/*      $NetBSD: kern_ntptime.c,v 1.64 2022/10/26 23:23:52 riastradh Exp $      */

/*-
* Copyright (c) 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*-
***********************************************************************
*                                                                     *
* Copyright (c) David L. Mills 1993-2001                              *
*                                                                     *
* Permission to use, copy, modify, and distribute this software and   *
* its documentation for any purpose and without fee is hereby         *
* granted, provided that the above copyright notice appears in all    *
* copies and that both the copyright notice and this permission       *
* notice appear in supporting documentation, and that the name        *
* University of Delaware not be used in advertising or publicity      *
* pertaining to distribution of the software without specific,        *
* written prior permission. The University of Delaware makes no       *
* representations about the suitability this software for any         *
* purpose. It is provided "as is" without express or implied          *
* warranty.                                                           *
*                                                                     *
**********************************************************************/

/*
* Adapted from the original sources for FreeBSD and timecounters by:
* Poul-Henning Kamp <[email protected]>.
*
* The 32bit version of the "LP" macros seems a bit past its "sell by"
* date so I have retained only the 64bit version and included it directly
* in this file.
*
* Only minor changes done to interface with the timecounters over in
* sys/kern/kern_clock.c.   Some of the comments below may be (even more)
* confusing and/or plain wrong in that context.
*/

#include <sys/cdefs.h>
/* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
__KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.64 2022/10/26 23:23:52 riastradh Exp $");

#ifdef _KERNEL_OPT
#include "opt_ntp.h"
#endif

#include <sys/param.h>
#include <sys/resourcevar.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/timex.h>
#include <sys/vnode.h>
#include <sys/kauth.h>
#include <sys/mount.h>
#include <sys/syscallargs.h>
#include <sys/cpu.h>

#include <compat/sys/timex.h>

/*
* Single-precision macros for 64-bit machines
*/
typedef int64_t l_fp;
#define L_ADD(v, u)     ((v) += (u))
#define L_SUB(v, u)     ((v) -= (u))
#define L_ADDHI(v, a)   ((v) += (int64_t)(a) << 32)
#define L_NEG(v)        ((v) = -(v))
#define L_RSHIFT(v, n) \
       do { \
               if ((v) < 0) \
                       (v) = -(-(v) >> (n)); \
               else \
                       (v) = (v) >> (n); \
       } while (0)
#define L_MPY(v, a)     ((v) *= (a))
#define L_CLR(v)        ((v) = 0)
#define L_ISNEG(v)      ((v) < 0)
#define L_LINT(v, a)    ((v) = (int64_t)((uint64_t)(a) << 32))
#define L_GINT(v)       ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)

#ifdef NTP
/*
* Generic NTP kernel interface
*
* These routines constitute the Network Time Protocol (NTP) interfaces
* for user and daemon application programs. The ntp_gettime() routine
* provides the time, maximum error (synch distance) and estimated error
* (dispersion) to client user application programs. The ntp_adjtime()
* routine is used by the NTP daemon to adjust the system clock to an
* externally derived time. The time offset and related variables set by
* this routine are used by other routines in this module to adjust the
* phase and frequency of the clock discipline loop which controls the
* system clock.
*
* When the kernel time is reckoned directly in nanoseconds (NTP_NANO
* defined), the time at each tick interrupt is derived directly from
* the kernel time variable. When the kernel time is reckoned in
* microseconds, (NTP_NANO undefined), the time is derived from the
* kernel time variable together with a variable representing the
* leftover nanoseconds at the last tick interrupt. In either case, the
* current nanosecond time is reckoned from these values plus an
* interpolated value derived by the clock routines in another
* architecture-specific module. The interpolation can use either a
* dedicated counter or a processor cycle counter (PCC) implemented in
* some architectures.
*
* Note that all routines must run at priority splclock or higher.
*/
/*
* Phase/frequency-lock loop (PLL/FLL) definitions
*
* The nanosecond clock discipline uses two variable types, time
* variables and frequency variables. Both types are represented as 64-
* bit fixed-point quantities with the decimal point between two 32-bit
* halves. On a 32-bit machine, each half is represented as a single
* word and mathematical operations are done using multiple-precision
* arithmetic. On a 64-bit machine, ordinary computer arithmetic is
* used.
*
* A time variable is a signed 64-bit fixed-point number in ns and
* fraction. It represents the remaining time offset to be amortized
* over succeeding tick interrupts. The maximum time offset is about
* 0.5 s and the resolution is about 2.3e-10 ns.
*
*                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
*  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* |s s s|                       ns                                |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* |                        fraction                               |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* A frequency variable is a signed 64-bit fixed-point number in ns/s
* and fraction. It represents the ns and fraction to be added to the
* kernel time variable at each second. The maximum frequency offset is
* about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
*
*                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
*  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* |s s s s s s s s s s s s s|            ns/s                     |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* |                        fraction                               |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*/
/*
* The following variables establish the state of the PLL/FLL and the
* residual time and frequency offset of the local clock.
*/
#define SHIFT_PLL       4               /* PLL loop gain (shift) */
#define SHIFT_FLL       2               /* FLL loop gain (shift) */

