/*      $NetBSD: kern_event.c,v 1.150 2023/09/21 09:31:50 msaitoh Exp $ */

/*-
* Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*-
* Copyright (c) 1999,2000,2001 Jonathan Lemon <[email protected]>
* Copyright (c) 2009 Apple, Inc
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
*/

#ifdef _KERNEL_OPT
#include "opt_ddb.h"
#endif /* _KERNEL_OPT */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.150 2023/09/21 09:31:50 msaitoh Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/wait.h>
#include <sys/proc.h>
#include <sys/file.h>
#include <sys/select.h>
#include <sys/queue.h>
#include <sys/event.h>
#include <sys/eventvar.h>
#include <sys/poll.h>
#include <sys/kmem.h>
#include <sys/stat.h>
#include <sys/filedesc.h>
#include <sys/syscallargs.h>
#include <sys/kauth.h>
#include <sys/conf.h>
#include <sys/atomic.h>

static int      kqueue_scan(file_t *, size_t, struct kevent *,
                           const struct timespec *, register_t *,
                           const struct kevent_ops *, struct kevent *,
                           size_t);
static int      kqueue_ioctl(file_t *, u_long, void *);
static int      kqueue_fcntl(file_t *, u_int, void *);
static int      kqueue_poll(file_t *, int);
static int      kqueue_kqfilter(file_t *, struct knote *);
static int      kqueue_stat(file_t *, struct stat *);
static int      kqueue_close(file_t *);
static void     kqueue_restart(file_t *);
static int      kqueue_fpathconf(file_t *, int, register_t *);
static int      kqueue_register(struct kqueue *, struct kevent *);
static void     kqueue_doclose(struct kqueue *, struct klist *, int);

static void     knote_detach(struct knote *, filedesc_t *fdp, bool);
static void     knote_enqueue(struct knote *);
static void     knote_activate(struct knote *);
static void     knote_activate_locked(struct knote *);
static void     knote_deactivate_locked(struct knote *);

static void     filt_kqdetach(struct knote *);
static int      filt_kqueue(struct knote *, long hint);
static int      filt_procattach(struct knote *);
static void     filt_procdetach(struct knote *);
static int      filt_proc(struct knote *, long hint);
static int      filt_fileattach(struct knote *);
static void     filt_timerexpire(void *x);
static int      filt_timerattach(struct knote *);
static void     filt_timerdetach(struct knote *);
static int      filt_timer(struct knote *, long hint);
static int      filt_timertouch(struct knote *, struct kevent *, long type);
static int      filt_userattach(struct knote *);
static void     filt_userdetach(struct knote *);
static int      filt_user(struct knote *, long hint);
static int      filt_usertouch(struct knote *, struct kevent *, long type);

/*
* Private knote state that should never be exposed outside
* of kern_event.c
*
* Field locking:
*
* q    kn_kq->kq_lock
*/
struct knote_impl {
       struct knote    ki_knote;
       unsigned int    ki_influx;      /* q: in-flux counter */
       kmutex_t        ki_foplock;     /* for kn_filterops */
};

#define KIMPL_TO_KNOTE(kip)     (&(kip)->ki_knote)
#define KNOTE_TO_KIMPL(knp)     container_of((knp), struct knote_impl, ki_knote)

static inline struct knote *
knote_alloc(bool sleepok)
{
       struct knote_impl *ki;

       ki = kmem_zalloc(sizeof(*ki), sleepok ? KM_SLEEP : KM_NOSLEEP);
       mutex_init(&ki->ki_foplock, MUTEX_DEFAULT, IPL_NONE);

       return KIMPL_TO_KNOTE(ki);
}

static inline void
knote_free(struct knote *kn)
{
       struct knote_impl *ki = KNOTE_TO_KIMPL(kn);

       mutex_destroy(&ki->ki_foplock);
       kmem_free(ki, sizeof(*ki));
}

static inline void
knote_foplock_enter(struct knote *kn)
{
       mutex_enter(&KNOTE_TO_KIMPL(kn)->ki_foplock);
}

static inline void
knote_foplock_exit(struct knote *kn)
{
       mutex_exit(&KNOTE_TO_KIMPL(kn)->ki_foplock);
}

static inline bool __diagused
knote_foplock_owned(struct knote *kn)
{
       return mutex_owned(&KNOTE_TO_KIMPL(kn)->ki_foplock);
}

static const struct fileops kqueueops = {
       .fo_name = "kqueue",
       .fo_read = (void *)enxio,
       .fo_write = (void *)enxio,
       .fo_ioctl = kqueue_ioctl,
       .fo_fcntl = kqueue_fcntl,
       .fo_poll = kqueue_poll,
       .fo_stat = kqueue_stat,
       .fo_close = kqueue_close,
       .fo_kqfilter = kqueue_kqfilter,
       .fo_restart = kqueue_restart,
       .fo_fpathconf = kqueue_fpathconf,
};

static void
filt_nopdetach(struct knote *kn __unused)
{
}

static int
filt_nopevent(struct knote *kn __unused, long hint __unused)
{
       return 0;
}

static const struct filterops nop_fd_filtops = {
       .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
       .f_attach = NULL,
       .f_detach = filt_nopdetach,
       .f_event = filt_nopevent,
};

static const struct filterops nop_filtops = {
       .f_flags = FILTEROP_MPSAFE,
       .f_attach = NULL,
       .f_detach = filt_nopdetach,
       .f_event = filt_nopevent,
};

static const struct filterops kqread_filtops = {
       .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
       .f_attach = NULL,
       .f_detach = filt_kqdetach,
       .f_event = filt_kqueue,
};

static const struct filterops proc_filtops = {
       .f_flags = FILTEROP_MPSAFE,
       .f_attach = filt_procattach,
       .f_detach = filt_procdetach,
       .f_event = filt_proc,
};

/*
* file_filtops is not marked MPSAFE because it's going to call
* fileops::fo_kqfilter(), which might not be.  That function,
* however, will override the knote's filterops, and thus will
* inherit the MPSAFE-ness of the back-end at that time.
*/
static const struct filterops file_filtops = {
       .f_flags = FILTEROP_ISFD,
       .f_attach = filt_fileattach,
       .f_detach = NULL,
       .f_event = NULL,
};

static const struct filterops timer_filtops = {
       .f_flags = FILTEROP_MPSAFE,
       .f_attach = filt_timerattach,
       .f_detach = filt_timerdetach,
       .f_event = filt_timer,
       .f_touch = filt_timertouch,
};

static const struct filterops user_filtops = {
       .f_flags = FILTEROP_MPSAFE,
       .f_attach = filt_userattach,
       .f_detach = filt_userdetach,
       .f_event = filt_user,
       .f_touch = filt_usertouch,
};

static u_int    kq_ncallouts = 0;
static int      kq_calloutmax = (4 * 1024);

#define KN_HASHSIZE             64              /* XXX should be tunable */
#define KN_HASH(val, mask)      (((val) ^ (val >> 8)) & (mask))

extern const struct filterops fs_filtops;       /* vfs_syscalls.c */
extern const struct filterops sig_filtops;      /* kern_sig.c */

/*
* Table for all system-defined filters.
* These should be listed in the numeric order of the EVFILT_* defines.
* If filtops is NULL, the filter isn't implemented in NetBSD.
* End of list is when name is NULL.
*
* Note that 'refcnt' is meaningless for built-in filters.
*/
struct kfilter {
       const char      *name;          /* name of filter */
       uint32_t        filter;         /* id of filter */
       unsigned        refcnt;         /* reference count */
       const struct filterops *filtops;/* operations for filter */
       size_t          namelen;        /* length of name string */
};

/* System defined filters */
static struct kfilter sys_kfilters[] = {
       { "EVFILT_READ",        EVFILT_READ,    0, &file_filtops, 0 },
       { "EVFILT_WRITE",       EVFILT_WRITE,   0, &file_filtops, 0, },
       { "EVFILT_AIO",         EVFILT_AIO,     0, NULL, 0 },
       { "EVFILT_VNODE",       EVFILT_VNODE,   0, &file_filtops, 0 },
       { "EVFILT_PROC",        EVFILT_PROC,    0, &proc_filtops, 0 },
       { "EVFILT_SIGNAL",      EVFILT_SIGNAL,  0, &sig_filtops, 0 },
       { "EVFILT_TIMER",       EVFILT_TIMER,   0, &timer_filtops, 0 },
       { "EVFILT_FS",          EVFILT_FS,      0, &fs_filtops, 0 },
       { "EVFILT_USER",        EVFILT_USER,    0, &user_filtops, 0 },
       { "EVFILT_EMPTY",       EVFILT_EMPTY,   0, &file_filtops, 0 },
       { NULL,                 0,              0, NULL, 0 },
};

/* User defined kfilters */
static struct kfilter   *user_kfilters;         /* array */
static int              user_kfilterc;          /* current offset */
static int              user_kfiltermaxc;       /* max size so far */
static size_t           user_kfiltersz;         /* size of allocated memory */

/*
* Global Locks.
*
* Lock order:
*
*      kqueue_filter_lock
*      -> kn_kq->kq_fdp->fd_lock
*      -> knote foplock (if taken)
*      -> object lock (e.g., device driver lock, &c.)
*      -> kn_kq->kq_lock
*
* Locking rules.  ==> indicates the lock is acquired by the backing
* object, locks prior are acquired before calling filter ops:
*
*      f_attach: fdp->fd_lock -> knote foplock ->
*        (maybe) KERNEL_LOCK ==> backing object lock
*
*      f_detach: fdp->fd_lock -> knote foplock ->
*         (maybe) KERNEL_LOCK ==> backing object lock
*
*      f_event via kevent: fdp->fd_lock -> knote foplock ->
*         (maybe) KERNEL_LOCK ==> backing object lock
*         N.B. NOTE_SUBMIT will never be set in the "hint" argument
*         in this case.
*
*      f_event via knote (via backing object: Whatever caller guarantees.
*      Typically:
*              f_event(NOTE_SUBMIT): caller has already acquired backing
*                  object lock.
*              f_event(!NOTE_SUBMIT): caller has not acquired backing object,
*                  lock or has possibly acquired KERNEL_LOCK.  Backing object
*                  lock may or may not be acquired as-needed.
*      N.B. the knote foplock will **not** be acquired in this case.  The
*      caller guarantees that klist_fini() will not be called concurrently
*      with knote().
*
*      f_touch: fdp->fd_lock -> kn_kq->kq_lock (spin lock)
*          N.B. knote foplock is **not** acquired in this case and
*          the caller must guarantee that klist_fini() will never
*          be called.  kevent_register() restricts filters that
*          provide f_touch to known-safe cases.
*
*      klist_fini(): Caller must guarantee that no more knotes can
*          be attached to the klist, and must **not** hold the backing
*          object's lock; klist_fini() itself will acquire the foplock
*          of each knote on the klist.
*
* Locking rules when detaching knotes:
*
* There are some situations where knote submission may require dropping
* locks (see knote_proc_fork()).  In order to support this, it's possible
* to mark a knote as being 'in-flux'.  Such a knote is guaranteed not to
* be detached while it remains in-flux.  Because it will not be detached,
* locks can be dropped so e.g. memory can be allocated, locks on other
* data structures can be acquired, etc.  During this time, any attempt to
* detach an in-flux knote must wait until the knote is no longer in-flux.
* When this happens, the knote is marked for death (KN_WILLDETACH) and the
* LWP who gets to finish the detach operation is recorded in the knote's
* 'udata' field (which is no longer required for its original purpose once
* a knote is so marked).  Code paths that lead to knote_detach() must ensure
* that their LWP is the one tasked with its final demise after waiting for
* the in-flux status of the knote to clear.  Note that once a knote is
* marked KN_WILLDETACH, no code paths may put it into an in-flux state.
*
* Once the special circumstances have been handled, the locks are re-
* acquired in the proper order (object lock -> kq_lock), the knote taken
* out of flux, and any waiters are notified.  Because waiters must have
* also dropped *their* locks in order to safely block, they must re-
* validate all of their assumptions; see knote_detach_quiesce().  See also
* the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
* cases.
*
* When kqueue_scan() encounters an in-flux knote, the situation is
* treated like another LWP's list marker.
*
* LISTEN WELL: It is important to not hold knotes in flux for an
* extended period of time! In-flux knotes effectively block any
* progress of the kqueue_scan() operation.  Any code paths that place
* knotes in-flux should be careful to not block for indefinite periods
* of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
* KM_SLEEP is not).
*/
static krwlock_t        kqueue_filter_lock;     /* lock on filter lists */

