/*      $NetBSD: kern_proc.c,v 1.280 2025/06/02 16:27:04 andvar Exp $   */

/*-
* Copyright (c) 1999, 2006, 2007, 2008, 2020, 2023
*     The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 1982, 1986, 1989, 1991, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.280 2025/06/02 16:27:04 andvar Exp $");

#ifdef _KERNEL_OPT
#include "opt_kstack.h"
#include "opt_maxuprc.h"
#include "opt_dtrace.h"
#include "opt_compat_netbsd32.h"
#include "opt_kaslr.h"
#endif

#if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
   && !defined(_RUMPKERNEL)
#define COMPAT_NETBSD32
#endif

#include <sys/param.h>
#include <sys/types.h>

#include <sys/acct.h>
#include <sys/atomic.h>
#include <sys/buf.h>
#include <sys/compat_stub.h>
#include <sys/cpu.h>
#include <sys/dtrace_bsd.h>
#include <sys/exec.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/futex.h>
#include <sys/ioctl.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/namei.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/pserialize.h>
#include <sys/pset.h>
#include <sys/ras.h>
#include <sys/resourcevar.h>
#include <sys/sdt.h>
#include <sys/signalvar.h>
#include <sys/sleepq.h>
#include <sys/syscall_stats.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/tty.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <ufs/ufs/quota.h>

#include <uvm/uvm_extern.h>

/*
* Process lists.
*/

struct proclist         allproc         __cacheline_aligned;
struct proclist         zombproc        __cacheline_aligned;

kmutex_t                proc_lock       __cacheline_aligned;
static pserialize_t     proc_psz;

/*
* pid to lwp/proc lookup is done by indexing the pid_table array.
* Since pid numbers are only allocated when an empty slot
* has been found, there is no need to search any lists ever.
* (an orphaned pgrp will lock the slot, a session will lock
* the pgrp with the same number.)
* If the table is too small it is reallocated with twice the
* previous size and the entries 'unzipped' into the two halves.
* A linked list of free entries is passed through the pt_lwp
* field of 'free' items - set odd to be an invalid ptr.  Two
* additional bits are also used to indicate if the slot is
* currently occupied by a proc or lwp, and if the PID is
* hidden from certain kinds of lookups.  We thus require a
* minimum alignment for proc and lwp structures (LWPs are
* at least 32-byte aligned).
*/

struct pid_table {
       uintptr_t       pt_slot;
       struct pgrp     *pt_pgrp;
       pid_t           pt_pid;
};

#define PT_F_FREE               ((uintptr_t)__BIT(0))
#define PT_F_LWP                0       /* pseudo-flag */
#define PT_F_PROC               ((uintptr_t)__BIT(1))

#define PT_F_TYPEBITS           (PT_F_FREE|PT_F_PROC)
#define PT_F_ALLBITS            (PT_F_FREE|PT_F_PROC)

#define PT_VALID(s)             (((s) & PT_F_FREE) == 0)
#define PT_RESERVED(s)          ((s) == 0)
#define PT_NEXT(s)              ((u_int)(s) >> 1)
#define PT_SET_FREE(pid)        (((pid) << 1) | PT_F_FREE)
#define PT_SET_LWP(l)           ((uintptr_t)(l))
#define PT_SET_PROC(p)          (((uintptr_t)(p)) | PT_F_PROC)
#define PT_SET_RESERVED         0
#define PT_GET_LWP(s)           ((struct lwp *)((s) & ~PT_F_ALLBITS))
#define PT_GET_PROC(s)          ((struct proc *)((s) & ~PT_F_ALLBITS))
#define PT_GET_TYPE(s)          ((s) & PT_F_TYPEBITS)
#define PT_IS_LWP(s)            (PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
#define PT_IS_PROC(s)           (PT_GET_TYPE(s) == PT_F_PROC)

#define MIN_PROC_ALIGNMENT      (PT_F_ALLBITS + 1)

/*
* Table of process IDs (PIDs).
*/
static struct pid_table *pid_table      __read_mostly;

#define INITIAL_PID_TABLE_SIZE          (1 << 5)

/* Table mask, threshold for growing and number of allocated PIDs. */
static u_int            pid_tbl_mask    __read_mostly;
static u_int            pid_alloc_lim   __read_mostly;
static u_int            pid_alloc_cnt   __cacheline_aligned;

/* Next free, last free and maximum PIDs. */
static u_int            next_free_pt    __cacheline_aligned;
static u_int            last_free_pt    __cacheline_aligned;
static pid_t            pid_max         __read_mostly;

/* Components of the first process -- never freed. */

struct session session0 = {
       .s_count = 1,
       .s_sid = 0,
};
struct pgrp pgrp0 = {
       .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
       .pg_session = &session0,
};
filedesc_t filedesc0;
struct cwdinfo cwdi0 = {
       .cwdi_cmask = CMASK,
       .cwdi_refcnt = 1,
};
struct plimit limit0;
struct pstats pstat0;
struct vmspace vmspace0;
struct sigacts sigacts0;
struct proc proc0 = {
       .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
       .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
       .p_nlwps = 1,
       .p_nrlwps = 1,
       .p_pgrp = &pgrp0,
       .p_comm = "system",
       /*
        * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
        * when they exit.  init(8) can easily wait them out for us.
        */
       .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
       .p_stat = SACTIVE,
       .p_nice = NZERO,
       .p_emul = &emul_netbsd,
       .p_cwdi = &cwdi0,
       .p_limit = &limit0,
       .p_fd = &filedesc0,
       .p_vmspace = &vmspace0,
       .p_stats = &pstat0,
       .p_sigacts = &sigacts0,
#ifdef PROC0_MD_INITIALIZERS
       PROC0_MD_INITIALIZERS
#endif
};
kauth_cred_t cred0;

static const int        nofile  = NOFILE;
static const int        maxuprc = MAXUPRC;

static int sysctl_doeproc(SYSCTLFN_PROTO);
static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
static int sysctl_security_expose_address(SYSCTLFN_PROTO);

#ifdef KASLR
static int kern_expose_address = 0;
#else
static int kern_expose_address = 1;
#endif
/*
* The process list descriptors, used during pid allocation and
* by sysctl.  No locking on this data structure is needed since
* it is completely static.
*/
const struct proclist_desc proclists[] = {
       { &allproc      },
       { &zombproc     },
       { NULL          },
};

static struct pgrp *    pg_remove(pid_t);
static void             pg_delete(pid_t);
static void             orphanpg(struct pgrp *);

static specificdata_domain_t proc_specificdata_domain;

static pool_cache_t proc_cache;

static kauth_listener_t proc_listener;

static void fill_proc(const struct proc *, struct proc *, bool);
static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
static int fill_cwd(struct lwp *, pid_t, void *, size_t *);

static int
proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
   void *arg0, void *arg1, void *arg2, void *arg3)
{
       struct proc *p;
       int result;

       result = KAUTH_RESULT_DEFER;
       p = arg0;

       switch (action) {
       case KAUTH_PROCESS_CANSEE: {
               enum kauth_process_req req;

               req = (enum kauth_process_req)(uintptr_t)arg1;

               switch (req) {
               case KAUTH_REQ_PROCESS_CANSEE_ARGS:
               case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
               case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
               case KAUTH_REQ_PROCESS_CANSEE_EPROC:
                       result = KAUTH_RESULT_ALLOW;
                       break;

               case KAUTH_REQ_PROCESS_CANSEE_ENV:
                       if (kauth_cred_getuid(cred) !=
                           kauth_cred_getuid(p->p_cred) ||
                           kauth_cred_getuid(cred) !=
                           kauth_cred_getsvuid(p->p_cred))
                               break;

                       result = KAUTH_RESULT_ALLOW;

                       break;

               case KAUTH_REQ_PROCESS_CANSEE_KPTR:
                       if (!kern_expose_address)
                               break;

                       if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
                               break;

                       result = KAUTH_RESULT_ALLOW;

                       break;

               default:
                       break;
               }

               break;
               }

       case KAUTH_PROCESS_FORK: {
               int lnprocs = (int)(unsigned long)arg2;

               /*
                * Don't allow a nonprivileged user to use the last few
                * processes. The variable lnprocs is the current number of
                * processes, maxproc is the limit.
                */
               if (__predict_false((lnprocs >= maxproc - 5)))
                       break;

               result = KAUTH_RESULT_ALLOW;

               break;
               }

       case KAUTH_PROCESS_CORENAME:
       case KAUTH_PROCESS_STOPFLAG:
               if (proc_uidmatch(cred, p->p_cred) == 0)
                       result = KAUTH_RESULT_ALLOW;

               break;

       default:
               break;
       }

       return result;
}

static int
proc_ctor(void *arg __unused, void *obj, int flags __unused)
{
       struct proc *p = obj;

       memset(p, 0, sizeof(*p));
       klist_init(&p->p_klist);

       /*
        * There is no need for a proc_dtor() to do a klist_fini(),
        * since knote_proc_exit() ensures that p->p_klist is empty
        * when a process exits.
        */

       return 0;
}

static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);

/*
* Initialize global process hashing structures.
*/
void
procinit(void)
{
       const struct proclist_desc *pd;
       u_int i;
#define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))

       for (pd = proclists; pd->pd_list != NULL; pd++)
               LIST_INIT(pd->pd_list);

       mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);

       proc_psz = pserialize_create();

       pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
           * sizeof(struct pid_table), KM_SLEEP);
       pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
       pid_max = PID_MAX;

       /* Set free list running through table...
          Preset 'use count' above PID_MAX so we allocate pid 1 next. */
       for (i = 0; i <= pid_tbl_mask; i++) {
               pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
               pid_table[i].pt_pgrp = 0;
               pid_table[i].pt_pid = 0;
       }
       /* slot 0 is just grabbed */
       next_free_pt = 1;
       /* Need to fix last entry. */
       last_free_pt = pid_tbl_mask;
       pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
       /* point at which we grow table - to avoid reusing pids too often */
       pid_alloc_lim = pid_tbl_mask - 1;
#undef LINK_EMPTY

