/*      $NetBSD: kern_fork.c,v 1.231 2024/05/14 19:00:44 andvar Exp $   */

/*-
* Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008, 2019
*     The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 1982, 1986, 1989, 1991, 1993
*      The Regents of the University of California.  All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.231 2024/05/14 19:00:44 andvar Exp $");

#include "opt_ktrace.h"
#include "opt_dtrace.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/filedesc.h>
#include <sys/kernel.h>
#include <sys/pool.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/ras.h>
#include <sys/resourcevar.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/acct.h>
#include <sys/ktrace.h>
#include <sys/sched.h>
#include <sys/signalvar.h>
#include <sys/syscall.h>
#include <sys/kauth.h>
#include <sys/atomic.h>
#include <sys/syscallargs.h>
#include <sys/uidinfo.h>
#include <sys/sdt.h>
#include <sys/ptrace.h>

/*
* DTrace SDT provider definitions
*/
SDT_PROVIDER_DECLARE(proc);
SDT_PROBE_DEFINE3(proc, kernel, , create,
   "struct proc *", /* new process */
   "struct proc *", /* parent process */
   "int" /* flags */);

u_int   nprocs __cacheline_aligned = 1;         /* process 0 */

/*
* Number of ticks to sleep if fork() would fail due to process hitting
* limits. Exported in milliseconds to userland via sysctl.
*/
int     forkfsleep = 0;

int
sys_fork(struct lwp *l, const void *v, register_t *retval)
{

       return fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval);
}

/*
* vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
* Address space is not shared, but parent is blocked until child exit.
*/
int
sys_vfork(struct lwp *l, const void *v, register_t *retval)
{

       return fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
           retval);
}

/*
* New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
* semantics.  Address space is shared, and parent is blocked until child exit.
*/
int
sys___vfork14(struct lwp *l, const void *v, register_t *retval)
{

       return fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
           NULL, NULL, retval);
}

/*
* Linux-compatible __clone(2) system call.
*/
int
sys___clone(struct lwp *l, const struct sys___clone_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(int) flags;
               syscallarg(void *) stack;
       } */
       int flags, sig;

       /*
        * We don't support the CLONE_PTRACE flag.
        */
       if (SCARG(uap, flags) & (CLONE_PTRACE))
               return EINVAL;

       /*
        * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
        */
       if (SCARG(uap, flags) & CLONE_SIGHAND
           && (SCARG(uap, flags) & CLONE_VM) == 0)
               return EINVAL;

       flags = 0;

       if (SCARG(uap, flags) & CLONE_VM)
               flags |= FORK_SHAREVM;
       if (SCARG(uap, flags) & CLONE_FS)
               flags |= FORK_SHARECWD;
       if (SCARG(uap, flags) & CLONE_FILES)
               flags |= FORK_SHAREFILES;
       if (SCARG(uap, flags) & CLONE_SIGHAND)
               flags |= FORK_SHARESIGS;
       if (SCARG(uap, flags) & CLONE_VFORK)
               flags |= FORK_PPWAIT;

       sig = SCARG(uap, flags) & CLONE_CSIGNAL;
       if (sig < 0 || sig >= _NSIG)
               return EINVAL;

       /*
        * Note that the Linux API does not provide a portable way of
        * specifying the stack area; the caller must know if the stack
        * grows up or down.  So, we pass a stack size of 0, so that the
        * code that makes this adjustment is a noop.
        */
       return fork1(l, flags, sig, SCARG(uap, stack), 0,
           NULL, NULL, retval);
}

/*
* Print the 'table full' message once per 10 seconds.
*/
static struct timeval fork_tfmrate = { 10, 0 };

/*
* Check if a process is traced and shall inform about FORK events.
*/
static inline bool
tracefork(struct proc *p, int flags)
{

       return (p->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) ==
           (PSL_TRACEFORK|PSL_TRACED) && (flags & FORK_PPWAIT) == 0;
}

/*
* Check if a process is traced and shall inform about VFORK events.
*/
static inline bool
tracevfork(struct proc *p, int flags)
{

       return (p->p_slflag & (PSL_TRACEVFORK|PSL_TRACED)) ==
           (PSL_TRACEVFORK|PSL_TRACED) && (flags & FORK_PPWAIT) != 0;
}

