/*      $NetBSD: kern_mutex.c,v 1.112 2023/10/15 10:28:23 riastradh Exp $       */

/*-
* Copyright (c) 2002, 2006, 2007, 2008, 2019, 2023
*     The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe and Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Kernel mutex implementation, modeled after those found in Solaris,
* a description of which can be found in:
*
*      Solaris Internals: Core Kernel Architecture, Jim Mauro and
*          Richard McDougall.
*/

#define __MUTEX_PRIVATE

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.112 2023/10/15 10:28:23 riastradh Exp $");

#include <sys/param.h>

#include <sys/atomic.h>
#include <sys/cpu.h>
#include <sys/intr.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/lockdebug.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/pserialize.h>
#include <sys/sched.h>
#include <sys/sleepq.h>
#include <sys/syncobj.h>
#include <sys/systm.h>
#include <sys/types.h>

#include <dev/lockstat.h>

#include <machine/lock.h>

/*
* When not running a debug kernel, spin mutexes are not much
* more than an splraiseipl() and splx() pair.
*/

#if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
#define FULL
#endif

/*
* Debugging support.
*/

#define MUTEX_WANTLOCK(mtx)                                     \
   LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),               \
       (uintptr_t)__builtin_return_address(0), 0)
#define MUTEX_TESTLOCK(mtx)                                     \
   LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),               \
       (uintptr_t)__builtin_return_address(0), -1)
#define MUTEX_LOCKED(mtx)                                       \
   LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,           \
       (uintptr_t)__builtin_return_address(0), 0)
#define MUTEX_UNLOCKED(mtx)                                     \
   LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),               \
       (uintptr_t)__builtin_return_address(0), 0)
#define MUTEX_ABORT(mtx, msg)                                   \
   mutex_abort(__func__, __LINE__, mtx, msg)

#if defined(LOCKDEBUG)

#define MUTEX_DASSERT(mtx, cond)                                \
do {                                                            \
       if (__predict_false(!(cond)))                           \
               MUTEX_ABORT(mtx, "assertion failed: " #cond);   \
} while (/* CONSTCOND */ 0)

#else   /* LOCKDEBUG */

#define MUTEX_DASSERT(mtx, cond)        /* nothing */

#endif /* LOCKDEBUG */

#if defined(DIAGNOSTIC)

#define MUTEX_ASSERT(mtx, cond)                                 \
do {                                                            \
       if (__predict_false(!(cond)))                           \
               MUTEX_ABORT(mtx, "assertion failed: " #cond);   \
} while (/* CONSTCOND */ 0)

#else   /* DIAGNOSTIC */

#define MUTEX_ASSERT(mtx, cond) /* nothing */

#endif  /* DIAGNOSTIC */

/*
* Some architectures can't use __cpu_simple_lock as is so allow a way
* for them to use an alternate definition.
*/
#ifndef MUTEX_SPINBIT_LOCK_INIT
#define MUTEX_SPINBIT_LOCK_INIT(mtx)    __cpu_simple_lock_init(&(mtx)->mtx_lock)
#endif
#ifndef MUTEX_SPINBIT_LOCKED_P
#define MUTEX_SPINBIT_LOCKED_P(mtx)     __SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
#endif
#ifndef MUTEX_SPINBIT_LOCK_TRY
#define MUTEX_SPINBIT_LOCK_TRY(mtx)     __cpu_simple_lock_try(&(mtx)->mtx_lock)
#endif
#ifndef MUTEX_SPINBIT_LOCK_UNLOCK
#define MUTEX_SPINBIT_LOCK_UNLOCK(mtx)  __cpu_simple_unlock(&(mtx)->mtx_lock)
#endif

#ifndef MUTEX_INITIALIZE_SPIN_IPL
#define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
                                       ((mtx)->mtx_ipl = makeiplcookie((ipl)))
#endif

/*
* Spin mutex SPL save / restore.
*/

#define MUTEX_SPIN_SPLRAISE(mtx)                                        \
do {                                                                    \
       const int s = splraiseipl(MUTEX_SPIN_IPL(mtx));                 \
       struct cpu_info * const x__ci = curcpu();                       \
       const int x__cnt = x__ci->ci_mtx_count--;                       \
       __insn_barrier();                                               \
       if (x__cnt == 0)                                                \
               x__ci->ci_mtx_oldspl = s;                               \
} while (/* CONSTCOND */ 0)