#define KQ_FLUX_WAIT(kq)        (void)cv_wait(&kq->kq_cv, &kq->kq_lock)
#define KQ_FLUX_WAKEUP(kq)      cv_broadcast(&kq->kq_cv)

static inline bool
kn_in_flux(struct knote *kn)
{
       KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
       return KNOTE_TO_KIMPL(kn)->ki_influx != 0;
}

static inline bool
kn_enter_flux(struct knote *kn)
{
       KASSERT(mutex_owned(&kn->kn_kq->kq_lock));

       if (kn->kn_status & KN_WILLDETACH) {
               return false;
       }

       struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
       KASSERT(ki->ki_influx < UINT_MAX);
       ki->ki_influx++;

       return true;
}

static inline bool
kn_leave_flux(struct knote *kn)
{
       KASSERT(mutex_owned(&kn->kn_kq->kq_lock));

       struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
       KASSERT(ki->ki_influx > 0);
       ki->ki_influx--;
       return ki->ki_influx == 0;
}

static void
kn_wait_flux(struct knote *kn, bool can_loop)
{
       struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
       bool loop;

       KASSERT(mutex_owned(&kn->kn_kq->kq_lock));

       /*
        * It may not be safe for us to touch the knote again after
        * dropping the kq_lock.  The caller has let us know in
        * 'can_loop'.
        */
       for (loop = true; loop && ki->ki_influx != 0; loop = can_loop) {
               KQ_FLUX_WAIT(kn->kn_kq);
       }
}

#define KNOTE_WILLDETACH(kn)                                            \
do {                                                                    \
       (kn)->kn_status |= KN_WILLDETACH;                               \
       (kn)->kn_kevent.udata = curlwp;                                 \
} while (/*CONSTCOND*/0)

/*
* Wait until the specified knote is in a quiescent state and
* safe to detach.  Returns true if we potentially blocked (and
* thus dropped our locks).
*/
static bool
knote_detach_quiesce(struct knote *kn)
{
       struct kqueue *kq = kn->kn_kq;
       filedesc_t *fdp = kq->kq_fdp;

       KASSERT(mutex_owned(&fdp->fd_lock));

       mutex_spin_enter(&kq->kq_lock);
       /*
        * There are two cases where we might see KN_WILLDETACH here:
        *
        * 1. Someone else has already started detaching the knote but
        *    had to wait for it to settle first.
        *
        * 2. We had to wait for it to settle, and had to come back
        *    around after re-acquiring the locks.
        *
        * When KN_WILLDETACH is set, we also set the LWP that claimed
        * the prize of finishing the detach in the 'udata' field of the
        * knote (which will never be used again for its usual purpose
        * once the note is in this state).  If it doesn't point to us,
        * we must drop the locks and let them in to finish the job.
        *
        * Otherwise, once we have claimed the knote for ourselves, we
        * can finish waiting for it to settle.  The is the only scenario
        * where touching a detaching knote is safe after dropping the
        * locks.
        */
       if ((kn->kn_status & KN_WILLDETACH) != 0 &&
           kn->kn_kevent.udata != curlwp) {
               /*
                * N.B. it is NOT safe for us to touch the knote again
                * after dropping the locks here.  The caller must go
                * back around and re-validate everything.  However, if
                * the knote is in-flux, we want to block to minimize
                * busy-looping.
                */
               mutex_exit(&fdp->fd_lock);
               if (kn_in_flux(kn)) {
                       kn_wait_flux(kn, false);
                       mutex_spin_exit(&kq->kq_lock);
                       return true;
               }
               mutex_spin_exit(&kq->kq_lock);
               preempt_point();
               return true;
       }
       /*
        * If we get here, we know that we will be claiming the
        * detach responsibilies, or that we already have and
        * this is the second attempt after re-validation.
        */
       KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
               kn->kn_kevent.udata == curlwp);
       /*
        * Similarly, if we get here, either we are just claiming it
        * and may have to wait for it to settle, or if this is the
        * second attempt after re-validation that no other code paths
        * have put it in-flux.
        */
       KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
               kn_in_flux(kn) == false);
       KNOTE_WILLDETACH(kn);
       if (kn_in_flux(kn)) {
               mutex_exit(&fdp->fd_lock);
               kn_wait_flux(kn, true);
               /*
                * It is safe for us to touch the knote again after
                * dropping the locks, but the caller must still
                * re-validate everything because other aspects of
                * the environment may have changed while we blocked.
                */
               KASSERT(kn_in_flux(kn) == false);
               mutex_spin_exit(&kq->kq_lock);
               return true;
       }
       mutex_spin_exit(&kq->kq_lock);

       return false;
}

/*
* Calls into the filterops need to be resilient against things which
* destroy a klist, e.g. device detach, freeing a vnode, etc., to avoid
* chasing garbage pointers (to data, or even potentially code in a
* module about to be unloaded).  To that end, we acquire the
* knote foplock before calling into the filter ops.  When a driver
* (or anything else) is tearing down its klist, klist_fini() enumerates
* each knote, acquires its foplock, and replaces the filterops with a
* nop stub, allowing knote detach (when descriptors are closed) to safely
* proceed.
*/

static int
filter_attach(struct knote *kn)
{
       int rv;

       KASSERT(knote_foplock_owned(kn));
       KASSERT(kn->kn_fop != NULL);
       KASSERT(kn->kn_fop->f_attach != NULL);

       /*
        * N.B. that kn->kn_fop may change as the result of calling
        * f_attach().  After f_attach() returns, kn->kn_fop may not
        * be modified by code outside of klist_fini().
        */
       if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
               rv = kn->kn_fop->f_attach(kn);
       } else {
               KERNEL_LOCK(1, NULL);
               rv = kn->kn_fop->f_attach(kn);
               KERNEL_UNLOCK_ONE(NULL);
       }

       return rv;
}

static void
filter_detach(struct knote *kn)
{

       KASSERT(knote_foplock_owned(kn));
       KASSERT(kn->kn_fop != NULL);
       KASSERT(kn->kn_fop->f_detach != NULL);

       if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
               kn->kn_fop->f_detach(kn);
       } else {
               KERNEL_LOCK(1, NULL);
               kn->kn_fop->f_detach(kn);
               KERNEL_UNLOCK_ONE(NULL);
       }
}

static int
filter_event(struct knote *kn, long hint, bool submitting)
{
       int rv;

       /* See knote(). */
       KASSERT(submitting || knote_foplock_owned(kn));
       KASSERT(kn->kn_fop != NULL);
       KASSERT(kn->kn_fop->f_event != NULL);

       if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
               rv = kn->kn_fop->f_event(kn, hint);
       } else {
               KERNEL_LOCK(1, NULL);
               rv = kn->kn_fop->f_event(kn, hint);
               KERNEL_UNLOCK_ONE(NULL);
       }

       return rv;
}

static int
filter_touch(struct knote *kn, struct kevent *kev, long type)
{

       /*
        * XXX We cannot assert that the knote foplock is held here
        * XXX beause we cannot safely acquire it in all cases
        * XXX where "touch" will be used in kqueue_scan().  We just
        * XXX have to assume that f_touch will always be safe to call,
        * XXX and kqueue_register() allows only the two known-safe
        * XXX users of that op.
        */

       KASSERT(kn->kn_fop != NULL);
       KASSERT(kn->kn_fop->f_touch != NULL);

       return kn->kn_fop->f_touch(kn, kev, type);
}

static kauth_listener_t kqueue_listener;

static int
kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
   void *arg0, void *arg1, void *arg2, void *arg3)
{
       struct proc *p;
       int result;

       result = KAUTH_RESULT_DEFER;
       p = arg0;

       if (action != KAUTH_PROCESS_KEVENT_FILTER)
               return result;

       if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
           ISSET(p->p_flag, PK_SUGID)))
               return result;

       result = KAUTH_RESULT_ALLOW;

       return result;
}

/*
* Initialize the kqueue subsystem.
*/
void
kqueue_init(void)
{

       rw_init(&kqueue_filter_lock);

       kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
           kqueue_listener_cb, NULL);
}

/*
* Find kfilter entry by name, or NULL if not found.
*/
static struct kfilter *
kfilter_byname_sys(const char *name)
{
       int i;

       KASSERT(rw_lock_held(&kqueue_filter_lock));

       for (i = 0; sys_kfilters[i].name != NULL; i++) {
               if (strcmp(name, sys_kfilters[i].name) == 0)
                       return &sys_kfilters[i];
       }
       return NULL;
}

static struct kfilter *
kfilter_byname_user(const char *name)
{
       int i;

       KASSERT(rw_lock_held(&kqueue_filter_lock));

       /* user filter slots have a NULL name if previously deregistered */
       for (i = 0; i < user_kfilterc ; i++) {
               if (user_kfilters[i].name != NULL &&
                   strcmp(name, user_kfilters[i].name) == 0)
                       return &user_kfilters[i];
       }
       return NULL;
}

static struct kfilter *
kfilter_byname(const char *name)
{
       struct kfilter *kfilter;

