/*      $NetBSD: kern_entropy.c,v 1.73 2025/03/11 14:30:28 riastradh Exp $      */

/*-
* Copyright (c) 2019 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Taylor R. Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Entropy subsystem
*
*      * Each CPU maintains a per-CPU entropy pool so that gathering
*        entropy requires no interprocessor synchronization, except
*        early at boot when we may be scrambling to gather entropy as
*        soon as possible.
*
*        - entropy_enter gathers entropy and never drops it on the
*          floor, at the cost of sometimes having to do cryptography.
*
*        - entropy_enter_intr gathers entropy or drops it on the
*          floor, with low latency.  Work to stir the pool or kick the
*          housekeeping thread is scheduled in soft interrupts.
*
*      * entropy_enter immediately enters into the global pool if it
*        can transition to full entropy in one swell foop.  Otherwise,
*        it defers to a housekeeping thread that consolidates entropy,
*        but only when the CPUs collectively have full entropy, in
*        order to mitigate iterative-guessing attacks.
*
*      * The entropy housekeeping thread continues to consolidate
*        entropy even after we think we have full entropy, in case we
*        are wrong, but is limited to one discretionary consolidation
*        per minute, and only when new entropy is actually coming in,
*        to limit performance impact.
*
*      * The entropy epoch is the number that changes when we
*        transition from partial entropy to full entropy, so that
*        users can easily determine when to reseed.  This also
*        facilitates an operator explicitly causing everything to
*        reseed by sysctl -w kern.entropy.consolidate=1.
*
*      * Entropy depletion is available for testing (or if you're into
*        that sort of thing), with sysctl -w kern.entropy.depletion=1;
*        the logic to support it is small, to minimize chance of bugs.
*
*      * While cold, a single global entropy pool is available for
*        entering and extracting, serialized through splhigh/splx.
*        The per-CPU entropy pool data structures are initialized in
*        entropy_init and entropy_init_late (separated mainly for
*        hysterical raisins at this point), but are not used until the
*        system is warm, at which point access to the global entropy
*        pool is limited to thread and softint context and serialized
*        by E->lock.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.73 2025/03/11 14:30:28 riastradh Exp $");

#include <sys/param.h>
#include <sys/types.h>
#include <sys/atomic.h>
#include <sys/compat_stub.h>
#include <sys/condvar.h>
#include <sys/cpu.h>
#include <sys/entropy.h>
#include <sys/errno.h>
#include <sys/evcnt.h>
#include <sys/event.h>
#include <sys/file.h>
#include <sys/intr.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/kthread.h>
#include <sys/lwp.h>
#include <sys/module_hook.h>
#include <sys/mutex.h>
#include <sys/percpu.h>
#include <sys/poll.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/reboot.h>
#include <sys/rnd.h>            /* legacy kernel API */
#include <sys/rndio.h>          /* userland ioctl interface */
#include <sys/rndsource.h>      /* kernel rndsource driver API */
#include <sys/select.h>
#include <sys/selinfo.h>
#include <sys/sha1.h>           /* for boot seed checksum */
#include <sys/stdint.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/xcall.h>

#include <lib/libkern/entpool.h>

#include <machine/limits.h>

#ifdef __HAVE_CPU_COUNTER
#include <machine/cpu_counter.h>
#endif

#define MINENTROPYBYTES ENTROPY_CAPACITY
#define MINENTROPYBITS  (MINENTROPYBYTES*NBBY)
#define MINSAMPLES      (2*MINENTROPYBITS)

/*
* struct entropy_cpu
*
*      Per-CPU entropy state.  The pool is allocated separately
*      because percpu(9) sometimes moves per-CPU objects around
*      without zeroing them, which would lead to unwanted copies of
*      sensitive secrets.  The evcnt is allocated separately because
*      evcnt(9) assumes it stays put in memory.
*/
struct entropy_cpu {
       struct entropy_cpu_evcnt {
               struct evcnt            softint;
               struct evcnt            intrdrop;
               struct evcnt            intrtrunc;
       }                       *ec_evcnt;
       struct entpool          *ec_pool;
       unsigned                ec_bitspending;
       unsigned                ec_samplespending;
       bool                    ec_locked;
};