#define MUTEX_SPIN_SPLRESTORE(mtx)                                      \
do {                                                                    \
       struct cpu_info * const x__ci = curcpu();                       \
       const int s = x__ci->ci_mtx_oldspl;                             \
       __insn_barrier();                                               \
       if (++(x__ci->ci_mtx_count) == 0)                               \
               splx(s);                                                \
} while (/* CONSTCOND */ 0)

/*
* Memory barriers.
*/
#ifdef __HAVE_ATOMIC_AS_MEMBAR
#define MUTEX_MEMBAR_ENTER()
#else
#define MUTEX_MEMBAR_ENTER()            membar_enter()
#endif

/*
* For architectures that provide 'simple' mutexes: they provide a
* CAS function that is either MP-safe, or does not need to be MP
* safe.  Adaptive mutexes on these architectures do not require an
* additional interlock.
*/

#ifdef __HAVE_SIMPLE_MUTEXES

#define MUTEX_OWNER(owner)                                              \
       (owner & MUTEX_THREAD)
#define MUTEX_HAS_WAITERS(mtx)                                          \
       (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)

#define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)                         \
do {                                                                    \
       if (!dodebug)                                                   \
               (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;                  \
} while (/* CONSTCOND */ 0)

#define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)                        \
do {                                                                    \
       (mtx)->mtx_owner = MUTEX_BIT_SPIN;                              \
       if (!dodebug)                                                   \
               (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;                  \
       MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl));                        \
       MUTEX_SPINBIT_LOCK_INIT((mtx));                                 \
} while (/* CONSTCOND */ 0)

#define MUTEX_DESTROY(mtx)                                              \
do {                                                                    \
       (mtx)->mtx_owner = MUTEX_THREAD;                                \
} while (/* CONSTCOND */ 0)

#define MUTEX_SPIN_P(owner)             \
   (((owner) & MUTEX_BIT_SPIN) != 0)
#define MUTEX_ADAPTIVE_P(owner)         \
   (((owner) & MUTEX_BIT_SPIN) == 0)

#ifndef MUTEX_CAS
#define MUTEX_CAS(p, o, n)              \
       (atomic_cas_ulong((volatile unsigned long *)(p), (o), (n)) == (o))
#endif /* MUTEX_CAS */

#define MUTEX_DEBUG_P(mtx)      (((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
#if defined(LOCKDEBUG)
#define MUTEX_OWNED(owner)              (((owner) & ~MUTEX_BIT_NODEBUG) != 0)
#define MUTEX_INHERITDEBUG(n, o)        (n) |= (o) & MUTEX_BIT_NODEBUG
#else /* defined(LOCKDEBUG) */
#define MUTEX_OWNED(owner)              ((owner) != 0)
#define MUTEX_INHERITDEBUG(n, o)        /* nothing */
#endif /* defined(LOCKDEBUG) */

static inline int
MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
{
       int rv;
       uintptr_t oldown = 0;
       uintptr_t newown = curthread;

       MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
       MUTEX_INHERITDEBUG(newown, oldown);
       rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
       membar_acquire();
       return rv;
}

static inline int
MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
{
       int rv;

       rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
       MUTEX_MEMBAR_ENTER();
       return rv;
}

static inline void
MUTEX_RELEASE(kmutex_t *mtx)
{
       uintptr_t newown;

       newown = 0;
       MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
       atomic_store_release(&mtx->mtx_owner, newown);
}
#endif  /* __HAVE_SIMPLE_MUTEXES */

/*
* Patch in stubs via strong alias where they are not available.
*/

#if defined(LOCKDEBUG)
#undef  __HAVE_MUTEX_STUBS
#undef  __HAVE_SPIN_MUTEX_STUBS
#endif

#ifndef __HAVE_MUTEX_STUBS
__strong_alias(mutex_enter,mutex_vector_enter);
__strong_alias(mutex_exit,mutex_vector_exit);
#endif