       KASSERT(rw_lock_held(&kqueue_filter_lock));

       if ((kfilter = kfilter_byname_sys(name)) != NULL)
               return kfilter;

       return kfilter_byname_user(name);
}

/*
* Find kfilter entry by filter id, or NULL if not found.
* Assumes entries are indexed in filter id order, for speed.
*/
static struct kfilter *
kfilter_byfilter(uint32_t filter)
{
       struct kfilter *kfilter;

       KASSERT(rw_lock_held(&kqueue_filter_lock));

       if (filter < EVFILT_SYSCOUNT)   /* it's a system filter */
               kfilter = &sys_kfilters[filter];
       else if (user_kfilters != NULL &&
           filter < EVFILT_SYSCOUNT + user_kfilterc)
                                       /* it's a user filter */
               kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
       else
               return (NULL);          /* out of range */
       KASSERT(kfilter->filter == filter);     /* sanity check! */
       return (kfilter);
}

/*
* Register a new kfilter. Stores the entry in user_kfilters.
* Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
* If retfilter != NULL, the new filterid is returned in it.
*/
int
kfilter_register(const char *name, const struct filterops *filtops,
                int *retfilter)
{
       struct kfilter *kfilter;
       size_t len;
       int i;

       if (name == NULL || name[0] == '\0' || filtops == NULL)
               return (EINVAL);        /* invalid args */

       rw_enter(&kqueue_filter_lock, RW_WRITER);
       if (kfilter_byname(name) != NULL) {
               rw_exit(&kqueue_filter_lock);
               return (EEXIST);        /* already exists */
       }
       if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
               rw_exit(&kqueue_filter_lock);
               return (EINVAL);        /* too many */
       }

       for (i = 0; i < user_kfilterc; i++) {
               kfilter = &user_kfilters[i];
               if (kfilter->name == NULL) {
                       /* Previously deregistered slot.  Reuse. */
                       goto reuse;
               }
       }

       /* check if need to grow user_kfilters */
       if (user_kfilterc + 1 > user_kfiltermaxc) {
               /* Grow in KFILTER_EXTENT chunks. */
               user_kfiltermaxc += KFILTER_EXTENT;
               len = user_kfiltermaxc * sizeof(*kfilter);
               kfilter = kmem_alloc(len, KM_SLEEP);
               memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
               if (user_kfilters != NULL) {
                       memcpy(kfilter, user_kfilters, user_kfiltersz);
                       kmem_free(user_kfilters, user_kfiltersz);
               }
               user_kfiltersz = len;
               user_kfilters = kfilter;
       }
       /* Adding new slot */
       kfilter = &user_kfilters[user_kfilterc++];
reuse:
       kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);

       kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;

       kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
       memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));

       if (retfilter != NULL)
               *retfilter = kfilter->filter;
       rw_exit(&kqueue_filter_lock);

       return (0);
}

/*
* Unregister a kfilter previously registered with kfilter_register.
* This retains the filter id, but clears the name and frees filtops (filter
* operations), so that the number isn't reused during a boot.
* Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
*/
int
kfilter_unregister(const char *name)
{
       struct kfilter *kfilter;

       if (name == NULL || name[0] == '\0')
               return (EINVAL);        /* invalid name */

       rw_enter(&kqueue_filter_lock, RW_WRITER);
       if (kfilter_byname_sys(name) != NULL) {
               rw_exit(&kqueue_filter_lock);
               return (EINVAL);        /* can't detach system filters */
       }

       kfilter = kfilter_byname_user(name);
       if (kfilter == NULL) {
               rw_exit(&kqueue_filter_lock);
               return (ENOENT);
       }
       if (kfilter->refcnt != 0) {
               rw_exit(&kqueue_filter_lock);
               return (EBUSY);
       }

       /* Cast away const (but we know it's safe. */
       kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
       kfilter->name = NULL;   /* mark as `not implemented' */

       if (kfilter->filtops != NULL) {
               /* Cast away const (but we know it's safe. */
               kmem_free(__UNCONST(kfilter->filtops),
                   sizeof(*kfilter->filtops));
               kfilter->filtops = NULL; /* mark as `not implemented' */
       }
       rw_exit(&kqueue_filter_lock);

       return (0);
}


/*
* Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
* descriptors. Calls fileops kqfilter method for given file descriptor.
*/
static int
filt_fileattach(struct knote *kn)
{
       file_t *fp;

       fp = kn->kn_obj;

       return (*fp->f_ops->fo_kqfilter)(fp, kn);
}

/*
* Filter detach method for EVFILT_READ on kqueue descriptor.
*/
static void
filt_kqdetach(struct knote *kn)
{
       struct kqueue *kq;

       kq = ((file_t *)kn->kn_obj)->f_kqueue;

       mutex_spin_enter(&kq->kq_lock);
       selremove_knote(&kq->kq_sel, kn);
       mutex_spin_exit(&kq->kq_lock);
}

/*
* Filter event method for EVFILT_READ on kqueue descriptor.
*/
/*ARGSUSED*/
static int
filt_kqueue(struct knote *kn, long hint)
{
       struct kqueue *kq;
       int rv;

       kq = ((file_t *)kn->kn_obj)->f_kqueue;

       if (hint != NOTE_SUBMIT)
               mutex_spin_enter(&kq->kq_lock);
       kn->kn_data = KQ_COUNT(kq);
       rv = (kn->kn_data > 0);
       if (hint != NOTE_SUBMIT)
               mutex_spin_exit(&kq->kq_lock);

       return rv;
}

/*
* Filter attach method for EVFILT_PROC.
*/
static int
filt_procattach(struct knote *kn)
{
       struct proc *p;

       mutex_enter(&proc_lock);
       p = proc_find(kn->kn_id);
       if (p == NULL) {
               mutex_exit(&proc_lock);
               return ESRCH;
       }

       /*
        * Fail if it's not owned by you, or the last exec gave us
        * setuid/setgid privs (unless you're root).
        */
       mutex_enter(p->p_lock);
       mutex_exit(&proc_lock);
       if (kauth_authorize_process(curlwp->l_cred,
           KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
               mutex_exit(p->p_lock);
               return EACCES;
       }

       kn->kn_obj = p;
       kn->kn_flags |= EV_CLEAR;       /* automatically set */

       /*
        * NOTE_CHILD is only ever generated internally; don't let it
        * leak in from user-space.  See knote_proc_fork_track().
        */
       kn->kn_sfflags &= ~NOTE_CHILD;

       klist_insert(&p->p_klist, kn);
       mutex_exit(p->p_lock);

       return 0;
}

/*
* Filter detach method for EVFILT_PROC.
*
* The knote may be attached to a different process, which may exit,
* leaving nothing for the knote to be attached to.  So when the process
* exits, the knote is marked as DETACHED and also flagged as ONESHOT so
* it will be deleted when read out.  However, as part of the knote deletion,
* this routine is called, so a check is needed to avoid actually performing
* a detach, because the original process might not exist any more.
*/
static void
filt_procdetach(struct knote *kn)
{
       struct kqueue *kq = kn->kn_kq;
       struct proc *p;

       /*
        * We have to synchronize with knote_proc_exit(), but we
        * are forced to acquire the locks in the wrong order here
        * because we can't be sure kn->kn_obj is valid unless
        * KN_DETACHED is not set.
        */
again:
       mutex_spin_enter(&kq->kq_lock);
       if ((kn->kn_status & KN_DETACHED) == 0) {
               p = kn->kn_obj;
               if (!mutex_tryenter(p->p_lock)) {
                       mutex_spin_exit(&kq->kq_lock);
                       preempt_point();
                       goto again;
               }
               kn->kn_status |= KN_DETACHED;
               klist_remove(&p->p_klist, kn);
               mutex_exit(p->p_lock);
       }
       mutex_spin_exit(&kq->kq_lock);
}

/*
* Filter event method for EVFILT_PROC.
*
* Due to some of the complexities of process locking, we have special
* entry points for delivering knote submissions.  filt_proc() is used
* only to check for activation from kqueue_register() and kqueue_scan().
*/
static int
filt_proc(struct knote *kn, long hint)
{
       struct kqueue *kq = kn->kn_kq;
       uint32_t fflags;

       /*
        * Because we share the same klist with signal knotes, just
        * ensure that we're not being invoked for the proc-related
        * submissions.
        */
       KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);

       mutex_spin_enter(&kq->kq_lock);
       fflags = kn->kn_fflags;
       mutex_spin_exit(&kq->kq_lock);

       return fflags != 0;
}

void
knote_proc_exec(struct proc *p)
{
       struct knote *kn, *tmpkn;
       struct kqueue *kq;
       uint32_t fflags;

       mutex_enter(p->p_lock);

       SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
               /* N.B. EVFILT_SIGNAL knotes are on this same list. */
               if (kn->kn_fop == &sig_filtops) {
                       continue;
               }
               KASSERT(kn->kn_fop == &proc_filtops);

               kq = kn->kn_kq;
               mutex_spin_enter(&kq->kq_lock);
               fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
               if (fflags) {
                       knote_activate_locked(kn);
               }
               mutex_spin_exit(&kq->kq_lock);
       }

       mutex_exit(p->p_lock);
}

static int __noinline
knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
{
       struct kqueue *kq = okn->kn_kq;

       KASSERT(mutex_owned(&kq->kq_lock));
       KASSERT(mutex_owned(p1->p_lock));

       /*
        * We're going to put this knote into flux while we drop
        * the locks and create and attach a new knote to track the
        * child.  If we are not able to enter flux, then this knote
        * is about to go away, so skip the notification.
        */
       if (!kn_enter_flux(okn)) {
               return 0;
       }

       mutex_spin_exit(&kq->kq_lock);
       mutex_exit(p1->p_lock);

       /*
        * We actually have to register *two* new knotes:
        *
        * ==> One for the NOTE_CHILD notification.  This is a forced
        *     ONESHOT note.
        *
        * ==> One to actually track the child process as it subsequently
        *     forks, execs, and, ultimately, exits.
        *
        * If we only register a single knote, then it's possible for
        * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
        * notification if the child exits before the tracking process
        * has received the NOTE_CHILD notification, which applications
        * aren't expecting (the event's 'data' field would be clobbered,
        * for example).
        *
        * To do this, what we have here is an **extremely** stripped-down
        * version of kqueue_register() that has the following properties:
        *
        * ==> Does not block to allocate memory.  If we are unable
        *     to allocate memory, we return ENOMEM.
        *
        * ==> Does not search for existing knotes; we know there
        *     are not any because this is a new process that isn't
        *     even visible to other processes yet.
        *
        * ==> Assumes that the knhash for our kq's descriptor table
        *     already exists (after all, we're already tracking
        *     processes with knotes if we got here).
        *
        * ==> Directly attaches the new tracking knote to the child
        *     process.
        *
        * The whole point is to do the minimum amount of work while the
        * knote is held in-flux, and to avoid doing extra work in general
        * (we already have the new child process; why bother looking it
        * up again?).
        */
       filedesc_t *fdp = kq->kq_fdp;
       struct knote *knchild, *kntrack;
       int error = 0;

       knchild = knote_alloc(false);
       kntrack = knote_alloc(false);
       if (__predict_false(knchild == NULL || kntrack == NULL)) {
               error = ENOMEM;
               goto out;
       }

       kntrack->kn_obj = p2;
       kntrack->kn_id = p2->p_pid;
       kntrack->kn_kq = kq;
       kntrack->kn_fop = okn->kn_fop;
       kntrack->kn_kfilter = okn->kn_kfilter;
       kntrack->kn_sfflags = okn->kn_sfflags;
       kntrack->kn_sdata = p1->p_pid;

       kntrack->kn_kevent.ident = p2->p_pid;
       kntrack->kn_kevent.filter = okn->kn_filter;
       kntrack->kn_kevent.flags =
           okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
       kntrack->kn_kevent.fflags = 0;
       kntrack->kn_kevent.data = 0;
       kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */

       /*
        * The child note does not need to be attached to the
        * new proc's klist at all.
        */
       *knchild = *kntrack;
       knchild->kn_status = KN_DETACHED;
       knchild->kn_sfflags = 0;
       knchild->kn_kevent.flags |= EV_ONESHOT;
       knchild->kn_kevent.fflags = NOTE_CHILD;
       knchild->kn_kevent.data = p1->p_pid;             /* parent */

       mutex_enter(&fdp->fd_lock);

       /*
        * We need to check to see if the kq is closing, and skip
        * attaching the knote if so.  Normally, this isn't necessary
        * when coming in the front door because the file descriptor
        * layer will synchronize this.
        *
        * It's safe to test KQ_CLOSING without taking the kq_lock
        * here because that flag is only ever set when the fd_lock
        * is also held.
        */
       if (__predict_false(kq->kq_count & KQ_CLOSING)) {
               mutex_exit(&fdp->fd_lock);
               goto out;
       }

       /*
        * We do the "insert into FD table" and "attach to klist" steps
        * in the opposite order of kqueue_register() here to avoid
        * having to take p2->p_lock twice.  But this is OK because we
        * hold fd_lock across the entire operation.
        */

       mutex_enter(p2->p_lock);
       error = kauth_authorize_process(curlwp->l_cred,
           KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
       if (__predict_false(error != 0)) {
               mutex_exit(p2->p_lock);
               mutex_exit(&fdp->fd_lock);
               error = EACCES;
               goto out;
       }
       klist_insert(&p2->p_klist, kntrack);
       mutex_exit(p2->p_lock);

       KASSERT(fdp->fd_knhashmask != 0);
       KASSERT(fdp->fd_knhash != NULL);
       struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
           fdp->fd_knhashmask)];
       SLIST_INSERT_HEAD(list, kntrack, kn_link);
       SLIST_INSERT_HEAD(list, knchild, kn_link);

       /* This adds references for knchild *and* kntrack. */
       atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);

       knote_activate(knchild);

       kntrack = NULL;
       knchild = NULL;

       mutex_exit(&fdp->fd_lock);

out:
       if (__predict_false(knchild != NULL)) {
               knote_free(knchild);
       }
       if (__predict_false(kntrack != NULL)) {
               knote_free(kntrack);
       }
       mutex_enter(p1->p_lock);
       mutex_spin_enter(&kq->kq_lock);

       if (kn_leave_flux(okn)) {
               KQ_FLUX_WAKEUP(kq);
       }

       return error;
}

void
knote_proc_fork(struct proc *p1, struct proc *p2)
{
       struct knote *kn;
       struct kqueue *kq;
       uint32_t fflags;

       mutex_enter(p1->p_lock);

       /*
        * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
        * don't want to pre-fetch the next knote; in the event we
        * have to drop p_lock, we will have put the knote in-flux,
        * meaning that no one will be able to detach it until we
        * have taken the knote out of flux.  However, that does
        * NOT stop someone else from detaching the next note in the
        * list while we have it unlocked.  Thus, we want to fetch
        * the next note in the list only after we have re-acquired
        * the lock, and using SLIST_FOREACH() will satisfy that.
        */
       SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
               /* N.B. EVFILT_SIGNAL knotes are on this same list. */
               if (kn->kn_fop == &sig_filtops) {
                       continue;
               }
               KASSERT(kn->kn_fop == &proc_filtops);

               kq = kn->kn_kq;
               mutex_spin_enter(&kq->kq_lock);
               kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
               if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
                       /*
                        * This will drop kq_lock and p_lock and
                        * re-acquire them before it returns.
                        */
                       if (knote_proc_fork_track(p1, p2, kn)) {
                               kn->kn_fflags |= NOTE_TRACKERR;
                       }
                       KASSERT(mutex_owned(p1->p_lock));
                       KASSERT(mutex_owned(&kq->kq_lock));
               }
               fflags = kn->kn_fflags;
               if (fflags) {
                       knote_activate_locked(kn);
               }
               mutex_spin_exit(&kq->kq_lock);
       }

       mutex_exit(p1->p_lock);
}

void
knote_proc_exit(struct proc *p)
{
       struct knote *kn;
       struct kqueue *kq;

       KASSERT(mutex_owned(p->p_lock));

       while (!SLIST_EMPTY(&p->p_klist)) {
               kn = SLIST_FIRST(&p->p_klist);
               kq = kn->kn_kq;

               KASSERT(kn->kn_obj == p);

               mutex_spin_enter(&kq->kq_lock);
               kn->kn_data = P_WAITSTATUS(p);
               /*
                * Mark as ONESHOT, so that the knote is g/c'ed
                * when read.
                */
               kn->kn_flags |= (EV_EOF | EV_ONESHOT);
               kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;

               /*
                * Detach the knote from the process and mark it as such.
                * N.B. EVFILT_SIGNAL are also on p_klist, but by the
                * time we get here, all open file descriptors for this
                * process have been released, meaning that signal knotes
                * will have already been detached.
                *
                * We need to synchronize this with filt_procdetach().
                */
               KASSERT(kn->kn_fop == &proc_filtops);
               if ((kn->kn_status & KN_DETACHED) == 0) {
                       kn->kn_status |= KN_DETACHED;
                       SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
               }

               /*
                * Always activate the knote for NOTE_EXIT regardless
                * of whether or not the listener cares about it.
                * This matches historical behavior.
                */
               knote_activate_locked(kn);
               mutex_spin_exit(&kq->kq_lock);
       }
}

#define FILT_TIMER_NOSCHED      ((uintptr_t)-1)

static int
filt_timercompute(struct kevent *kev, uintptr_t *tticksp)
{
       struct timespec ts;
       uintptr_t tticks;

       if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) {
               return EINVAL;
       }

       /*
        * Convert the event 'data' to a timespec, then convert the
        * timespec to callout ticks.
        */
       switch (kev->fflags & NOTE_TIMER_UNITMASK) {
       case NOTE_SECONDS:
               ts.tv_sec = kev->data;
               ts.tv_nsec = 0;
               break;

       case NOTE_MSECONDS:             /* == historical value 0 */
               ts.tv_sec = kev->data / 1000;
               ts.tv_nsec = (kev->data % 1000) * 1000000;
               break;

       case NOTE_USECONDS:
               ts.tv_sec = kev->data / 1000000;
               ts.tv_nsec = (kev->data % 1000000) * 1000;
               break;

       case NOTE_NSECONDS:
               ts.tv_sec = kev->data / 1000000000;
               ts.tv_nsec = kev->data % 1000000000;
               break;

       default:
               return EINVAL;
       }

       if (kev->fflags & NOTE_ABSTIME) {
               struct timespec deadline = ts;

               /*
                * Get current time.
                *
                * XXX This is CLOCK_REALTIME.  There is no way to
                * XXX specify CLOCK_MONOTONIC.
                */
               nanotime(&ts);

               /* Absolute timers do not repeat. */
               kev->data = FILT_TIMER_NOSCHED;

               /* If we're past the deadline, then the event will fire. */
               if (timespeccmp(&deadline, &ts, <=)) {
                       tticks = FILT_TIMER_NOSCHED;
                       goto out;
               }

               /* Calculate how much time is left. */
               timespecsub(&deadline, &ts, &ts);
       } else {
               /* EV_CLEAR automatically set for relative timers. */
               kev->flags |= EV_CLEAR;
       }

       tticks = tstohz(&ts);

       /* if the supplied value is under our resolution, use 1 tick */
       if (tticks == 0) {
               if (kev->data == 0)
                       return EINVAL;
               tticks = 1;
       } else if (tticks > INT_MAX) {
               return EINVAL;
       }

       if ((kev->flags & EV_ONESHOT) != 0) {
               /* Timer does not repeat. */
               kev->data = FILT_TIMER_NOSCHED;
       } else {
               KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED);
               kev->data = tticks;
       }

out:
       *tticksp = tticks;

       return 0;
}

static void
filt_timerexpire(void *knx)
{
       struct knote *kn = knx;
       struct kqueue *kq = kn->kn_kq;

       mutex_spin_enter(&kq->kq_lock);
       kn->kn_data++;
       knote_activate_locked(kn);
       if (kn->kn_sdata != FILT_TIMER_NOSCHED) {
               KASSERT(kn->kn_sdata > 0);
               KASSERT(kn->kn_sdata <= INT_MAX);
               callout_schedule((callout_t *)kn->kn_hook,
                   (int)kn->kn_sdata);
       }
       mutex_spin_exit(&kq->kq_lock);
}

static inline void
filt_timerstart(struct knote *kn, uintptr_t tticks)
{
       callout_t *calloutp = kn->kn_hook;

       KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
       KASSERT(!callout_pending(calloutp));

       if (__predict_false(tticks == FILT_TIMER_NOSCHED)) {
               kn->kn_data = 1;
       } else {
               KASSERT(tticks <= INT_MAX);
               callout_reset(calloutp, (int)tticks, filt_timerexpire, kn);
       }
}

static int
filt_timerattach(struct knote *kn)
{
       callout_t *calloutp;
       struct kqueue *kq;
       uintptr_t tticks;
       int error;

       struct kevent kev = {
               .flags = kn->kn_flags,
               .fflags = kn->kn_sfflags,
               .data = kn->kn_sdata,
       };

       error = filt_timercompute(&kev, &tticks);
       if (error) {
               return error;
       }

       if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
           (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
               atomic_dec_uint(&kq_ncallouts);
               return ENOMEM;
       }
       callout_init(calloutp, CALLOUT_MPSAFE);

       kq = kn->kn_kq;
       mutex_spin_enter(&kq->kq_lock);

       kn->kn_sdata = kev.data;
       kn->kn_flags = kev.flags;
       KASSERT(kn->kn_sfflags == kev.fflags);
       kn->kn_hook = calloutp;

       filt_timerstart(kn, tticks);

       mutex_spin_exit(&kq->kq_lock);

       return (0);
}

static void
filt_timerdetach(struct knote *kn)
{
       callout_t *calloutp;
       struct kqueue *kq = kn->kn_kq;