static int time_state = TIME_OK;        /* clock state */
static int time_status = STA_UNSYNC;    /* clock status bits */
static long time_tai;                   /* TAI offset (s) */
static long time_monitor;               /* last time offset scaled (ns) */
static long time_constant;              /* poll interval (shift) (s) */
static long time_precision = 1;         /* clock precision (ns) */
static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
static time_t time_reftime;             /* time at last adjustment (s) */
static l_fp time_offset;                /* time offset (ns) */
static l_fp time_freq;                  /* frequency offset (ns/s) */
#endif /* NTP */

static l_fp time_adj;                   /* tick adjust (ns/s) */
int64_t time_adjtime;           /* correction from adjtime(2) (usec) */

#ifdef NTP
#ifdef PPS_SYNC
/*
* The following variables are used when a pulse-per-second (PPS) signal
* is available and connected via a modem control lead. They establish
* the engineering parameters of the clock discipline loop when
* controlled by the PPS signal.
*/
#define PPS_FAVG        2               /* min freq avg interval (s) (shift) */
#define PPS_FAVGDEF     8               /* default freq avg int (s) (shift) */
#define PPS_FAVGMAX     15              /* max freq avg interval (s) (shift) */
#define PPS_PAVG        4               /* phase avg interval (s) (shift) */
#define PPS_VALID       120             /* PPS signal watchdog max (s) */
#define PPS_MAXWANDER   100000          /* max PPS wander (ns/s) */
#define PPS_POPCORN     2               /* popcorn spike threshold (shift) */

static struct timespec pps_tf[3];       /* phase median filter */
static l_fp pps_freq;                   /* scaled frequency offset (ns/s) */
static long pps_fcount;                 /* frequency accumulator */
static long pps_jitter;                 /* nominal jitter (ns) */
static long pps_stabil;                 /* nominal stability (scaled ns/s) */
static long pps_lastsec;                /* time at last calibration (s) */
static int pps_valid;                   /* signal watchdog counter */
static int pps_shift = PPS_FAVG;        /* interval duration (s) (shift) */
static int pps_shiftmax = PPS_FAVGDEF;  /* max interval duration (s) (shift) */
static int pps_intcnt;                  /* wander counter */

/*
* PPS signal quality monitors
*/
static long pps_calcnt;                 /* calibration intervals */
static long pps_jitcnt;                 /* jitter limit exceeded */
static long pps_stbcnt;                 /* stability limit exceeded */
static long pps_errcnt;                 /* calibration errors */
#endif /* PPS_SYNC */
/*
* End of phase/frequency-lock loop (PLL/FLL) definitions
*/

static void hardupdate(long offset);