#ifndef __HAVE_SPIN_MUTEX_STUBS
__strong_alias(mutex_spin_enter,mutex_vector_enter);
__strong_alias(mutex_spin_exit,mutex_vector_exit);
#endif

static void     mutex_abort(const char *, size_t, volatile const kmutex_t *,
                   const char *);
static void     mutex_dump(const volatile void *, lockop_printer_t);
static lwp_t    *mutex_owner(wchan_t);

lockops_t mutex_spin_lockops = {
       .lo_name = "Mutex",
       .lo_type = LOCKOPS_SPIN,
       .lo_dump = mutex_dump,
};

lockops_t mutex_adaptive_lockops = {
       .lo_name = "Mutex",
       .lo_type = LOCKOPS_SLEEP,
       .lo_dump = mutex_dump,
};

syncobj_t mutex_syncobj = {
       .sobj_name      = "mutex",
       .sobj_flag      = SOBJ_SLEEPQ_SORTED,
       .sobj_boostpri  = PRI_KERNEL,
       .sobj_unsleep   = turnstile_unsleep,
       .sobj_changepri = turnstile_changepri,
       .sobj_lendpri   = sleepq_lendpri,
       .sobj_owner     = mutex_owner,
};

/*
* mutex_dump:
*
*      Dump the contents of a mutex structure.
*/
static void
mutex_dump(const volatile void *cookie, lockop_printer_t pr)
{
       const volatile kmutex_t *mtx = cookie;
       uintptr_t owner = mtx->mtx_owner;

       pr("owner field  : %#018lx wait/spin: %16d/%d\n",
           (long)MUTEX_OWNER(owner), MUTEX_HAS_WAITERS(mtx),
           MUTEX_SPIN_P(owner));
}

/*
* mutex_abort:
*
*      Dump information about an error and panic the system.  This
*      generates a lot of machine code in the DIAGNOSTIC case, so
*      we ask the compiler to not inline it.
*/
static void __noinline
mutex_abort(const char *func, size_t line, volatile const kmutex_t *mtx,
   const char *msg)
{

       LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx->mtx_owner) ?
           &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
}

/*
* mutex_init:
*
*      Initialize a mutex for use.  Note that adaptive mutexes are in
*      essence spin mutexes that can sleep to avoid deadlock and wasting
*      CPU time.  We can't easily provide a type of mutex that always
*      sleeps - see comments in mutex_vector_enter() about releasing
*      mutexes unlocked.
*/
void
_mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
   uintptr_t return_address)
{
       lockops_t *lockops __unused;
       bool dodebug;

       memset(mtx, 0, sizeof(*mtx));

       if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
           ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
           ipl == IPL_SOFTSERIAL) {
               lockops = (type == MUTEX_NODEBUG ?
                   NULL : &mutex_adaptive_lockops);
               dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
               MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
       } else {
               lockops = (type == MUTEX_NODEBUG ?
                   NULL : &mutex_spin_lockops);
               dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
               MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
       }
}

void
mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
{

       _mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
}

/*
* mutex_destroy:
*
*      Tear down a mutex.
*/
void
mutex_destroy(kmutex_t *mtx)
{
       uintptr_t owner = mtx->mtx_owner;

       if (MUTEX_ADAPTIVE_P(owner)) {
               MUTEX_ASSERT(mtx, !MUTEX_OWNED(owner));
               MUTEX_ASSERT(mtx, !MUTEX_HAS_WAITERS(mtx));
       } else {
               MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
       }

       LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
       MUTEX_DESTROY(mtx);
}

#ifdef MULTIPROCESSOR
/*
* mutex_oncpu:
*
*      Return true if an adaptive mutex owner is running on a CPU in the
*      system.  If the target is waiting on the kernel big lock, then we
*      must release it.  This is necessary to avoid deadlock.
*/
static bool
mutex_oncpu(uintptr_t owner)
{
       struct cpu_info *ci;
       lwp_t *l;