       /* prevent rescheduling when we expire */
       mutex_spin_enter(&kq->kq_lock);
       kn->kn_sdata = FILT_TIMER_NOSCHED;
       mutex_spin_exit(&kq->kq_lock);

       calloutp = (callout_t *)kn->kn_hook;

       /*
        * Attempt to stop the callout.  This will block if it's
        * already running.
        */
       callout_halt(calloutp, NULL);

       callout_destroy(calloutp);
       kmem_free(calloutp, sizeof(*calloutp));
       atomic_dec_uint(&kq_ncallouts);
}

static int
filt_timertouch(struct knote *kn, struct kevent *kev, long type)
{
       struct kqueue *kq = kn->kn_kq;
       callout_t *calloutp;
       uintptr_t tticks;
       int error;

       KASSERT(mutex_owned(&kq->kq_lock));

       switch (type) {
       case EVENT_REGISTER:
               /* Only relevant for EV_ADD. */
               if ((kev->flags & EV_ADD) == 0) {
                       return 0;
               }

               /*
                * Stop the timer, under the assumption that if
                * an application is re-configuring the timer,
                * they no longer care about the old one.  We
                * can safely drop the kq_lock while we wait
                * because fdp->fd_lock will be held throughout,
                * ensuring that no one can sneak in with an
                * EV_DELETE or close the kq.
                */
               KASSERT(mutex_owned(&kq->kq_fdp->fd_lock));

               calloutp = kn->kn_hook;
               callout_halt(calloutp, &kq->kq_lock);
               KASSERT(mutex_owned(&kq->kq_lock));
               knote_deactivate_locked(kn);
               kn->kn_data = 0;

               error = filt_timercompute(kev, &tticks);
               if (error) {
                       return error;
               }
               kn->kn_sdata = kev->data;
               kn->kn_flags = kev->flags;
               kn->kn_sfflags = kev->fflags;
               filt_timerstart(kn, tticks);
               break;

       case EVENT_PROCESS:
               *kev = kn->kn_kevent;
               break;

       default:
               panic("%s: invalid type (%ld)", __func__, type);
       }

       return 0;
}

static int
filt_timer(struct knote *kn, long hint)
{
       struct kqueue *kq = kn->kn_kq;
       int rv;

       mutex_spin_enter(&kq->kq_lock);
       rv = (kn->kn_data != 0);
       mutex_spin_exit(&kq->kq_lock);

       return rv;
}

static int
filt_userattach(struct knote *kn)
{
       struct kqueue *kq = kn->kn_kq;

       /*
        * EVFILT_USER knotes are not attached to anything in the kernel.
        */
       mutex_spin_enter(&kq->kq_lock);
       kn->kn_hook = NULL;
       if (kn->kn_fflags & NOTE_TRIGGER)
               kn->kn_hookid = 1;
       else
               kn->kn_hookid = 0;
       mutex_spin_exit(&kq->kq_lock);
       return (0);
}

static void
filt_userdetach(struct knote *kn)
{

       /*
        * EVFILT_USER knotes are not attached to anything in the kernel.
        */
}

static int
filt_user(struct knote *kn, long hint)
{
       struct kqueue *kq = kn->kn_kq;
       int hookid;

       mutex_spin_enter(&kq->kq_lock);
       hookid = kn->kn_hookid;
       mutex_spin_exit(&kq->kq_lock);

       return hookid;
}

static int
filt_usertouch(struct knote *kn, struct kevent *kev, long type)
{
       int ffctrl;

       KASSERT(mutex_owned(&kn->kn_kq->kq_lock));

       switch (type) {
       case EVENT_REGISTER:
               if (kev->fflags & NOTE_TRIGGER)
                       kn->kn_hookid = 1;

               ffctrl = kev->fflags & NOTE_FFCTRLMASK;
               kev->fflags &= NOTE_FFLAGSMASK;
               switch (ffctrl) {
               case NOTE_FFNOP:
                       break;

               case NOTE_FFAND:
                       kn->kn_sfflags &= kev->fflags;
                       break;

               case NOTE_FFOR:
                       kn->kn_sfflags |= kev->fflags;
                       break;

               case NOTE_FFCOPY:
                       kn->kn_sfflags = kev->fflags;
                       break;

               default:
                       /* XXX Return error? */
                       break;
               }
               kn->kn_sdata = kev->data;
               if (kev->flags & EV_CLEAR) {
                       kn->kn_hookid = 0;
                       kn->kn_data = 0;
                       kn->kn_fflags = 0;
               }
               break;

       case EVENT_PROCESS:
               *kev = kn->kn_kevent;
               kev->fflags = kn->kn_sfflags;
               kev->data = kn->kn_sdata;
               if (kn->kn_flags & EV_CLEAR) {
                       kn->kn_hookid = 0;
                       kn->kn_data = 0;
                       kn->kn_fflags = 0;
               }
               break;

       default:
               panic("filt_usertouch() - invalid type (%ld)", type);
               break;
       }

       return 0;
}

/*
* filt_seltrue:
*
*      This filter "event" routine simulates seltrue().
*/
int
filt_seltrue(struct knote *kn, long hint)
{

       /*
        * We don't know how much data can be read/written,
        * but we know that it *can* be.  This is about as
        * good as select/poll does as well.
        */
       kn->kn_data = 0;
       return (1);
}

/*
* This provides full kqfilter entry for device switch tables, which
* has same effect as filter using filt_seltrue() as filter method.
*/
static void
filt_seltruedetach(struct knote *kn)
{
       /* Nothing to do */
}

const struct filterops seltrue_filtops = {
       .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
       .f_attach = NULL,
       .f_detach = filt_seltruedetach,
       .f_event = filt_seltrue,
};

int
seltrue_kqfilter(dev_t dev, struct knote *kn)
{
       switch (kn->kn_filter) {
       case EVFILT_READ:
       case EVFILT_WRITE:
               kn->kn_fop = &seltrue_filtops;
               break;
       default:
               return (EINVAL);
       }

       /* Nothing more to do */
       return (0);
}

/*
* kqueue(2) system call.
*/
static int
kqueue1(struct lwp *l, int flags, register_t *retval)
{
       struct kqueue *kq;
       file_t *fp;
       int fd, error;

       if ((error = fd_allocfile(&fp, &fd)) != 0)
               return error;
       fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
       fp->f_type = DTYPE_KQUEUE;
       fp->f_ops = &kqueueops;
       kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
       mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
       cv_init(&kq->kq_cv, "kqueue");
       selinit(&kq->kq_sel);
       TAILQ_INIT(&kq->kq_head);
       fp->f_kqueue = kq;
       *retval = fd;
       kq->kq_fdp = curlwp->l_fd;
       fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
       fd_affix(curproc, fp, fd);
       return error;
}

/*
* kqueue(2) system call.
*/
int
sys_kqueue(struct lwp *l, const void *v, register_t *retval)
{
       return kqueue1(l, 0, retval);
}

int
sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(int) flags;
       } */
       return kqueue1(l, SCARG(uap, flags), retval);
}

/*
* kevent(2) system call.
*/
int
kevent_fetch_changes(void *ctx, const struct kevent *changelist,
   struct kevent *changes, size_t index, int n)
{

       return copyin(changelist + index, changes, n * sizeof(*changes));
}

int
kevent_put_events(void *ctx, struct kevent *events,
   struct kevent *eventlist, size_t index, int n)
{

       return copyout(events, eventlist + index, n * sizeof(*events));
}

static const struct kevent_ops kevent_native_ops = {
       .keo_private = NULL,
       .keo_fetch_timeout = copyin,
       .keo_fetch_changes = kevent_fetch_changes,
       .keo_put_events = kevent_put_events,
};

int
sys___kevent100(struct lwp *l, const struct sys___kevent100_args *uap,
   register_t *retval)
{
       /* {
               syscallarg(int) fd;
               syscallarg(const struct kevent *) changelist;
               syscallarg(size_t) nchanges;
               syscallarg(struct kevent *) eventlist;
               syscallarg(size_t) nevents;
               syscallarg(const struct timespec *) timeout;
       } */

       return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
           SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
           SCARG(uap, timeout), &kevent_native_ops);
}

int
kevent1(register_t *retval, int fd,
       const struct kevent *changelist, size_t nchanges,
       struct kevent *eventlist, size_t nevents,
       const struct timespec *timeout,
       const struct kevent_ops *keops)
{
       struct kevent *kevp;
       struct kqueue *kq;
       struct timespec ts;
       size_t i, n, ichange;
       int nerrors, error;
       struct kevent kevbuf[KQ_NEVENTS];       /* approx 300 bytes on 64-bit */
       file_t *fp;

       /* check that we're dealing with a kq */
       fp = fd_getfile(fd);
       if (fp == NULL)
               return (EBADF);

       if (fp->f_type != DTYPE_KQUEUE) {
               fd_putfile(fd);
               return (EBADF);
       }

       if (timeout != NULL) {
               error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
               if (error)
                       goto done;
               timeout = &ts;
       }

       kq = fp->f_kqueue;
       nerrors = 0;
       ichange = 0;

       /* traverse list of events to register */
       while (nchanges > 0) {
               n = MIN(nchanges, __arraycount(kevbuf));
               error = (*keops->keo_fetch_changes)(keops->keo_private,
                   changelist, kevbuf, ichange, n);
               if (error)
                       goto done;
               for (i = 0; i < n; i++) {
                       kevp = &kevbuf[i];
                       kevp->flags &= ~EV_SYSFLAGS;
                       /* register each knote */
                       error = kqueue_register(kq, kevp);
                       if (!error && !(kevp->flags & EV_RECEIPT))
                               continue;
                       if (nevents == 0)
                               goto done;
                       kevp->flags = EV_ERROR;
                       kevp->data = error;
                       error = (*keops->keo_put_events)
                               (keops->keo_private, kevp,
                                eventlist, nerrors, 1);
                       if (error)
                               goto done;
                       nevents--;
                       nerrors++;
               }
               nchanges -= n;  /* update the results */
               ichange += n;
       }
       if (nerrors) {
               *retval = nerrors;
               error = 0;
               goto done;
       }

       /* actually scan through the events */
       error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
           kevbuf, __arraycount(kevbuf));
done:
       fd_putfile(fd);
       return (error);
}

/*
* Register a given kevent kev onto the kqueue
*/
static int
kqueue_register(struct kqueue *kq, struct kevent *kev)
{
       struct kfilter *kfilter;
       filedesc_t *fdp;
       file_t *fp;
       fdfile_t *ff;
       struct knote *kn, *newkn;
       struct klist *list;
       int error, fd, rv;

       fdp = kq->kq_fdp;
       fp = NULL;
       kn = NULL;
       error = 0;
       fd = 0;

       newkn = knote_alloc(true);

       rw_enter(&kqueue_filter_lock, RW_READER);
       kfilter = kfilter_byfilter(kev->filter);
       if (kfilter == NULL || kfilter->filtops == NULL) {
               /* filter not found nor implemented */
               rw_exit(&kqueue_filter_lock);
               knote_free(newkn);
               return (EINVAL);
       }