/*
* struct entropy_cpu_lock
*
*      State for locking the per-CPU entropy state.
*/
struct entropy_cpu_lock {
       int             ecl_s;
       long            ecl_pctr;
};

/*
* struct rndsource_cpu
*
*      Per-CPU rndsource state.
*/
struct rndsource_cpu {
       unsigned                rc_entropybits;
       unsigned                rc_timesamples;
       unsigned                rc_datasamples;
       rnd_delta_t             rc_timedelta;
};

/*
* entropy_global (a.k.a. E for short in this file)
*
*      Global entropy state.  Writes protected by the global lock.
*      Some fields, marked (A), can be read outside the lock, and are
*      maintained with atomic_load/store_relaxed.
*/
struct {
       kmutex_t        lock;           /* covers all global state */
       struct entpool  pool;           /* global pool for extraction */
       unsigned        bitsneeded;     /* (A) needed globally */
       unsigned        bitspending;    /* pending in per-CPU pools */
       unsigned        samplesneeded;  /* (A) needed globally */
       unsigned        samplespending; /* pending in per-CPU pools */
       unsigned        timestamp;      /* (A) time of last consolidation */
       unsigned        epoch;          /* (A) changes when needed -> 0 */
       kcondvar_t      cv;             /* notifies state changes */
       struct selinfo  selq;           /* notifies needed -> 0 */
       struct lwp      *sourcelock;    /* lock on list of sources */
       kcondvar_t      sourcelock_cv;  /* notifies sourcelock release */
       LIST_HEAD(,krndsource) sources; /* list of entropy sources */
       bool            consolidate;    /* kick thread to consolidate */
       bool            seed_rndsource; /* true if seed source is attached */
       bool            seeded;         /* true if seed file already loaded */
} entropy_global __cacheline_aligned = {
       /* Fields that must be initialized when the kernel is loaded.  */
       .bitsneeded = MINENTROPYBITS,
       .samplesneeded = MINSAMPLES,
       .epoch = (unsigned)-1,  /* -1 means entropy never consolidated */
       .sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
};

#define E       (&entropy_global)       /* declutter */

/* Read-mostly globals */
static struct percpu    *entropy_percpu __read_mostly; /* struct entropy_cpu */
static void             *entropy_sih __read_mostly; /* softint handler */
static struct lwp       *entropy_lwp __read_mostly; /* housekeeping thread */

static struct krndsource seed_rndsource __read_mostly;

/*
* Event counters
*
*      Must be careful with adding these because they can serve as
*      side channels.
*/
static struct evcnt entropy_discretionary_evcnt =
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
static struct evcnt entropy_immediate_evcnt =
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
static struct evcnt entropy_partial_evcnt =
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
static struct evcnt entropy_consolidate_evcnt =
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
static struct evcnt entropy_extract_fail_evcnt =
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
static struct evcnt entropy_request_evcnt =
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
EVCNT_ATTACH_STATIC(entropy_request_evcnt);
static struct evcnt entropy_deplete_evcnt =
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
static struct evcnt entropy_notify_evcnt =
   EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
EVCNT_ATTACH_STATIC(entropy_notify_evcnt);

/* Sysctl knobs */
static bool     entropy_collection = 1;
static bool     entropy_depletion = 0; /* Silly!  */

static const struct sysctlnode  *entropy_sysctlroot;
static struct sysctllog         *entropy_sysctllog;

/* Forward declarations */
static void     entropy_init_cpu(void *, void *, struct cpu_info *);
static void     entropy_fini_cpu(void *, void *, struct cpu_info *);
static void     entropy_account_cpu(struct entropy_cpu *);
static void     entropy_enter(const void *, size_t, unsigned, bool);
static bool     entropy_enter_intr(const void *, size_t, unsigned, bool);
static void     entropy_softintr(void *);
static void     entropy_thread(void *);
static bool     entropy_pending(void);
static void     entropy_pending_cpu(void *, void *, struct cpu_info *);
static void     entropy_do_consolidate(void);
static void     entropy_consolidate_xc(void *, void *);
static void     entropy_notify(void);
static int      sysctl_entropy_consolidate(SYSCTLFN_ARGS);
static int      sysctl_entropy_gather(SYSCTLFN_ARGS);
static void     filt_entropy_read_detach(struct knote *);
static int      filt_entropy_read_event(struct knote *, long);
static int      entropy_request(size_t, int);
static void     rnd_add_data_internal(struct krndsource *, const void *,
                   uint32_t, uint32_t, bool);
static void     rnd_add_data_1(struct krndsource *, const void *, uint32_t,
                   uint32_t, bool, uint32_t, bool);
static unsigned rndsource_entropybits(struct krndsource *);
static void     rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
static void     rndsource_to_user(struct krndsource *, rndsource_t *);
static void     rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
static void     rndsource_to_user_est_cpu(void *, void *, struct cpu_info *);