       KASSERT(kpreempt_disabled());

       if (!MUTEX_OWNED(owner)) {
               return false;
       }

       /*
        * See lwp_dtor() why dereference of the LWP pointer is safe.
        * We must have kernel preemption disabled for that.
        */
       l = (lwp_t *)MUTEX_OWNER(owner);
       ci = l->l_cpu;

       if (ci && ci->ci_curlwp == l) {
               /* Target is running; do we need to block? */
               return (atomic_load_relaxed(&ci->ci_biglock_wanted) != l);
       }

       /* Not running.  It may be safe to block now. */
       return false;
}
#endif  /* MULTIPROCESSOR */

/*
* mutex_vector_enter:
*
*      Support routine for mutex_enter() that must handle all cases.  In
*      the LOCKDEBUG case, mutex_enter() is always aliased here, even if
*      fast-path stubs are available.  If a mutex_spin_enter() stub is
*      not available, then it is also aliased directly here.
*/
void
mutex_vector_enter(kmutex_t *mtx)
{
       uintptr_t owner, curthread;
       turnstile_t *ts;
#ifdef MULTIPROCESSOR
       u_int count;
#endif
       LOCKSTAT_COUNTER(spincnt);
       LOCKSTAT_COUNTER(slpcnt);
       LOCKSTAT_TIMER(spintime);
       LOCKSTAT_TIMER(slptime);
       LOCKSTAT_FLAG(lsflag);

       /*
        * Handle spin mutexes.
        */
       KPREEMPT_DISABLE(curlwp);
       owner = mtx->mtx_owner;
       if (MUTEX_SPIN_P(owner)) {
#if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
               u_int spins = 0;
#endif
               KPREEMPT_ENABLE(curlwp);
               MUTEX_SPIN_SPLRAISE(mtx);
               MUTEX_WANTLOCK(mtx);
#ifdef FULL
               if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
                       MUTEX_LOCKED(mtx);
                       return;
               }
#if !defined(MULTIPROCESSOR)
               MUTEX_ABORT(mtx, "locking against myself");
#else /* !MULTIPROCESSOR */

               LOCKSTAT_ENTER(lsflag);
               LOCKSTAT_START_TIMER(lsflag, spintime);
               count = SPINLOCK_BACKOFF_MIN;

               /*
                * Spin testing the lock word and do exponential backoff
                * to reduce cache line ping-ponging between CPUs.
                */
               do {
                       while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
                               SPINLOCK_SPIN_HOOK;
                               SPINLOCK_BACKOFF(count);
#ifdef LOCKDEBUG
                               if (SPINLOCK_SPINOUT(spins))
                                       MUTEX_ABORT(mtx, "spinout");
#endif  /* LOCKDEBUG */
                       }
               } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));

               if (count != SPINLOCK_BACKOFF_MIN) {
                       LOCKSTAT_STOP_TIMER(lsflag, spintime);
                       LOCKSTAT_EVENT(lsflag, mtx,
                           LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
               }
               LOCKSTAT_EXIT(lsflag);
#endif  /* !MULTIPROCESSOR */
#endif  /* FULL */
               MUTEX_LOCKED(mtx);
               return;
       }

       curthread = (uintptr_t)curlwp;

       MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(owner));
       MUTEX_ASSERT(mtx, curthread != 0);
       MUTEX_ASSERT(mtx, !cpu_intr_p());
       MUTEX_WANTLOCK(mtx);

       if (__predict_true(panicstr == NULL)) {
               KDASSERT(pserialize_not_in_read_section());
               LOCKDEBUG_BARRIER(&kernel_lock, 1);
       }

       LOCKSTAT_ENTER(lsflag);

