/*      $NetBSD: kern_sig.c,v 1.410 2025/03/13 12:48:21 riastradh Exp $ */

/*-
* Copyright (c) 2006, 2007, 2008, 2019, 2023 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 1982, 1986, 1989, 1991, 1993
*      The Regents of the University of California.  All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)kern_sig.c  8.14 (Berkeley) 5/14/95
*/

/*
* Signal subsystem.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.410 2025/03/13 12:48:21 riastradh Exp $");

#include "opt_execfmt.h"
#include "opt_ptrace.h"
#include "opt_dtrace.h"
#include "opt_compat_sunos.h"
#include "opt_compat_netbsd.h"
#include "opt_compat_netbsd32.h"
#include "opt_pax.h"

#define SIGPROP         /* include signal properties table */
#include <sys/param.h>
#include <sys/signalvar.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/systm.h>
#include <sys/wait.h>
#include <sys/ktrace.h>
#include <sys/syslog.h>
#include <sys/filedesc.h>
#include <sys/file.h>
#include <sys/pool.h>
#include <sys/ucontext.h>
#include <sys/exec.h>
#include <sys/kauth.h>
#include <sys/acct.h>
#include <sys/callout.h>
#include <sys/atomic.h>
#include <sys/cpu.h>
#include <sys/module.h>
#include <sys/sdt.h>
#include <sys/exec_elf.h>
#include <sys/compat_stub.h>

#ifdef PAX_SEGVGUARD
#include <sys/pax.h>
#endif /* PAX_SEGVGUARD */

#include <uvm/uvm_extern.h>

/* Many hard-coded assumptions that there are <= 4 x 32bit signal mask bits */
__CTASSERT(NSIG <= 128);

#define SIGQUEUE_MAX    32
static pool_cache_t     sigacts_cache   __read_mostly;
static pool_cache_t     ksiginfo_cache  __read_mostly;
static callout_t        proc_stop_ch    __cacheline_aligned;

sigset_t                contsigmask     __cacheline_aligned;
sigset_t                stopsigmask     __cacheline_aligned;
static sigset_t         vforksigmask    __cacheline_aligned;
sigset_t                sigcantmask     __cacheline_aligned;

static void     proc_stop(struct proc *, int);
static void     proc_stop_done(struct proc *, int);
static void     proc_stop_callout(void *);
static int      sigchecktrace(void);
static int      sigpost(struct lwp *, sig_t, int, int);
static int      sigput(sigpend_t *, struct proc *, ksiginfo_t *);
static int      sigunwait(struct proc *, const ksiginfo_t *);
static void     sigswitch(int, int, bool);
static void     sigswitch_unlock_and_switch_away(struct lwp *);

static void     sigacts_poolpage_free(struct pool *, void *);
static void     *sigacts_poolpage_alloc(struct pool *, int);

/*
* DTrace SDT provider definitions
*/
SDT_PROVIDER_DECLARE(proc);
SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
   "struct lwp *",     /* target thread */
   "struct proc *",    /* target process */
   "int");             /* signal */
SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
   "struct lwp *",     /* target thread */
   "struct proc *",    /* target process */
   "int");             /* signal */
SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
   "int",              /* signal */
   "ksiginfo_t *",     /* signal info */
   "void (*)(void)");  /* handler address */


static struct pool_allocator sigactspool_allocator = {
       .pa_alloc = sigacts_poolpage_alloc,
       .pa_free = sigacts_poolpage_free
};

#ifdef DEBUG
int     kern_logsigexit = 1;
#else
int     kern_logsigexit = 0;
#endif

static const char logcoredump[] =
   "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
static const char lognocoredump[] =
   "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";

static kauth_listener_t signal_listener;

static int
signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
   void *arg0, void *arg1, void *arg2, void *arg3)
{
       struct proc *p;
       int result, signum;

       result = KAUTH_RESULT_DEFER;
       p = arg0;
       signum = (int)(unsigned long)arg1;

       if (action != KAUTH_PROCESS_SIGNAL)
               return result;

       if (kauth_cred_uidmatch(cred, p->p_cred) ||
           (signum == SIGCONT && (curproc->p_session == p->p_session)))
               result = KAUTH_RESULT_ALLOW;

       return result;
}

static int
sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
{
       memset(obj, 0, sizeof(struct sigacts));
       return 0;
}

/*
* signal_init:
*
*      Initialize global signal-related data structures.
*/
void
signal_init(void)
{

       sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;

       sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
           "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
           &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
       ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
           "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);

       callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
       callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);

       signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
           signal_listener_cb, NULL);
}

/*
* sigacts_poolpage_alloc:
*
*      Allocate a page for the sigacts memory pool.
*/
static void *
sigacts_poolpage_alloc(struct pool *pp, int flags)
{

       return (void *)uvm_km_alloc(kernel_map,
           PAGE_SIZE * 2, PAGE_SIZE * 2,
           ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
           | UVM_KMF_WIRED);
}

/*
* sigacts_poolpage_free:
*
*      Free a page on behalf of the sigacts memory pool.
*/
static void
sigacts_poolpage_free(struct pool *pp, void *v)
{

       uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
}

/*
* sigactsinit:
*
*      Create an initial sigacts structure, using the same signal state
*      as of specified process.  If 'share' is set, share the sigacts by
*      holding a reference, otherwise just copy it from parent.
*/
struct sigacts *
sigactsinit(struct proc *pp, int share)
{
       struct sigacts *ps = pp->p_sigacts, *ps2;

       if (__predict_false(share)) {
               atomic_inc_uint(&ps->sa_refcnt);
               return ps;
       }
       ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
       mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
       ps2->sa_refcnt = 1;

       mutex_enter(&ps->sa_mutex);
       memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
       mutex_exit(&ps->sa_mutex);
       return ps2;
}

/*
* sigactsunshare:
*
*      Make this process not share its sigacts, maintaining all signal state.
*/
void
sigactsunshare(struct proc *p)
{
       struct sigacts *ps, *oldps = p->p_sigacts;

       if (__predict_true(oldps->sa_refcnt == 1))
               return;

       ps = pool_cache_get(sigacts_cache, PR_WAITOK);
       mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
       memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
       ps->sa_refcnt = 1;

       p->p_sigacts = ps;
       sigactsfree(oldps);
}

/*
* sigactsfree;
*
*      Release a sigacts structure.
*/
void
sigactsfree(struct sigacts *ps)
{

       membar_release();
       if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
               membar_acquire();
               mutex_destroy(&ps->sa_mutex);
               pool_cache_put(sigacts_cache, ps);
       }
}

/*
* siginit:
*
*      Initialize signal state for process 0; set to ignore signals that
*      are ignored by default and disable the signal stack.  Locking not
*      required as the system is still cold.
*/
void
siginit(struct proc *p)
{
       struct lwp *l;
       struct sigacts *ps;
       int signo, prop;

       ps = p->p_sigacts;
       sigemptyset(&contsigmask);
       sigemptyset(&stopsigmask);
       sigemptyset(&vforksigmask);
       sigemptyset(&sigcantmask);
       for (signo = 1; signo < NSIG; signo++) {
               prop = sigprop[signo];
               if (prop & SA_CONT)
                       sigaddset(&contsigmask, signo);
               if (prop & SA_STOP)
                       sigaddset(&stopsigmask, signo);
               if (prop & SA_STOP && signo != SIGSTOP)
                       sigaddset(&vforksigmask, signo);
               if (prop & SA_CANTMASK)
                       sigaddset(&sigcantmask, signo);
               if (prop & SA_IGNORE && signo != SIGCONT)
                       sigaddset(&p->p_sigctx.ps_sigignore, signo);
               sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
               SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
       }
       sigemptyset(&p->p_sigctx.ps_sigcatch);
       p->p_sflag &= ~PS_NOCLDSTOP;

       ksiginfo_queue_init(&p->p_sigpend.sp_info);
       sigemptyset(&p->p_sigpend.sp_set);

       /*
        * Reset per LWP state.
        */
       l = LIST_FIRST(&p->p_lwps);
       l->l_sigwaited = NULL;
       l->l_sigstk = SS_INIT;
       ksiginfo_queue_init(&l->l_sigpend.sp_info);
       sigemptyset(&l->l_sigpend.sp_set);

       /* One reference. */
       ps->sa_refcnt = 1;
}

/*
* execsigs:
*
*      Reset signals for an exec of the specified process.
*/
void
execsigs(struct proc *p)
{
       struct sigacts *ps;
       struct lwp *l;
       int signo, prop;
       sigset_t tset;
       ksiginfoq_t kq;

       KASSERT(p->p_nlwps == 1);

       sigactsunshare(p);
       ps = p->p_sigacts;