/*
* ntp_gettime() - NTP user application interface
*/
void
ntp_gettime(struct ntptimeval *ntv)
{
       memset(ntv, 0, sizeof(*ntv));

       mutex_spin_enter(&timecounter_lock);
       nanotime(&ntv->time);
       ntv->maxerror = time_maxerror;
       ntv->esterror = time_esterror;
       ntv->tai = time_tai;
       ntv->time_state = time_state;
       mutex_spin_exit(&timecounter_lock);
}

/* ARGSUSED */
/*
* ntp_adjtime() - NTP daemon application interface
*/
int
sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
{
       /* {
               syscallarg(struct timex *) tp;
       } */
       struct timex ntv;
       int error;

       error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
       if (error != 0)
               return (error);

       if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
           KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
           NULL, NULL)) != 0)
               return (error);

       ntp_adjtime1(&ntv);

       error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
       if (!error)
               *retval = ntp_timestatus();

       return error;
}

void
ntp_adjtime1(struct timex *ntv)
{
       long freq;
       int modes;

       /*
        * Update selected clock variables - only the superuser can
        * change anything. Note that there is no error checking here on
        * the assumption the superuser should know what it is doing.
        * Note that either the time constant or TAI offset are loaded
        * from the ntv.constant member, depending on the mode bits. If
        * the STA_PLL bit in the status word is cleared, the state and
        * status words are reset to the initial values at boot.
        */
       mutex_spin_enter(&timecounter_lock);
       modes = ntv->modes;
       if (modes != 0)
               /* We need to save the system time during shutdown */
               time_adjusted |= 2;
       if (modes & MOD_MAXERROR)
               time_maxerror = ntv->maxerror;
       if (modes & MOD_ESTERROR)
               time_esterror = ntv->esterror;
       if (modes & MOD_STATUS) {
               if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
                       time_state = TIME_OK;
                       time_status = STA_UNSYNC;
#ifdef PPS_SYNC
                       pps_shift = PPS_FAVG;
#endif /* PPS_SYNC */
               }
               time_status &= STA_RONLY;
               time_status |= ntv->status & ~STA_RONLY;
       }
       if (modes & MOD_TIMECONST) {
               if (ntv->constant < 0)
                       time_constant = 0;
               else if (ntv->constant > MAXTC)
                       time_constant = MAXTC;
               else
                       time_constant = ntv->constant;
       }
       if (modes & MOD_TAI) {
               if (ntv->constant > 0)  /* XXX zero & negative numbers ? */
                       time_tai = ntv->constant;
       }
#ifdef PPS_SYNC
       if (modes & MOD_PPSMAX) {
               if (ntv->shift < PPS_FAVG)
                       pps_shiftmax = PPS_FAVG;
               else if (ntv->shift > PPS_FAVGMAX)
                       pps_shiftmax = PPS_FAVGMAX;
               else
                       pps_shiftmax = ntv->shift;
       }
#endif /* PPS_SYNC */
       if (modes & MOD_NANO)
               time_status |= STA_NANO;
       if (modes & MOD_MICRO)
               time_status &= ~STA_NANO;
       if (modes & MOD_CLKB)
               time_status |= STA_CLK;
       if (modes & MOD_CLKA)
               time_status &= ~STA_CLK;
       if (modes & MOD_FREQUENCY) {
               freq = MIN(INT32_MAX, MAX(INT32_MIN, ntv->freq));
               freq = (freq * (int64_t)1000) >> 16;
               if (freq > MAXFREQ)
                       L_LINT(time_freq, MAXFREQ);
               else if (freq < -MAXFREQ)
                       L_LINT(time_freq, -MAXFREQ);
               else {
                       /*
                        * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
                        * time_freq is [ns/s * 2^32]
                        */
                       time_freq = ntv->freq * 1000LL * 65536LL;
               }
#ifdef PPS_SYNC
               pps_freq = time_freq;
#endif /* PPS_SYNC */
       }
       if (modes & MOD_OFFSET) {
               if (time_status & STA_NANO) {
                       hardupdate(ntv->offset);
               } else {
                       long offset = ntv->offset;
                       offset = MIN(offset, MAXPHASE/1000);
                       offset = MAX(offset, -MAXPHASE/1000);
                       hardupdate(offset * 1000);
               }
       }