       /*
        * Adaptive mutex; spin trying to acquire the mutex.  If we
        * determine that the owner is not running on a processor,
        * then we stop spinning, and sleep instead.
        */
       for (;;) {
               if (!MUTEX_OWNED(owner)) {
                       /*
                        * Mutex owner clear could mean two things:
                        *
                        *      * The mutex has been released.
                        *      * The owner field hasn't been set yet.
                        *
                        * Try to acquire it again.  If that fails,
                        * we'll just loop again.
                        */
                       if (MUTEX_ACQUIRE(mtx, curthread))
                               break;
                       owner = mtx->mtx_owner;
                       continue;
               }
               if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
                       MUTEX_ABORT(mtx, "locking against myself");
               }
#ifdef MULTIPROCESSOR
               /*
                * Check to see if the owner is running on a processor.
                * If so, then we should just spin, as the owner will
                * likely release the lock very soon.
                */
               if (mutex_oncpu(owner)) {
                       LOCKSTAT_START_TIMER(lsflag, spintime);
                       count = SPINLOCK_BACKOFF_MIN;
                       do {
                               KPREEMPT_ENABLE(curlwp);
                               SPINLOCK_BACKOFF(count);
                               KPREEMPT_DISABLE(curlwp);
                               owner = mtx->mtx_owner;
                       } while (mutex_oncpu(owner));
                       LOCKSTAT_STOP_TIMER(lsflag, spintime);
                       LOCKSTAT_COUNT(spincnt, 1);
                       if (!MUTEX_OWNED(owner))
                               continue;
               }
#endif

               ts = turnstile_lookup(mtx);

               /*
                * Once we have the turnstile chain interlock, mark the
                * mutex as having waiters.  If that fails, spin again:
                * chances are that the mutex has been released.
                */
               if (!MUTEX_SET_WAITERS(mtx, owner)) {
                       turnstile_exit(mtx);
                       owner = mtx->mtx_owner;
                       continue;
               }

#ifdef MULTIPROCESSOR
               /*
                * mutex_exit() is permitted to release the mutex without
                * any interlocking instructions, and the following can
                * occur as a result:
                *
                *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
                * ---------------------------- ----------------------------
                *              ..              load mtx->mtx_owner
                *              ..              see has-waiters bit clear
                *      set has-waiters bit                ..
                *              ..              store mtx->mtx_owner := 0
                *        return success
                *
                * There is another race that can occur: a third CPU could
                * acquire the mutex as soon as it is released.  Since
                * adaptive mutexes are primarily spin mutexes, this is not
                * something that we need to worry about too much.  What we
                * do need to ensure is that the waiters bit gets set.
                *
                * To allow the unlocked release, we need to make some
                * assumptions here:
                *
                * o Release is the only non-atomic/unlocked operation
                *   that can be performed on the mutex.  (It must still
                *   be atomic on the local CPU, e.g. in case interrupted
                *   or preempted).
                *
                * o At any given time on each mutex, MUTEX_SET_WAITERS()
                *   can only ever be in progress on one CPU in the
                *   system - guaranteed by the turnstile chain lock.
                *
                * o No other operations other than MUTEX_SET_WAITERS()
                *   and release can modify a mutex with a non-zero
                *   owner field.
                *
                * o If the holding LWP switches away, it posts a store
                *   fence before changing curlwp, ensuring that any
                *   overwrite of the mutex waiters flag by mutex_exit()
                *   completes before the modification of curlwp becomes
                *   visible to this CPU.
                *
                * o cpu_switchto() posts a store fence after setting curlwp
                *   and before resuming execution of an LWP.
                *
                * o _kernel_lock() posts a store fence before setting
                *   curcpu()->ci_biglock_wanted, and after clearing it.
                *   This ensures that any overwrite of the mutex waiters
                *   flag by mutex_exit() completes before the modification
                *   of ci_biglock_wanted becomes visible.
                *
                * After MUTEX_SET_WAITERS() succeeds, simultaneously
                * confirming that the same LWP still holds the mutex
                * since we took the turnstile lock and notifying it that
                * we're waiting, we check the lock holder's status again.
                * Some of the possible outcomes (not an exhaustive list;
                * XXX this should be made exhaustive):
                *
                * 1. The on-CPU check returns true: the holding LWP is
                *    running again.  The lock may be released soon and
                *    we should spin.  Importantly, we can't trust the
                *    value of the waiters flag.
                *
                * 2. The on-CPU check returns false: the holding LWP is
                *    not running.  We now have the opportunity to check
                *    if mutex_exit() has blatted the modifications made
                *    by MUTEX_SET_WAITERS().
                *
                * 3. The on-CPU check returns false: the holding LWP may
                *    or may not be running.  It has context switched at
                *    some point during our check.  Again, we have the
                *    chance to see if the waiters bit is still set or
                *    has been overwritten.
                *
                * 4. The on-CPU check returns false: the holding LWP is
                *    running on a CPU, but wants the big lock.  It's OK
                *    to check the waiters field in this case.
                *
                * 5. The has-waiters check fails: the mutex has been
                *    released, the waiters flag cleared and another LWP
                *    now owns the mutex.
                *
                * 6. The has-waiters check fails: the mutex has been
                *    released.
                *
                * If the waiters bit is not set it's unsafe to go asleep,
                * as we might never be awoken.
                */
               if (mutex_oncpu(owner)) {
                       turnstile_exit(mtx);
                       owner = mtx->mtx_owner;
                       continue;
               }
               membar_consumer();
               if (!MUTEX_HAS_WAITERS(mtx)) {
                       turnstile_exit(mtx);
                       owner = mtx->mtx_owner;
                       continue;
               }
#endif  /* MULTIPROCESSOR */