/*
* Check if a process is traced and shall inform about VFORK_DONE events.
*/
static inline bool
tracevforkdone(struct proc *p, int flags)
{

       return (p->p_slflag & (PSL_TRACEVFORK_DONE|PSL_TRACED)) ==
           (PSL_TRACEVFORK_DONE|PSL_TRACED) && (flags & FORK_PPWAIT);
}

/*
* General fork call.  Note that another LWP in the process may call exec()
* or exit() while we are forking.  It's safe to continue here, because
* neither operation will complete until all LWPs have exited the process.
*/
int
fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
   void (*func)(void *), void *arg, register_t *retval)
{
       struct proc     *p1, *p2, *parent;
       struct plimit   *p1_lim;
       uid_t           uid;
       struct lwp      *l2;
       int             count;
       vaddr_t         uaddr;
       int             tnprocs;
       int             error = 0;

       p1 = l1->l_proc;
       uid = kauth_cred_getuid(l1->l_cred);
       tnprocs = atomic_inc_uint_nv(&nprocs);

       /*
        * Although process entries are dynamically created, we still keep
        * a global limit on the maximum number we will create.
        */
       if (__predict_false(tnprocs >= maxproc))
               error = -1;
       else
               error = kauth_authorize_process(l1->l_cred,
                   KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);

       if (error) {
               static struct timeval lasttfm;
               atomic_dec_uint(&nprocs);
               if (ratecheck(&lasttfm, &fork_tfmrate))
                       tablefull("proc", "increase kern.maxproc or NPROC");
               if (forkfsleep)
                       kpause("forkmx", false, forkfsleep, NULL);
               return EAGAIN;
       }

       /*
        * Enforce limits.
        */
       count = chgproccnt(uid, 1);
       if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
               if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
                   p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
                   &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) {
                       (void)chgproccnt(uid, -1);
                       atomic_dec_uint(&nprocs);
                       if (forkfsleep)
                               kpause("forkulim", false, forkfsleep, NULL);
                       return EAGAIN;
               }
       }

       /*
        * Allocate virtual address space for the U-area now, while it
        * is still easy to abort the fork operation if we're out of
        * kernel virtual address space.
        */
       uaddr = uvm_uarea_alloc();
       if (__predict_false(uaddr == 0)) {
               (void)chgproccnt(uid, -1);
               atomic_dec_uint(&nprocs);
               return ENOMEM;
       }

       /* Allocate new proc. */
       p2 = proc_alloc();
       if (p2 == NULL) {
               /* We were unable to allocate a process ID. */
               uvm_uarea_free(uaddr);
               mutex_enter(p1->p_lock);
               uid = kauth_cred_getuid(p1->p_cred);
               (void)chgproccnt(uid, -1);
               mutex_exit(p1->p_lock);
               atomic_dec_uint(&nprocs);
               return EAGAIN;
       }

       /*
        * We are now committed to the fork.  From here on, we may
        * block on resources, but resource allocation may NOT fail.
        */

       /*
        * Make a proc table entry for the new process.
        * Start by zeroing the section of proc that is zero-initialized,
        * then copy the section that is copied directly from the parent.
        */
       memset(&p2->p_startzero, 0,
           (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
       memcpy(&p2->p_startcopy, &p1->p_startcopy,
           (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));

       TAILQ_INIT(&p2->p_sigpend.sp_info);

       LIST_INIT(&p2->p_lwps);
       LIST_INIT(&p2->p_sigwaiters);

       /*
        * Duplicate sub-structures as needed.
        * Increase reference counts on shared objects.
        * Inherit flags we want to keep.  The flags related to SIGCHLD
        * handling are important in order to keep a consistent behaviour
        * for the child after the fork.  If we are a 32-bit process, the
        * child will be too.
        */
       p2->p_flag =
           p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
       p2->p_emul = p1->p_emul;
       p2->p_execsw = p1->p_execsw;

       if (flags & FORK_SYSTEM) {
               /*
                * Mark it as a system process.  Set P_NOCLDWAIT so that
                * children are reparented to init(8) when they exit.
                * init(8) can easily wait them out for us.
                */
               p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
       }

       mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
       mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
       rw_init(&p2->p_reflock);
       cv_init(&p2->p_waitcv, "wait");
       cv_init(&p2->p_lwpcv, "lwpwait");