       /* search if knote already exists */
       if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
               /* monitoring a file descriptor */
               /* validate descriptor */
               if (kev->ident > INT_MAX
                   || (fp = fd_getfile(fd = kev->ident)) == NULL) {
                       rw_exit(&kqueue_filter_lock);
                       knote_free(newkn);
                       return EBADF;
               }
               mutex_enter(&fdp->fd_lock);
               ff = fdp->fd_dt->dt_ff[fd];
               if (ff->ff_refcnt & FR_CLOSING) {
                       error = EBADF;
                       goto doneunlock;
               }
               if (fd <= fdp->fd_lastkqfile) {
                       SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
                               if (kq == kn->kn_kq &&
                                   kev->filter == kn->kn_filter)
                                       break;
                       }
               }
       } else {
               /*
                * not monitoring a file descriptor, so
                * lookup knotes in internal hash table
                */
               mutex_enter(&fdp->fd_lock);
               if (fdp->fd_knhashmask != 0) {
                       list = &fdp->fd_knhash[
                           KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
                       SLIST_FOREACH(kn, list, kn_link) {
                               if (kev->ident == kn->kn_id &&
                                   kq == kn->kn_kq &&
                                   kev->filter == kn->kn_filter)
                                       break;
                       }
               }
       }

       /* It's safe to test KQ_CLOSING while holding only the fd_lock. */
       KASSERT(mutex_owned(&fdp->fd_lock));
       KASSERT((kq->kq_count & KQ_CLOSING) == 0);

       /*
        * kn now contains the matching knote, or NULL if no match
        */
       if (kn == NULL) {
               if (kev->flags & EV_ADD) {
                       /* create new knote */
                       kn = newkn;
                       newkn = NULL;
                       kn->kn_obj = fp;
                       kn->kn_id = kev->ident;
                       kn->kn_kq = kq;
                       kn->kn_fop = kfilter->filtops;
                       kn->kn_kfilter = kfilter;
                       kn->kn_sfflags = kev->fflags;
                       kn->kn_sdata = kev->data;
                       kev->fflags = 0;
                       kev->data = 0;
                       kn->kn_kevent = *kev;

                       KASSERT(kn->kn_fop != NULL);
                       /*
                        * XXX Allow only known-safe users of f_touch.
                        * XXX See filter_touch() for details.
                        */
                       if (kn->kn_fop->f_touch != NULL &&
                           kn->kn_fop != &timer_filtops &&
                           kn->kn_fop != &user_filtops) {
                               error = ENOTSUP;
                               goto fail_ev_add;
                       }

                       /*
                        * apply reference count to knote structure, and
                        * do not release it at the end of this routine.
                        */
                       fp = NULL;

                       if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
                               /*
                                * If knote is not on an fd, store on
                                * internal hash table.
                                */
                               if (fdp->fd_knhashmask == 0) {
                                       /* XXXAD can block with fd_lock held */
                                       fdp->fd_knhash = hashinit(KN_HASHSIZE,
                                           HASH_LIST, true,
                                           &fdp->fd_knhashmask);
                               }
                               list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
                                   fdp->fd_knhashmask)];
                       } else {
                               /* Otherwise, knote is on an fd. */
                               list = (struct klist *)
                                   &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
                               if ((int)kn->kn_id > fdp->fd_lastkqfile)
                                       fdp->fd_lastkqfile = kn->kn_id;
                       }
                       SLIST_INSERT_HEAD(list, kn, kn_link);

                       /*
                        * N.B. kn->kn_fop may change as the result
                        * of filter_attach()!
                        */
                       knote_foplock_enter(kn);
                       error = filter_attach(kn);
                       if (error != 0) {
#ifdef DEBUG
                               struct proc *p = curlwp->l_proc;
                               const file_t *ft = kn->kn_obj;
                               printf("%s: %s[%d]: event type %d not "
                                   "supported for file type %d/%s "
                                   "(error %d)\n", __func__,
                                   p->p_comm, p->p_pid,
                                   kn->kn_filter, ft ? ft->f_type : -1,
                                   ft ? ft->f_ops->fo_name : "?", error);
#endif

fail_ev_add:
                               /*
                                * N.B. no need to check for this note to
                                * be in-flux, since it was never visible
                                * to the monitored object.
                                *
                                * knote_detach() drops fdp->fd_lock
                                */
                               knote_foplock_exit(kn);
                               mutex_enter(&kq->kq_lock);
                               KNOTE_WILLDETACH(kn);
                               KASSERT(kn_in_flux(kn) == false);
                               mutex_exit(&kq->kq_lock);
                               knote_detach(kn, fdp, false);
                               goto done;
                       }
                       atomic_inc_uint(&kfilter->refcnt);
                       goto done_ev_add;
               } else {
                       /* No matching knote and the EV_ADD flag is not set. */
                       error = ENOENT;
                       goto doneunlock;
               }
       }

       if (kev->flags & EV_DELETE) {
               /*
                * Let the world know that this knote is about to go
                * away, and wait for it to settle if it's currently
                * in-flux.
                */
               mutex_spin_enter(&kq->kq_lock);
               if (kn->kn_status & KN_WILLDETACH) {
                       /*
                        * This knote is already on its way out,
                        * so just be done.
                        */
                       mutex_spin_exit(&kq->kq_lock);
                       goto doneunlock;
               }
               KNOTE_WILLDETACH(kn);
               if (kn_in_flux(kn)) {
                       mutex_exit(&fdp->fd_lock);
                       /*
                        * It's safe for us to conclusively wait for
                        * this knote to settle because we know we'll
                        * be completing the detach.
                        */
                       kn_wait_flux(kn, true);
                       KASSERT(kn_in_flux(kn) == false);
                       mutex_spin_exit(&kq->kq_lock);
                       mutex_enter(&fdp->fd_lock);
               } else {
                       mutex_spin_exit(&kq->kq_lock);
               }

               /* knote_detach() drops fdp->fd_lock */
               knote_detach(kn, fdp, true);
               goto done;
       }

       /*
        * The user may change some filter values after the
        * initial EV_ADD, but doing so will not reset any
        * filter which have already been triggered.
        */
       knote_foplock_enter(kn);
       kn->kn_kevent.udata = kev->udata;
       KASSERT(kn->kn_fop != NULL);
       if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
           kn->kn_fop->f_touch != NULL) {
               mutex_spin_enter(&kq->kq_lock);
               error = filter_touch(kn, kev, EVENT_REGISTER);
               mutex_spin_exit(&kq->kq_lock);
               if (__predict_false(error != 0)) {
                       /* Never a new knote (which would consume newkn). */
                       KASSERT(newkn != NULL);
                       knote_foplock_exit(kn);
                       goto doneunlock;
               }
       } else {
               kn->kn_sfflags = kev->fflags;
               kn->kn_sdata = kev->data;
       }

       /*
        * We can get here if we are trying to attach
        * an event to a file descriptor that does not
        * support events, and the attach routine is
        * broken and does not return an error.
        */
done_ev_add:
       rv = filter_event(kn, 0, false);
       if (rv)
               knote_activate(kn);

       knote_foplock_exit(kn);

       /* disable knote */
       if ((kev->flags & EV_DISABLE)) {
               mutex_spin_enter(&kq->kq_lock);
               if ((kn->kn_status & KN_DISABLED) == 0)
                       kn->kn_status |= KN_DISABLED;
               mutex_spin_exit(&kq->kq_lock);
       }

       /* enable knote */
       if ((kev->flags & EV_ENABLE)) {
               knote_enqueue(kn);
       }
doneunlock:
       mutex_exit(&fdp->fd_lock);
done:
       rw_exit(&kqueue_filter_lock);
       if (newkn != NULL)
               knote_free(newkn);
       if (fp != NULL)
               fd_putfile(fd);
       return (error);
}

#define KN_FMT(buf, kn) \
   (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)

#if defined(DDB)
void
kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
{
       const struct knote *kn;
       u_int count;
       int nmarker;
       char buf[128];

       count = 0;
       nmarker = 0;

       (*pr)("kqueue %p (restart=%d count=%u):\n", kq,
           !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
       (*pr)("  Queued knotes:\n");
       TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
               if (kn->kn_status & KN_MARKER) {
                       nmarker++;
               } else {
                       count++;
               }
               (*pr)("    knote %p: kq=%p status=%s\n",
                   kn, kn->kn_kq, KN_FMT(buf, kn));
               (*pr)("      id=0x%lx (%lu) filter=%d\n",
                   (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
               if (kn->kn_kq != kq) {
                       (*pr)("      !!! kn->kn_kq != kq\n");
               }
       }
       if (count != KQ_COUNT(kq)) {
               (*pr)("  !!! count(%u) != KQ_COUNT(%u)\n",
                   count, KQ_COUNT(kq));
       }
}
#endif /* DDB */

#if defined(DEBUG)
static void
kqueue_check(const char *func, size_t line, const struct kqueue *kq)
{
       const struct knote *kn;
       u_int count;
       int nmarker;
       char buf[128];

       KASSERT(mutex_owned(&kq->kq_lock));

       count = 0;
       nmarker = 0;
       TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
               if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
                       panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
                           func, line, kq, kn, KN_FMT(buf, kn));
               }
               if ((kn->kn_status & KN_MARKER) == 0) {
                       if (kn->kn_kq != kq) {
                               panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
                                   func, line, kq, kn, kn->kn_kq,
                                   KN_FMT(buf, kn));
                       }
                       if ((kn->kn_status & KN_ACTIVE) == 0) {
                               panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
                                   func, line, kq, kn, KN_FMT(buf, kn));
                       }
                       count++;
                       if (count > KQ_COUNT(kq)) {
                               panic("%s,%zu: kq=%p kq->kq_count(%u) != "
                                   "count(%d), nmarker=%d",
                                   func, line, kq, KQ_COUNT(kq), count,
                                   nmarker);
                       }
               } else {
                       nmarker++;
               }
       }
}
#define kq_check(a) kqueue_check(__func__, __LINE__, (a))
#else /* defined(DEBUG) */
#define kq_check(a)     /* nothing */
#endif /* defined(DEBUG) */

static void
kqueue_restart(file_t *fp)
{
       struct kqueue *kq = fp->f_kqueue;
       KASSERT(kq != NULL);

       mutex_spin_enter(&kq->kq_lock);
       kq->kq_count |= KQ_RESTART;
       cv_broadcast(&kq->kq_cv);
       mutex_spin_exit(&kq->kq_lock);
}