               LOCKSTAT_START_TIMER(lsflag, slptime);

               turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);

               LOCKSTAT_STOP_TIMER(lsflag, slptime);
               LOCKSTAT_COUNT(slpcnt, 1);

               owner = mtx->mtx_owner;
       }
       KPREEMPT_ENABLE(curlwp);

       LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
           slpcnt, slptime);
       LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
           spincnt, spintime);
       LOCKSTAT_EXIT(lsflag);

       MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
       MUTEX_LOCKED(mtx);
}

/*
* mutex_vector_exit:
*
*      Support routine for mutex_exit() that handles all cases.
*/
void
mutex_vector_exit(kmutex_t *mtx)
{
       turnstile_t *ts;
       uintptr_t curthread;

       if (MUTEX_SPIN_P(mtx->mtx_owner)) {
#ifdef FULL
               if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
                       MUTEX_ABORT(mtx, "exiting unheld spin mutex");
               }
               MUTEX_UNLOCKED(mtx);
               MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
#endif
               MUTEX_SPIN_SPLRESTORE(mtx);
               return;
       }

#ifndef __HAVE_MUTEX_STUBS
       /*
        * On some architectures without mutex stubs, we can enter here to
        * release mutexes before interrupts and whatnot are up and running.
        * We need this hack to keep them sweet.
        */
       if (__predict_false(cold)) {
               MUTEX_UNLOCKED(mtx);
               MUTEX_RELEASE(mtx);
               return;
       }
#endif

       curthread = (uintptr_t)curlwp;
       MUTEX_DASSERT(mtx, curthread != 0);
       MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
       MUTEX_UNLOCKED(mtx);
#if !defined(LOCKDEBUG)
       __USE(curthread);
#endif

#ifdef LOCKDEBUG
       /*
        * Avoid having to take the turnstile chain lock every time
        * around.  Raise the priority level to splhigh() in order
        * to disable preemption and so make the following atomic.
        * This also blocks out soft interrupts that could set the
        * waiters bit.
        */
       {
               int s = splhigh();
               if (!MUTEX_HAS_WAITERS(mtx)) {
                       MUTEX_RELEASE(mtx);
                       splx(s);
                       return;
               }
               splx(s);
       }
#endif

       /*
        * Get this lock's turnstile.  This gets the interlock on
        * the sleep queue.  Once we have that, we can clear the
        * lock.  If there was no turnstile for the lock, there
        * were no waiters remaining.
        */
       ts = turnstile_lookup(mtx);

       if (ts == NULL) {
               MUTEX_RELEASE(mtx);
               turnstile_exit(mtx);
       } else {
               MUTEX_RELEASE(mtx);
               turnstile_wakeup(ts, TS_WRITER_Q,
                   TS_WAITERS(ts, TS_WRITER_Q), NULL);
       }
}

#ifndef __HAVE_SIMPLE_MUTEXES
/*
* mutex_wakeup:
*
*      Support routine for mutex_exit() that wakes up all waiters.
*      We assume that the mutex has been released, but it need not
*      be.
*/
void
mutex_wakeup(kmutex_t *mtx)
{
       turnstile_t *ts;

       ts = turnstile_lookup(mtx);
       if (ts == NULL) {
               turnstile_exit(mtx);
               return;
       }
       MUTEX_CLEAR_WAITERS(mtx);
       turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
}
#endif  /* !__HAVE_SIMPLE_MUTEXES */