       /* Reserve PID 1 for init(8). */        /* XXX slightly gross */
       mutex_enter(&proc_lock);
       if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
               panic("failed to reserve PID 1 for init(8)");
       mutex_exit(&proc_lock);

       proc_specificdata_domain = specificdata_domain_create();
       KASSERT(proc_specificdata_domain != NULL);

       size_t proc_alignment = coherency_unit;
       if (proc_alignment < MIN_PROC_ALIGNMENT)
               proc_alignment = MIN_PROC_ALIGNMENT;

       proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
           "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);

       proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
           proc_listener_cb, NULL);
}

void
procinit_sysctl(void)
{
       static struct sysctllog *clog;

       sysctl_createv(&clog, 0, NULL, NULL,
                      CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
                      CTLTYPE_INT, "expose_address",
                      SYSCTL_DESCR("Enable exposing kernel addresses"),
                      sysctl_security_expose_address, 0,
                      &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
       sysctl_createv(&clog, 0, NULL, NULL,
                      CTLFLAG_PERMANENT,
                      CTLTYPE_NODE, "proc",
                      SYSCTL_DESCR("System-wide process information"),
                      sysctl_doeproc, 0, NULL, 0,
                      CTL_KERN, KERN_PROC, CTL_EOL);
       sysctl_createv(&clog, 0, NULL, NULL,
                      CTLFLAG_PERMANENT,
                      CTLTYPE_NODE, "proc2",
                      SYSCTL_DESCR("Machine-independent process information"),
                      sysctl_doeproc, 0, NULL, 0,
                      CTL_KERN, KERN_PROC2, CTL_EOL);
       sysctl_createv(&clog, 0, NULL, NULL,
                      CTLFLAG_PERMANENT,
                      CTLTYPE_NODE, "proc_args",
                      SYSCTL_DESCR("Process argument information"),
                      sysctl_kern_proc_args, 0, NULL, 0,
                      CTL_KERN, KERN_PROC_ARGS, CTL_EOL);

       /*
         "nodes" under these:

         KERN_PROC_ALL
         KERN_PROC_PID pid
         KERN_PROC_PGRP pgrp
         KERN_PROC_SESSION sess
         KERN_PROC_TTY tty
         KERN_PROC_UID uid
         KERN_PROC_RUID uid
         KERN_PROC_GID gid
         KERN_PROC_RGID gid

         all in all, probably not worth the effort...
       */
}

/*
* Initialize process 0.
*/
void
proc0_init(void)
{
       struct proc *p;
       struct pgrp *pg;
       struct rlimit *rlim;
       rlim_t lim;
       int i;

       p = &proc0;
       pg = &pgrp0;

       mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
       mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
       p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);

       rw_init(&p->p_reflock);
       cv_init(&p->p_waitcv, "wait");
       cv_init(&p->p_lwpcv, "lwpwait");

       LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);

       KASSERT(lwp0.l_lid == 0);
       pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
       LIST_INSERT_HEAD(&allproc, p, p_list);

       pid_table[lwp0.l_lid].pt_pgrp = pg;
       LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);

#ifdef __HAVE_SYSCALL_INTERN
       (*p->p_emul->e_syscall_intern)(p);
#endif

       /* Create credentials. */
       cred0 = kauth_cred_alloc();
       p->p_cred = cred0;

       /* Create the CWD info. */
       rw_init(&cwdi0.cwdi_lock);

       /* Create the limits structures. */
       mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);

       rlim = limit0.pl_rlimit;
       for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
               rlim[i].rlim_cur = RLIM_INFINITY;
               rlim[i].rlim_max = RLIM_INFINITY;
       }

       rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
       rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;

       rlim[RLIMIT_NPROC].rlim_max = maxproc;
       rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;

       lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
       rlim[RLIMIT_RSS].rlim_max = lim;
       rlim[RLIMIT_MEMLOCK].rlim_max = lim;
       rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;

       rlim[RLIMIT_NTHR].rlim_max = maxlwp;
       rlim[RLIMIT_NTHR].rlim_cur = maxlwp / 2;

       /* Note that default core name has zero length. */
       limit0.pl_corename = defcorename;
       limit0.pl_cnlen = 0;
       limit0.pl_refcnt = 1;
       limit0.pl_writeable = false;
       limit0.pl_sv_limit = NULL;

       /* Configure virtual memory system, set vm rlimits. */
       uvm_init_limits(p);

       /* Initialize file descriptor table for proc0. */
       fd_init(&filedesc0);

       /*
        * Initialize proc0's vmspace, which uses the kernel pmap.
        * All kernel processes (which never have user space mappings)
        * share proc0's vmspace, and thus, the kernel pmap.
        */
       uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
           trunc_page(VM_MAXUSER_ADDRESS),
#ifdef __USE_TOPDOWN_VM
           true
#else
           false
#endif
           );

       /* Initialize signal state for proc0. XXX IPL_SCHED */
       mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
       siginit(p);

       proc_initspecific(p);
       kdtrace_proc_ctor(NULL, p);
}

/*
* Session reference counting.
*/

void
proc_sesshold(struct session *ss)
{

       KASSERT(mutex_owned(&proc_lock));
       ss->s_count++;
}

void
proc_sessrele(struct session *ss)
{
       struct pgrp *pg;

       KASSERT(mutex_owned(&proc_lock));
       KASSERT(ss->s_count > 0);

       /*
        * We keep the pgrp with the same id as the session in order to
        * stop a process being given the same pid.  Since the pgrp holds
        * a reference to the session, it must be a 'zombie' pgrp by now.
        */
       if (--ss->s_count == 0) {
               pg = pg_remove(ss->s_sid);
       } else {
               pg = NULL;
               ss = NULL;
       }

       mutex_exit(&proc_lock);

       if (pg)
               kmem_free(pg, sizeof(struct pgrp));
       if (ss)
               kmem_free(ss, sizeof(struct session));
}

/*
* Check that the specified process group is in the session of the
* specified process.
* Treats -ve ids as process ids.
* Used to validate TIOCSPGRP requests.
*/
int
pgid_in_session(struct proc *p, pid_t pg_id)
{
       struct pgrp *pgrp;
       struct session *session;
       int error;

       if (pg_id <= INT_MIN)
               return SET_ERROR(EINVAL);

       mutex_enter(&proc_lock);
       if (pg_id < 0) {
               struct proc *p1 = proc_find(-pg_id);
               if (p1 == NULL) {
                       error = SET_ERROR(EINVAL);
                       goto fail;
               }
               pgrp = p1->p_pgrp;
       } else {
               pgrp = pgrp_find(pg_id);
               if (pgrp == NULL) {
                       error = SET_ERROR(EINVAL);
                       goto fail;
               }
       }
       session = pgrp->pg_session;
       error = (session != p->p_pgrp->pg_session) ? SET_ERROR(EPERM) : 0;
fail:
       mutex_exit(&proc_lock);
       return error;
}

/*
* p_inferior: is p an inferior of q?
*/
static inline bool
p_inferior(struct proc *p, struct proc *q)
{

       KASSERT(mutex_owned(&proc_lock));

       for (; p != q; p = p->p_pptr)
               if (p->p_pid == 0)
                       return false;
       return true;
}

/*
* proc_find_lwp: locate an lwp in said proc by the ID.
*
* => Must be called with p::p_lock held.
* => LSIDL lwps are not returned because they are only partially
*    constructed while occupying the slot.
* => Callers need to be careful about lwp::l_stat of the returned
*    lwp.
*/
struct lwp *
proc_find_lwp(proc_t *p, pid_t pid)
{
       struct pid_table *pt;
       unsigned pt_mask;
       struct lwp *l = NULL;
       uintptr_t slot;
       int s;

       KASSERT(mutex_owned(p->p_lock));

       /*
        * Look in the pid_table.  This is done unlocked inside a
        * pserialize read section covering pid_table's memory
        * allocation only, so take care to read things in the correct
        * order:
        *
        * 1. First read the table mask -- this only ever increases, in
        *    expand_pid_table, so a stale value is safely
        *    conservative.
        *
        * 2. Next read the pid table -- this is always set _before_
        *    the mask increases, so if we see a new table and stale
        *    mask, the mask is still valid for the table.
        */
       s = pserialize_read_enter();
       pt_mask = atomic_load_acquire(&pid_tbl_mask);
       pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
       slot = atomic_load_consume(&pt->pt_slot);
       if (__predict_false(!PT_IS_LWP(slot))) {
               pserialize_read_exit(s);
               return NULL;
       }

       /*
        * Check to see if the LWP is from the correct process.  We won't
        * see entries in pid_table from a prior process that also used "p",
        * by virtue of the fact that allocating "p" means all prior updates
        * to dependant data structures are visible to this thread.
        */
       l = PT_GET_LWP(slot);
       if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
               pserialize_read_exit(s);
               return NULL;
       }

       /*
        * We now know that p->p_lock holds this LWP stable.
        *
        * If the status is not LSIDL, it means the LWP is intended to be
        * findable by LID and l_lid cannot change behind us.
        *
        * No need to acquire the LWP's lock to check for LSIDL, as
        * p->p_lock must be held to transition in and out of LSIDL.
        * Any other observed state of is no particular interest.
        */
       pserialize_read_exit(s);
       return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
}

/*
* proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
*
* => Called in a pserialize read section with no locks held.
* => LSIDL lwps are not returned because they are only partially
*    constructed while occupying the slot.
* => Callers need to be careful about lwp::l_stat of the returned
*    lwp.
* => If an LWP is found, it's returned locked.
*/
struct lwp *
proc_find_lwp_unlocked(proc_t *p, pid_t pid)
{
       struct pid_table *pt;
       unsigned pt_mask;
       struct lwp *l = NULL;
       uintptr_t slot;

       KASSERT(pserialize_in_read_section());

       /*
        * Look in the pid_table.  This is done unlocked inside a
        * pserialize read section covering pid_table's memory
        * allocation only, so take care to read things in the correct
        * order:
        *
        * 1. First read the table mask -- this only ever increases, in
        *    expand_pid_table, so a stale value is safely
        *    conservative.
        *
        * 2. Next read the pid table -- this is always set _before_
        *    the mask increases, so if we see a new table and stale
        *    mask, the mask is still valid for the table.
        */
       pt_mask = atomic_load_acquire(&pid_tbl_mask);
       pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
       slot = atomic_load_consume(&pt->pt_slot);
       if (__predict_false(!PT_IS_LWP(slot))) {
               return NULL;
       }

       /*
        * Lock the LWP we found to get it stable.  If it's embryonic or
        * reaped (LSIDL) then none of the other fields can safely be
        * checked.
        */
       l = PT_GET_LWP(slot);
       lwp_lock(l);
       if (__predict_false(l->l_stat == LSIDL)) {
               lwp_unlock(l);
               return NULL;
       }

       /*
        * l_proc and l_lid are now known stable because the LWP is not
        * LSIDL, so check those fields too to make sure we found the
        * right thing.
        */
       if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
               lwp_unlock(l);
               return NULL;
       }