       /*
        * Reset caught signals.  Held signals remain held through
        * l->l_sigmask (unless they were caught, and are now ignored
        * by default).
        *
        * No need to lock yet, the process has only one LWP and
        * at this point the sigacts are private to the process.
        */
       sigemptyset(&tset);
       for (signo = 1; signo < NSIG; signo++) {
               if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
                       prop = sigprop[signo];
                       if (prop & SA_IGNORE) {
                               if ((prop & SA_CONT) == 0)
                                       sigaddset(&p->p_sigctx.ps_sigignore,
                                           signo);
                               sigaddset(&tset, signo);
                       }
                       SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
               }
               sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
               SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
       }
       ksiginfo_queue_init(&kq);

       mutex_enter(p->p_lock);
       sigclearall(p, &tset, &kq);
       sigemptyset(&p->p_sigctx.ps_sigcatch);

       /*
        * Reset no zombies if child dies flag as Solaris does.
        */
       p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
       if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
               SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;

       /*
        * Reset per-LWP state.
        */
       l = LIST_FIRST(&p->p_lwps);
       l->l_sigwaited = NULL;
       l->l_sigstk = SS_INIT;
       ksiginfo_queue_init(&l->l_sigpend.sp_info);
       sigemptyset(&l->l_sigpend.sp_set);
       mutex_exit(p->p_lock);

       ksiginfo_queue_drain(&kq);
}

/*
* ksiginfo_alloc:
*
*      Allocate a new ksiginfo structure from the pool, and optionally copy
*      an existing one.  If the existing ksiginfo_t is from the pool, and
*      has not been queued somewhere, then just return it.  Additionally,
*      if the existing ksiginfo_t does not contain any information beyond
*      the signal number, then just return it.
*/
ksiginfo_t *
ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
{
       ksiginfo_t *kp;

       if (ok != NULL) {
               if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
                   KSI_FROMPOOL)
                       return ok;
               if (KSI_EMPTY_P(ok))
                       return ok;
       }

       kp = pool_cache_get(ksiginfo_cache, flags);
       if (kp == NULL) {
#ifdef DIAGNOSTIC
               printf("Out of memory allocating ksiginfo for pid %d\n",
                   p->p_pid);
#endif
               return NULL;
       }

       if (ok != NULL) {
               memcpy(kp, ok, sizeof(*kp));
               kp->ksi_flags &= ~KSI_QUEUED;
       } else
               KSI_INIT_EMPTY(kp);

       kp->ksi_flags |= KSI_FROMPOOL;

       return kp;
}

/*
* ksiginfo_free:
*
*      If the given ksiginfo_t is from the pool and has not been queued,
*      then free it.
*/
void
ksiginfo_free(ksiginfo_t *kp)
{

       if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
               return;
       pool_cache_put(ksiginfo_cache, kp);
}

/*
* ksiginfo_queue_drain:
*
*      Drain a non-empty ksiginfo_t queue.
*/
void
ksiginfo_queue_drain0(ksiginfoq_t *kq)
{
       ksiginfo_t *ksi;

       KASSERT(!TAILQ_EMPTY(kq));

       while (!TAILQ_EMPTY(kq)) {
               ksi = TAILQ_FIRST(kq);
               TAILQ_REMOVE(kq, ksi, ksi_list);
               pool_cache_put(ksiginfo_cache, ksi);
       }
}

static int
siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
{
       ksiginfo_t *ksi, *nksi;

       if (sp == NULL)
               goto out;

       /* Find siginfo and copy it out. */
       int count = 0;
       TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
               if (ksi->ksi_signo != signo)
                       continue;
               if (count++ > 0) /* Only remove the first, count all of them */
                       continue;
               TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
               KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
               KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
               ksi->ksi_flags &= ~KSI_QUEUED;
               if (out != NULL) {
                       memcpy(out, ksi, sizeof(*out));
                       out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
               }
               ksiginfo_free(ksi);
       }
       if (count)
               return count;

out:
       /* If there is no siginfo, then manufacture it. */
       if (out != NULL) {
               KSI_INIT(out);
               out->ksi_info._signo = signo;
               out->ksi_info._code = SI_NOINFO;
       }
       return 0;
}

/*
* sigget:
*
*      Fetch the first pending signal from a set.  Optionally, also fetch
*      or manufacture a ksiginfo element.  Returns the number of the first
*      pending signal, or zero.
*/
int
sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
{
       sigset_t tset;
       int count;

       /* If there's no pending set, the signal is from the debugger. */
       if (sp == NULL)
               goto out;

       /* Construct mask from signo, and 'mask'. */
       if (signo == 0) {
               if (mask != NULL) {
                       tset = *mask;
                       __sigandset(&sp->sp_set, &tset);
               } else
                       tset = sp->sp_set;

               /* If there are no signals pending - return. */
               if ((signo = firstsig(&tset)) == 0)
                       goto out;
       } else {
               KASSERT(sigismember(&sp->sp_set, signo));
       }

       sigdelset(&sp->sp_set, signo);
out:
       count = siggetinfo(sp, out, signo);
       if (count > 1)
               sigaddset(&sp->sp_set, signo);
       return signo;
}

/*
* sigput:
*
*      Append a new ksiginfo element to the list of pending ksiginfo's.
*/
static int
sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
{
       ksiginfo_t *kp;

       KASSERT(mutex_owned(p->p_lock));
       KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);

       sigaddset(&sp->sp_set, ksi->ksi_signo);

       /*
        * If there is no siginfo, we are done.
        */
       if (KSI_EMPTY_P(ksi))
               return 0;

       KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);

       size_t count = 0;
       TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
               count++;
               if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
                       continue;
               if (kp->ksi_signo == ksi->ksi_signo) {
                       KSI_COPY(ksi, kp);
                       kp->ksi_flags |= KSI_QUEUED;
                       return 0;
               }
       }

       if (count >= SIGQUEUE_MAX) {
#ifdef DIAGNOSTIC
               printf("%s(%d): Signal queue is full signal=%d\n",
                   p->p_comm, p->p_pid, ksi->ksi_signo);
#endif
               return EAGAIN;
       }
       ksi->ksi_flags |= KSI_QUEUED;
       TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);

       return 0;
}

/*
* sigclear:
*
*      Clear all pending signals in the specified set.
*/
void
sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
{
       ksiginfo_t *ksi, *next;

       if (mask == NULL)
               sigemptyset(&sp->sp_set);
       else
               sigminusset(mask, &sp->sp_set);

       TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
               if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
                       TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
                       KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
                       KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
                       TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
               }
       }
}

/*
* sigclearall:
*
*      Clear all pending signals in the specified set from a process and
*      its LWPs.
*/
void
sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
{
       struct lwp *l;

       KASSERT(mutex_owned(p->p_lock));

       sigclear(&p->p_sigpend, mask, kq);

       LIST_FOREACH(l, &p->p_lwps, l_sibling) {
               sigclear(&l->l_sigpend, mask, kq);
       }
}

/*
* sigispending:
*
*      Return the first signal number if there are pending signals for the
*      current LWP.  May be called unlocked provided that LW_PENDSIG is set,
*      and that the signal has been posted to the appopriate queue before
*      LW_PENDSIG is set.
*
*      This should only ever be called with (l == curlwp), unless the
*      result does not matter (procfs, sysctl).
*/
int
sigispending(struct lwp *l, int signo)
{
       struct proc *p = l->l_proc;
       sigset_t tset;

       membar_consumer();

       tset = l->l_sigpend.sp_set;
       sigplusset(&p->p_sigpend.sp_set, &tset);
       sigminusset(&p->p_sigctx.ps_sigignore, &tset);
       sigminusset(&l->l_sigmask, &tset);

       if (signo == 0) {
               return firstsig(&tset);
       }
       return sigismember(&tset, signo) ? signo : 0;
}

void
getucontext(struct lwp *l, ucontext_t *ucp)
{
       struct proc *p = l->l_proc;

       KASSERT(mutex_owned(p->p_lock));

       ucp->uc_flags = 0;
       ucp->uc_link = l->l_ctxlink;
       ucp->uc_sigmask = l->l_sigmask;
       ucp->uc_flags |= _UC_SIGMASK;

       /*
        * The (unsupplied) definition of the `current execution stack'
        * in the System V Interface Definition appears to allow returning
        * the main context stack.
        */
       if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
               ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
               ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
               ucp->uc_stack.ss_flags = 0;     /* XXX, def. is Very Fishy */
       } else {
               /* Simply copy alternate signal execution stack. */
               ucp->uc_stack = l->l_sigstk;
       }
       ucp->uc_flags |= _UC_STACK;
       mutex_exit(p->p_lock);
       cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
       mutex_enter(p->p_lock);
}

int
setucontext(struct lwp *l, const ucontext_t *ucp)
{
       struct proc *p = l->l_proc;
       int error;