       /*
        * Retrieve all clock variables. Note that the TAI offset is
        * returned only by ntp_gettime();
        */
       if (time_status & STA_NANO)
               ntv->offset = L_GINT(time_offset);
       else
               ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
       if (time_freq < 0)
               ntv->freq = L_GINT(-((-time_freq / 1000LL) << 16));
       else
               ntv->freq = L_GINT((time_freq / 1000LL) << 16);
       ntv->maxerror = time_maxerror;
       ntv->esterror = time_esterror;
       ntv->status = time_status;
       ntv->constant = time_constant;
       if (time_status & STA_NANO)
               ntv->precision = time_precision;
       else
               ntv->precision = time_precision / 1000;
       ntv->tolerance = MAXFREQ * SCALE_PPM;
#ifdef PPS_SYNC
       ntv->shift = pps_shift;
       ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
       if (time_status & STA_NANO)
               ntv->jitter = pps_jitter;
       else
               ntv->jitter = pps_jitter / 1000;
       ntv->stabil = pps_stabil;
       ntv->calcnt = pps_calcnt;
       ntv->errcnt = pps_errcnt;
       ntv->jitcnt = pps_jitcnt;
       ntv->stbcnt = pps_stbcnt;
#endif /* PPS_SYNC */
       mutex_spin_exit(&timecounter_lock);
}
#endif /* NTP */

/*
* second_overflow() - called after ntp_tick_adjust()
*
* This routine is ordinarily called immediately following the above
* routine ntp_tick_adjust(). While these two routines are normally
* combined, they are separated here only for the purposes of
* simulation.
*/
void
ntp_update_second(int64_t *adjustment, time_t *newsec)
{
       int tickrate;
       l_fp ftemp;             /* 32/64-bit temporary */

       KASSERT(mutex_owned(&timecounter_lock));

#ifdef NTP

       /*
        * On rollover of the second both the nanosecond and microsecond
        * clocks are updated and the state machine cranked as
        * necessary. The phase adjustment to be used for the next
        * second is calculated and the maximum error is increased by
        * the tolerance.
        */
       time_maxerror += MAXFREQ / 1000;

       /*
        * Leap second processing. If in leap-insert state at
        * the end of the day, the system clock is set back one
        * second; if in leap-delete state, the system clock is
        * set ahead one second. The nano_time() routine or
        * external clock driver will insure that reported time
        * is always monotonic.
        */
       switch (time_state) {

               /*
                * No warning.
                */
               case TIME_OK:
               if (time_status & STA_INS)
                       time_state = TIME_INS;
               else if (time_status & STA_DEL)
                       time_state = TIME_DEL;
               break;

               /*
                * Insert second 23:59:60 following second
                * 23:59:59.
                */
               case TIME_INS:
               if (!(time_status & STA_INS))
                       time_state = TIME_OK;
               else if ((*newsec) % 86400 == 0) {
                       (*newsec)--;
                       time_state = TIME_OOP;
                       time_tai++;
               }
               break;

               /*
                * Delete second 23:59:59.
                */
               case TIME_DEL:
               if (!(time_status & STA_DEL))
                       time_state = TIME_OK;
               else if (((*newsec) + 1) % 86400 == 0) {
                       (*newsec)++;
                       time_tai--;
                       time_state = TIME_WAIT;
               }
               break;

               /*
                * Insert second in progress.
                */
               case TIME_OOP:
                       time_state = TIME_WAIT;
               break;

               /*
                * Wait for status bits to clear.
                */
               case TIME_WAIT:
               if (!(time_status & (STA_INS | STA_DEL)))
                       time_state = TIME_OK;
       }