       /*
        * Share a lock between the processes if they are to share signal
        * state: we must synchronize access to it.
        */
       if (flags & FORK_SHARESIGS) {
               p2->p_lock = p1->p_lock;
               mutex_obj_hold(p1->p_lock);
       } else
               p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);

       kauth_proc_fork(p1, p2);

       p2->p_raslist = NULL;
#if defined(__HAVE_RAS)
       ras_fork(p1, p2);
#endif

       /* bump references to the text vnode (for procfs) */
       p2->p_textvp = p1->p_textvp;
       if (p2->p_textvp)
               vref(p2->p_textvp);
       if (p1->p_path)
               p2->p_path = kmem_strdupsize(p1->p_path, NULL, KM_SLEEP);
       else
               p2->p_path = NULL;

       if (flags & FORK_SHAREFILES)
               fd_share(p2);
       else if (flags & FORK_CLEANFILES)
               p2->p_fd = fd_init(NULL);
       else
               p2->p_fd = fd_copy();

       /* XXX racy */
       p2->p_mqueue_cnt = p1->p_mqueue_cnt;

       if (flags & FORK_SHARECWD)
               cwdshare(p2);
       else
               p2->p_cwdi = cwdinit();

       /*
        * Note: p_limit (rlimit stuff) is copy-on-write, so normally
        * we just need increase pl_refcnt.
        */
       p1_lim = p1->p_limit;
       if (!p1_lim->pl_writeable) {
               lim_addref(p1_lim);
               p2->p_limit = p1_lim;
       } else {
               p2->p_limit = lim_copy(p1_lim);
       }

       if (flags & FORK_PPWAIT) {
               /* Mark ourselves as waiting for a child. */
               p2->p_lflag = PL_PPWAIT;
               l1->l_vforkwaiting = true;
               p2->p_vforklwp = l1;
       } else {
               p2->p_lflag = 0;
               l1->l_vforkwaiting = false;
       }
       p2->p_sflag = 0;
       p2->p_slflag = 0;
       parent = (flags & FORK_NOWAIT) ? initproc : p1;
       p2->p_pptr = parent;
       p2->p_ppid = parent->p_pid;
       LIST_INIT(&p2->p_children);

       p2->p_aio = NULL;

#ifdef KTRACE
       /*
        * Copy traceflag and tracefile if enabled.
        * If not inherited, these were zeroed above.
        */
       if (p1->p_traceflag & KTRFAC_INHERIT) {
               mutex_enter(&ktrace_lock);
               p2->p_traceflag = p1->p_traceflag;
               if ((p2->p_tracep = p1->p_tracep) != NULL)
                       ktradref(p2);
               mutex_exit(&ktrace_lock);
       }
#endif

       /*
        * Create signal actions for the child process.
        */
       p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
       mutex_enter(p1->p_lock);
       p2->p_sflag |=
           (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
       sched_proc_fork(p1, p2);
       mutex_exit(p1->p_lock);

       p2->p_stflag = p1->p_stflag;

       /*
        * p_stats.
        * Copy parts of p_stats, and zero out the rest.
        */
       p2->p_stats = pstatscopy(p1->p_stats);

       /*
        * Set up the new process address space.
        */
       uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);

       /*
        * Finish creating the child process.
        * It will return through a different path later.
        */
       lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0,
           stack, stacksize, (func != NULL) ? func : child_return, arg, &l2,
           l1->l_class, &l1->l_sigmask, &l1->l_sigstk);

       /*
        * Inherit l_private from the parent.
        * Note that we cannot use lwp_setprivate() here since that
        * also sets the CPU TLS register, which is incorrect if the
        * process has changed that without letting the kernel know.
        */
       l2->l_private = l1->l_private;

       /*
        * If emulation has a process fork hook, call it now.
        */
       if (p2->p_emul->e_proc_fork)
               (*p2->p_emul->e_proc_fork)(p2, l1, flags);

       /*
        * ...and finally, any other random fork hooks that subsystems
        * might have registered.
        */
       doforkhooks(p2, p1);

       SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);

       /*
        * It's now safe for the scheduler and other processes to see the
        * child process.
        */
       mutex_enter(&proc_lock);

       if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
               p2->p_lflag |= PL_CONTROLT;

       LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
       p2->p_exitsig = exitsig;                /* signal for parent on exit */