/*
* entropy_timer()
*
*      Cycle counter, time counter, or anything that changes a wee bit
*      unpredictably.
*/
static inline uint32_t
entropy_timer(void)
{
       struct bintime bt;
       uint32_t v;

       /* If we have a CPU cycle counter, use the low 32 bits.  */
#ifdef __HAVE_CPU_COUNTER
       if (__predict_true(cpu_hascounter()))
               return cpu_counter32();
#endif  /* __HAVE_CPU_COUNTER */

       /* If we're cold, tough.  Can't binuptime while cold.  */
       if (__predict_false(cold))
               return 0;

       /* Fold the 128 bits of binuptime into 32 bits.  */
       binuptime(&bt);
       v = bt.frac;
       v ^= bt.frac >> 32;
       v ^= bt.sec;
       v ^= bt.sec >> 32;
       return v;
}

static void
attach_seed_rndsource(void)
{

       KASSERT(!cpu_intr_p());
       KASSERT(!cpu_softintr_p());
       KASSERT(cold);

       /*
        * First called no later than entropy_init, while we are still
        * single-threaded, so no need for RUN_ONCE.
        */
       if (E->seed_rndsource)
               return;

       rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
           RND_FLAG_COLLECT_VALUE);
       E->seed_rndsource = true;
}

/*
* entropy_init()
*
*      Initialize the entropy subsystem.  Panic on failure.
*
*      Requires percpu(9) and sysctl(9) to be initialized.  Must run
*      while cold.
*/
static void
entropy_init(void)
{
       uint32_t extra[2];
       struct krndsource *rs;
       unsigned i = 0;

       KASSERT(cold);

       /* Grab some cycle counts early at boot.  */
       extra[i++] = entropy_timer();

       /* Run the entropy pool cryptography self-test.  */
       if (entpool_selftest() == -1)
               panic("entropy pool crypto self-test failed");

       /* Create the sysctl directory.  */
       sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
           CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
           SYSCTL_DESCR("Entropy (random number sources) options"),
           NULL, 0, NULL, 0,
           CTL_KERN, KERN_ENTROPY, CTL_EOL);

       /* Create the sysctl knobs.  */
       /* XXX These shouldn't be writable at securelevel>0.  */
       sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
           CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
           SYSCTL_DESCR("Automatically collect entropy from hardware"),
           NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
       sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
           CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
           SYSCTL_DESCR("`Deplete' entropy pool when observed"),
           NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
       sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
           CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
           SYSCTL_DESCR("Trigger entropy consolidation now"),
           sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
       sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
           CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
           SYSCTL_DESCR("Trigger entropy gathering from sources now"),
           sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
       /* XXX These should maybe not be readable at securelevel>0.  */
       sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
           CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
           "needed",
           SYSCTL_DESCR("Systemwide entropy deficit (bits of entropy)"),
           NULL, 0, &E->bitsneeded, 0, CTL_CREATE, CTL_EOL);
       sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
           CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
           "pending",
           SYSCTL_DESCR("Number of bits of entropy pending on CPUs"),
           NULL, 0, &E->bitspending, 0, CTL_CREATE, CTL_EOL);
       sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
           CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
           "samplesneeded",
           SYSCTL_DESCR("Systemwide entropy deficit (samples)"),
           NULL, 0, &E->samplesneeded, 0, CTL_CREATE, CTL_EOL);
       sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
           CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
           "samplespending",
           SYSCTL_DESCR("Number of samples pending on CPUs"),
           NULL, 0, &E->samplespending, 0, CTL_CREATE, CTL_EOL);
       sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
           CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT,
           "epoch", SYSCTL_DESCR("Entropy epoch"),
           NULL, 0, &E->epoch, 0, KERN_ENTROPY_EPOCH, CTL_EOL);