       /*
        * Compute the total time adjustment for the next second
        * in ns. The offset is reduced by a factor depending on
        * whether the PPS signal is operating. Note that the
        * value is in effect scaled by the clock frequency,
        * since the adjustment is added at each tick interrupt.
        */
       ftemp = time_offset;
#ifdef PPS_SYNC
       /* XXX even if PPS signal dies we should finish adjustment ? */
       if (time_status & STA_PPSTIME && time_status &
           STA_PPSSIGNAL)
               L_RSHIFT(ftemp, pps_shift);
       else
               L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
#else
               L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
#endif /* PPS_SYNC */
       time_adj = ftemp;
       L_SUB(time_offset, ftemp);
       L_ADD(time_adj, time_freq);

#ifdef PPS_SYNC
       if (pps_valid > 0)
               pps_valid--;
       else
               time_status &= ~STA_PPSSIGNAL;
#endif /* PPS_SYNC */
#else  /* !NTP */
       L_CLR(time_adj);
#endif /* !NTP */

       /*
        * Apply any correction from adjtime(2).  If more than one second
        * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
        * until the last second is slewed the final < 500 usecs.
        */
       if (time_adjtime != 0) {
               if (time_adjtime > 1000000)
                       tickrate = 5000;
               else if (time_adjtime < -1000000)
                       tickrate = -5000;
               else if (time_adjtime > 500)
                       tickrate = 500;
               else if (time_adjtime < -500)
                       tickrate = -500;
               else
                       tickrate = time_adjtime;
               time_adjtime -= tickrate;
               L_LINT(ftemp, tickrate * 1000);
               L_ADD(time_adj, ftemp);
       }
       *adjustment = time_adj;
}

/*
* ntp_init() - initialize variables and structures
*
* This routine must be called after the kernel variables hz and tick
* are set or changed and before the next tick interrupt. In this
* particular implementation, these values are assumed set elsewhere in
* the kernel. The design allows the clock frequency and tick interval
* to be changed while the system is running. So, this routine should
* probably be integrated with the code that does that.
*/
void
ntp_init(void)
{

       /*
        * The following variables are initialized only at startup. Only
        * those structures not cleared by the compiler need to be
        * initialized, and these only in the simulator. In the actual
        * kernel, any nonzero values here will quickly evaporate.
        */
       L_CLR(time_adj);
#ifdef NTP
       L_CLR(time_offset);
       L_CLR(time_freq);
#ifdef PPS_SYNC
       pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
       pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
       pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
       pps_fcount = 0;
       L_CLR(pps_freq);
#endif /* PPS_SYNC */
#endif
}

#ifdef NTP
/*
* hardupdate() - local clock update
*
* This routine is called by ntp_adjtime() to update the local clock
* phase and frequency. The implementation is of an adaptive-parameter,
* hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
* time and frequency offset estimates for each call. If the kernel PPS
* discipline code is configured (PPS_SYNC), the PPS signal itself
* determines the new time offset, instead of the calling argument.
* Presumably, calls to ntp_adjtime() occur only when the caller
* believes the local clock is valid within some bound (+-128 ms with
* NTP). If the caller's time is far different than the PPS time, an
* argument will ensue, and it's not clear who will lose.
*
* For uncompensated quartz crystal oscillators and nominal update
* intervals less than 256 s, operation should be in phase-lock mode,
* where the loop is disciplined to phase. For update intervals greater
* than 1024 s, operation should be in frequency-lock mode, where the
* loop is disciplined to frequency. Between 256 s and 1024 s, the mode
* is selected by the STA_MODE status bit.
*
* Note: splclock() is in effect.
*/
void
hardupdate(long offset)
{
       long mtemp;
       l_fp ftemp;

       KASSERT(mutex_owned(&timecounter_lock));