       KASSERT(mutex_owned(p->p_lock));

       if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
               error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
               if (error != 0)
                       return error;
       }

       mutex_exit(p->p_lock);
       error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
       mutex_enter(p->p_lock);
       if (error != 0)
               return (error);

       l->l_ctxlink = ucp->uc_link;

       /*
        * If there was stack information, update whether or not we are
        * still running on an alternate signal stack.
        */
       if ((ucp->uc_flags & _UC_STACK) != 0) {
               if (ucp->uc_stack.ss_flags & SS_ONSTACK)
                       l->l_sigstk.ss_flags |= SS_ONSTACK;
               else
                       l->l_sigstk.ss_flags &= ~SS_ONSTACK;
       }

       return 0;
}

/*
* killpg1: common code for kill process group/broadcast kill.
*/
int
killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
{
       struct proc     *p, *cp;
       kauth_cred_t    pc;
       struct pgrp     *pgrp;
       int             nfound;
       int             signo = ksi->ksi_signo;

       cp = l->l_proc;
       pc = l->l_cred;
       nfound = 0;

       mutex_enter(&proc_lock);
       if (all) {
               /*
                * Broadcast.
                */
               PROCLIST_FOREACH(p, &allproc) {
                       if (p->p_pid <= 1 || p == cp ||
                           (p->p_flag & PK_SYSTEM) != 0)
                               continue;
                       mutex_enter(p->p_lock);
                       if (kauth_authorize_process(pc,
                           KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
                           NULL) == 0) {
                               nfound++;
                               if (signo)
                                       kpsignal2(p, ksi);
                       }
                       mutex_exit(p->p_lock);
               }
       } else {
               if (pgid == 0)
                       /* Zero pgid means send to my process group. */
                       pgrp = cp->p_pgrp;
               else {
                       pgrp = pgrp_find(pgid);
                       if (pgrp == NULL)
                               goto out;
               }
               LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
                       if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
                               continue;
                       mutex_enter(p->p_lock);
                       if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
                           p, KAUTH_ARG(signo), NULL, NULL) == 0) {
                               nfound++;
                               if (signo && P_ZOMBIE(p) == 0)
                                       kpsignal2(p, ksi);
                       }
                       mutex_exit(p->p_lock);
               }
       }
out:
       mutex_exit(&proc_lock);
       return nfound ? 0 : ESRCH;
}

/*
* Send a signal to a process group.  If checktty is set, limit to members
* which have a controlling terminal.
*/
void
pgsignal(struct pgrp *pgrp, int sig, int checkctty)
{
       ksiginfo_t ksi;

       KASSERT(!cpu_intr_p());
       KASSERT(mutex_owned(&proc_lock));

       KSI_INIT_EMPTY(&ksi);
       ksi.ksi_signo = sig;
       kpgsignal(pgrp, &ksi, NULL, checkctty);
}

void
kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
{
       struct proc *p;

       KASSERT(!cpu_intr_p());
       KASSERT(mutex_owned(&proc_lock));
       KASSERT(pgrp != NULL);

       LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
               if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
                       kpsignal(p, ksi, data);
}

/*
* Send a signal caused by a trap to the current LWP.  If it will be caught
* immediately, deliver it with correct code.  Otherwise, post it normally.
*/
void
trapsignal(struct lwp *l, ksiginfo_t *ksi)
{
       struct proc     *p;
       struct sigacts  *ps;
       int signo = ksi->ksi_signo;
       sigset_t *mask;
       sig_t action;

       KASSERT(KSI_TRAP_P(ksi));

       ksi->ksi_lid = l->l_lid;
       p = l->l_proc;

       KASSERT(!cpu_intr_p());
       mutex_enter(&proc_lock);
       mutex_enter(p->p_lock);

repeat:
       /*
        * If we are exiting, demise now.
        *
        * This avoids notifying tracer and deadlocking.
        */
       if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
               mutex_exit(p->p_lock);
               mutex_exit(&proc_lock);
               lwp_exit(l);
               panic("trapsignal");
               /* NOTREACHED */
       }

       /*
        * The process is already stopping.
        */
       if ((p->p_sflag & PS_STOPPING) != 0) {
               mutex_exit(&proc_lock);
               sigswitch_unlock_and_switch_away(l);
               mutex_enter(&proc_lock);
               mutex_enter(p->p_lock);
               goto repeat;
       }

       mask = &l->l_sigmask;
       ps = p->p_sigacts;
       action = SIGACTION_PS(ps, signo).sa_handler;

       if (ISSET(p->p_slflag, PSL_TRACED) &&
           !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
           p->p_xsig != SIGKILL &&
           !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
               p->p_xsig = signo;
               p->p_sigctx.ps_faked = true;
               p->p_sigctx.ps_lwp = ksi->ksi_lid;
               p->p_sigctx.ps_info = ksi->ksi_info;
               sigswitch(0, signo, true);

               if (ktrpoint(KTR_PSIG)) {
                       if (p->p_emul->e_ktrpsig)
                               p->p_emul->e_ktrpsig(signo, action, mask, ksi);
                       else
                               ktrpsig(signo, action, mask, ksi);
               }
               return;
       }

       const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
       const bool masked = sigismember(mask, signo);
       if (caught && !masked) {
               mutex_exit(&proc_lock);
               l->l_ru.ru_nsignals++;
               kpsendsig(l, ksi, mask);
               mutex_exit(p->p_lock);

               if (ktrpoint(KTR_PSIG)) {
                       if (p->p_emul->e_ktrpsig)
                               p->p_emul->e_ktrpsig(signo, action, mask, ksi);
                       else
                               ktrpsig(signo, action, mask, ksi);
               }
               return;
       }

       /*
        * If the signal is masked or ignored, then unmask it and
        * reset it to the default action so that the process or
        * its tracer will be notified.
        */
       const bool ignored = action == SIG_IGN;
       if (masked || ignored) {
               mutex_enter(&ps->sa_mutex);
               sigdelset(mask, signo);
               sigdelset(&p->p_sigctx.ps_sigcatch, signo);
               sigdelset(&p->p_sigctx.ps_sigignore, signo);
               sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
               SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
               mutex_exit(&ps->sa_mutex);
       }

       kpsignal2(p, ksi);
       mutex_exit(p->p_lock);
       mutex_exit(&proc_lock);
}

/*
* Fill in signal information and signal the parent for a child status change.
*/
void
child_psignal(struct proc *p, int mask)
{
       ksiginfo_t ksi;
       struct proc *q;
       int xsig;

       KASSERT(mutex_owned(&proc_lock));
       KASSERT(mutex_owned(p->p_lock));

       xsig = p->p_xsig;

       KSI_INIT(&ksi);
       ksi.ksi_signo = SIGCHLD;
       ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
       ksi.ksi_pid = p->p_pid;
       ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
       ksi.ksi_status = xsig;
       ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
       ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;

       q = p->p_pptr;

       mutex_exit(p->p_lock);
       mutex_enter(q->p_lock);

       if ((q->p_sflag & mask) == 0)
               kpsignal2(q, &ksi);

       mutex_exit(q->p_lock);
       mutex_enter(p->p_lock);
}

void
psignal(struct proc *p, int signo)
{
       ksiginfo_t ksi;

       KASSERT(!cpu_intr_p());
       KASSERT(mutex_owned(&proc_lock));

       KSI_INIT_EMPTY(&ksi);
       ksi.ksi_signo = signo;
       mutex_enter(p->p_lock);
       kpsignal2(p, &ksi);
       mutex_exit(p->p_lock);
}

void
kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
{
       fdfile_t *ff;
       file_t *fp;
       fdtab_t *dt;

       KASSERT(!cpu_intr_p());
       KASSERT(mutex_owned(&proc_lock));

       if ((p->p_sflag & PS_WEXIT) == 0 && data) {
               size_t fd;
               filedesc_t *fdp = p->p_fd;

               /* XXXSMP locking */
               ksi->ksi_fd = -1;
               dt = atomic_load_consume(&fdp->fd_dt);
               for (fd = 0; fd < dt->dt_nfiles; fd++) {
                       if ((ff = dt->dt_ff[fd]) == NULL)
                               continue;
                       if ((fp = atomic_load_consume(&ff->ff_file)) == NULL)
                               continue;
                       if (fp->f_data == data) {
                               ksi->ksi_fd = fd;
                               break;
                       }
               }
       }
       mutex_enter(p->p_lock);
       kpsignal2(p, ksi);
       mutex_exit(p->p_lock);
}

/*
* sigismasked:
*
*      Returns true if signal is ignored or masked for the specified LWP.
*/
int
sigismasked(struct lwp *l, int sig)
{
       struct proc *p = l->l_proc;

       return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
           sigismember(&l->l_sigmask, sig);
}