static int
kqueue_fpathconf(struct file *fp, int name, register_t *retval)
{

       return EINVAL;
}

/*
* Scan through the list of events on fp (for a maximum of maxevents),
* returning the results in to ulistp. Timeout is determined by tsp; if
* NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
* as appropriate.
*/
static int
kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
           const struct timespec *tsp, register_t *retval,
           const struct kevent_ops *keops, struct kevent *kevbuf,
           size_t kevcnt)
{
       struct kqueue   *kq;
       struct kevent   *kevp;
       struct timespec ats, sleepts;
       struct knote    *kn, *marker;
       struct knote_impl morker;
       size_t          count, nkev, nevents;
       int             timeout, error, touch, rv, influx;
       filedesc_t      *fdp;

       fdp = curlwp->l_fd;
       kq = fp->f_kqueue;
       count = maxevents;
       nkev = nevents = error = 0;
       if (count == 0) {
               *retval = 0;
               return 0;
       }

       if (tsp) {                              /* timeout supplied */
               ats = *tsp;
               if (inittimeleft(&ats, &sleepts) == -1) {
                       *retval = maxevents;
                       return EINVAL;
               }
               timeout = tstohz(&ats);
               if (timeout <= 0)
                       timeout = -1;           /* do poll */
       } else {
               /* no timeout, wait forever */
               timeout = 0;
       }

       memset(&morker, 0, sizeof(morker));
       marker = &morker.ki_knote;
       marker->kn_kq = kq;
       marker->kn_status = KN_MARKER;
       mutex_spin_enter(&kq->kq_lock);
retry:
       kevp = kevbuf;
       if (KQ_COUNT(kq) == 0) {
               if (timeout >= 0) {
                       error = cv_timedwait_sig(&kq->kq_cv,
                           &kq->kq_lock, timeout);
                       if (error == 0) {
                               if (KQ_COUNT(kq) == 0 &&
                                   (kq->kq_count & KQ_RESTART)) {
                                       /* return to clear file reference */
                                       error = ERESTART;
                               } else if (tsp == NULL || (timeout =
                                   gettimeleft(&ats, &sleepts)) > 0) {
                                       goto retry;
                               }
                       } else {
                               /* don't restart after signals... */
                               if (error == ERESTART)
                                       error = EINTR;
                               if (error == EWOULDBLOCK)
                                       error = 0;
                       }
               }
               mutex_spin_exit(&kq->kq_lock);
               goto done;
       }

       /* mark end of knote list */
       TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
       influx = 0;

       /*
        * Acquire the fdp->fd_lock interlock to avoid races with
        * file creation/destruction from other threads.
        */
       mutex_spin_exit(&kq->kq_lock);
relock:
       mutex_enter(&fdp->fd_lock);
       mutex_spin_enter(&kq->kq_lock);

       while (count != 0) {
               /*
                * Get next knote.  We are guaranteed this will never
                * be NULL because of the marker we inserted above.
                */
               kn = TAILQ_FIRST(&kq->kq_head);

               bool kn_is_other_marker =
                   (kn->kn_status & KN_MARKER) != 0 && kn != marker;
               bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
               bool kn_is_in_flux = kn_in_flux(kn);

               /*
                * If we found a marker that's not ours, or this knote
                * is in a state of flux, then wait for everything to
                * settle down and go around again.
                */
               if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
                       if (influx) {
                               influx = 0;
                               KQ_FLUX_WAKEUP(kq);
                       }
                       mutex_exit(&fdp->fd_lock);
                       if (kn_is_other_marker || kn_is_in_flux) {
                               KQ_FLUX_WAIT(kq);
                               mutex_spin_exit(&kq->kq_lock);
                       } else {
                               /*
                                * Detaching but not in-flux?  Someone is
                                * actively trying to finish the job; just
                                * go around and try again.
                                */
                               KASSERT(kn_is_detaching);
                               mutex_spin_exit(&kq->kq_lock);
                               preempt_point();
                       }
                       goto relock;
               }

               TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
               if (kn == marker) {
                       /* it's our marker, stop */
                       KQ_FLUX_WAKEUP(kq);
                       if (count == maxevents) {
                               mutex_exit(&fdp->fd_lock);
                               goto retry;
                       }
                       break;
               }
               KASSERT((kn->kn_status & KN_BUSY) == 0);

               kq_check(kq);
               kn->kn_status &= ~KN_QUEUED;
               kn->kn_status |= KN_BUSY;
               kq_check(kq);
               if (kn->kn_status & KN_DISABLED) {
                       kn->kn_status &= ~KN_BUSY;
                       kq->kq_count--;
                       /* don't want disabled events */
                       continue;
               }
               if ((kn->kn_flags & EV_ONESHOT) == 0) {
                       mutex_spin_exit(&kq->kq_lock);
                       KASSERT(mutex_owned(&fdp->fd_lock));
                       knote_foplock_enter(kn);
                       rv = filter_event(kn, 0, false);
                       knote_foplock_exit(kn);
                       mutex_spin_enter(&kq->kq_lock);
                       /* Re-poll if note was re-enqueued. */
                       if ((kn->kn_status & KN_QUEUED) != 0) {
                               kn->kn_status &= ~KN_BUSY;
                               /* Re-enqueue raised kq_count, lower it again */
                               kq->kq_count--;
                               influx = 1;
                               continue;
                       }
                       if (rv == 0) {
                               /*
                                * non-ONESHOT event that hasn't triggered
                                * again, so it will remain de-queued.
                                */
                               kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
                               kq->kq_count--;
                               influx = 1;
                               continue;
                       }
               } else {
                       /*
                        * Must NOT drop kq_lock until we can do
                        * the KNOTE_WILLDETACH() below.
                        */
               }
               KASSERT(kn->kn_fop != NULL);
               touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
                               kn->kn_fop->f_touch != NULL);
               /* XXXAD should be got from f_event if !oneshot. */
               KASSERT((kn->kn_status & KN_WILLDETACH) == 0);
               if (touch) {
                       (void)filter_touch(kn, kevp, EVENT_PROCESS);
               } else {
                       *kevp = kn->kn_kevent;
               }
               kevp++;
               nkev++;
               influx = 1;
               if (kn->kn_flags & EV_ONESHOT) {
                       /* delete ONESHOT events after retrieval */
                       KNOTE_WILLDETACH(kn);
                       kn->kn_status &= ~KN_BUSY;
                       kq->kq_count--;
                       KASSERT(kn_in_flux(kn) == false);
                       KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
                       KASSERT(kn->kn_kevent.udata == curlwp);
                       mutex_spin_exit(&kq->kq_lock);
                       knote_detach(kn, fdp, true);
                       mutex_enter(&fdp->fd_lock);
                       mutex_spin_enter(&kq->kq_lock);
               } else if (kn->kn_flags & EV_CLEAR) {
                       /* clear state after retrieval */
                       kn->kn_data = 0;
                       kn->kn_fflags = 0;
                       /*
                        * Manually clear knotes who weren't
                        * 'touch'ed.
                        */
                       if (touch == 0) {
                               kn->kn_data = 0;
                               kn->kn_fflags = 0;
                       }
                       kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
                       kq->kq_count--;
               } else if (kn->kn_flags & EV_DISPATCH) {
                       kn->kn_status |= KN_DISABLED;
                       kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
                       kq->kq_count--;
               } else {
                       /* add event back on list */
                       kq_check(kq);
                       kn->kn_status |= KN_QUEUED;
                       kn->kn_status &= ~KN_BUSY;
                       TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
                       kq_check(kq);
               }

               if (nkev == kevcnt) {
                       /* do copyouts in kevcnt chunks */
                       influx = 0;
                       KQ_FLUX_WAKEUP(kq);
                       mutex_spin_exit(&kq->kq_lock);
                       mutex_exit(&fdp->fd_lock);
                       error = (*keops->keo_put_events)
                           (keops->keo_private,
                           kevbuf, ulistp, nevents, nkev);
                       mutex_enter(&fdp->fd_lock);
                       mutex_spin_enter(&kq->kq_lock);
                       nevents += nkev;
                       nkev = 0;
                       kevp = kevbuf;
               }
               count--;
               if (error != 0 || count == 0) {
                       /* remove marker */
                       TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
                       break;
               }
       }
       KQ_FLUX_WAKEUP(kq);
       mutex_spin_exit(&kq->kq_lock);
       mutex_exit(&fdp->fd_lock);

done:
       if (nkev != 0) {
               /* copyout remaining events */
               error = (*keops->keo_put_events)(keops->keo_private,
                   kevbuf, ulistp, nevents, nkev);
       }
       *retval = maxevents - count;

       return error;
}

/*
* fileops ioctl method for a kqueue descriptor.
*
* Two ioctls are currently supported. They both use struct kfilter_mapping:
*      KFILTER_BYNAME          find name for filter, and return result in
*                              name, which is of size len.
*      KFILTER_BYFILTER        find filter for name. len is ignored.
*/
/*ARGSUSED*/
static int
kqueue_ioctl(file_t *fp, u_long com, void *data)
{
       struct kfilter_mapping  *km;
       const struct kfilter    *kfilter;
       char                    *name;
       int                     error;

       km = data;
       error = 0;
       name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);

       switch (com) {
       case KFILTER_BYFILTER:  /* convert filter -> name */
               rw_enter(&kqueue_filter_lock, RW_READER);
               kfilter = kfilter_byfilter(km->filter);
               if (kfilter != NULL) {
                       strlcpy(name, kfilter->name, KFILTER_MAXNAME);
                       rw_exit(&kqueue_filter_lock);
                       error = copyoutstr(name, km->name, km->len, NULL);
               } else {
                       rw_exit(&kqueue_filter_lock);
                       error = ENOENT;
               }
               break;

       case KFILTER_BYNAME:    /* convert name -> filter */
               error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
               if (error) {
                       break;
               }
               rw_enter(&kqueue_filter_lock, RW_READER);
               kfilter = kfilter_byname(name);
               if (kfilter != NULL)
                       km->filter = kfilter->filter;
               else
                       error = ENOENT;
               rw_exit(&kqueue_filter_lock);
               break;

       default:
               error = ENOTTY;
               break;

       }
       kmem_free(name, KFILTER_MAXNAME);
       return (error);
}

/*
* fileops fcntl method for a kqueue descriptor.
*/
static int
kqueue_fcntl(file_t *fp, u_int com, void *data)
{

       return (ENOTTY);
}

/*
* fileops poll method for a kqueue descriptor.
* Determine if kqueue has events pending.
*/
static int
kqueue_poll(file_t *fp, int events)
{
       struct kqueue   *kq;
       int             revents;

       kq = fp->f_kqueue;

       revents = 0;
       if (events & (POLLIN | POLLRDNORM)) {
               mutex_spin_enter(&kq->kq_lock);
               if (KQ_COUNT(kq) != 0) {
                       revents |= events & (POLLIN | POLLRDNORM);
               } else {
                       selrecord(curlwp, &kq->kq_sel);
               }
               kq_check(kq);
               mutex_spin_exit(&kq->kq_lock);
       }

       return revents;
}

/*
* fileops stat method for a kqueue descriptor.
* Returns dummy info, with st_size being number of events pending.
*/
static int
kqueue_stat(file_t *fp, struct stat *st)
{
       struct kqueue *kq;

       kq = fp->f_kqueue;

       memset(st, 0, sizeof(*st));
       st->st_size = KQ_COUNT(kq);
       st->st_blksize = sizeof(struct kevent);
       st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
       st->st_blocks = 1;
       st->st_uid = kauth_cred_geteuid(fp->f_cred);
       st->st_gid = kauth_cred_getegid(fp->f_cred);

       return 0;
}

static void
kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
{
       struct knote *kn;
       filedesc_t *fdp;

       fdp = kq->kq_fdp;