       /*
        * Select how the phase is to be controlled and from which
        * source. If the PPS signal is present and enabled to
        * discipline the time, the PPS offset is used; otherwise, the
        * argument offset is used.
        */
       if (!(time_status & STA_PLL))
               return;
       if (!(time_status & STA_PPSTIME && time_status &
           STA_PPSSIGNAL)) {
               if (offset > MAXPHASE)
                       time_monitor = MAXPHASE;
               else if (offset < -MAXPHASE)
                       time_monitor = -MAXPHASE;
               else
                       time_monitor = offset;
               L_LINT(time_offset, time_monitor);
       }

       /*
        * Select how the frequency is to be controlled and in which
        * mode (PLL or FLL). If the PPS signal is present and enabled
        * to discipline the frequency, the PPS frequency is used;
        * otherwise, the argument offset is used to compute it.
        */
       if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
               time_reftime = time_second;
               return;
       }
       if (time_status & STA_FREQHOLD || time_reftime == 0)
               time_reftime = time_second;
       mtemp = time_second - time_reftime;
       L_LINT(ftemp, time_monitor);
       L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
       L_MPY(ftemp, mtemp);
       L_ADD(time_freq, ftemp);
       time_status &= ~STA_MODE;
       if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
           MAXSEC)) {
               L_LINT(ftemp, (time_monitor << 4) / mtemp);
               L_RSHIFT(ftemp, SHIFT_FLL + 4);
               L_ADD(time_freq, ftemp);
               time_status |= STA_MODE;
       }
       time_reftime = time_second;
       if (L_GINT(time_freq) > MAXFREQ)
               L_LINT(time_freq, MAXFREQ);
       else if (L_GINT(time_freq) < -MAXFREQ)
               L_LINT(time_freq, -MAXFREQ);
}

#ifdef PPS_SYNC
/*
* hardpps() - discipline CPU clock oscillator to external PPS signal
*
* This routine is called at each PPS interrupt in order to discipline
* the CPU clock oscillator to the PPS signal. It measures the PPS phase
* and leaves it in a handy spot for the hardclock() routine. It
* integrates successive PPS phase differences and calculates the
* frequency offset. This is used in hardclock() to discipline the CPU
* clock oscillator so that intrinsic frequency error is cancelled out.
* The code requires the caller to capture the time and hardware counter
* value at the on-time PPS signal transition.
*
* Note that, on some Unix systems, this routine runs at an interrupt
* priority level higher than the timer interrupt routine hardclock().
* Therefore, the variables used are distinct from the hardclock()
* variables, except for certain exceptions: The PPS frequency pps_freq
* and phase pps_offset variables are determined by this routine and
* updated atomically. The time_tolerance variable can be considered a
* constant, since it is infrequently changed, and then only when the
* PPS signal is disabled. The watchdog counter pps_valid is updated
* once per second by hardclock() and is atomically cleared in this
* routine.
*/
void
hardpps(struct timespec *tsp,           /* time at PPS */
       long nsec                       /* hardware counter at PPS */)
{
       long u_sec, u_nsec, v_nsec; /* temps */
       l_fp ftemp;

       KASSERT(mutex_owned(&timecounter_lock));

       /*
        * The signal is first processed by a range gate and frequency
        * discriminator. The range gate rejects noise spikes outside
        * the range +-500 us. The frequency discriminator rejects input
        * signals with apparent frequency outside the range 1 +-500
        * PPM. If two hits occur in the same second, we ignore the
        * later hit; if not and a hit occurs outside the range gate,
        * keep the later hit for later comparison, but do not process
        * it.
        */
       time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
       time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
       pps_valid = PPS_VALID;
       u_sec = tsp->tv_sec;
       u_nsec = tsp->tv_nsec;
       if (u_nsec >= (NANOSECOND >> 1)) {
               u_nsec -= NANOSECOND;
               u_sec++;
       }
       v_nsec = u_nsec - pps_tf[0].tv_nsec;
       if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
           MAXFREQ)
               return;
       pps_tf[2] = pps_tf[1];
       pps_tf[1] = pps_tf[0];
       pps_tf[0].tv_sec = u_sec;
       pps_tf[0].tv_nsec = u_nsec;