/*
* sigpost:
*
*      Post a pending signal to an LWP.  Returns non-zero if the LWP may
*      be able to take the signal.
*/
static int
sigpost(struct lwp *l, sig_t action, int prop, int sig)
{
       int rv, masked;
       struct proc *p = l->l_proc;

       KASSERT(mutex_owned(p->p_lock));

       /*
        * If the LWP is on the way out, sigclear() will be busy draining all
        * pending signals.  Don't give it more.
        */
       if (l->l_stat == LSZOMB)
               return 0;

       SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);

       lwp_lock(l);
       if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) {
               if ((prop & SA_KILL) != 0)
                       l->l_flag &= ~LW_DBGSUSPEND;
               else {
                       lwp_unlock(l);
                       return 0;
               }
       }

       /*
        * Have the LWP check for signals.  This ensures that even if no LWP
        * is found to take the signal immediately, it should be taken soon.
        */
       signotify(l);

       /*
        * SIGCONT can be masked, but if LWP is stopped, it needs restart.
        * Note: SIGKILL and SIGSTOP cannot be masked.
        */
       masked = sigismember(&l->l_sigmask, sig);
       if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
               lwp_unlock(l);
               return 0;
       }

       /*
        * If killing the process, make it run fast.
        */
       if (__predict_false((prop & SA_KILL) != 0) &&
           action == SIG_DFL && l->l_priority < MAXPRI_USER) {
               KASSERT(l->l_class == SCHED_OTHER);
               lwp_changepri(l, MAXPRI_USER);
       }

       /*
        * If the LWP is running or on a run queue, then we win.  If it's
        * sleeping interruptably, wake it and make it take the signal.  If
        * the sleep isn't interruptable, then the chances are it will get
        * to see the signal soon anyhow.  If suspended, it can't take the
        * signal right now.  If it's LWP private or for all LWPs, save it
        * for later; otherwise punt.
        */
       rv = 0;

       switch (l->l_stat) {
       case LSRUN:
       case LSONPROC:
               rv = 1;
               break;

       case LSSLEEP:
               if ((l->l_flag & LW_SINTR) != 0) {
                       /* setrunnable() will release the lock. */
                       setrunnable(l);
                       return 1;
               }
               break;

       case LSSUSPENDED:
               if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
                       /* lwp_continue() will release the lock. */
                       lwp_continue(l);
                       return 1;
               }
               break;

       case LSSTOP:
               if ((prop & SA_STOP) != 0)
                       break;

               /*
                * If the LWP is stopped and we are sending a continue
                * signal, then start it again.
                */
               if ((prop & SA_CONT) != 0) {
                       if (l->l_wchan != NULL) {
                               l->l_stat = LSSLEEP;
                               p->p_nrlwps++;
                               rv = 1;
                               break;
                       }
                       /* setrunnable() will release the lock. */
                       setrunnable(l);
                       return 1;
               } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
                       /* setrunnable() will release the lock. */
                       setrunnable(l);
                       return 1;
               }
               break;

       default:
               break;
       }

       lwp_unlock(l);
       return rv;
}

/*
* Notify an LWP that it has a pending signal.
*/
void
signotify(struct lwp *l)
{
       KASSERT(lwp_locked(l, NULL));

       l->l_flag |= LW_PENDSIG;
       lwp_need_userret(l);
}

/*
* Find an LWP within process p that is waiting on signal ksi, and hand
* it on.
*/
static int
sigunwait(struct proc *p, const ksiginfo_t *ksi)
{
       struct lwp *l;
       int signo;

       KASSERT(mutex_owned(p->p_lock));

       signo = ksi->ksi_signo;

       if (ksi->ksi_lid != 0) {
               /*
                * Signal came via _lwp_kill().  Find the LWP and see if
                * it's interested.
                */
               if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
                       return 0;
               if (l->l_sigwaited == NULL ||
                   !sigismember(&l->l_sigwaitset, signo))
                       return 0;
       } else {
               /*
                * Look for any LWP that may be interested.
                */
               LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
                       KASSERT(l->l_sigwaited != NULL);
                       if (sigismember(&l->l_sigwaitset, signo))
                               break;
               }
       }

       if (l != NULL) {
               l->l_sigwaited->ksi_info = ksi->ksi_info;
               l->l_sigwaited = NULL;
               LIST_REMOVE(l, l_sigwaiter);
               cv_signal(&l->l_sigcv);
               return 1;
       }

       return 0;
}

/*
* Send the signal to the process.  If the signal has an action, the action
* is usually performed by the target process rather than the caller; we add
* the signal to the set of pending signals for the process.
*
* Exceptions:
*   o When a stop signal is sent to a sleeping process that takes the
*     default action, the process is stopped without awakening it.
*   o SIGCONT restarts stopped processes (or puts them back to sleep)
*     regardless of the signal action (eg, blocked or ignored).
*
* Other ignored signals are discarded immediately.
*/
int
kpsignal2(struct proc *p, ksiginfo_t *ksi)
{
       int prop, signo = ksi->ksi_signo;
       struct lwp *l = NULL;
       ksiginfo_t *kp;
       lwpid_t lid;
       sig_t action;
       bool toall;
       bool traced;
       int error = 0;

       KASSERT(!cpu_intr_p());
       KASSERT(mutex_owned(&proc_lock));
       KASSERT(mutex_owned(p->p_lock));
       KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
       KASSERT(signo > 0);
       KASSERT(signo < NSIG);

       /*
        * If the process is being created by fork, is a zombie or is
        * exiting, then just drop the signal here and bail out.
        */
       if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
               return 0;

       /*
        * Notify any interested parties of the signal.
        */
       KNOTE(&p->p_klist, NOTE_SIGNAL | signo);

       /*
        * Some signals including SIGKILL must act on the entire process.
        */
       kp = NULL;
       prop = sigprop[signo];
       toall = ((prop & SA_TOALL) != 0);
       lid = toall ? 0 : ksi->ksi_lid;
       traced = ISSET(p->p_slflag, PSL_TRACED) &&
           !sigismember(&p->p_sigctx.ps_sigpass, signo);

       /*
        * If proc is traced, always give parent a chance.
        */
       if (traced) {
               action = SIG_DFL;

               if (lid == 0) {
                       /*
                        * If the process is being traced and the signal
                        * is being caught, make sure to save any ksiginfo.
                        */
                       if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
                               goto discard;
                       if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
                               goto out;
               }
       } else {

               /*
                * If the signal is being ignored, then drop it.  Note: we
                * don't set SIGCONT in ps_sigignore, and if it is set to
                * SIG_IGN, action will be SIG_DFL here.
                */
               if (sigismember(&p->p_sigctx.ps_sigignore, signo))
                       goto discard;

               else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
                       action = SIG_CATCH;
               else {
                       action = SIG_DFL;

                       /*
                        * If sending a tty stop signal to a member of an
                        * orphaned process group, discard the signal here if
                        * the action is default; don't stop the process below
                        * if sleeping, and don't clear any pending SIGCONT.
                        */
                       if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
                               goto discard;

                       if (prop & SA_KILL && p->p_nice > NZERO)
                               p->p_nice = NZERO;
               }
       }

       /*
        * If stopping or continuing a process, discard any pending
        * signals that would do the inverse.
        */
       if ((prop & (SA_CONT | SA_STOP)) != 0) {
               ksiginfoq_t kq;

               ksiginfo_queue_init(&kq);
               if ((prop & SA_CONT) != 0)
                       sigclear(&p->p_sigpend, &stopsigmask, &kq);
               if ((prop & SA_STOP) != 0)
                       sigclear(&p->p_sigpend, &contsigmask, &kq);
               ksiginfo_queue_drain(&kq);      /* XXXSMP */
       }

       /*
        * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
        * please!), check if any LWPs are waiting on it.  If yes, pass on
        * the signal info.  The signal won't be processed further here.
        */
       if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
           p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
           sigunwait(p, ksi))
               goto discard;

       /*
        * XXXSMP Should be allocated by the caller, we're holding locks
        * here.
        */
       if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
               goto discard;

       /*
        * LWP private signals are easy - just find the LWP and post
        * the signal to it.
        */
       if (lid != 0) {
               l = lwp_find(p, lid);
               if (l != NULL) {
                       if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
                               goto out;
                       membar_producer();
                       if (sigpost(l, action, prop, kp->ksi_signo) != 0)
                               signo = -1;
               }
               goto out;
       }

       /*
        * Some signals go to all LWPs, even if posted with _lwp_kill()
        * or for an SA process.
        */
       if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
               if (traced)
                       goto deliver;

               /*
                * If SIGCONT is default (or ignored) and process is
                * asleep, we are finished; the process should not
                * be awakened.
                */
               if ((prop & SA_CONT) != 0 && action == SIG_DFL)
                       goto out;
       } else {
               /*
                * Process is stopped or stopping.
                * - If traced, then no action is needed, unless killing.
                * - Run the process only if sending SIGCONT or SIGKILL.
                */
               if (traced && signo != SIGKILL) {
                       goto out;
               }
               if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
                       /*
                        * Re-adjust p_nstopchild if the process was
                        * stopped but not yet collected by its parent.
                        */
                       if (p->p_stat == SSTOP && !p->p_waited)
                               p->p_pptr->p_nstopchild--;
                       p->p_stat = SACTIVE;
                       p->p_sflag &= ~PS_STOPPING;
                       if (traced) {
                               KASSERT(signo == SIGKILL);
                               goto deliver;
                       }
                       /*
                        * Do not make signal pending if SIGCONT is default.
                        *
                        * If the process catches SIGCONT, let it handle the
                        * signal itself (if waiting on event - process runs,
                        * otherwise continues sleeping).
                        */
                       if ((prop & SA_CONT) != 0) {
                               p->p_xsig = SIGCONT;
                               p->p_sflag |= PS_CONTINUED;
                               child_psignal(p, 0);
                               if (action == SIG_DFL) {
                                       KASSERT(signo != SIGKILL);
                                       goto deliver;
                               }
                       }
               } else if ((prop & SA_STOP) != 0) {
                       /*
                        * Already stopped, don't need to stop again.
                        * (If we did the shell could get confused.)
                        */
                       goto out;
               }
       }
       /*
        * Make signal pending.
        */
       KASSERT(!traced);
       if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
               goto out;
deliver:
       /*
        * Before we set LW_PENDSIG on any LWP, ensure that the signal is
        * visible on the per process list (for sigispending()).  This
        * is unlikely to be needed in practice, but...
        */
       membar_producer();

       /*
        * Try to find an LWP that can take the signal.
        */
       LIST_FOREACH(l, &p->p_lwps, l_sibling) {
               if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
                       break;
       }
       signo = -1;
out:
       /*
        * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
        * with locks held.  The caller should take care of this.
        */
       ksiginfo_free(kp);
       if (signo == -1)
               return error;
discard:
       SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
       return error;
}

void
kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
{
       struct proc *p = l->l_proc;

       KASSERT(mutex_owned(p->p_lock));
       (*p->p_emul->e_sendsig)(ksi, mask);
}

/*
* Stop any LWPs sleeping interruptably.
*/
static void
proc_stop_lwps(struct proc *p)
{
       struct lwp *l;

       KASSERT(mutex_owned(p->p_lock));
       KASSERT((p->p_sflag & PS_STOPPING) != 0);

       LIST_FOREACH(l, &p->p_lwps, l_sibling) {
               lwp_lock(l);
               if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
                       l->l_stat = LSSTOP;
                       p->p_nrlwps--;
               }
               lwp_unlock(l);
       }
}

/*
* Finish stopping of a process.  Mark it stopped and notify the parent.
*
* Drop p_lock briefly if ppsig is true.
*/
static void
proc_stop_done(struct proc *p, int ppmask)
{

       KASSERT(mutex_owned(&proc_lock));
       KASSERT(mutex_owned(p->p_lock));
       KASSERT((p->p_sflag & PS_STOPPING) != 0);
       KASSERT(p->p_nrlwps == 0 || p->p_nrlwps == 1);
       KASSERT(p->p_nrlwps == 0 || p == curproc);

       p->p_sflag &= ~PS_STOPPING;
       p->p_stat = SSTOP;
       p->p_waited = 0;
       p->p_pptr->p_nstopchild++;

       /* child_psignal drops p_lock briefly. */
       child_psignal(p, ppmask);
       cv_broadcast(&p->p_pptr->p_waitcv);
}

/*
* Stop the current process and switch away to the debugger notifying
* an event specific to a traced process only.
*/
void
eventswitch(int code, int pe_report_event, int entity)
{
       struct lwp *l = curlwp;
       struct proc *p = l->l_proc;
       struct sigacts *ps;
       sigset_t *mask;
       sig_t action;
       ksiginfo_t ksi;
       const int signo = SIGTRAP;

       KASSERT(mutex_owned(&proc_lock));
       KASSERT(mutex_owned(p->p_lock));
       KASSERT(p->p_pptr != initproc);
       KASSERT(l->l_stat == LSONPROC);
       KASSERT(ISSET(p->p_slflag, PSL_TRACED));
       KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
       KASSERT(p->p_nrlwps > 0);
       KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
               (code == TRAP_EXEC));
       KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */
       KASSERT((code != TRAP_LWP) || (entity > 0));

repeat:
       /*
        * If we are exiting, demise now.
        *
        * This avoids notifying tracer and deadlocking.
        */
       if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
               mutex_exit(p->p_lock);
               mutex_exit(&proc_lock);

               if (pe_report_event == PTRACE_LWP_EXIT) {
                       /* Avoid double lwp_exit() and panic. */
                       return;
               }

               lwp_exit(l);
               panic("eventswitch");
               /* NOTREACHED */
       }

       /*
        * If we are no longer traced, abandon this event signal.
        *
        * This avoids killing a process after detaching the debugger.
        */
       if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
               mutex_exit(p->p_lock);
               mutex_exit(&proc_lock);
               return;
       }

       /*
        * If there's a pending SIGKILL process it immediately.
        */
       if (p->p_xsig == SIGKILL ||
           sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
               mutex_exit(p->p_lock);
               mutex_exit(&proc_lock);
               return;
       }

       /*
        * The process is already stopping.
        */
       if ((p->p_sflag & PS_STOPPING) != 0) {
               mutex_exit(&proc_lock);
               sigswitch_unlock_and_switch_away(l);
               mutex_enter(&proc_lock);
               mutex_enter(p->p_lock);
               goto repeat;
       }

       KSI_INIT_TRAP(&ksi);
       ksi.ksi_lid = l->l_lid;
       ksi.ksi_signo = signo;
       ksi.ksi_code = code;
       ksi.ksi_pe_report_event = pe_report_event;

       CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp));
       ksi.ksi_pe_other_pid = entity;

       /* Needed for ktrace */
       ps = p->p_sigacts;
       action = SIGACTION_PS(ps, signo).sa_handler;
       mask = &l->l_sigmask;

       p->p_xsig = signo;
       p->p_sigctx.ps_faked = true;
       p->p_sigctx.ps_lwp = ksi.ksi_lid;
       p->p_sigctx.ps_info = ksi.ksi_info;

       sigswitch(0, signo, true);

       if (code == TRAP_CHLD) {
               mutex_enter(&proc_lock);
               while (l->l_vforkwaiting)
                       cv_wait(&l->l_waitcv, &proc_lock);
               mutex_exit(&proc_lock);
       }

       if (ktrpoint(KTR_PSIG)) {
               if (p->p_emul->e_ktrpsig)
                       p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
               else
                       ktrpsig(signo, action, mask, &ksi);
       }
}

void
eventswitchchild(struct proc *p, int code, int pe_report_event)
{
       mutex_enter(&proc_lock);
       mutex_enter(p->p_lock);
       if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) !=
           (PSL_TRACED|PSL_TRACEDCHILD)) {
               mutex_exit(p->p_lock);
               mutex_exit(&proc_lock);
               return;
       }
       eventswitch(code, pe_report_event, p->p_oppid);
}

/*
* Stop the current process and switch away when being stopped or traced.
*/
static void
sigswitch(int ppmask, int signo, bool proc_lock_held)
{
       struct lwp *l = curlwp;
       struct proc *p = l->l_proc;

       KASSERT(mutex_owned(p->p_lock));
       KASSERT(l->l_stat == LSONPROC);
       KASSERT(p->p_nrlwps > 0);

       if (proc_lock_held) {
               KASSERT(mutex_owned(&proc_lock));
       } else {
               KASSERT(!mutex_owned(&proc_lock));
       }

       /*
        * On entry we know that the process needs to stop.  If it's
        * the result of a 'sideways' stop signal that has been sourced
        * through issignal(), then stop other LWPs in the process too.
        */
       if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
               KASSERT(signo != 0);
               proc_stop(p, signo);
               KASSERT(p->p_nrlwps > 0);
       }

       /*
        * If we are the last live LWP, and the stop was a result of
        * a new signal, then signal the parent.
        */
       if ((p->p_sflag & PS_STOPPING) != 0) {
               if (!proc_lock_held && !mutex_tryenter(&proc_lock)) {
                       mutex_exit(p->p_lock);
                       mutex_enter(&proc_lock);
                       mutex_enter(p->p_lock);
               }

               if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
                       /*
                        * Note that proc_stop_done() can drop
                        * p->p_lock briefly.
                        */
                       proc_stop_done(p, ppmask);
               }

               mutex_exit(&proc_lock);
       }

       sigswitch_unlock_and_switch_away(l);
}

/*
* Unlock and switch away.
*/
static void
sigswitch_unlock_and_switch_away(struct lwp *l)
{
       struct proc *p;

       p = l->l_proc;