       /*
        * Trace fork(2) and vfork(2)-like events on demand in a debugger.
        */
       if (tracefork(p1, flags) || tracevfork(p1, flags)) {
               proc_changeparent(p2, p1->p_pptr);
               SET(p2->p_slflag, PSL_TRACEDCHILD);
       }

       p2->p_oppid = p1->p_pid; /* Remember the original parent id. */

       LIST_INSERT_AFTER(p1, p2, p_pglist);
       LIST_INSERT_HEAD(&allproc, p2, p_list);

       p2->p_trace_enabled = trace_is_enabled(p2);
#ifdef __HAVE_SYSCALL_INTERN
       (*p2->p_emul->e_syscall_intern)(p2);
#endif

       /*
        * Update stats now that we know the fork was successful.
        */
       KPREEMPT_DISABLE(l1);
       CPU_COUNT(CPU_COUNT_FORKS, 1);
       if (flags & FORK_PPWAIT)
               CPU_COUNT(CPU_COUNT_FORKS_PPWAIT, 1);
       if (flags & FORK_SHAREVM)
               CPU_COUNT(CPU_COUNT_FORKS_SHAREVM, 1);
       KPREEMPT_ENABLE(l1);

       if (ktrpoint(KTR_EMUL))
               p2->p_traceflag |= KTRFAC_TRC_EMUL;

       /*
        * Notify any interested parties about the new process.
        */
       if (!SLIST_EMPTY(&p1->p_klist)) {
               mutex_exit(&proc_lock);
               knote_proc_fork(p1, p2);
               mutex_enter(&proc_lock);
       }

       /*
        * Make child runnable, set start time, and add to run queue except
        * if the parent requested the child to start in SSTOP state.
        */
       mutex_enter(p2->p_lock);

       /*
        * Start profiling.
        */
       if ((p2->p_stflag & PST_PROFIL) != 0) {
               mutex_spin_enter(&p2->p_stmutex);
               startprofclock(p2);
               mutex_spin_exit(&p2->p_stmutex);
       }

       getmicrotime(&p2->p_stats->p_start);
       p2->p_acflag = AFORK;
       lwp_lock(l2);
       KASSERT(p2->p_nrlwps == 1);
       KASSERT(l2->l_stat == LSIDL);
       if (p2->p_sflag & PS_STOPFORK) {
               p2->p_nrlwps = 0;
               p2->p_stat = SSTOP;
               p2->p_waited = 0;
               p1->p_nstopchild++;
               l2->l_stat = LSSTOP;
               KASSERT(l2->l_wchan == NULL);
               lwp_unlock(l2);
       } else {
               p2->p_nrlwps = 1;
               p2->p_stat = SACTIVE;
               setrunnable(l2);
               /* LWP now unlocked */
       }

       /*
        * Return child pid to parent process,
        * marking us as parent via retval[1].
        */
       if (retval != NULL) {
               retval[0] = p2->p_pid;
               retval[1] = 0;
       }

       mutex_exit(p2->p_lock);

       /*
        * Let the parent know that we are tracing its child.
        */
       if (tracefork(p1, flags) || tracevfork(p1, flags)) {
               mutex_enter(p1->p_lock);
               eventswitch(TRAP_CHLD,
                   tracefork(p1, flags) ? PTRACE_FORK : PTRACE_VFORK,
                   retval[0]);
               mutex_enter(&proc_lock);
       }

       /*
        * Preserve synchronization semantics of vfork.  If waiting for
        * child to exec or exit, sleep until it clears p_vforkwaiting.
        */
       while (l1->l_vforkwaiting)
               cv_wait(&l1->l_waitcv, &proc_lock);

       /*
        * Let the parent know that we are tracing its child.
        */
       if (tracevforkdone(p1, flags)) {
               mutex_enter(p1->p_lock);
               eventswitch(TRAP_CHLD, PTRACE_VFORK_DONE, retval[0]);
       } else
               mutex_exit(&proc_lock);

       return 0;
}

/*
* MI code executed in each newly spawned process before returning to userland.
*/
void
child_return(void *arg)
{
       struct lwp *l = curlwp;
       struct proc *p = l->l_proc;

       if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) ==
           (PSL_TRACED|PSL_TRACEDCHILD)) {
               eventswitchchild(p, TRAP_CHLD,
                   ISSET(p->p_lflag, PL_PPWAIT) ? PTRACE_VFORK : PTRACE_FORK);
       }

       md_child_return(l);

       /*
        * Return SYS_fork for all fork types, including vfork(2) and clone(2).
        *
        * This approach simplifies the code and avoids extra locking.
        */
       ktrsysret(SYS_fork, 0, 0);
}