       /*
        * Compute the difference between the current and previous
        * counter values. If the difference exceeds 0.5 s, assume it
        * has wrapped around, so correct 1.0 s. If the result exceeds
        * the tick interval, the sample point has crossed a tick
        * boundary during the last second, so correct the tick. Very
        * intricate.
        */
       u_nsec = nsec;
       if (u_nsec > (NANOSECOND >> 1))
               u_nsec -= NANOSECOND;
       else if (u_nsec < -(NANOSECOND >> 1))
               u_nsec += NANOSECOND;
       pps_fcount += u_nsec;
       if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
               return;
       time_status &= ~STA_PPSJITTER;

       /*
        * A three-stage median filter is used to help denoise the PPS
        * time. The median sample becomes the time offset estimate; the
        * difference between the other two samples becomes the time
        * dispersion (jitter) estimate.
        */
       if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
               if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
                       v_nsec = pps_tf[1].tv_nsec;     /* 0 1 2 */
                       u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
               } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
                       v_nsec = pps_tf[0].tv_nsec;     /* 2 0 1 */
                       u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
               } else {
                       v_nsec = pps_tf[2].tv_nsec;     /* 0 2 1 */
                       u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
               }
       } else {
               if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
                       v_nsec = pps_tf[1].tv_nsec;     /* 2 1 0 */
                       u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
               } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
                       v_nsec = pps_tf[0].tv_nsec;     /* 1 0 2 */
                       u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
               } else {
                       v_nsec = pps_tf[2].tv_nsec;     /* 1 2 0 */
                       u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
               }
       }

       /*
        * Nominal jitter is due to PPS signal noise and interrupt
        * latency. If it exceeds the popcorn threshold, the sample is
        * discarded. otherwise, if so enabled, the time offset is
        * updated. We can tolerate a modest loss of data here without
        * much degrading time accuracy.
        */
       if (u_nsec > (pps_jitter << PPS_POPCORN)) {
               time_status |= STA_PPSJITTER;
               pps_jitcnt++;
       } else if (time_status & STA_PPSTIME) {
               time_monitor = -v_nsec;
               L_LINT(time_offset, time_monitor);
       }
       pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
       u_sec = pps_tf[0].tv_sec - pps_lastsec;
       if (u_sec < (1 << pps_shift))
               return;

       /*
        * At the end of the calibration interval the difference between
        * the first and last counter values becomes the scaled
        * frequency. It will later be divided by the length of the
        * interval to determine the frequency update. If the frequency
        * exceeds a sanity threshold, or if the actual calibration
        * interval is not equal to the expected length, the data are
        * discarded. We can tolerate a modest loss of data here without
        * much degrading frequency accuracy.
        */
       pps_calcnt++;
       v_nsec = -pps_fcount;
       pps_lastsec = pps_tf[0].tv_sec;
       pps_fcount = 0;
       u_nsec = MAXFREQ << pps_shift;
       if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
           pps_shift)) {
               time_status |= STA_PPSERROR;
               pps_errcnt++;
               return;
       }