       KASSERT(mutex_owned(p->p_lock));
       KASSERT(!mutex_owned(&proc_lock));

       KASSERT(l->l_stat == LSONPROC);
       KASSERT(p->p_nrlwps > 0);
       KASSERT(l->l_blcnt == 0);

       if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
               p->p_nrlwps--;
               lwp_lock(l);
               KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
               l->l_stat = LSSTOP;
               lwp_unlock(l);
       }

       mutex_exit(p->p_lock);
       lwp_lock(l);
       spc_lock(l->l_cpu);
       mi_switch(l);
}

/*
* Check for a signal from the debugger.
*/
static int
sigchecktrace(void)
{
       struct lwp *l = curlwp;
       struct proc *p = l->l_proc;
       int signo;

       KASSERT(mutex_owned(p->p_lock));

       /* If there's a pending SIGKILL, process it immediately. */
       if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
               return 0;

       /*
        * If we are no longer being traced, or the parent didn't
        * give us a signal, or we're stopping, look for more signals.
        */
       if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
           (p->p_sflag & PS_STOPPING) != 0)
               return 0;

       /*
        * If the new signal is being masked, look for other signals.
        * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
        */
       signo = p->p_xsig;
       p->p_xsig = 0;
       if (sigismember(&l->l_sigmask, signo)) {
               signo = 0;
       }
       return signo;
}

/*
* If the current process has received a signal (should be caught or cause
* termination, should interrupt current syscall), return the signal number.
*
* Stop signals with default action are processed immediately, then cleared;
* they aren't returned.  This is checked after each entry to the system for
* a syscall or trap.
*
* We will also return -1 if the process is exiting and the current LWP must
* follow suit.
*/
int
issignal(struct lwp *l)
{
       struct proc *p;
       int siglwp, signo, prop;
       sigpend_t *sp;
       sigset_t ss;
       bool traced;

       p = l->l_proc;
       sp = NULL;
       signo = 0;

       KASSERT(p == curproc);
       KASSERT(mutex_owned(p->p_lock));

       for (;;) {
               /* Discard any signals that we have decided not to take. */
               if (signo != 0) {
                       (void)sigget(sp, NULL, signo, NULL);
               }

               /*
                * If the process is stopped/stopping, then stop ourselves
                * now that we're on the kernel/userspace boundary.  When
                * we awaken, check for a signal from the debugger.
                */
               if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
                       sigswitch_unlock_and_switch_away(l);
                       mutex_enter(p->p_lock);
                       continue;
               } else if (p->p_stat == SACTIVE)
                       signo = sigchecktrace();
               else
                       signo = 0;

               /* Signals from the debugger are "out of band". */
               sp = NULL;

               /*
                * If the debugger didn't provide a signal, find a pending
                * signal from our set.  Check per-LWP signals first, and
                * then per-process.
                */
               if (signo == 0) {
                       sp = &l->l_sigpend;
                       ss = sp->sp_set;
                       siglwp = l->l_lid;
                       if ((p->p_lflag & PL_PPWAIT) != 0)
                               sigminusset(&vforksigmask, &ss);
                       sigminusset(&l->l_sigmask, &ss);

                       if ((signo = firstsig(&ss)) == 0) {
                               sp = &p->p_sigpend;
                               ss = sp->sp_set;
                               siglwp = 0;
                               if ((p->p_lflag & PL_PPWAIT) != 0)
                                       sigminusset(&vforksigmask, &ss);
                               sigminusset(&l->l_sigmask, &ss);

                               if ((signo = firstsig(&ss)) == 0) {
                                       /*
                                        * No signal pending - clear the
                                        * indicator and bail out.
                                        */
                                       lwp_lock(l);
                                       l->l_flag &= ~LW_PENDSIG;
                                       lwp_unlock(l);
                                       sp = NULL;
                                       break;
                               }
                       }
               }

               traced = ISSET(p->p_slflag, PSL_TRACED) &&
                   !sigismember(&p->p_sigctx.ps_sigpass, signo);

               if (sp) {
                       /* Overwrite process' signal context to correspond
                        * to the currently reported LWP.  This is necessary
                        * for PT_GET_SIGINFO to report the correct signal when
                        * multiple LWPs have pending signals.  We do this only
                        * when the signal comes from the queue, for signals
                        * created by the debugger we assume it set correct
                        * siginfo.
                        */
                       ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info);
                       if (ksi) {
                               p->p_sigctx.ps_lwp = ksi->ksi_lid;
                               p->p_sigctx.ps_info = ksi->ksi_info;
                       } else {
                               p->p_sigctx.ps_lwp = siglwp;
                               memset(&p->p_sigctx.ps_info, 0,
                                   sizeof(p->p_sigctx.ps_info));
                               p->p_sigctx.ps_info._signo = signo;
                               p->p_sigctx.ps_info._code = SI_NOINFO;
                       }
               }

               /*
                * We should see pending but ignored signals only if
                * we are being traced.
                */
               if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
                   !traced) {
                       /* Discard the signal. */
                       continue;
               }

               /*
                * If traced, always stop, and stay stopped until released
                * by the debugger.  If the our parent is our debugger waiting
                * for us and we vforked, don't hang as we could deadlock.
                */
               if (traced && signo != SIGKILL &&
                   !(ISSET(p->p_lflag, PL_PPWAIT) &&
                    (p->p_pptr == p->p_opptr))) {
                       /*
                        * Take the signal, but don't remove it from the
                        * siginfo queue, because the debugger can send
                        * it later.
                        */
                       if (sp)
                               sigdelset(&sp->sp_set, signo);
                       p->p_xsig = signo;

                       /* Handling of signal trace */
                       sigswitch(0, signo, false);
                       mutex_enter(p->p_lock);

                       /* Check for a signal from the debugger. */
                       if ((signo = sigchecktrace()) == 0)
                               continue;

                       /* Signals from the debugger are "out of band". */
                       sp = NULL;
               }

               prop = sigprop[signo];

               /*
                * Decide whether the signal should be returned.
                */
               switch ((long)SIGACTION(p, signo).sa_handler) {
               case (long)SIG_DFL:
                       /*
                        * Don't take default actions on system processes.
                        */
                       if (p->p_pid <= 1) {
#ifdef DIAGNOSTIC
                               /*
                                * Are you sure you want to ignore SIGSEGV
                                * in init? XXX
                                */
                               printf_nolog("Process (pid %d) got sig %d\n",
                                   p->p_pid, signo);
#endif
                               continue;
                       }

                       /*
                        * If there is a pending stop signal to process with
                        * default action, stop here, then clear the signal.
                        * However, if process is member of an orphaned
                        * process group, ignore tty stop signals.
                        */
                       if (prop & SA_STOP) {
                               /*
                                * XXX Don't hold proc_lock for p_lflag,
                                * but it's not a big deal.
                                */
                               if ((traced &&
                                    !(ISSET(p->p_lflag, PL_PPWAIT) &&
                                    (p->p_pptr == p->p_opptr))) ||
                                   ((p->p_lflag & PL_ORPHANPG) != 0 &&
                                   prop & SA_TTYSTOP)) {
                                       /* Ignore the signal. */
                                       continue;
                               }
                               /* Take the signal. */
                               (void)sigget(sp, NULL, signo, NULL);
                               p->p_xsig = signo;
                               p->p_sflag &= ~PS_CONTINUED;
                               signo = 0;
                               sigswitch(PS_NOCLDSTOP, p->p_xsig, false);
                               mutex_enter(p->p_lock);
                       } else if (prop & SA_IGNORE) {
                               /*
                                * Except for SIGCONT, shouldn't get here.
                                * Default action is to ignore; drop it.
                                */
                               continue;
                       }
                       break;

               case (long)SIG_IGN:
#ifdef DEBUG_ISSIGNAL
                       /*
                        * Masking above should prevent us ever trying
                        * to take action on an ignored signal other
                        * than SIGCONT, unless process is traced.
                        */
                       if ((prop & SA_CONT) == 0 && !traced)
                               printf_nolog("issignal\n");
#endif
                       continue;

               default:
                       /*
                        * This signal has an action, let postsig() process
                        * it.
                        */
                       break;
               }

               break;
       }

       l->l_sigpendset = sp;
       return signo;
}

/*
* Take the action for the specified signal
* from the current set of pending signals.
*/
void
postsig(int signo)
{
       struct lwp      *l;
       struct proc     *p;
       struct sigacts  *ps;
       sig_t           action;
       sigset_t        *returnmask;
       ksiginfo_t      ksi;

       l = curlwp;
       p = l->l_proc;
       ps = p->p_sigacts;

       KASSERT(mutex_owned(p->p_lock));
       KASSERT(signo > 0);

       /*
        * Set the new mask value and also defer further occurrences of this
        * signal.
        *
        * Special case: user has done a sigsuspend.  Here the current mask is
        * not of interest, but rather the mask from before the sigsuspend is
        * what we want restored after the signal processing is completed.
        */
       if (l->l_sigrestore) {
               returnmask = &l->l_sigoldmask;
               l->l_sigrestore = 0;
       } else
               returnmask = &l->l_sigmask;

       /*
        * Commit to taking the signal before releasing the mutex.
        */
       action = SIGACTION_PS(ps, signo).sa_handler;
       l->l_ru.ru_nsignals++;
       if (l->l_sigpendset == NULL) {
               /* From the debugger */
               if (p->p_sigctx.ps_faked &&
                   signo == p->p_sigctx.ps_info._signo) {
                       KSI_INIT(&ksi);
                       ksi.ksi_info = p->p_sigctx.ps_info;
                       ksi.ksi_lid = p->p_sigctx.ps_lwp;
                       p->p_sigctx.ps_faked = false;
               } else {
                       if (!siggetinfo(&l->l_sigpend, &ksi, signo))
                               (void)siggetinfo(&p->p_sigpend, &ksi, signo);
               }
       } else
               sigget(l->l_sigpendset, &ksi, signo, NULL);

       if (ktrpoint(KTR_PSIG)) {
               mutex_exit(p->p_lock);
               if (p->p_emul->e_ktrpsig)
                       p->p_emul->e_ktrpsig(signo, action,
                           returnmask, &ksi);
               else
                       ktrpsig(signo, action, returnmask, &ksi);
               mutex_enter(p->p_lock);
       }

       SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);

       if (action == SIG_DFL) {
               /*
                * Default action, where the default is to kill
                * the process.  (Other cases were ignored above.)
                */
               sigexit(l, signo);
               return;
       }

       /*
        * If we get here, the signal must be caught.
        */
#ifdef DIAGNOSTIC
       if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
               panic("postsig action");
#endif

       kpsendsig(l, &ksi, returnmask);
}

/*
* sendsig:
*
*      Default signal delivery method for NetBSD.
*/
void
sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
{
       struct sigacts *sa;
       int sig;

       sig = ksi->ksi_signo;
       sa = curproc->p_sigacts;

       switch (sa->sa_sigdesc[sig].sd_vers)  {
       case __SIGTRAMP_SIGCODE_VERSION:
#ifdef __HAVE_STRUCT_SIGCONTEXT
       case __SIGTRAMP_SIGCONTEXT_VERSION_MIN ...
            __SIGTRAMP_SIGCONTEXT_VERSION_MAX:
               /* Compat for 1.6 and earlier. */
               MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask),
                   break);
               return;
#endif /* __HAVE_STRUCT_SIGCONTEXT */
       case __SIGTRAMP_SIGINFO_VERSION_MIN ...
            __SIGTRAMP_SIGINFO_VERSION_MAX:
               sendsig_siginfo(ksi, mask);
               return;
       default:
               break;
       }

       printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
       sigexit(curlwp, SIGILL);
}

/*
* sendsig_reset:
*
*      Reset the signal action.  Called from emulation specific sendsig()
*      before unlocking to deliver the signal.
*/
void
sendsig_reset(struct lwp *l, int signo)
{
       struct proc *p = l->l_proc;
       struct sigacts *ps = p->p_sigacts;

       KASSERT(mutex_owned(p->p_lock));

       p->p_sigctx.ps_lwp = 0;
       memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));

       mutex_enter(&ps->sa_mutex);
       sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
       if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
               sigdelset(&p->p_sigctx.ps_sigcatch, signo);
               if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
                       sigaddset(&p->p_sigctx.ps_sigignore, signo);
               SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
       }
       mutex_exit(&ps->sa_mutex);
}

/*
* Kill the current process for stated reason.
*/
void
killproc(struct proc *p, const char *why)
{

       KASSERT(mutex_owned(&proc_lock));

       log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
       uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
       psignal(p, SIGKILL);
}

/*
* Force the current process to exit with the specified signal, dumping core
* if appropriate.  We bypass the normal tests for masked and caught
* signals, allowing unrecoverable failures to terminate the process without
* changing signal state.  Mark the accounting record with the signal
* termination.  If dumping core, save the signal number for the debugger.
* Calls exit and does not return.
*/
void
sigexit(struct lwp *l, int signo)
{
       int exitsig, error, docore;
       struct proc *p;
       struct lwp *t;

       p = l->l_proc;

       KASSERT(mutex_owned(p->p_lock));
       KASSERT(l->l_blcnt == 0);

       /*
        * Don't permit coredump() multiple times in the same process.
        * Call back into sigexit, where we will be suspended until
        * the deed is done.  Note that this is a recursive call, but
        * LW_WCORE will prevent us from coming back this way.
        */
       if ((p->p_sflag & PS_WCORE) != 0) {
               lwp_lock(l);
               l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
               lwp_need_userret(l);
               lwp_unlock(l);
               mutex_exit(p->p_lock);
               lwp_userret(l);
               panic("sigexit 1");
               /* NOTREACHED */
       }

       /* If process is already on the way out, then bail now. */
       if ((p->p_sflag & PS_WEXIT) != 0) {
               mutex_exit(p->p_lock);
               lwp_exit(l);
               panic("sigexit 2");
               /* NOTREACHED */
       }

       /*
        * Prepare all other LWPs for exit.  If dumping core, suspend them
        * so that their registers are available long enough to be dumped.
        */
       if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
               p->p_sflag |= PS_WCORE;
               for (;;) {
                       LIST_FOREACH(t, &p->p_lwps, l_sibling) {
                               lwp_lock(t);
                               if (t == l) {
                                       t->l_flag &=
                                           ~(LW_WSUSPEND | LW_DBGSUSPEND);
                                       lwp_unlock(t);
                                       continue;
                               }
                               t->l_flag |= (LW_WCORE | LW_WEXIT);
                               lwp_need_userret(t);
                               lwp_suspend(l, t);
                       }

                       if (p->p_nrlwps == 1)
                               break;

                       /*
                        * Kick any LWPs sitting in lwp_wait1(), and wait
                        * for everyone else to stop before proceeding.
                        */
                       p->p_nlwpwait++;
                       cv_broadcast(&p->p_lwpcv);
                       cv_wait(&p->p_lwpcv, p->p_lock);
                       p->p_nlwpwait--;
               }
       }

       exitsig = signo;
       p->p_acflag |= AXSIG;
       memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
       p->p_sigctx.ps_info._signo = signo;
       p->p_sigctx.ps_info._code = SI_NOINFO;

       if (docore) {
               mutex_exit(p->p_lock);
               MODULE_HOOK_CALL(coredump_hook, (l, NULL), enosys(), error);

               if (kern_logsigexit) {
                       int uid = l->l_cred ?
                           (int)kauth_cred_geteuid(l->l_cred) : -1;

                       if (error)
                               log(LOG_INFO, lognocoredump, p->p_pid,
                                   p->p_comm, uid, signo, error);
                       else
                               log(LOG_INFO, logcoredump, p->p_pid,
                                   p->p_comm, uid, signo);
               }

#ifdef PAX_SEGVGUARD
               rw_enter(&exec_lock, RW_WRITER);
               pax_segvguard(l, p->p_textvp, p->p_comm, true);
               rw_exit(&exec_lock);
#endif /* PAX_SEGVGUARD */

               /* Acquire the sched state mutex.  exit1() will release it. */
               mutex_enter(p->p_lock);
               if (error == 0)
                       p->p_sflag |= PS_COREDUMP;
       }

       /* No longer dumping core. */
       p->p_sflag &= ~PS_WCORE;

       exit1(l, 0, exitsig);
       /* NOTREACHED */
}

/*
* Since the "real" code may (or may not) be present in loadable module,
* we provide routines here which calls the module hooks.
*/

int
coredump_netbsd(struct lwp *l, struct coredump_iostate *iocookie)
{

       int retval;

       MODULE_HOOK_CALL(coredump_netbsd_hook, (l, iocookie), ENOSYS, retval);
       return retval;
}

int
coredump_netbsd32(struct lwp *l, struct coredump_iostate *iocookie)
{

       int retval;

       MODULE_HOOK_CALL(coredump_netbsd32_hook, (l, iocookie), ENOSYS, retval);
       return retval;
}

int
coredump_elf32(struct lwp *l, struct coredump_iostate *iocookie)
{
       int retval;