/*
* mutex_owned:
*
*      Return true if the current LWP (adaptive) or CPU (spin)
*      holds the mutex.
*/
int
mutex_owned(const kmutex_t *mtx)
{

       if (mtx == NULL)
               return 0;
       if (MUTEX_ADAPTIVE_P(mtx->mtx_owner))
               return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
#ifdef FULL
       return MUTEX_SPINBIT_LOCKED_P(mtx);
#else
       return 1;
#endif
}

/*
* mutex_owner:
*
*      Return the current owner of an adaptive mutex.  Used for
*      priority inheritance.
*/
static lwp_t *
mutex_owner(wchan_t wchan)
{
       volatile const kmutex_t *mtx = wchan;

       MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx->mtx_owner));
       return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
}

/*
* mutex_ownable:
*
*      When compiled with DEBUG and LOCKDEBUG defined, ensure that
*      the mutex is available.  We cannot use !mutex_owned() since
*      that won't work correctly for spin mutexes.
*/
int
mutex_ownable(const kmutex_t *mtx)
{

#ifdef LOCKDEBUG
       MUTEX_TESTLOCK(mtx);
#endif
       return 1;
}

/*
* mutex_tryenter:
*
*      Try to acquire the mutex; return non-zero if we did.
*/
int
mutex_tryenter(kmutex_t *mtx)
{
       uintptr_t curthread;

       /*
        * Handle spin mutexes.
        */
       if (MUTEX_SPIN_P(mtx->mtx_owner)) {
               MUTEX_SPIN_SPLRAISE(mtx);
#ifdef FULL
               if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
                       MUTEX_WANTLOCK(mtx);
                       MUTEX_LOCKED(mtx);
                       return 1;
               }
               MUTEX_SPIN_SPLRESTORE(mtx);
#else
               MUTEX_WANTLOCK(mtx);
               MUTEX_LOCKED(mtx);
               return 1;
#endif
       } else {
               curthread = (uintptr_t)curlwp;
               MUTEX_ASSERT(mtx, curthread != 0);
               if (MUTEX_ACQUIRE(mtx, curthread)) {
                       MUTEX_WANTLOCK(mtx);
                       MUTEX_LOCKED(mtx);
                       MUTEX_DASSERT(mtx,
                           MUTEX_OWNER(mtx->mtx_owner) == curthread);
                       return 1;
               }
       }

       return 0;
}

#if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
/*
* mutex_spin_retry:
*
*      Support routine for mutex_spin_enter().  Assumes that the caller
*      has already raised the SPL, and adjusted counters.
*/
void
mutex_spin_retry(kmutex_t *mtx)
{
#ifdef MULTIPROCESSOR
       u_int count;
       LOCKSTAT_TIMER(spintime);
       LOCKSTAT_FLAG(lsflag);
#ifdef LOCKDEBUG
       u_int spins = 0;
#endif  /* LOCKDEBUG */

       MUTEX_WANTLOCK(mtx);

       LOCKSTAT_ENTER(lsflag);
       LOCKSTAT_START_TIMER(lsflag, spintime);
       count = SPINLOCK_BACKOFF_MIN;

       /*
        * Spin testing the lock word and do exponential backoff
        * to reduce cache line ping-ponging between CPUs.
        */
       do {
               while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
                       SPINLOCK_BACKOFF(count);
#ifdef LOCKDEBUG
                       if (SPINLOCK_SPINOUT(spins))
                               MUTEX_ABORT(mtx, "spinout");
#endif  /* LOCKDEBUG */
               }
       } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));

       LOCKSTAT_STOP_TIMER(lsflag, spintime);
       LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
       LOCKSTAT_EXIT(lsflag);

       MUTEX_LOCKED(mtx);
#else   /* MULTIPROCESSOR */
       MUTEX_ABORT(mtx, "locking against myself");
#endif  /* MULTIPROCESSOR */
}
#endif  /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */