/*      $NetBSD: kern_sleepq.c,v 1.87 2023/11/02 10:31:55 martin Exp $  */

/*-
* Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020, 2023
*     The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Sleep queue implementation, used by turnstiles and general sleep/wakeup
* interfaces.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.87 2023/11/02 10:31:55 martin Exp $");

#include <sys/param.h>

#include <sys/cpu.h>
#include <sys/intr.h>
#include <sys/kernel.h>
#include <sys/ktrace.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/sleepq.h>
#include <sys/syncobj.h>
#include <sys/systm.h>

/*
* for sleepq_abort:
* During autoconfiguration or after a panic, a sleep will simply lower the
* priority briefly to allow interrupts, then return.  The priority to be
* used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
* maintained in the machine-dependent layers.  This priority will typically
* be 0, or the lowest priority that is safe for use on the interrupt stack;
* it can be made higher to block network software interrupts after panics.
*/
#ifndef IPL_SAFEPRI
#define IPL_SAFEPRI     0
#endif

static int      sleepq_sigtoerror(lwp_t *, int);

/* General purpose sleep table, used by mtsleep() and condition variables. */
sleeptab_t      sleeptab __cacheline_aligned;
sleepqlock_t    sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;

/*
* sleeptab_init:
*
*      Initialize a sleep table.
*/
void
sleeptab_init(sleeptab_t *st)
{
       static bool again;
       int i;

       for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
               if (!again) {
                       mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
                           IPL_SCHED);
               }
               sleepq_init(&st->st_queue[i]);
       }
       again = true;
}

/*
* sleepq_init:
*
*      Prepare a sleep queue for use.
*/
void
sleepq_init(sleepq_t *sq)
{

       LIST_INIT(sq);
}

/*
* sleepq_remove:
*
*      Remove an LWP from a sleep queue and wake it up.  Distinguish
*      between deliberate wakeups (which are a valuable information) and
*      "unsleep" (an out-of-band action must be taken).
*
*      For wakeup, convert any interruptable wait into non-interruptable
*      one before waking the LWP.  Otherwise, if only one LWP is awoken it
*      could fail to do something useful with the wakeup due to an error
*      return and the caller of e.g. cv_signal() may not expect this.
*/
void
sleepq_remove(sleepq_t *sq, lwp_t *l, bool wakeup)
{
       struct schedstate_percpu *spc;
       struct cpu_info *ci;

       KASSERT(lwp_locked(l, NULL));

       if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
               KASSERT(sq != NULL);
               LIST_REMOVE(l, l_sleepchain);
       } else {
               KASSERT(sq == NULL);
       }

       l->l_syncobj = &sched_syncobj;
       l->l_wchan = NULL;
       l->l_sleepq = NULL;
       l->l_flag &= wakeup ? ~(LW_SINTR|LW_CATCHINTR|LW_STIMO) : ~LW_SINTR;

       ci = l->l_cpu;
       spc = &ci->ci_schedstate;

       /*
        * If not sleeping, the LWP must have been suspended.  Let whoever
        * holds it stopped set it running again.
        */
       if (l->l_stat != LSSLEEP) {
               KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
               lwp_setlock(l, spc->spc_lwplock);
               return;
       }

       /*
        * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
        * about to call mi_switch(), in which case it will yield.
        */
       if ((l->l_pflag & LP_RUNNING) != 0) {
               l->l_stat = LSONPROC;
               l->l_slptime = 0;
               lwp_setlock(l, spc->spc_lwplock);
               return;
       }

       /* Update sleep time delta, call the wake-up handler of scheduler */
       l->l_slpticksum += (getticks() - l->l_slpticks);
       sched_wakeup(l);

       /* Look for a CPU to wake up */
       l->l_cpu = sched_takecpu(l);
       ci = l->l_cpu;
       spc = &ci->ci_schedstate;

       /*
        * Set it running.
        */
       spc_lock(ci);
       lwp_setlock(l, spc->spc_mutex);
       sched_setrunnable(l);
       l->l_stat = LSRUN;
       l->l_slptime = 0;
       sched_enqueue(l);
       sched_resched_lwp(l, true);
       /* LWP & SPC now unlocked, but we still hold sleep queue lock. */
}

/*
* sleepq_insert:
*
*      Insert an LWP into the sleep queue, optionally sorting by priority.
*/
static void
sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
{

       if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
               KASSERT(sq == NULL);
               return;
       }
       KASSERT(sq != NULL);

       if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
               lwp_t *l2, *l_last = NULL;
               const pri_t pri = lwp_eprio(l);

               LIST_FOREACH(l2, sq, l_sleepchain) {
                       l_last = l2;
                       if (lwp_eprio(l2) < pri) {
                               LIST_INSERT_BEFORE(l2, l, l_sleepchain);
                               return;
                       }
               }
               /*
                * Ensure FIFO ordering if no waiters are of lower priority.
                */
               if (l_last != NULL) {
                       LIST_INSERT_AFTER(l_last, l, l_sleepchain);
                       return;
               }
       }

       LIST_INSERT_HEAD(sq, l, l_sleepchain);
}

/*
* sleepq_enter:
*
*      Prepare to block on a sleep queue, after which any interlock can be
*      safely released.
*/
int
sleepq_enter(sleepq_t *sq, lwp_t *l, kmutex_t *mp)
{
       int nlocks;

       KASSERT((sq != NULL) == (mp != NULL));

       /*
        * Acquire the per-LWP mutex and lend it our sleep queue lock.
        * Once interlocked, we can release the kernel lock.
        */
       lwp_lock(l);
       if (mp != NULL) {
               lwp_unlock_to(l, mp);
       }
       if (__predict_false((nlocks = l->l_blcnt) != 0)) {
               KERNEL_UNLOCK_ALL(NULL, NULL);
       }
       return nlocks;
}

/*
* sleepq_enqueue:
*
*      Enter an LWP into the sleep queue and prepare for sleep.  The sleep
*      queue must already be locked, and any interlock (such as the kernel
*      lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
*/
void
sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj,
   bool catch_p)
{
       lwp_t *l = curlwp;

       KASSERT(lwp_locked(l, NULL));
       KASSERT(l->l_stat == LSONPROC);
       KASSERT(l->l_wchan == NULL);
       KASSERT(l->l_sleepq == NULL);
       KASSERT((l->l_flag & LW_SINTR) == 0);

       l->l_syncobj = sobj;
       l->l_wchan = wchan;
       l->l_sleepq = sq;
       l->l_wmesg = wmesg;
       l->l_slptime = 0;
       l->l_stat = LSSLEEP;
       if (catch_p)
               l->l_flag |= LW_SINTR;

       sleepq_insert(sq, l, sobj);

       /* Save the time when thread has slept */
       l->l_slpticks = getticks();
       sched_slept(l);
}

/*
* sleepq_transfer:
*
*      Move an LWP from one sleep queue to another.  Both sleep queues
*      must already be locked.
*
*      The LWP will be updated with the new sleepq, wchan, wmesg,
*      sobj, and mutex.  The interruptible flag will also be updated.
*/
void
sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan,
   const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p)
{

       KASSERT(l->l_sleepq == from_sq);

       LIST_REMOVE(l, l_sleepchain);
       l->l_syncobj = sobj;
       l->l_wchan = wchan;
       l->l_sleepq = sq;
       l->l_wmesg = wmesg;

       if (catch_p)
               l->l_flag = LW_SINTR | LW_CATCHINTR;
       else
               l->l_flag = ~(LW_SINTR | LW_CATCHINTR);

       /*
        * This allows the transfer from one sleepq to another where
        * it is known that they're both protected by the same lock.
        */
       if (mp != NULL)
               lwp_setlock(l, mp);

       sleepq_insert(sq, l, sobj);
}

/*
* sleepq_uncatch:
*
*      Mark the LWP as no longer sleeping interruptibly.
*/
void
sleepq_uncatch(lwp_t *l)
{

       l->l_flag &= ~(LW_SINTR | LW_CATCHINTR | LW_STIMO);
}

/*
* sleepq_block:
*
*      After any intermediate step such as releasing an interlock, switch.
*      sleepq_block() may return early under exceptional conditions, for
*      example if the LWP's containing process is exiting.
*
*      timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
*/
int
sleepq_block(int timo, bool catch_p, syncobj_t *syncobj, int nlocks)
{
       const int mask = LW_CANCELLED|LW_WEXIT|LW_WCORE|LW_PENDSIG;
       int error = 0, sig, flag;
       struct proc *p;
       lwp_t *l = curlwp;
       bool early = false;

       ktrcsw(1, 0, syncobj);

       /*
        * If sleeping interruptably, check for pending signals, exits or
        * core dump events.
        *
        * Note the usage of LW_CATCHINTR.  This expresses our intent
        * to catch or not catch sleep interruptions, which might change
        * while we are sleeping.  It is independent from LW_SINTR because
        * we don't want to leave LW_SINTR set when the LWP is not asleep.
        */
       if (catch_p) {
               if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
                       l->l_flag &= ~LW_CANCELLED;
                       error = EINTR;
                       early = true;
               } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
                       early = true;
               l->l_flag |= LW_CATCHINTR;
       } else
               l->l_flag &= ~LW_CATCHINTR;

       if (early) {
               /* lwp_unsleep() will release the lock */
               lwp_unsleep(l, true);
       } else {
               /*
                * The LWP may have already been awoken if the caller
                * dropped the sleep queue lock between sleepq_enqueue() and
                * sleepq_block().  If that happens l_stat will be LSONPROC
                * and mi_switch() will treat this as a preemption.  No need
                * to do anything special here.
                */
               if (timo) {
                       l->l_flag &= ~LW_STIMO;
                       callout_schedule(&l->l_timeout_ch, timo);
               }
               l->l_boostpri = l->l_syncobj->sobj_boostpri;
               spc_lock(l->l_cpu);
               mi_switch(l);

               /* The LWP and sleep queue are now unlocked. */
               if (timo) {
                       /*
                        * Even if the callout appears to have fired, we
                        * need to stop it in order to synchronise with
                        * other CPUs.  It's important that we do this in
                        * this LWP's context, and not during wakeup, in
                        * order to keep the callout & its cache lines
                        * co-located on the CPU with the LWP.
                        */
                       (void)callout_halt(&l->l_timeout_ch, NULL);
                       error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0;
               }
       }

       /*
        * LW_CATCHINTR is only modified in this function OR when we
        * are asleep (with the sleepq locked).  We can therefore safely
        * test it unlocked here as it is guaranteed to be stable by
        * virtue of us running.
        *
        * We do not bother clearing it if set; that would require us
        * to take the LWP lock, and it doesn't seem worth the hassle
        * considering it is only meaningful here inside this function,
        * and is set to reflect intent upon entry.
        */
       flag = atomic_load_relaxed(&l->l_flag);
       if (__predict_false((flag & mask) != 0)) {
               if ((flag & LW_CATCHINTR) == 0 || error != 0)
                       /* nothing */;
               else if ((flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
                       error = EINTR;
               else if ((flag & LW_PENDSIG) != 0) {
                       /*
                        * Acquiring p_lock may cause us to recurse
                        * through the sleep path and back into this
                        * routine, but is safe because LWPs sleeping
                        * on locks are non-interruptable and we will
                        * not recurse again.
                        */
                       p = l->l_proc;
                       mutex_enter(p->p_lock);
                       if (((sig = sigispending(l, 0)) != 0 &&
                           (sigprop[sig] & SA_STOP) == 0) ||
                           (sig = issignal(l)) != 0)
                               error = sleepq_sigtoerror(l, sig);
                       mutex_exit(p->p_lock);
               }
       }

       ktrcsw(0, 0, syncobj);
       if (__predict_false(nlocks != 0)) {
               KERNEL_LOCK(nlocks, NULL);
       }
       return error;
}

/*
* sleepq_wake:
*
*      Wake zero or more LWPs blocked on a single wait channel.
*/
void
sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
{
       lwp_t *l, *next;

       KASSERT(mutex_owned(mp));

       for (l = LIST_FIRST(sq); l != NULL; l = next) {
               KASSERT(l->l_sleepq == sq);
               KASSERT(l->l_mutex == mp);
               next = LIST_NEXT(l, l_sleepchain);
               if (l->l_wchan != wchan)
                       continue;
               sleepq_remove(sq, l, true);
               if (--expected == 0)
                       break;
       }

       mutex_spin_exit(mp);
}

/*
* sleepq_unsleep:
*
*      Remove an LWP from its sleep queue and set it runnable again.
*      sleepq_unsleep() is called with the LWP's mutex held, and will
*      release it if "unlock" is true.
*/
void
sleepq_unsleep(lwp_t *l, bool unlock)
{
       sleepq_t *sq = l->l_sleepq;
       kmutex_t *mp = l->l_mutex;

       KASSERT(lwp_locked(l, mp));
       KASSERT(l->l_wchan != NULL);

       sleepq_remove(sq, l, false);
       if (unlock) {
               mutex_spin_exit(mp);
       }
}

/*
* sleepq_timeout:
*
*      Entered via the callout(9) subsystem to time out an LWP that is on a
*      sleep queue.
*/
void
sleepq_timeout(void *arg)
{
       lwp_t *l = arg;

       /*
        * Lock the LWP.  Assuming it's still on the sleep queue, its
        * current mutex will also be the sleep queue mutex.
        */
       lwp_lock(l);

       if (l->l_wchan == NULL || l->l_syncobj == &callout_syncobj) {
               /*
                * Somebody beat us to it, or the LWP is blocked in
                * callout_halt() waiting for us to finish here.  In
                * neither case should the LWP produce EWOULDBLOCK.
                */
               lwp_unlock(l);
               return;
       }

       l->l_flag |= LW_STIMO;
       lwp_unsleep(l, true);
}

/*
* sleepq_sigtoerror:
*
*      Given a signal number, interpret and return an error code.
*/
static int
sleepq_sigtoerror(lwp_t *l, int sig)
{
       struct proc *p = l->l_proc;
       int error;

       KASSERT(mutex_owned(p->p_lock));

       /*
        * If this sleep was canceled, don't let the syscall restart.
        */
       if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
               error = EINTR;
       else
               error = ERESTART;

       return error;
}

/*
* sleepq_abort:
*
*      After a panic or during autoconfiguration, lower the interrupt
*      priority level to give pending interrupts a chance to run, and
*      then return.  Called if sleepq_dontsleep() returns non-zero, and
*      always returns zero.
*/
int
sleepq_abort(kmutex_t *mtx, int unlock)
{
       int s;

       s = splhigh();
       splx(IPL_SAFEPRI);
       splx(s);
       if (mtx != NULL && unlock != 0)
               mutex_exit(mtx);

       return 0;
}

/*
* sleepq_reinsert:
*
*      Move the position of the lwp in the sleep queue after a possible
*      change of the lwp's effective priority.
*/
static void
sleepq_reinsert(sleepq_t *sq, lwp_t *l)
{

       KASSERT(l->l_sleepq == sq);
       if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
               return;
       }

       /*
        * Don't let the sleep queue become empty, even briefly.
        * cv_signal() and cv_broadcast() inspect it without the
        * sleep queue lock held and need to see a non-empty queue
        * head if there are waiters.
        */
       if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
               return;
       }
       LIST_REMOVE(l, l_sleepchain);
       sleepq_insert(sq, l, l->l_syncobj);
}

/*
* sleepq_changepri:
*
*      Adjust the priority of an LWP residing on a sleepq.
*/
void
sleepq_changepri(lwp_t *l, pri_t pri)
{
       sleepq_t *sq = l->l_sleepq;

       KASSERT(lwp_locked(l, NULL));

       l->l_priority = pri;
       sleepq_reinsert(sq, l);
}

/*
* sleepq_changepri:
*
*      Adjust the lended priority of an LWP residing on a sleepq.
*/
void
sleepq_lendpri(lwp_t *l, pri_t pri)
{
       sleepq_t *sq = l->l_sleepq;

       KASSERT(lwp_locked(l, NULL));

       l->l_inheritedprio = pri;
       l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
       sleepq_reinsert(sq, l);
}