       /* Everything checks out, return it locked. */
       return l;
}

/*
* proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
* on its containing proc.
*
* => Similar to proc_find_lwp(), but does not require you to have
*    the proc a priori.
* => Also returns proc * to caller, with p::p_lock held.
* => Same caveats apply.
*/
struct lwp *
proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
{
       struct pid_table *pt;
       struct proc *p = NULL;
       struct lwp *l = NULL;
       uintptr_t slot;

       KASSERT(pp != NULL);
       mutex_enter(&proc_lock);
       pt = &pid_table[pid & pid_tbl_mask];

       slot = pt->pt_slot;
       if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
               l = PT_GET_LWP(slot);
               p = l->l_proc;
               mutex_enter(p->p_lock);
               if (__predict_false(l->l_stat == LSIDL)) {
                       mutex_exit(p->p_lock);
                       l = NULL;
                       p = NULL;
               }
       }
       mutex_exit(&proc_lock);

       KASSERT(p == NULL || mutex_owned(p->p_lock));
       *pp = p;
       return l;
}

/*
* proc_find_raw_pid_table_locked: locate a process by the ID.
*
* => Must be called with proc_lock held.
*/
static proc_t *
proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
{
       struct pid_table *pt;
       proc_t *p = NULL;
       uintptr_t slot;

       /* No - used by DDB.  KASSERT(mutex_owned(&proc_lock)); */
       pt = &pid_table[pid & pid_tbl_mask];

       slot = pt->pt_slot;
       if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
               /*
                * When looking up processes, require a direct match
                * on the PID assigned to the proc, not just one of
                * its LWPs.
                *
                * N.B. We require lwp::l_proc of LSIDL LWPs to be
                * valid here.
                */
               p = PT_GET_LWP(slot)->l_proc;
               if (__predict_false(p->p_pid != pid && !any_lwpid))
                       p = NULL;
       } else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
               p = PT_GET_PROC(slot);
       }
       return p;
}

proc_t *
proc_find_raw(pid_t pid)
{

       return proc_find_raw_pid_table_locked(pid, false);
}

static proc_t *
proc_find_internal(pid_t pid, bool any_lwpid)
{
       proc_t *p;

       KASSERT(mutex_owned(&proc_lock));

       p = proc_find_raw_pid_table_locked(pid, any_lwpid);
       if (__predict_false(p == NULL)) {
               return NULL;
       }

       /*
        * Only allow live processes to be found by PID.
        * XXX: p_stat might change, since proc unlocked.
        */
       if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
               return p;
       }
       return NULL;
}

proc_t *
proc_find(pid_t pid)
{
       return proc_find_internal(pid, false);
}

proc_t *
proc_find_lwpid(pid_t pid)
{
       return proc_find_internal(pid, true);
}

/*
* pgrp_find: locate a process group by the ID.
*
* => Must be called with proc_lock held.
*/
struct pgrp *
pgrp_find(pid_t pgid)
{
       struct pgrp *pg;

       KASSERT(mutex_owned(&proc_lock));

       pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;

       /*
        * Cannot look up a process group that only exists because the
        * session has not died yet (traditional).
        */
       if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
               return NULL;
       }
       return pg;
}

static void
expand_pid_table(void)
{
       size_t pt_size, tsz;
       struct pid_table *n_pt, *new_pt;
       uintptr_t slot;
       struct pgrp *pgrp;
       pid_t pid, rpid;
       u_int i;
       uint new_pt_mask;

       KASSERT(mutex_owned(&proc_lock));

       /* Unlock the pid_table briefly to allocate memory. */
       pt_size = pid_tbl_mask + 1;
       mutex_exit(&proc_lock);

       tsz = pt_size * 2 * sizeof(struct pid_table);
       new_pt = kmem_alloc(tsz, KM_SLEEP);
       new_pt_mask = pt_size * 2 - 1;

       /* XXX For now.  The practical limit is much lower anyway. */
       KASSERT(new_pt_mask <= FUTEX_TID_MASK);

       mutex_enter(&proc_lock);
       if (pt_size != pid_tbl_mask + 1) {
               /* Another process beat us to it... */
               mutex_exit(&proc_lock);
               kmem_free(new_pt, tsz);
               goto out;
       }

       /*
        * Copy entries from old table into new one.
        * If 'pid' is 'odd' we need to place in the upper half,
        * even pid's to the lower half.
        * Free items stay in the low half so we don't have to
        * fixup the reference to them.
        * We stuff free items on the front of the freelist
        * because we can't write to unmodified entries.
        * Processing the table backwards maintains a semblance
        * of issuing pid numbers that increase with time.
        */
       i = pt_size - 1;
       n_pt = new_pt + i;
       for (; ; i--, n_pt--) {
               slot = pid_table[i].pt_slot;
               pgrp = pid_table[i].pt_pgrp;
               if (!PT_VALID(slot)) {
                       /* Up 'use count' so that link is valid */
                       pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
                       rpid = 0;
                       slot = PT_SET_FREE(pid);
                       if (pgrp)
                               pid = pgrp->pg_id;
               } else {
                       pid = pid_table[i].pt_pid;
                       rpid = pid;
               }

               /* Save entry in appropriate half of table */
               n_pt[pid & pt_size].pt_slot = slot;
               n_pt[pid & pt_size].pt_pgrp = pgrp;
               n_pt[pid & pt_size].pt_pid = rpid;

               /* Put other piece on start of free list */
               pid = (pid ^ pt_size) & ~pid_tbl_mask;
               n_pt[pid & pt_size].pt_slot =
                       PT_SET_FREE((pid & ~pt_size) | next_free_pt);
               n_pt[pid & pt_size].pt_pgrp = 0;
               n_pt[pid & pt_size].pt_pid = 0;

               next_free_pt = i | (pid & pt_size);
               if (i == 0)
                       break;
       }

       /* Save old table size and switch tables */
       tsz = pt_size * sizeof(struct pid_table);
       n_pt = pid_table;
       atomic_store_release(&pid_table, new_pt);
       KASSERT(new_pt_mask >= pid_tbl_mask);
       atomic_store_release(&pid_tbl_mask, new_pt_mask);

       /*
        * pid_max starts as PID_MAX (= 30000), once we have 16384
        * allocated pids we need it to be larger!
        */
       if (pid_tbl_mask > PID_MAX) {
               pid_max = pid_tbl_mask * 2 + 1;
               pid_alloc_lim |= pid_alloc_lim << 1;
       } else
               pid_alloc_lim <<= 1;    /* doubles number of free slots... */

       mutex_exit(&proc_lock);

       /*
        * Make sure that unlocked access to the old pid_table is complete
        * and then free it.
        */
       pserialize_perform(proc_psz);
       kmem_free(n_pt, tsz);

out:   /* Return with proc_lock held again. */
       mutex_enter(&proc_lock);
}

struct proc *
proc_alloc(void)
{
       struct proc *p;

       p = pool_cache_get(proc_cache, PR_WAITOK);
       p->p_stat = SIDL;                       /* protect against others */
       proc_initspecific(p);
       kdtrace_proc_ctor(NULL, p);

       /*
        * Allocate a placeholder in the pid_table.  When we create the
        * first LWP for this process, it will take ownership of the
        * slot.
        */
       if (__predict_false(proc_alloc_pid(p) == -1)) {
               /* Allocating the PID failed; unwind. */
               proc_finispecific(p);
               proc_free_mem(p);
               p = NULL;
       }
       return p;
}

/*
* proc_alloc_pid_slot: allocate PID and record the occupant so that
* proc_find_raw() can find it by the PID.
*/
static pid_t __noinline
proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
{
       struct pid_table *pt;
       pid_t pid;
       int nxt;

       KASSERT(mutex_owned(&proc_lock));

       for (;;expand_pid_table()) {
               if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
                       /* ensure pids cycle through 2000+ values */
                       continue;
               }
               /*
                * The first user process *must* be given PID 1.
                * it has already been reserved for us.  This
                * will be coming in from the proc_alloc() call
                * above, and the entry will be usurped later when
                * the first user LWP is created.
                * XXX this is slightly gross.
                */
               if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
                                   p != &proc0)) {
                       KASSERT(PT_IS_PROC(slot));
                       pt = &pid_table[1];
                       pt->pt_slot = slot;
                       return 1;
               }
               pt = &pid_table[next_free_pt];
#ifdef DIAGNOSTIC
               if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
                       panic("proc_alloc: slot busy");
#endif
               nxt = PT_NEXT(pt->pt_slot);
               if (nxt & pid_tbl_mask)
                       break;
               /* Table full - expand (NB last entry not used....) */
       }

       /* pid is 'saved use count' + 'size' + entry */
       pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
       if ((uint)pid > (uint)pid_max)
               pid &= pid_tbl_mask;
       next_free_pt = nxt & pid_tbl_mask;

       /* XXX For now.  The practical limit is much lower anyway. */
       KASSERT(pid <= FUTEX_TID_MASK);

       /* Grab table slot */
       pt->pt_slot = slot;

       KASSERT(pt->pt_pid == 0);
       pt->pt_pid = pid;
       pid_alloc_cnt++;

       return pid;
}

pid_t
proc_alloc_pid(struct proc *p)
{
       pid_t pid;

       KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
       KASSERT(p->p_stat == SIDL);

       mutex_enter(&proc_lock);
       pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
       if (pid != -1)
               p->p_pid = pid;
       mutex_exit(&proc_lock);

       return pid;
}

pid_t
proc_alloc_lwpid(struct proc *p, struct lwp *l)
{
       struct pid_table *pt;
       pid_t pid;

       KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
       KASSERT(l->l_proc == p);
       KASSERT(l->l_stat == LSIDL);

       /*
        * For unlocked lookup in proc_find_lwp(), make sure l->l_proc
        * is globally visible before the LWP becomes visible via the
        * pid_table.
        */
#ifndef __HAVE_ATOMIC_AS_MEMBAR
       membar_producer();
#endif

       /*
        * If the slot for p->p_pid currently points to the proc,
        * then we should usurp this ID for the LWP.  This happens
        * at least once per process (for the first LWP), and can
        * happen again if the first LWP for a process exits and
        * before the process creates another.
        */
       mutex_enter(&proc_lock);
       pid = p->p_pid;
       pt = &pid_table[pid & pid_tbl_mask];
       KASSERT(pt->pt_pid == pid);
       if (PT_IS_PROC(pt->pt_slot)) {
               KASSERT(PT_GET_PROC(pt->pt_slot) == p);
               l->l_lid = pid;
               pt->pt_slot = PT_SET_LWP(l);
       } else {
               /* Need to allocate a new slot. */
               pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
               if (pid != -1)
                       l->l_lid = pid;
       }
       mutex_exit(&proc_lock);

       return pid;
}

static void __noinline
proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
{
       struct pid_table *pt;

       KASSERT(mutex_owned(&proc_lock));

       pt = &pid_table[pid & pid_tbl_mask];

       KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
       KASSERT(pt->pt_pid == pid);

       /* save pid use count in slot */
       pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
       pt->pt_pid = 0;

       if (pt->pt_pgrp == NULL) {
               /* link last freed entry onto ours */
               pid &= pid_tbl_mask;
               pt = &pid_table[last_free_pt];
               pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
               pt->pt_pid = 0;
               last_free_pt = pid;
               pid_alloc_cnt--;
       }
}

/*
* Free a process id - called from proc_free (in kern_exit.c)
*
* Called with the proc_lock held.
*/
void
proc_free_pid(pid_t pid)
{

       KASSERT(mutex_owned(&proc_lock));
       proc_free_pid_internal(pid, PT_F_PROC);
}

/*
* Free a process id used by an LWP.  If this was the process's
* first LWP, we convert the slot to point to the process; the
* entry will get cleaned up later when the process finishes exiting.
*
* If not, then it's the same as proc_free_pid().
*/
void
proc_free_lwpid(struct proc *p, pid_t pid)
{

       KASSERT(mutex_owned(&proc_lock));

       if (__predict_true(p->p_pid == pid)) {
               struct pid_table *pt;

               pt = &pid_table[pid & pid_tbl_mask];

               KASSERT(pt->pt_pid == pid);
               KASSERT(PT_IS_LWP(pt->pt_slot));
               KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);

               pt->pt_slot = PT_SET_PROC(p);
               return;
       }
       proc_free_pid_internal(pid, PT_F_LWP);
}

void
proc_free_mem(struct proc *p)
{

       kdtrace_proc_dtor(NULL, p);
       pool_cache_put(proc_cache, p);
}

/*
* proc_enterpgrp: move p to a new or existing process group (and session).
*
* If we are creating a new pgrp, the pgid should equal
* the calling process' pid.
* If is only valid to enter a process group that is in the session
* of the process.
* Also mksess should only be set if we are creating a process group
*
* Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
*/
int
proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
{
       struct pgrp *new_pgrp, *pgrp;
       struct session *sess;
       struct proc *p;
       int rval;
       pid_t pg_id = NO_PGID;

       /* Allocate data areas we might need before doing any validity checks */
       sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
       new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);

       mutex_enter(&proc_lock);

       /* Check pgrp exists or can be created */
       pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
       if (pgrp != NULL && pgrp->pg_id != pgid)
               goto eperm;

       /* Can only set another process under restricted circumstances. */
       if (pid != curp->p_pid) {
               /* Must exist and be one of our children... */
               p = proc_find_internal(pid, false);
               if (p == NULL || !p_inferior(p, curp)) {
                       rval = SET_ERROR(ESRCH);
                       goto done;
               }
               /* ... in the same session... */
               if (sess != NULL || p->p_session != curp->p_session)
                       goto eperm;
               /* ... existing pgid must be in same session ... */
               if (pgrp != NULL && pgrp->pg_session != p->p_session)
                       goto eperm;
               /* ... and not done an exec. */
               if (p->p_flag & PK_EXEC) {
                       rval = SET_ERROR(EACCES);
                       goto done;
               }
       } else {
               /* ... setsid() cannot re-enter a pgrp */
               if (mksess && (curp->p_pgid == curp->p_pid ||
                   pgrp_find(curp->p_pid)))
                       goto eperm;
               p = curp;
       }

       /* Changing the process group/session of a session
          leader is definitely off limits. */
       if (SESS_LEADER(p)) {
               if (sess == NULL && p->p_pgrp == pgrp) {
                       /* unless it's a definite noop */
                       rval = 0;
                       goto done;
               }
               goto eperm;
       }

       /* Can only create a process group with id of process */
       if (pgrp == NULL && pgid != pid)
               goto eperm;

       /* Can only create a session if creating pgrp */
       if (sess != NULL && pgrp != NULL)
               goto eperm;

       /* Check we allocated memory for a pgrp... */
       if (pgrp == NULL && new_pgrp == NULL)
               goto eperm;

       /* Don't attach to 'zombie' pgrp */
       if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
               goto eperm;

       /* Expect to succeed now */
       rval = 0;

       if (pgrp == p->p_pgrp)
               /* nothing to do */
               goto done;

       /* Ok all setup, link up required structures */

       if (pgrp == NULL) {
               pgrp = new_pgrp;
               new_pgrp = NULL;
               if (sess != NULL) {
                       sess->s_sid = p->p_pid;
                       sess->s_leader = p;
                       sess->s_count = 1;
                       sess->s_ttyvp = NULL;
                       sess->s_ttyp = NULL;
                       sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
                       memcpy(sess->s_login, p->p_session->s_login,
                           sizeof(sess->s_login));
                       p->p_lflag &= ~PL_CONTROLT;
               } else {
                       sess = p->p_pgrp->pg_session;
                       proc_sesshold(sess);
               }
               pgrp->pg_session = sess;
               sess = NULL;

               pgrp->pg_id = pgid;
               LIST_INIT(&pgrp->pg_members);
#ifdef DIAGNOSTIC
               if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
                       panic("enterpgrp: pgrp table slot in use");
               if (__predict_false(mksess && p != curp))
                       panic("enterpgrp: mksession and p != curproc");
#endif
               pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
               pgrp->pg_jobc = 0;
       }

       /*
        * Adjust eligibility of affected pgrps to participate in job control.
        * Increment eligibility counts before decrementing, otherwise we
        * could reach 0 spuriously during the first call.
        */
       fixjobc(p, pgrp, 1);
       fixjobc(p, p->p_pgrp, 0);

       /* Interlock with ttread(). */
       mutex_spin_enter(&tty_lock);

       /* Move process to requested group. */
       LIST_REMOVE(p, p_pglist);
       if (LIST_EMPTY(&p->p_pgrp->pg_members))
               /* defer delete until we've dumped the lock */
               pg_id = p->p_pgrp->pg_id;
       p->p_pgrp = pgrp;
       LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);

       /* Done with the swap; we can release the tty mutex. */
       mutex_spin_exit(&tty_lock);
       goto done;

eperm:
       rval = SET_ERROR(EPERM);
done:
       if (pg_id != NO_PGID) {
               /* Releases proc_lock. */
               pg_delete(pg_id);
       } else {
               mutex_exit(&proc_lock);
       }
       if (sess != NULL)
               kmem_free(sess, sizeof(*sess));
       if (new_pgrp != NULL)
               kmem_free(new_pgrp, sizeof(*new_pgrp));
#ifdef DEBUG_PGRP
       if (__predict_false(rval))
               printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
                       pid, pgid, mksess, curp->p_pid, rval);
#endif
       return rval;
}

/*
* proc_leavepgrp: remove a process from its process group.
*  => must be called with the proc_lock held, which will be released;
*/
void
proc_leavepgrp(struct proc *p)
{
       struct pgrp *pgrp;

       KASSERT(mutex_owned(&proc_lock));

       /* Interlock with ttread() */
       mutex_spin_enter(&tty_lock);
       pgrp = p->p_pgrp;
       LIST_REMOVE(p, p_pglist);
       p->p_pgrp = NULL;
       mutex_spin_exit(&tty_lock);

       if (LIST_EMPTY(&pgrp->pg_members)) {
               /* Releases proc_lock. */
               pg_delete(pgrp->pg_id);
       } else {
               mutex_exit(&proc_lock);
       }
}

/*
* pg_remove: remove a process group from the table.
*  => must be called with the proc_lock held;
*  => returns process group to free;
*/
static struct pgrp *
pg_remove(pid_t pg_id)
{
       struct pgrp *pgrp;
       struct pid_table *pt;

       KASSERT(mutex_owned(&proc_lock));

       pt = &pid_table[pg_id & pid_tbl_mask];
       pgrp = pt->pt_pgrp;

       KASSERT(pgrp != NULL);
       KASSERT(pgrp->pg_id == pg_id);
       KASSERT(LIST_EMPTY(&pgrp->pg_members));

       pt->pt_pgrp = NULL;

       if (!PT_VALID(pt->pt_slot)) {
               /* Orphaned pgrp, put slot onto free list. */
               KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
               pg_id &= pid_tbl_mask;
               pt = &pid_table[last_free_pt];
               pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
               KASSERT(pt->pt_pid == 0);
               last_free_pt = pg_id;
               pid_alloc_cnt--;
       }
       return pgrp;
}

/*
* pg_delete: delete and free a process group.
*  => must be called with the proc_lock held, which will be released.
*/
static void
pg_delete(pid_t pg_id)
{
       struct pgrp *pg;
       struct tty *ttyp;
       struct session *ss;

       KASSERT(mutex_owned(&proc_lock));

       pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
       if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
               mutex_exit(&proc_lock);
               return;
       }

       ss = pg->pg_session;

       /* Remove reference (if any) from tty to this process group */
       mutex_spin_enter(&tty_lock);
       ttyp = ss->s_ttyp;
       if (ttyp != NULL && ttyp->t_pgrp == pg) {
               ttyp->t_pgrp = NULL;
               KASSERT(ttyp->t_session == ss);
       }
       mutex_spin_exit(&tty_lock);

       /*
        * The leading process group in a session is freed by proc_sessrele(),
        * if last reference.  It will also release the locks.
        */
       pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
       proc_sessrele(ss);

       if (pg != NULL) {
               /* Free it, if was not done above. */
               kmem_free(pg, sizeof(struct pgrp));
       }
}

/*
* Adjust pgrp jobc counters when specified process changes process group.
* We count the number of processes in each process group that "qualify"
* the group for terminal job control (those with a parent in a different
* process group of the same session).  If that count reaches zero, the
* process group becomes orphaned.  Check both the specified process'
* process group and that of its children.
* entering == 0 => p is leaving specified group.
* entering == 1 => p is entering specified group.
*
* Call with proc_lock held.
*/
void
fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
{
       struct pgrp *hispgrp;
       struct session *mysession = pgrp->pg_session;
       struct proc *child;

       KASSERT(mutex_owned(&proc_lock));

       /*
        * Check p's parent to see whether p qualifies its own process
        * group; if so, adjust count for p's process group.
        */
       hispgrp = p->p_pptr->p_pgrp;
       if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
               if (entering) {
                       pgrp->pg_jobc++;
                       p->p_lflag &= ~PL_ORPHANPG;
               } else {
                       /* KASSERT(pgrp->pg_jobc > 0); */
                       if (--pgrp->pg_jobc == 0)
                               orphanpg(pgrp);
               }
       }

       /*
        * Check this process' children to see whether they qualify
        * their process groups; if so, adjust counts for children's
        * process groups.
        */
       LIST_FOREACH(child, &p->p_children, p_sibling) {
               hispgrp = child->p_pgrp;
               if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
                   !P_ZOMBIE(child)) {
                       if (entering) {
                               child->p_lflag &= ~PL_ORPHANPG;
                               hispgrp->pg_jobc++;
                       } else {
                               KASSERT(hispgrp->pg_jobc > 0);
                               if (--hispgrp->pg_jobc == 0)
                                       orphanpg(hispgrp);
                       }
               }
       }
}

/*
* A process group has become orphaned;
* if there are any stopped processes in the group,
* hang-up all process in that group.
*
* Call with proc_lock held.
*/
static void
orphanpg(struct pgrp *pg)
{
       struct proc *p;

       KASSERT(mutex_owned(&proc_lock));

       LIST_FOREACH(p, &pg->pg_members, p_pglist) {
               if (p->p_stat == SSTOP) {
                       p->p_lflag |= PL_ORPHANPG;
                       psignal(p, SIGHUP);
                       psignal(p, SIGCONT);
               }
       }
}

#ifdef DDB
#include <ddb/db_output.h>
void pidtbl_dump(void);
void
pidtbl_dump(void)
{
       struct pid_table *pt;
       struct proc *p;
       struct pgrp *pgrp;
       uintptr_t slot;
       int id;

       db_printf("pid table %p size %x, next %x, last %x\n",
               pid_table, pid_tbl_mask+1,
               next_free_pt, last_free_pt);
       for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
               slot = pt->pt_slot;
               if (!PT_VALID(slot) && !pt->pt_pgrp)
                       continue;
               if (PT_IS_LWP(slot)) {
                       p = PT_GET_LWP(slot)->l_proc;
               } else if (PT_IS_PROC(slot)) {
                       p = PT_GET_PROC(slot);
               } else {
                       p = NULL;
               }
               db_printf("  id %x: ", id);
               if (p != NULL)
                       db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
                               pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
               else
                       db_printf("next %x use %x\n",
                               PT_NEXT(slot) & pid_tbl_mask,
                               PT_NEXT(slot) & ~pid_tbl_mask);
               if ((pgrp = pt->pt_pgrp)) {
                       db_printf("\tsession %p, sid %d, count %d, login %s\n",
                           pgrp->pg_session, pgrp->pg_session->s_sid,
                           pgrp->pg_session->s_count,
                           pgrp->pg_session->s_login);
                       db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
                           pgrp, pgrp->pg_id, pgrp->pg_jobc,
                           LIST_FIRST(&pgrp->pg_members));
                       LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
                               db_printf("\t\tpid %d addr %p pgrp %p %s\n",
                                   p->p_pid, p, p->p_pgrp, p->p_comm);
                       }
               }
       }
}
#endif /* DDB */

#ifdef KSTACK_CHECK_MAGIC

#define KSTACK_MAGIC    0xdeadbeaf

/* XXX should be per process basis? */
static int      kstackleftmin = KSTACK_SIZE;
static int      kstackleftthres = KSTACK_SIZE / 8;

void
kstack_setup_magic(const struct lwp *l)
{
       uint32_t *ip;
       uint32_t const *end;

       KASSERT(l != NULL);
       KASSERT(l != &lwp0);

       /*
        * fill all the stack with magic number
        * so that later modification on it can be detected.
        */
       ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
       end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
       for (; ip < end; ip++) {
               *ip = KSTACK_MAGIC;
       }
}

void
kstack_check_magic(const struct lwp *l)
{
       uint32_t const *ip, *end;
       int stackleft;

       KASSERT(l != NULL);

       /* don't check proc0 */ /*XXX*/
       if (l == &lwp0)
               return;

#ifdef __MACHINE_STACK_GROWS_UP
       /* stack grows upwards (eg. hppa) */
       ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
       end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
       for (ip--; ip >= end; ip--)
               if (*ip != KSTACK_MAGIC)
                       break;

       stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
#else /* __MACHINE_STACK_GROWS_UP */
       /* stack grows downwards (eg. i386) */
       ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
       end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
       for (; ip < end; ip++)
               if (*ip != KSTACK_MAGIC)
                       break;

       stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
#endif /* __MACHINE_STACK_GROWS_UP */

       if (kstackleftmin > stackleft) {
               kstackleftmin = stackleft;
               if (stackleft < kstackleftthres)
                       printf("warning: kernel stack left %d bytes"
                           "(pid %u:lid %u)\n", stackleft,
                           (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
       }

       if (stackleft <= 0) {
               panic("magic on the top of kernel stack changed for "
                   "pid %u, lid %u: maybe kernel stack overflow",
                   (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
       }
}
#endif /* KSTACK_CHECK_MAGIC */

int
proclist_foreach_call(struct proclist *list,
   int (*callback)(struct proc *, void *arg), void *arg)
{
       struct proc marker;
       struct proc *p;
       int ret = 0;

       marker.p_flag = PK_MARKER;
       mutex_enter(&proc_lock);
       for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
               if (p->p_flag & PK_MARKER) {
                       p = LIST_NEXT(p, p_list);
                       continue;
               }
               LIST_INSERT_AFTER(p, &marker, p_list);
               ret = (*callback)(p, arg);
               KASSERT(mutex_owned(&proc_lock));
               p = LIST_NEXT(&marker, p_list);
               LIST_REMOVE(&marker, p_list);
       }
       mutex_exit(&proc_lock);

       return ret;
}

int
proc_vmspace_getref(struct proc *p, struct vmspace **vm)
{

       /* XXXCDC: how should locking work here? */

       /* curproc exception is for coredump. */

       if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
           (p->p_vmspace->vm_refcnt < 1)) {
               return SET_ERROR(EFAULT);
       }

       uvmspace_addref(p->p_vmspace);
       *vm = p->p_vmspace;

       return 0;
}

/*
* Acquire a write lock on the process credential.
*/
void
proc_crmod_enter(void)
{
       struct lwp *l = curlwp;
       struct proc *p = l->l_proc;
       kauth_cred_t oc;

       /* Reset what needs to be reset in plimit. */
       if (p->p_limit->pl_corename != defcorename) {
               lim_setcorename(p, defcorename, 0);
       }

       mutex_enter(p->p_lock);

       /* Ensure the LWP cached credentials are up to date. */
       if ((oc = l->l_cred) != p->p_cred) {
               l->l_cred = kauth_cred_hold(p->p_cred);
               kauth_cred_free(oc);
       }
}

/*
* Set in a new process credential, and drop the write lock.  The credential
* must have a reference already.  Optionally, free a no-longer required
* credential.
*/
void
proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
{
       struct lwp *l = curlwp, *l2;
       struct proc *p = l->l_proc;
       kauth_cred_t oc;

       KASSERT(mutex_owned(p->p_lock));

       /* Is there a new credential to set in? */
       if (scred != NULL) {
               p->p_cred = scred;
               LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
                       if (l2 != l) {
                               lwp_lock(l2);
                               l2->l_flag |= LW_CACHECRED;
                               lwp_need_userret(l2);
                               lwp_unlock(l2);
                       }
               }

               /* Ensure the LWP cached credentials are up to date. */
               if ((oc = l->l_cred) != scred) {
                       l->l_cred = kauth_cred_hold(scred);
               }
       } else
               oc = NULL;      /* XXXgcc */

       if (sugid) {
               /*
                * Mark process as having changed credentials, stops
                * tracing etc.
                */
               p->p_flag |= PK_SUGID;
       }

       mutex_exit(p->p_lock);

       /* If there is a credential to be released, free it now. */
       if (fcred != NULL) {
               KASSERT(scred != NULL);
               kauth_cred_free(fcred);
               if (oc != scred)
                       kauth_cred_free(oc);
       }
}

/*
* proc_specific_key_create --
*      Create a key for subsystem proc-specific data.
*/
int
proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
{

       return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
}

/*
* proc_specific_key_delete --
*      Delete a key for subsystem proc-specific data.
*/
void
proc_specific_key_delete(specificdata_key_t key)
{

       specificdata_key_delete(proc_specificdata_domain, key);
}

/*
* proc_initspecific --
*      Initialize a proc's specificdata container.
*/
void
proc_initspecific(struct proc *p)
{
       int error __diagused;

       error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
       KASSERT(error == 0);
}

/*
* proc_finispecific --
*      Finalize a proc's specificdata container.
*/
void
proc_finispecific(struct proc *p)
{

       specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
}

/*
* proc_getspecific --
*      Return proc-specific data corresponding to the specified key.
*/
void *
proc_getspecific(struct proc *p, specificdata_key_t key)
{

       return (specificdata_getspecific(proc_specificdata_domain,
                                        &p->p_specdataref, key));
}

/*
* proc_setspecific --
*      Set proc-specific data corresponding to the specified key.
*/
void
proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
{

       specificdata_setspecific(proc_specificdata_domain,
                                &p->p_specdataref, key, data);
}

int
proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
{

       if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
           kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
               /*
                * suid proc of ours or proc not ours
                */
               return SET_ERROR(EPERM);
       } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
               /*
                * sgid proc has sgid back to us temporarily
                */
               return SET_ERROR(EPERM);
       } else {
               /*
                * our rgid must be in target's group list (ie,
                * sub-processes started by a sgid process)
                */
               int ismember = 0;

               if (kauth_cred_ismember_gid(cred,
                   kauth_cred_getgid(target), &ismember) != 0 ||
                   !ismember)
                       return SET_ERROR(EPERM);
       }

       return 0;
}

/*
* sysctl stuff
*/

#define KERN_PROCSLOP   (5 * sizeof(struct kinfo_proc))

static const u_int sysctl_flagmap[] = {
       PK_ADVLOCK, P_ADVLOCK,
       PK_EXEC, P_EXEC,
       PK_NOCLDWAIT, P_NOCLDWAIT,
       PK_32, P_32,
       PK_CLDSIGIGN, P_CLDSIGIGN,
       PK_SUGID, P_SUGID,
       0
};

static const u_int sysctl_sflagmap[] = {
       PS_NOCLDSTOP, P_NOCLDSTOP,
       PS_WEXIT, P_WEXIT,
       PS_STOPFORK, P_STOPFORK,
       PS_STOPEXEC, P_STOPEXEC,
       PS_STOPEXIT, P_STOPEXIT,
       0
};

static const u_int sysctl_slflagmap[] = {
       PSL_TRACED, P_TRACED,
       PSL_CHTRACED, P_CHTRACED,
       PSL_SYSCALL, P_SYSCALL,
       0
};

static const u_int sysctl_lflagmap[] = {
       PL_CONTROLT, P_CONTROLT,
       PL_PPWAIT, P_PPWAIT,
       0
};

static const u_int sysctl_stflagmap[] = {
       PST_PROFIL, P_PROFIL,
       0

};

/* used by kern_lwp also */
const u_int sysctl_lwpflagmap[] = {
       LW_SINTR, L_SINTR,
       LW_SYSTEM, L_SYSTEM,
       0
};

/*
* Find the most ``active'' lwp of a process and return it for ps display
* purposes
*/
static struct lwp *
proc_active_lwp(struct proc *p)
{
       static const int ostat[] = {
               0,
               2,      /* LSIDL */
               6,      /* LSRUN */
               5,      /* LSSLEEP */
               4,      /* LSSTOP */
               0,      /* LSZOMB */
               1,      /* LSDEAD */
               7,      /* LSONPROC */
               3       /* LSSUSPENDED */
       };

       struct lwp *l, *lp = NULL;
       LIST_FOREACH(l, &p->p_lwps, l_sibling) {
               KASSERT(l->l_stat >= 0);
               KASSERT(l->l_stat < __arraycount(ostat));
               if (lp == NULL ||
                   ostat[l->l_stat] > ostat[lp->l_stat] ||
                   (ostat[l->l_stat] == ostat[lp->l_stat] &&
                   l->l_cpticks > lp->l_cpticks)) {
                       lp = l;
                       continue;
               }
       }
       return lp;
}

static int
sysctl_doeproc(SYSCTLFN_ARGS)
{
       union {
               struct kinfo_proc kproc;
               struct kinfo_proc2 kproc2;
       } *kbuf;
       struct proc *p, *next, *marker;
       char *where, *dp;
       int type, op, arg, error;
       u_int elem_size, kelem_size, elem_count;
       size_t buflen, needed;
       bool match, zombie, mmmbrains;
       const bool allowaddr = get_expose_address(curproc);

       if (namelen == 1 && name[0] == CTL_QUERY)
               return (sysctl_query(SYSCTLFN_CALL(rnode)));

       dp = where = oldp;
       buflen = where != NULL ? *oldlenp : 0;
       error = 0;
       needed = 0;
       type = rnode->sysctl_num;

       if (type == KERN_PROC) {
               if (namelen == 0)
                       return SET_ERROR(EINVAL);
               switch (op = name[0]) {
               case KERN_PROC_ALL:
                       if (namelen != 1)
                               return SET_ERROR(EINVAL);
                       arg = 0;
                       break;
               default:
                       if (namelen != 2)
                               return SET_ERROR(EINVAL);
                       arg = name[1];
                       break;
               }
               elem_count = 0; /* Hush little compiler, don't you cry */
               kelem_size = elem_size = sizeof(kbuf->kproc);
       } else {
               if (namelen != 4)
                       return SET_ERROR(EINVAL);
               op = name[0];
               arg = name[1];
               elem_size = name[2];
               elem_count = name[3];
               kelem_size = sizeof(kbuf->kproc2);
       }

       sysctl_unlock();

       kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
       marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
       marker->p_flag = PK_MARKER;

       mutex_enter(&proc_lock);
       /*
        * Start with zombies to prevent reporting processes twice, in case they
        * are dying and being moved from the list of alive processes to zombies.
        */
       mmmbrains = true;
       for (p = LIST_FIRST(&zombproc);; p = next) {
               if (p == NULL) {
                       if (mmmbrains) {
                               p = LIST_FIRST(&allproc);
                               mmmbrains = false;
                       }
                       if (p == NULL)
                               break;
               }
               next = LIST_NEXT(p, p_list);
               if ((p->p_flag & PK_MARKER) != 0)
                       continue;

               /*
                * Skip embryonic processes.
                */
               if (p->p_stat == SIDL)
                       continue;

               mutex_enter(p->p_lock);
               error = kauth_authorize_process(l->l_cred,
                   KAUTH_PROCESS_CANSEE, p,
                   KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
               if (error != 0) {
                       mutex_exit(p->p_lock);
                       continue;
               }

               /*
                * Hande all the operations in one switch on the cost of
                * algorithm complexity is on purpose. The win splitting this
                * function into several similar copies makes maintenance
                * burden, code grow and boost is negligible in practical
                * systems.
                */
               switch (op) {
               case KERN_PROC_PID:
                       match = (p->p_pid == (pid_t)arg);
                       break;

               case KERN_PROC_PGRP:
                       match = (p->p_pgrp->pg_id == (pid_t)arg);
                       break;

               case KERN_PROC_SESSION:
                       match = (p->p_session->s_sid == (pid_t)arg);
                       break;

               case KERN_PROC_TTY:
                       match = true;
                       if (arg == (int) KERN_PROC_TTY_REVOKE) {
                               if ((p->p_lflag & PL_CONTROLT) == 0 ||
                                   p->p_session->s_ttyp == NULL ||
                                   p->p_session->s_ttyvp != NULL) {
                                       match = false;
                               }
                       } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
                           p->p_session->s_ttyp == NULL) {
                               if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
                                       match = false;
                               }
                       } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
                               match = false;
                       }
                       break;

               case KERN_PROC_UID:
                       match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
                       break;

               case KERN_PROC_RUID:
                       match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
                       break;

               case KERN_PROC_GID:
                       match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
                       break;

               case KERN_PROC_RGID:
                       match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
                       break;

               case KERN_PROC_ALL:
                       match = true;
                       /* allow everything */
                       break;

               default:
                       error = SET_ERROR(EINVAL);
                       mutex_exit(p->p_lock);
                       goto cleanup;
               }
               if (!match) {
                       mutex_exit(p->p_lock);
                       continue;
               }

               /*
                * Grab a hold on the process.
                */
               if (mmmbrains) {
                       zombie = true;
               } else {
                       zombie = !rw_tryenter(&p->p_reflock, RW_READER);
               }
               if (zombie) {
                       LIST_INSERT_AFTER(p, marker, p_list);
               }

               if (buflen >= elem_size &&
                   (type == KERN_PROC || elem_count > 0)) {
                       ruspace(p);     /* Update process vm resource use */

                       if (type == KERN_PROC) {
                               fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
                               fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
                                   allowaddr);
                       } else {
                               fill_kproc2(p, &kbuf->kproc2, zombie,
                                   allowaddr);
                               elem_count--;
                       }
                       mutex_exit(p->p_lock);
                       mutex_exit(&proc_lock);
                       /*
                        * Copy out elem_size, but not larger than kelem_size
                        */
                       error = sysctl_copyout(l, kbuf, dp,
                           uimin(kelem_size, elem_size));
                       mutex_enter(&proc_lock);
                       if (error) {
                               goto bah;
                       }
                       dp += elem_size;
                       buflen -= elem_size;
               } else {
                       mutex_exit(p->p_lock);
               }
               needed += elem_size;

               /*
                * Release reference to process.
                */
               if (zombie) {
                       next = LIST_NEXT(marker, p_list);
                       LIST_REMOVE(marker, p_list);
               } else {
                       rw_exit(&p->p_reflock);
                       next = LIST_NEXT(p, p_list);
               }

               /*
                * Short-circuit break quickly!
                */
               if (op == KERN_PROC_PID)
                       break;
       }
       mutex_exit(&proc_lock);

       if (where != NULL) {
               *oldlenp = dp - where;
               if (needed > *oldlenp) {
                       error = SET_ERROR(ENOMEM);
                       goto out;
               }
       } else {
               needed += KERN_PROCSLOP;
               *oldlenp = needed;
       }
       kmem_free(kbuf, sizeof(*kbuf));
       kmem_free(marker, sizeof(*marker));
       sysctl_relock();
       return 0;
bah:
       if (zombie)
               LIST_REMOVE(marker, p_list);
       else
               rw_exit(&p->p_reflock);
cleanup:
       mutex_exit(&proc_lock);
out:
       kmem_free(kbuf, sizeof(*kbuf));
       kmem_free(marker, sizeof(*marker));
       sysctl_relock();
       return error;
}

int
copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
{
#if !defined(_RUMPKERNEL)
       int retval;

       if (p->p_flag & PK_32) {
               MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
                   enosys(), retval);
               return retval;
       }
#endif /* !defined(_RUMPKERNEL) */

       return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
}

static int
copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
{
       void **cookie = cookie_;
       struct lwp *l = cookie[0];
       char *dst = cookie[1];

       return sysctl_copyout(l, src, dst + off, len);
}

/*
* sysctl helper routine for kern.proc_args pseudo-subtree.
*/
static int
sysctl_kern_proc_args(SYSCTLFN_ARGS)
{
       struct ps_strings pss;
       struct proc *p;
       pid_t pid;
       int type, error;
       void *cookie[2];

       if (namelen == 1 && name[0] == CTL_QUERY)
               return (sysctl_query(SYSCTLFN_CALL(rnode)));

       if (newp != NULL || namelen != 2)
               return SET_ERROR(EINVAL);
       pid = name[0];
       type = name[1];

       switch (type) {
       case KERN_PROC_PATHNAME:
               sysctl_unlock();
               error = fill_pathname(l, pid, oldp, oldlenp);
               sysctl_relock();
               return error;

       case KERN_PROC_CWD:
               sysctl_unlock();
               error = fill_cwd(l, pid, oldp, oldlenp);
               sysctl_relock();
               return error;

       case KERN_PROC_ARGV:
       case KERN_PROC_NARGV:
       case KERN_PROC_ENV:
       case KERN_PROC_NENV:
               /* ok */
               break;
       default:
               return SET_ERROR(EINVAL);
       }

       sysctl_unlock();

       /* check pid */
       mutex_enter(&proc_lock);
       if ((p = proc_find(pid)) == NULL) {
               error = SET_ERROR(EINVAL);
               goto out_locked;
       }
       mutex_enter(p->p_lock);

       /* Check permission. */
       if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
               error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
                   p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
       else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
               error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
                   p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
       else
               error = SET_ERROR(EINVAL); /* XXXGCC */
       if (error) {
               mutex_exit(p->p_lock);
               goto out_locked;
       }

       if (oldp == NULL) {
               if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
                       *oldlenp = sizeof (int);
               else
                       *oldlenp = ARG_MAX;     /* XXX XXX XXX */
               error = 0;
               mutex_exit(p->p_lock);
               goto out_locked;
       }

       /*
        * Zombies don't have a stack, so we can't read their psstrings.
        * System processes also don't have a user stack.
        */
       if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
               error = SET_ERROR(EINVAL);
               mutex_exit(p->p_lock);
               goto out_locked;
       }

       error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : SET_ERROR(EBUSY);
       mutex_exit(p->p_lock);
       if (error) {
               goto out_locked;
       }
       mutex_exit(&proc_lock);

       if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
               int value;
               if ((error = copyin_psstrings(p, &pss)) == 0) {
                       if (type == KERN_PROC_NARGV)
                               value = pss.ps_nargvstr;
                       else
                               value = pss.ps_nenvstr;
                       error = sysctl_copyout(l, &value, oldp, sizeof(value));
                       *oldlenp = sizeof(value);
               }
       } else {
               cookie[0] = l;
               cookie[1] = oldp;
               error = copy_procargs(p, type, oldlenp,
                   copy_procargs_sysctl_cb, cookie);
       }
       rw_exit(&p->p_reflock);
       sysctl_relock();
       return error;

out_locked:
       mutex_exit(&proc_lock);
       sysctl_relock();
       return error;
}

int
copy_procargs(struct proc *p, int oid, size_t *limit,
   int (*cb)(void *, const void *, size_t, size_t), void *cookie)
{
       struct ps_strings pss;
       size_t len, i, loaded, entry_len;
       struct uio auio;
       struct iovec aiov;
       int error, argvlen;
       char *arg;
       char **argv;
       vaddr_t user_argv;
       struct vmspace *vmspace;

       /*
        * Allocate a temporary buffer to hold the argument vector and
        * the arguments themselve.
        */
       arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
       argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);

       /*
        * Lock the process down in memory.
        */
       vmspace = p->p_vmspace;
       uvmspace_addref(vmspace);

       /*
        * Read in the ps_strings structure.
        */
       if ((error = copyin_psstrings(p, &pss)) != 0)
               goto done;

       /*
        * Now read the address of the argument vector.
        */
       switch (oid) {
       case KERN_PROC_ARGV:
               user_argv = (uintptr_t)pss.ps_argvstr;
               argvlen = pss.ps_nargvstr;
               break;
       case KERN_PROC_ENV:
               user_argv = (uintptr_t)pss.ps_envstr;
               argvlen = pss.ps_nenvstr;
               break;
       default:
               error = SET_ERROR(EINVAL);
               goto done;
       }

       if (argvlen < 0) {
               error = SET_ERROR(EIO);
               goto done;
       }


       /*
        * Now copy each string.
        */
       len = 0; /* bytes written to user buffer */
       loaded = 0; /* bytes from argv already processed */
       i = 0; /* To make compiler happy */
       entry_len = PROC_PTRSZ(p);

       for (; argvlen; --argvlen) {
               int finished = 0;
               vaddr_t base;
               size_t xlen;
               int j;

               if (loaded == 0) {
                       size_t rem = entry_len * argvlen;
                       loaded = MIN(rem, PAGE_SIZE);
                       error = copyin_vmspace(vmspace,
                           (const void *)user_argv, argv, loaded);
                       if (error)
                               break;
                       user_argv += loaded;
                       i = 0;
               }

#if !defined(_RUMPKERNEL)
               if (p->p_flag & PK_32)
                       MODULE_HOOK_CALL(kern_proc32_base_hook,
                           (argv, i++), 0, base);
               else
#endif /* !defined(_RUMPKERNEL) */
                       base = (vaddr_t)argv[i++];
               loaded -= entry_len;

               /*
                * The program has messed around with its arguments,
                * possibly deleting some, and replacing them with
                * NULL's. Treat this as the last argument and not
                * a failure.
                */
               if (base == 0)
                       break;

               while (!finished) {
                       xlen = PAGE_SIZE - (base & PAGE_MASK);

                       aiov.iov_base = arg;
                       aiov.iov_len = PAGE_SIZE;
                       auio.uio_iov = &aiov;
                       auio.uio_iovcnt = 1;
                       auio.uio_offset = base;
                       auio.uio_resid = xlen;
                       auio.uio_rw = UIO_READ;
                       UIO_SETUP_SYSSPACE(&auio);
                       error = uvm_io(&vmspace->vm_map, &auio, 0);
                       if (error)
                               goto done;

                       /* Look for the end of the string */
                       for (j = 0; j < xlen; j++) {
                               if (arg[j] == '\0') {
                                       xlen = j + 1;
                                       finished = 1;
                                       break;
                               }
                       }

                       /* Check for user buffer overflow */
                       if (len + xlen > *limit) {
                               finished = 1;
                               if (len > *limit)
                                       xlen = 0;
                               else
                                       xlen = *limit - len;
                       }

                       /* Copyout the page */
                       error = (*cb)(cookie, arg, len, xlen);
                       if (error)
                               goto done;

                       len += xlen;
                       base += xlen;
               }
       }
       *limit = len;

done:
       kmem_free(argv, PAGE_SIZE);
       kmem_free(arg, PAGE_SIZE);
       uvmspace_free(vmspace);
       return error;
}

/*
* Fill in a proc structure for the specified process.
*/
static void
fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
{
       COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr);
       memset(&p->p_auxlock, 0, sizeof(p->p_auxlock));
       COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr);
       memset(&p->p_stmutex, 0, sizeof(p->p_stmutex));
       memset(&p->p_reflock, 0, sizeof(p->p_reflock));
       COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr);
       COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
       COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr);
       COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr);
       COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr);
       COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr);
       COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr);
       COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr);
       COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr);
       COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr);
       p->p_mqueue_cnt = psrc->p_mqueue_cnt;
       memset(&p->p_specdataref, 0, sizeof(p->p_specdataref));
       p->p_exitsig = psrc->p_exitsig;
       p->p_flag = psrc->p_flag;
       p->p_sflag = psrc->p_sflag;
       p->p_slflag = psrc->p_slflag;
       p->p_lflag = psrc->p_lflag;
       p->p_stflag = psrc->p_stflag;
       p->p_stat = psrc->p_stat;
       p->p_trace_enabled = psrc->p_trace_enabled;
       p->p_pid = psrc->p_pid;
       COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr);
       COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr);
       COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr);
       COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr);
       COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr);
       COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr);
       p->p_nlwps = psrc->p_nlwps;
       p->p_nzlwps = psrc->p_nzlwps;
       p->p_nrlwps = psrc->p_nrlwps;
       p->p_nlwpwait = psrc->p_nlwpwait;
       p->p_ndlwps = psrc->p_ndlwps;
       p->p_nstopchild = psrc->p_nstopchild;
       p->p_waited = psrc->p_waited;
       COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
       COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
       COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr);
       p->p_estcpu = psrc->p_estcpu;
       p->p_estcpu_inherited = psrc->p_estcpu_inherited;
       p->p_forktime = psrc->p_forktime;
       p->p_pctcpu = psrc->p_pctcpu;
       COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr);
       COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr);
       p->p_rtime = psrc->p_rtime;
       p->p_uticks = psrc->p_uticks;
       p->p_sticks = psrc->p_sticks;
       p->p_iticks = psrc->p_iticks;
       p->p_xutime = psrc->p_xutime;
       p->p_xstime = psrc->p_xstime;
       p->p_traceflag = psrc->p_traceflag;
       COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr);
       COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr);
       COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr);
       COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr);
       COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr);
       COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr);
       COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
       COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info,
           allowaddr);
       p->p_sigpend.sp_set = psrc->p_sigpend.sp_set;
       COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
       p->p_ppid = psrc->p_ppid;
       p->p_oppid = psrc->p_oppid;
       COND_SET_PTR(p->p_path, psrc->p_path, allowaddr);
       p->p_sigctx = psrc->p_sigctx;
       p->p_nice = psrc->p_nice;
       memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
       COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr);
       COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
       p->p_pax = psrc->p_pax;
       p->p_xexit = psrc->p_xexit;
       p->p_xsig = psrc->p_xsig;
       p->p_acflag = psrc->p_acflag;
       COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr);
       p->p_stackbase = psrc->p_stackbase;
       COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr);
}

/*
* Fill in an eproc structure for the specified process.
*/
void
fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
{
       struct tty *tp;
       struct lwp *l;

       KASSERT(mutex_owned(&proc_lock));
       KASSERT(mutex_owned(p->p_lock));

       COND_SET_PTR(ep->e_paddr, p, allowaddr);
       COND_SET_PTR(ep->e_sess, p->p_session, allowaddr);
       if (p->p_cred) {
               kauth_cred_topcred(p->p_cred, &ep->e_pcred);
               kauth_cred_toucred(p->p_cred, &ep->e_ucred);
       }
       if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
               struct vmspace *vm = p->p_vmspace;

               ep->e_vm.vm_rssize = vm_resident_count(vm);
               ep->e_vm.vm_tsize = vm->vm_tsize;
               ep->e_vm.vm_dsize = vm->vm_dsize;
               ep->e_vm.vm_ssize = vm->vm_ssize;
               ep->e_vm.vm_map.size = vm->vm_map.size;

               /* Pick the primary (first) LWP */
               l = proc_active_lwp(p);
               KASSERT(l != NULL);
               lwp_lock(l);
               if (l->l_wchan)
                       strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
               lwp_unlock(l);
       }
       ep->e_ppid = p->p_ppid;
       if (p->p_pgrp && p->p_session) {
               ep->e_pgid = p->p_pgrp->pg_id;
               ep->e_jobc = p->p_pgrp->pg_jobc;
               ep->e_sid = p->p_session->s_sid;
               if ((p->p_lflag & PL_CONTROLT) &&
                   (tp = p->p_session->s_ttyp)) {
                       ep->e_tdev = tp->t_dev;
                       ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
                       COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr);
               } else
                       ep->e_tdev = (uint32_t)NODEV;
               ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
               if (SESS_LEADER(p))
                       ep->e_flag |= EPROC_SLEADER;
               strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
       }
       ep->e_xsize = ep->e_xrssize = 0;
       ep->e_xccount = ep->e_xswrss = 0;
}

/*
* Fill in a kinfo_proc2 structure for the specified process.
*/
void
fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
{
       struct tty *tp;
       struct lwp *l;
       struct timeval ut, st, rt;
       sigset_t ss1, ss2;
       struct rusage ru;
       struct vmspace *vm;

       KASSERT(mutex_owned(&proc_lock));
       KASSERT(mutex_owned(p->p_lock));

       sigemptyset(&ss1);
       sigemptyset(&ss2);

       COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
       COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
       COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
       COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
       COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
       COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
       COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
       COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
       ki->p_tsess = 0;        /* may be changed if controlling tty below */
       COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
       ki->p_eflag = 0;
       ki->p_exitsig = p->p_exitsig;
       ki->p_flag = L_INMEM;   /* Process never swapped out */
       ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
       ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
       ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
       ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
       ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
       ki->p_pid = p->p_pid;
       ki->p_ppid = p->p_ppid;
       ki->p_uid = kauth_cred_geteuid(p->p_cred);
       ki->p_ruid = kauth_cred_getuid(p->p_cred);
       ki->p_gid = kauth_cred_getegid(p->p_cred);
       ki->p_rgid = kauth_cred_getgid(p->p_cred);
       ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
       ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
       ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
       kauth_cred_getgroups(p->p_cred, ki->p_groups,
           uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
           UIO_SYSSPACE);

       ki->p_uticks = p->p_uticks;
       ki->p_sticks = p->p_sticks;
       ki->p_iticks = p->p_iticks;
       ki->p_tpgid = NO_PGID;  /* may be changed if controlling tty below */
       COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
       ki->p_traceflag = p->p_traceflag;

       memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
       memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));

       ki->p_cpticks = 0;
       ki->p_pctcpu = p->p_pctcpu;
       ki->p_estcpu = 0;
       ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
       ki->p_realstat = p->p_stat;
       ki->p_nice = p->p_nice;
       ki->p_xstat = P_WAITSTATUS(p);
       ki->p_acflag = p->p_acflag;

       strncpy(ki->p_comm, p->p_comm,
           uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
       strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));

       ki->p_nlwps = p->p_nlwps;
       ki->p_realflag = ki->p_flag;

       if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
               vm = p->p_vmspace;
               ki->p_vm_rssize = vm_resident_count(vm);
               ki->p_vm_tsize = vm->vm_tsize;
               ki->p_vm_dsize = vm->vm_dsize;
               ki->p_vm_ssize = vm->vm_ssize;
               ki->p_vm_vsize = atop(vm->vm_map.size);
               /*
                * Since the stack is initially mapped mostly with
                * PROT_NONE and grown as needed, adjust the "mapped size"
                * to skip the unused stack portion.
                */
               ki->p_vm_msize =
                   atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;

               /* Pick the primary (first) LWP */
               l = proc_active_lwp(p);
               KASSERT(l != NULL);
               lwp_lock(l);
               ki->p_nrlwps = p->p_nrlwps;
               ki->p_forw = 0;
               ki->p_back = 0;
               COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
               ki->p_stat = l->l_stat;
               ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
               ki->p_swtime = l->l_swtime;
               ki->p_slptime = l->l_slptime;
               if (l->l_stat == LSONPROC)
                       ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
               else
                       ki->p_schedflags = 0;
               ki->p_priority = lwp_eprio(l);
               ki->p_usrpri = l->l_priority;
               if (l->l_wchan)
                       strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
               COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
               ki->p_cpuid = cpu_index(l->l_cpu);
               lwp_unlock(l);
               LIST_FOREACH(l, &p->p_lwps, l_sibling) {
                       /* This is hardly correct, but... */
                       sigplusset(&l->l_sigpend.sp_set, &ss1);
                       sigplusset(&l->l_sigmask, &ss2);
                       ki->p_cpticks += l->l_cpticks;
                       ki->p_pctcpu += l->l_pctcpu;
                       ki->p_estcpu += l->l_estcpu;
               }
       }
       sigplusset(&p->p_sigpend.sp_set, &ss1);
       memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
       memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));

       if (p->p_session != NULL) {
               ki->p_sid = p->p_session->s_sid;
               ki->p__pgid = p->p_pgrp->pg_id;
               if (p->p_session->s_ttyvp)
                       ki->p_eflag |= EPROC_CTTY;
               if (SESS_LEADER(p))
                       ki->p_eflag |= EPROC_SLEADER;
               strncpy(ki->p_login, p->p_session->s_login,
                   uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
               ki->p_jobc = p->p_pgrp->pg_jobc;
               if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
                       ki->p_tdev = tp->t_dev;
                       ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
                       COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
                           allowaddr);
               } else {
                       ki->p_tdev = (int32_t)NODEV;
               }
       }

       if (!P_ZOMBIE(p) && !zombie) {
               ki->p_uvalid = 1;
               ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
               ki->p_ustart_usec = p->p_stats->p_start.tv_usec;

               calcru(p, &ut, &st, NULL, &rt);
               ki->p_rtime_sec = rt.tv_sec;
               ki->p_rtime_usec = rt.tv_usec;
               ki->p_uutime_sec = ut.tv_sec;
               ki->p_uutime_usec = ut.tv_usec;
               ki->p_ustime_sec = st.tv_sec;
               ki->p_ustime_usec = st.tv_usec;

               memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
               rulwps(p, &ru);
               ki->p_uru_nvcsw = ru.ru_nvcsw;
               ki->p_uru_nivcsw = ru.ru_nivcsw;
               ki->p_uru_maxrss = ru.ru_maxrss;
               ki->p_uru_ixrss = ru.ru_ixrss;
               ki->p_uru_idrss = ru.ru_idrss;
               ki->p_uru_isrss = ru.ru_isrss;
               ki->p_uru_minflt = ru.ru_minflt;
               ki->p_uru_majflt = ru.ru_majflt;
               ki->p_uru_nswap = ru.ru_nswap;
               ki->p_uru_inblock = ru.ru_inblock;
               ki->p_uru_oublock = ru.ru_oublock;
               ki->p_uru_msgsnd = ru.ru_msgsnd;
               ki->p_uru_msgrcv = ru.ru_msgrcv;
               ki->p_uru_nsignals = ru.ru_nsignals;

               timeradd(&p->p_stats->p_cru.ru_utime,
                        &p->p_stats->p_cru.ru_stime, &ut);
               ki->p_uctime_sec = ut.tv_sec;
               ki->p_uctime_usec = ut.tv_usec;
       }
}


int
proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
{
       int error;

       mutex_enter(&proc_lock);
       if (pid == -1)
               *p = l->l_proc;
       else
               *p = proc_find(pid);

       if (*p == NULL) {
               if (pid != -1)
                       mutex_exit(&proc_lock);
               return SET_ERROR(ESRCH);
       }
       if (pid != -1)
               mutex_enter((*p)->p_lock);
       mutex_exit(&proc_lock);

       error = kauth_authorize_process(l->l_cred,
           KAUTH_PROCESS_CANSEE, *p,
           KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
       if (error) {
               if (pid != -1)
                       mutex_exit((*p)->p_lock);
       }
       return error;
}

static int
fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
{
       int error;
       struct proc *p;

       if ((error = proc_find_locked(l, &p, pid)) != 0)
               return error;

       if (p->p_path == NULL) {
               if (pid != -1)
                       mutex_exit(p->p_lock);
               return SET_ERROR(ENOENT);
       }

       size_t len = strlen(p->p_path) + 1;
       if (oldp != NULL) {
               size_t copylen = uimin(len, *oldlenp);
               error = sysctl_copyout(l, p->p_path, oldp, copylen);
               if (error == 0 && *oldlenp < len)
                       error = SET_ERROR(ENOSPC);
       }
       *oldlenp = len;
       if (pid != -1)
               mutex_exit(p->p_lock);
       return error;
}

static int
fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
{
       int error;
       struct proc *p;
       char *path;
       char *bp, *bend;
       struct cwdinfo *cwdi;
       struct vnode *vp;
       size_t len, lenused;

       if ((error = proc_find_locked(l, &p, pid)) != 0)
               return error;

       len = MAXPATHLEN * 4;

       path = kmem_alloc(len, KM_SLEEP);

       bp = &path[len];
       bend = bp;
       *(--bp) = '\0';

       cwdi = p->p_cwdi;
       rw_enter(&cwdi->cwdi_lock, RW_READER);
       vp = cwdi->cwdi_cdir;
       error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
       rw_exit(&cwdi->cwdi_lock);

       if (error)
               goto out;

       lenused = bend - bp;

       if (oldp != NULL) {
               size_t copylen = uimin(lenused, *oldlenp);
               error = sysctl_copyout(l, bp, oldp, copylen);
               if (error == 0 && *oldlenp < lenused)
                       error = SET_ERROR(ENOSPC);
       }
       *oldlenp = lenused;
out:
       if (pid != -1)
               mutex_exit(p->p_lock);
       kmem_free(path, len);
       return error;
}

int
proc_getauxv(struct proc *p, void **buf, size_t *len)
{
       struct ps_strings pss;
       int error;
       void *uauxv, *kauxv;
       size_t size;

       if ((error = copyin_psstrings(p, &pss)) != 0)
               return error;
       if (pss.ps_envstr == NULL)
               return SET_ERROR(EIO);

       size = p->p_execsw->es_arglen;
       if (size == 0)
               return SET_ERROR(EIO);

       size_t ptrsz = PROC_PTRSZ(p);
       uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);

       kauxv = kmem_alloc(size, KM_SLEEP);

       error = copyin_proc(p, uauxv, kauxv, size);
       if (error) {
               kmem_free(kauxv, size);
               return error;
       }

       *buf = kauxv;
       *len = size;

       return 0;
}


static int
sysctl_security_expose_address(SYSCTLFN_ARGS)
{
       int expose_address, error;
       struct sysctlnode node;

       node = *rnode;
       node.sysctl_data = &expose_address;
       expose_address = *(int *)rnode->sysctl_data;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
           0, NULL, NULL, NULL))
               return SET_ERROR(EPERM);

       switch (expose_address) {
       case 0:
       case 1:
       case 2:
               break;
       default:
               return SET_ERROR(EINVAL);
       }

       *(int *)rnode->sysctl_data = expose_address;

       return 0;
}

bool
get_expose_address(struct proc *p)
{
       /* allow only if sysctl variable is set or privileged */
       return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
           p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
}