       /*
        * Here the raw frequency offset and wander (stability) is
        * calculated. If the wander is less than the wander threshold
        * for four consecutive averaging intervals, the interval is
        * doubled; if it is greater than the threshold for four
        * consecutive intervals, the interval is halved. The scaled
        * frequency offset is converted to frequency offset. The
        * stability metric is calculated as the average of recent
        * frequency changes, but is used only for performance
        * monitoring.
        */
       L_LINT(ftemp, v_nsec);
       L_RSHIFT(ftemp, pps_shift);
       L_SUB(ftemp, pps_freq);
       u_nsec = L_GINT(ftemp);
       if (u_nsec > PPS_MAXWANDER) {
               L_LINT(ftemp, PPS_MAXWANDER);
               pps_intcnt--;
               time_status |= STA_PPSWANDER;
               pps_stbcnt++;
       } else if (u_nsec < -PPS_MAXWANDER) {
               L_LINT(ftemp, -PPS_MAXWANDER);
               pps_intcnt--;
               time_status |= STA_PPSWANDER;
               pps_stbcnt++;
       } else {
               pps_intcnt++;
       }
       if (pps_intcnt >= 4) {
               pps_intcnt = 4;
               if (pps_shift < pps_shiftmax) {
                       pps_shift++;
                       pps_intcnt = 0;
               }
       } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
               pps_intcnt = -4;
               if (pps_shift > PPS_FAVG) {
                       pps_shift--;
                       pps_intcnt = 0;
               }
       }
       if (u_nsec < 0)
               u_nsec = -u_nsec;
       pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;

       /*
        * The PPS frequency is recalculated and clamped to the maximum
        * MAXFREQ. If enabled, the system clock frequency is updated as
        * well.
        */
       L_ADD(pps_freq, ftemp);
       u_nsec = L_GINT(pps_freq);
       if (u_nsec > MAXFREQ)
               L_LINT(pps_freq, MAXFREQ);
       else if (u_nsec < -MAXFREQ)
               L_LINT(pps_freq, -MAXFREQ);
       if (time_status & STA_PPSFREQ)
               time_freq = pps_freq;
}
#endif /* PPS_SYNC */
#endif /* NTP */

#ifdef NTP
int
ntp_timestatus(void)
{
       int rv;

       /*
        * Status word error decode. If any of these conditions
        * occur, an error is returned, instead of the status
        * word. Most applications will care only about the fact
        * the system clock may not be trusted, not about the
        * details.
        *
        * Hardware or software error
        */
       mutex_spin_enter(&timecounter_lock);
       if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||

       /*
        * PPS signal lost when either time or frequency
        * synchronization requested
        */
           (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
            !(time_status & STA_PPSSIGNAL)) ||

       /*
        * PPS jitter exceeded when time synchronization
        * requested
        */
           (time_status & STA_PPSTIME &&
            time_status & STA_PPSJITTER) ||

       /*
        * PPS wander exceeded or calibration error when
        * frequency synchronization requested
        */
           (time_status & STA_PPSFREQ &&
            time_status & (STA_PPSWANDER | STA_PPSERROR)))
               rv = TIME_ERROR;
       else
               rv = time_state;
       mutex_spin_exit(&timecounter_lock);

       return rv;
}

/*ARGSUSED*/
/*
* ntp_gettime() - NTP user application interface
*/
int
sys___ntp_gettime50(struct lwp *l, const struct sys___ntp_gettime50_args *uap, register_t *retval)
{
       /* {
               syscallarg(struct ntptimeval *) ntvp;
       } */
       struct ntptimeval ntv;
       int error = 0;

       if (SCARG(uap, ntvp)) {
               ntp_gettime(&ntv);

               error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
                               sizeof(ntv));
       }
       if (!error) {
               *retval = ntp_timestatus();
       }
       return(error);
}

/*
* return information about kernel precision timekeeping
*/
static int
sysctl_kern_ntptime(SYSCTLFN_ARGS)
{
       struct sysctlnode node;
       struct ntptimeval ntv;

       ntp_gettime(&ntv);

       node = *rnode;
       node.sysctl_data = &ntv;
       node.sysctl_size = sizeof(ntv);
       return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}

SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
{

       sysctl_createv(clog, 0, NULL, NULL,
                      CTLFLAG_PERMANENT,
                      CTLTYPE_STRUCT, "ntptime",
                      SYSCTL_DESCR("Kernel clock values for NTP"),
                      sysctl_kern_ntptime, 0, NULL,
                      sizeof(struct ntptimeval),
                      CTL_KERN, KERN_NTPTIME, CTL_EOL);
}
#endif /* !NTP */