       KASSERT(mutex_owned(&fdp->fd_lock));

again:
       for (kn = SLIST_FIRST(list); kn != NULL;) {
               if (kq != kn->kn_kq) {
                       kn = SLIST_NEXT(kn, kn_link);
                       continue;
               }
               if (knote_detach_quiesce(kn)) {
                       mutex_enter(&fdp->fd_lock);
                       goto again;
               }
               knote_detach(kn, fdp, true);
               mutex_enter(&fdp->fd_lock);
               kn = SLIST_FIRST(list);
       }
}

/*
* fileops close method for a kqueue descriptor.
*/
static int
kqueue_close(file_t *fp)
{
       struct kqueue *kq;
       filedesc_t *fdp;
       fdfile_t *ff;
       int i;

       kq = fp->f_kqueue;
       fp->f_kqueue = NULL;
       fp->f_type = 0;
       fdp = curlwp->l_fd;

       KASSERT(kq->kq_fdp == fdp);

       mutex_enter(&fdp->fd_lock);

       /*
        * We're doing to drop the fd_lock multiple times while
        * we detach knotes.  During this time, attempts to register
        * knotes via the back door (e.g. knote_proc_fork_track())
        * need to fail, lest they sneak in to attach a knote after
        * we've already drained the list it's destined for.
        *
        * We must acquire kq_lock here to set KQ_CLOSING (to serialize
        * with other code paths that modify kq_count without holding
        * the fd_lock), but once this bit is set, it's only safe to
        * test it while holding the fd_lock, and holding kq_lock while
        * doing so is not necessary.
        */
       mutex_enter(&kq->kq_lock);
       kq->kq_count |= KQ_CLOSING;
       mutex_exit(&kq->kq_lock);

       for (i = 0; i <= fdp->fd_lastkqfile; i++) {
               if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
                       continue;
               kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
       }
       if (fdp->fd_knhashmask != 0) {
               for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
                       kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
               }
       }

       mutex_exit(&fdp->fd_lock);

#if defined(DEBUG)
       mutex_enter(&kq->kq_lock);
       kq_check(kq);
       mutex_exit(&kq->kq_lock);
#endif /* DEBUG */
       KASSERT(TAILQ_EMPTY(&kq->kq_head));
       KASSERT(KQ_COUNT(kq) == 0);
       mutex_destroy(&kq->kq_lock);
       cv_destroy(&kq->kq_cv);
       seldestroy(&kq->kq_sel);
       kmem_free(kq, sizeof(*kq));

       return (0);
}

/*
* struct fileops kqfilter method for a kqueue descriptor.
* Event triggered when monitored kqueue changes.
*/
static int
kqueue_kqfilter(file_t *fp, struct knote *kn)
{
       struct kqueue *kq;

       kq = ((file_t *)kn->kn_obj)->f_kqueue;

       KASSERT(fp == kn->kn_obj);

       if (kn->kn_filter != EVFILT_READ)
               return EINVAL;

       kn->kn_fop = &kqread_filtops;
       mutex_enter(&kq->kq_lock);
       selrecord_knote(&kq->kq_sel, kn);
       mutex_exit(&kq->kq_lock);

       return 0;
}


/*
* Walk down a list of knotes, activating them if their event has
* triggered.  The caller's object lock (e.g. device driver lock)
* must be held.
*/
void
knote(struct klist *list, long hint)
{
       struct knote *kn, *tmpkn;

       SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
               /*
                * We assume here that the backing object's lock is
                * already held if we're traversing the klist, and
                * so acquiring the knote foplock would create a
                * deadlock scenario.  But we also know that the klist
                * won't disappear on us while we're here, so not
                * acquiring it is safe.
                */
               if (filter_event(kn, hint, true)) {
                       knote_activate(kn);
               }
       }
}

/*
* Remove all knotes referencing a specified fd
*/
void
knote_fdclose(int fd)
{
       struct klist *list;
       struct knote *kn;
       filedesc_t *fdp;

again:
       fdp = curlwp->l_fd;
       mutex_enter(&fdp->fd_lock);
       list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
       while ((kn = SLIST_FIRST(list)) != NULL) {
               if (knote_detach_quiesce(kn)) {
                       goto again;
               }
               knote_detach(kn, fdp, true);
               mutex_enter(&fdp->fd_lock);
       }
       mutex_exit(&fdp->fd_lock);
}

/*
* Drop knote.  Called with fdp->fd_lock held, and will drop before
* returning.
*/
static void
knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
{
       struct klist *list;
       struct kqueue *kq;

       kq = kn->kn_kq;

       KASSERT((kn->kn_status & KN_MARKER) == 0);
       KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
       KASSERT(kn->kn_fop != NULL);
       KASSERT(mutex_owned(&fdp->fd_lock));

       /* Remove from monitored object. */
       if (dofop) {
               knote_foplock_enter(kn);
               filter_detach(kn);
               knote_foplock_exit(kn);
       }

       /* Remove from descriptor table. */
       if (kn->kn_fop->f_flags & FILTEROP_ISFD)
               list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
       else
               list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];

       SLIST_REMOVE(list, kn, knote, kn_link);

       /* Remove from kqueue. */
again:
       mutex_spin_enter(&kq->kq_lock);
       KASSERT(kn_in_flux(kn) == false);
       if ((kn->kn_status & KN_QUEUED) != 0) {
               kq_check(kq);
               KASSERT(KQ_COUNT(kq) != 0);
               kq->kq_count--;
               TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
               kn->kn_status &= ~KN_QUEUED;
               kq_check(kq);
       } else if (kn->kn_status & KN_BUSY) {
               mutex_spin_exit(&kq->kq_lock);
               goto again;
       }
       mutex_spin_exit(&kq->kq_lock);

       mutex_exit(&fdp->fd_lock);
       if (kn->kn_fop->f_flags & FILTEROP_ISFD)
               fd_putfile(kn->kn_id);
       atomic_dec_uint(&kn->kn_kfilter->refcnt);
       knote_free(kn);
}

/*
* Queue new event for knote.
*/
static void
knote_enqueue(struct knote *kn)
{
       struct kqueue *kq;

       KASSERT((kn->kn_status & KN_MARKER) == 0);

       kq = kn->kn_kq;

       mutex_spin_enter(&kq->kq_lock);
       if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
               /* Don't bother enqueueing a dying knote. */
               goto out;
       }
       if ((kn->kn_status & KN_DISABLED) != 0) {
               kn->kn_status &= ~KN_DISABLED;
       }
       if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
               kq_check(kq);
               kn->kn_status |= KN_QUEUED;
               TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
               KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
               kq->kq_count++;
               kq_check(kq);
               cv_broadcast(&kq->kq_cv);
               selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
       }
out:
       mutex_spin_exit(&kq->kq_lock);
}
/*
* Queue new event for knote.
*/
static void
knote_activate_locked(struct knote *kn)
{
       struct kqueue *kq;

       KASSERT((kn->kn_status & KN_MARKER) == 0);

       kq = kn->kn_kq;

       if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
               /* Don't bother enqueueing a dying knote. */
               return;
       }
       kn->kn_status |= KN_ACTIVE;
       if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
               kq_check(kq);
               kn->kn_status |= KN_QUEUED;
               TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
               KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
               kq->kq_count++;
               kq_check(kq);
               cv_broadcast(&kq->kq_cv);
               selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
       }
}

static void
knote_activate(struct knote *kn)
{
       struct kqueue *kq = kn->kn_kq;

       mutex_spin_enter(&kq->kq_lock);
       knote_activate_locked(kn);
       mutex_spin_exit(&kq->kq_lock);
}

static void
knote_deactivate_locked(struct knote *kn)
{
       struct kqueue *kq = kn->kn_kq;

       if (kn->kn_status & KN_QUEUED) {
               kq_check(kq);
               kn->kn_status &= ~KN_QUEUED;
               TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
               KASSERT(KQ_COUNT(kq) > 0);
               kq->kq_count--;
               kq_check(kq);
       }
       kn->kn_status &= ~KN_ACTIVE;
}

/*
* Set EV_EOF on the specified knote.  Also allows additional
* EV_* flags to be set (e.g. EV_ONESHOT).
*/
void
knote_set_eof(struct knote *kn, uint32_t flags)
{
       struct kqueue *kq = kn->kn_kq;

       mutex_spin_enter(&kq->kq_lock);
       kn->kn_flags |= EV_EOF | flags;
       mutex_spin_exit(&kq->kq_lock);
}

/*
* Clear EV_EOF on the specified knote.
*/
void
knote_clear_eof(struct knote *kn)
{
       struct kqueue *kq = kn->kn_kq;

       mutex_spin_enter(&kq->kq_lock);
       kn->kn_flags &= ~EV_EOF;
       mutex_spin_exit(&kq->kq_lock);
}

/*
* Initialize a klist.
*/
void
klist_init(struct klist *list)
{
       SLIST_INIT(list);
}

/*
* Finalize a klist.
*/
void
klist_fini(struct klist *list)
{
       struct knote *kn;

       /*
        * Neuter all existing knotes on the klist because the list is
        * being destroyed.  The caller has guaranteed that no additional
        * knotes will be added to the list, that the backing object's
        * locks are not held (otherwise there is a locking order issue
        * with acquiring the knote foplock ), and that we can traverse
        * the list safely in this state.
        */
       SLIST_FOREACH(kn, list, kn_selnext) {
               knote_foplock_enter(kn);
               KASSERT(kn->kn_fop != NULL);
               if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
                       kn->kn_fop = &nop_fd_filtops;
               } else {
                       kn->kn_fop = &nop_filtops;
               }
               knote_foplock_exit(kn);
       }
}

/*
* Insert a knote into a klist.
*/
void
klist_insert(struct klist *list, struct knote *kn)
{
       SLIST_INSERT_HEAD(list, kn, kn_selnext);
}

/*
* Remove a knote from a klist.  Returns true if the last
* knote was removed and the list is now empty.
*/
bool
klist_remove(struct klist *list, struct knote *kn)
{
       SLIST_REMOVE(list, kn, knote, kn_selnext);
       return SLIST_EMPTY(list);
}