoke handlers for the specified soft interrupt.
*      Must be entered at splhigh.  Will drop the priority
*      to the level specified, but returns back at splhigh.
*/
static inline void
softint_execute(lwp_t *l, int s)
{
       softint_t *si = l->l_private;
       softhand_t *sh;

       KASSERT(si->si_lwp == curlwp);
       KASSERT(si->si_cpu == curcpu());
       KASSERT(si->si_lwp->l_wchan == NULL);
       KASSERT(si->si_active);
       KASSERTMSG(l->l_nopreempt == 0, "lwp %p nopreempt %d",
           l, l->l_nopreempt);

       /*
        * Note: due to priority inheritance we may have interrupted a
        * higher priority LWP.  Since the soft interrupt must be quick
        * and is non-preemptable, we don't bother yielding.
        */

       while (!SIMPLEQ_EMPTY(&si->si_q)) {
               /*
                * Pick the longest waiting handler to run.  We block
                * interrupts but do not lock in order to do this, as
                * we are protecting against the local CPU only.
                */
               sh = SIMPLEQ_FIRST(&si->si_q);
               SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
               KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
               sh->sh_flags ^= SOFTINT_PENDING;
               splx(s);

               /* Run the handler. */
               SDT_PROBE4(sdt, kernel, softint, entry,
                   ((const char *)sh -
                       (const char *)curcpu()->ci_data.cpu_softcpu),
                   sh->sh_func, sh->sh_arg, sh->sh_flags);
               if (__predict_true((sh->sh_flags & SOFTINT_MPSAFE) != 0)) {
                       (*sh->sh_func)(sh->sh_arg);
               } else {
                       KERNEL_LOCK(1, l);
                       (*sh->sh_func)(sh->sh_arg);
                       KERNEL_UNLOCK_ONE(l);
               }
               SDT_PROBE4(sdt, kernel, softint, return,
                   ((const char *)sh -
                       (const char *)curcpu()->ci_data.cpu_softcpu),
                   sh->sh_func, sh->sh_arg, sh->sh_flags);

               /* Diagnostic: check that spin-locks have not leaked. */
               KASSERTMSG(curcpu()->ci_mtx_count == 0,
                   "%s: ci_mtx_count (%d) != 0, sh_func %p\n",
                   __func__, curcpu()->ci_mtx_count, sh->sh_func);
               /* Diagnostic: check that psrefs have not leaked. */
               KASSERTMSG(l->l_psrefs == 0, "%s: l_psrefs=%d, sh_func=%p\n",
                   __func__, l->l_psrefs, sh->sh_func);
               /* Diagnostic: check that biglocks have not leaked. */
               KASSERTMSG(l->l_blcnt == 0,
                   "%s: sh_func=%p leaked %d biglocks",
                   __func__, sh->sh_func, curlwp->l_blcnt);
               /* Diagnostic: check that LWP nopreempt remains zero. */
               KASSERTMSG(l->l_nopreempt == 0,
                   "%s: lwp %p nopreempt %d func %p",
                   __func__, l, l->l_nopreempt, sh->sh_func);

               (void)splhigh();
       }

       PSREF_DEBUG_BARRIER();

       CPU_COUNT(CPU_COUNT_NSOFT, 1);

       KASSERT(si->si_cpu == curcpu());
       KASSERT(si->si_lwp->l_wchan == NULL);
       KASSERT(si->si_active);
       si->si_evcnt.ev_count++;
       si->si_active = 0;
}

/*
* softint_block:
*
*      Update statistics when the soft interrupt blocks.
*/
void
softint_block(lwp_t *l)
{
       softint_t *si = l->l_private;

       KASSERT((l->l_pflag & LP_INTR) != 0);
       si->si_evcnt_block.ev_count++;
}

#ifndef __HAVE_FAST_SOFTINTS

#ifdef __HAVE_PREEMPTION
#error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
#endif

/*
* softint_init_md:
*
*      Slow path: perform machine-dependent initialization.
*/
void
softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
{
       struct proc *p;
       softint_t *si;

       *machdep = (1 << level);
       si = l->l_private;
       p = l->l_proc;

       mutex_enter(p->p_lock);
       lwp_lock(l);
       /* Cheat and make the KASSERT in softint_thread() happy. */
       si->si_active = 1;
       setrunnable(l);
       /* LWP now unlocked */
       mutex_exit(p->p_lock);
}

/*
* softint_trigger:
*
*      Slow path: cause a soft interrupt handler to begin executing.
*      Called at IPL_HIGH.
*/
void
softint_trigger(uintptr_t machdep)
{
       struct cpu_info *ci;
       lwp_t *l;

       ci = curcpu();
       ci->ci_data.cpu_softints |= machdep;
       l = ci->ci_onproc;

       /*
        * Arrange for mi_switch() to be called.  If called from interrupt
        * mode, we don't know if curlwp is executing in kernel or user, so
        * post an AST and have it take a trip through userret().  If not in
        * interrupt mode, curlwp is running in kernel and will notice the
        * resched soon enough; avoid the AST.
        */
       if (l == ci->ci_data.cpu_idlelwp) {
               atomic_or_uint(&ci->ci_want_resched,
                   RESCHED_IDLE | RESCHED_UPREEMPT);
       } else {
               atomic_or_uint(&ci->ci_want_resched, RESCHED_UPREEMPT);
               if (cpu_intr_p()) {
                       cpu_signotify(l);
               }
       }
}

/*
* softint_thread:
*
*      Slow path: MI software interrupt dispatch.
*/
void
softint_thread(void *cookie)
{
       softint_t *si;
       lwp_t *l;
       int s;

       l = curlwp;
       si = l->l_private;

       for (;;) {
               /* Clear pending status and run it. */
               s = splhigh();
               l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
               softint_execute(l, s);
               splx(s);

               /* Interrupts allowed to run again before switching. */
               lwp_lock(l);
               l->l_stat = LSIDL;
               spc_lock(l->l_cpu);
               mi_switch(l);
       }
}

/*
* softint_picklwp:
*
*      Slow path: called from mi_switch() to pick the highest priority
*      soft interrupt LWP that needs to run.
*/
lwp_t *
softint_picklwp(void)
{
       struct cpu_info *ci;
       u_int mask;
       softint_t *si;
       lwp_t *l;

       ci = curcpu();
       si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
       mask = ci->ci_data.cpu_softints;

       if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
               l = si[SOFTINT_SERIAL].si_lwp;
       } else if ((mask & (1 << SOFTINT_NET)) != 0) {
               l = si[SOFTINT_NET].si_lwp;
       } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
               l = si[SOFTINT_BIO].si_lwp;
       } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
               l = si[SOFTINT_CLOCK].si_lwp;
       } else {
               panic("softint_picklwp");
       }

       return l;
}

#else   /*  !__HAVE_FAST_SOFTINTS */

/*
* softint_thread:
*
*      Fast path: the LWP is switched to without restoring any state,
*      so we should not arrive here - there is a direct handoff between
*      the interrupt stub and softint_dispatch().
*/
void
softint_thread(void *cookie)
{

       panic("softint_thread");
}

/*
* softint_dispatch:
*
*      Fast path: entry point from machine-dependent code.
*/
void
softint_dispatch(lwp_t *pinned, int s)
{
       struct bintime now;
       u_int timing;
       lwp_t *l;

#ifdef DIAGNOSTIC
       if ((pinned->l_pflag & LP_RUNNING) == 0 || curlwp->l_stat != LSIDL) {
               struct lwp *onproc = curcpu()->ci_onproc;
               int s2 = splhigh();
               printf("curcpu=%d, spl=%d curspl=%d\n"
                       "onproc=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
                       "curlwp=%p => l_stat=%d l_flag=%08x l_cpu=%d\n"
                       "pinned=%p => l_stat=%d l_flag=%08x l_cpu=%d\n",
                       cpu_index(curcpu()), s, s2, onproc, onproc->l_stat,
                       onproc->l_flag, cpu_index(onproc->l_cpu), curlwp,
                       curlwp->l_stat, curlwp->l_flag,
                       cpu_index(curlwp->l_cpu), pinned, pinned->l_stat,
                       pinned->l_flag, cpu_index(pinned->l_cpu));
               splx(s2);
               panic("softint screwup");
       }
#endif

       /*
        * Note the interrupted LWP, and mark the current LWP as running
        * before proceeding.  Although this must as a rule be done with
        * the LWP locked, at this point no external agents will want to
        * modify the interrupt LWP's state.
        */
       timing = softint_timing;
       l = curlwp;
       l->l_switchto = pinned;
       l->l_stat = LSONPROC;

       /*
        * Dispatch the interrupt.  If softints are being timed, charge
        * for it.
        */
       if (timing) {
               binuptime(&l->l_stime);
               membar_producer();      /* for calcru */
               l->l_pflag |= LP_TIMEINTR;
       }
       l->l_pflag |= LP_RUNNING;
       softint_execute(l, s);
       if (timing) {
               binuptime(&now);
               updatertime(l, &now);
               l->l_pflag &= ~LP_TIMEINTR;
       }

       /*
        * If we blocked while handling the interrupt, the pinned LWP is
        * gone and we are now running as a kthread, so find another LWP to
        * run.  softint_dispatch() won't be reentered until the priority is
        * finally dropped to IPL_NONE on entry to the next LWP on this CPU.
        */
       l->l_stat = LSIDL;
       if (l->l_switchto == NULL) {
               lwp_lock(l);
               spc_lock(l->l_cpu);
               mi_switch(l);
               /* NOTREACHED */
       }
       l->l_switchto = NULL;
       l->l_pflag &= ~LP_RUNNING;
}

#endif  /* !__HAVE_FAST_SOFTINTS */