       MODULE_HOOK_CALL(coredump_elf32_hook, (l, iocookie), ENOSYS, retval);
       return retval;
}

int
coredump_elf64(struct lwp *l, struct coredump_iostate *iocookie)
{
       int retval;

       MODULE_HOOK_CALL(coredump_elf64_hook, (l, iocookie), ENOSYS, retval);
       return retval;
}

/*
* Put process 'p' into the stopped state and optionally, notify the parent.
*/
void
proc_stop(struct proc *p, int signo)
{
       struct lwp *l;

       KASSERT(mutex_owned(p->p_lock));

       /*
        * First off, set the stopping indicator and bring all sleeping
        * LWPs to a halt so they are included in p->p_nrlwps.  We mustn't
        * unlock between here and the p->p_nrlwps check below.
        */
       p->p_sflag |= PS_STOPPING;
       membar_producer();

       proc_stop_lwps(p);

       /*
        * If there are no LWPs available to take the signal, then we
        * signal the parent process immediately.  Otherwise, the last
        * LWP to stop will take care of it.
        */

       if (p->p_nrlwps == 0) {
               proc_stop_done(p, PS_NOCLDSTOP);
       } else {
               /*
                * Have the remaining LWPs come to a halt, and trigger
                * proc_stop_callout() to ensure that they do.
                */
               LIST_FOREACH(l, &p->p_lwps, l_sibling) {
                       sigpost(l, SIG_DFL, SA_STOP, signo);
               }
               callout_schedule(&proc_stop_ch, 1);
       }
}

/*
* When stopping a process, we do not immediately set sleeping LWPs stopped,
* but wait for them to come to a halt at the kernel-user boundary.  This is
* to allow LWPs to release any locks that they may hold before stopping.
*
* Non-interruptable sleeps can be long, and there is the potential for an
* LWP to begin sleeping interruptably soon after the process has been set
* stopping (PS_STOPPING).  These LWPs will not notice that the process is
* stopping, and so complete halt of the process and the return of status
* information to the parent could be delayed indefinitely.
*
* To handle this race, proc_stop_callout() runs once per tick while there
* are stopping processes in the system.  It sets LWPs that are sleeping
* interruptably into the LSSTOP state.
*
* Note that we are not concerned about keeping all LWPs stopped while the
* process is stopped: stopped LWPs can awaken briefly to handle signals.
* What we do need to ensure is that all LWPs in a stopping process have
* stopped at least once, so that notification can be sent to the parent
* process.
*/
static void
proc_stop_callout(void *cookie)
{
       bool more, restart;
       struct proc *p;

       (void)cookie;

       do {
               restart = false;
               more = false;

               mutex_enter(&proc_lock);
               PROCLIST_FOREACH(p, &allproc) {
                       mutex_enter(p->p_lock);

                       if ((p->p_sflag & PS_STOPPING) == 0) {
                               mutex_exit(p->p_lock);
                               continue;
                       }

                       /* Stop any LWPs sleeping interruptably. */
                       proc_stop_lwps(p);
                       if (p->p_nrlwps == 0) {
                               /*
                                * We brought the process to a halt.
                                * Mark it as stopped and notify the
                                * parent.
                                *
                                * Note that proc_stop_done() will
                                * drop p->p_lock briefly.
                                * Arrange to restart and check
                                * all processes again.
                                */
                               restart = true;
                               proc_stop_done(p, PS_NOCLDSTOP);
                       } else
                               more = true;

                       mutex_exit(p->p_lock);
                       if (restart)
                               break;
               }
               mutex_exit(&proc_lock);
       } while (restart);

       /*
        * If we noted processes that are stopping but still have
        * running LWPs, then arrange to check again in 1 tick.
        */
       if (more)
               callout_schedule(&proc_stop_ch, 1);
}

/*
* Given a process in state SSTOP, set the state back to SACTIVE and
* move LSSTOP'd LWPs to LSSLEEP or make them runnable.
*/
void
proc_unstop(struct proc *p)
{
       struct lwp *l;
       int sig;

       KASSERT(mutex_owned(&proc_lock));
       KASSERT(mutex_owned(p->p_lock));

       p->p_stat = SACTIVE;
       p->p_sflag &= ~PS_STOPPING;
       sig = p->p_xsig;

       if (!p->p_waited)
               p->p_pptr->p_nstopchild--;

       LIST_FOREACH(l, &p->p_lwps, l_sibling) {
               lwp_lock(l);
               if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) {
                       lwp_unlock(l);
                       continue;
               }
               if (l->l_wchan == NULL) {
                       setrunnable(l);
                       continue;
               }
               if (sig && (l->l_flag & LW_SINTR) != 0) {
                       setrunnable(l);
                       sig = 0;
               } else {
                       l->l_stat = LSSLEEP;
                       p->p_nrlwps++;
                       lwp_unlock(l);
               }
       }
}

void
proc_stoptrace(int trapno, int sysnum, const register_t args[],
              const register_t *ret, int error)
{
       struct lwp *l = curlwp;
       struct proc *p = l->l_proc;
       struct sigacts *ps;
       sigset_t *mask;
       sig_t action;
       ksiginfo_t ksi;
       size_t i, sy_narg;
       const int signo = SIGTRAP;

       KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
       KASSERT(p->p_pptr != initproc);
       KASSERT(ISSET(p->p_slflag, PSL_TRACED));
       KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));

       sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;

       KSI_INIT_TRAP(&ksi);
       ksi.ksi_lid = l->l_lid;
       ksi.ksi_signo = signo;
       ksi.ksi_code = trapno;

       ksi.ksi_sysnum = sysnum;
       if (trapno == TRAP_SCE) {
               ksi.ksi_retval[0] = 0;
               ksi.ksi_retval[1] = 0;
               ksi.ksi_error = 0;
       } else {
               ksi.ksi_retval[0] = ret[0];
               ksi.ksi_retval[1] = ret[1];
               ksi.ksi_error = error;
       }

       memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));

       for (i = 0; i < sy_narg; i++)
               ksi.ksi_args[i] = args[i];

       mutex_enter(p->p_lock);

repeat:
       /*
        * If we are exiting, demise now.
        *
        * This avoids notifying tracer and deadlocking.
        */
       if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
               mutex_exit(p->p_lock);
               lwp_exit(l);
               panic("proc_stoptrace");
               /* NOTREACHED */
       }

       /*
        * If there's a pending SIGKILL process it immediately.
        */
       if (p->p_xsig == SIGKILL ||
           sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
               mutex_exit(p->p_lock);
               return;
       }

       /*
        * If we are no longer traced, abandon this event signal.
        *
        * This avoids killing a process after detaching the debugger.
        */
       if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
               mutex_exit(p->p_lock);
               return;
       }

       /*
        * The process is already stopping.
        */
       if ((p->p_sflag & PS_STOPPING) != 0) {
               sigswitch_unlock_and_switch_away(l);
               mutex_enter(p->p_lock);
               goto repeat;
       }

       /* Needed for ktrace */
       ps = p->p_sigacts;
       action = SIGACTION_PS(ps, signo).sa_handler;
       mask = &l->l_sigmask;

       p->p_xsig = signo;
       p->p_sigctx.ps_lwp = ksi.ksi_lid;
       p->p_sigctx.ps_info = ksi.ksi_info;
       sigswitch(0, signo, false);

       if (ktrpoint(KTR_PSIG)) {
               if (p->p_emul->e_ktrpsig)
                       p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
               else
                       ktrpsig(signo, action, mask, &ksi);
       }
}

static int
filt_sigattach(struct knote *kn)
{
       struct proc *p = curproc;

       kn->kn_obj = p;
       kn->kn_flags |= EV_CLEAR;       /* automatically set */

       mutex_enter(p->p_lock);
       klist_insert(&p->p_klist, kn);
       mutex_exit(p->p_lock);

       return 0;
}

static void
filt_sigdetach(struct knote *kn)
{
       struct proc *p = kn->kn_obj;

       mutex_enter(p->p_lock);
       klist_remove(&p->p_klist, kn);
       mutex_exit(p->p_lock);
}

/*
* Signal knotes are shared with proc knotes, so we apply a mask to
* the hint in order to differentiate them from process hints.  This
* could be avoided by using a signal-specific knote list, but probably
* isn't worth the trouble.
*/
static int
filt_signal(struct knote *kn, long hint)
{

       if (hint & NOTE_SIGNAL) {
               hint &= ~NOTE_SIGNAL;

               if (kn->kn_id == hint)
                       kn->kn_data++;
       }
       return (kn->kn_data != 0);
}

const struct filterops sig_filtops = {
       .f_flags = FILTEROP_MPSAFE,
       .f_attach = filt_sigattach,
       .f_detach = filt_sigdetach,
       .f_event = filt_signal,
};