       /* Initialize the global state for multithreaded operation.  */
       mutex_init(&E->lock, MUTEX_DEFAULT, IPL_SOFTSERIAL);
       cv_init(&E->cv, "entropy");
       selinit(&E->selq);
       cv_init(&E->sourcelock_cv, "entsrclock");

       /* Make sure the seed source is attached.  */
       attach_seed_rndsource();

       /* Note if the bootloader didn't provide a seed.  */
       if (!E->seeded)
               aprint_debug("entropy: no seed from bootloader\n");

       /* Allocate the per-CPU records for all early entropy sources.  */
       LIST_FOREACH(rs, &E->sources, list)
               rs->state = percpu_alloc(sizeof(struct rndsource_cpu));

       /* Allocate and initialize the per-CPU state.  */
       entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
           entropy_init_cpu, entropy_fini_cpu, NULL);

       /* Enter the boot cycle count to get started.  */
       extra[i++] = entropy_timer();
       KASSERT(i == __arraycount(extra));
       entropy_enter(extra, sizeof extra, /*nbits*/0, /*count*/false);
       explicit_memset(extra, 0, sizeof extra);
}

/*
* entropy_init_late()
*
*      Late initialization.  Panic on failure.
*
*      Requires CPUs to have been detected and LWPs to have started.
*      Must run while cold.
*/
static void
entropy_init_late(void)
{
       int error;

       KASSERT(cold);

       /*
        * Establish the softint at the highest softint priority level.
        * Must happen after CPU detection.
        */
       entropy_sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
           &entropy_softintr, NULL);
       if (entropy_sih == NULL)
               panic("unable to establish entropy softint");

       /*
        * Create the entropy housekeeping thread.  Must happen after
        * lwpinit.
        */
       error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
           entropy_thread, NULL, &entropy_lwp, "entbutler");
       if (error)
               panic("unable to create entropy housekeeping thread: %d",
                   error);
}

/*
* entropy_init_cpu(ptr, cookie, ci)
*
*      percpu(9) constructor for per-CPU entropy pool.
*/
static void
entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
{
       struct entropy_cpu *ec = ptr;
       const char *cpuname;

       ec->ec_evcnt = kmem_alloc(sizeof(*ec->ec_evcnt), KM_SLEEP);
       ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
       ec->ec_bitspending = 0;
       ec->ec_samplespending = 0;
       ec->ec_locked = false;

       /* XXX ci_cpuname may not be initialized early enough.  */
       cpuname = ci->ci_cpuname[0] == '\0' ? "cpu0" : ci->ci_cpuname;
       evcnt_attach_dynamic(&ec->ec_evcnt->softint, EVCNT_TYPE_MISC, NULL,
           cpuname, "entropy softint");
       evcnt_attach_dynamic(&ec->ec_evcnt->intrdrop, EVCNT_TYPE_MISC, NULL,
           cpuname, "entropy intrdrop");
       evcnt_attach_dynamic(&ec->ec_evcnt->intrtrunc, EVCNT_TYPE_MISC, NULL,
           cpuname, "entropy intrtrunc");
}

/*
* entropy_fini_cpu(ptr, cookie, ci)
*
*      percpu(9) destructor for per-CPU entropy pool.
*/
static void
entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
{
       struct entropy_cpu *ec = ptr;

       /*
        * Zero any lingering data.  Disclosure of the per-CPU pool
        * shouldn't retroactively affect the security of any keys
        * generated, because entpool(9) erases whatever we have just
        * drawn out of any pool, but better safe than sorry.
        */
       explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));

       evcnt_detach(&ec->ec_evcnt->intrtrunc);
       evcnt_detach(&ec->ec_evcnt->intrdrop);
       evcnt_detach(&ec->ec_evcnt->softint);

       kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
       kmem_free(ec->ec_evcnt, sizeof(*ec->ec_evcnt));
}

/*
* ec = entropy_cpu_get(&lock)
* entropy_cpu_put(&lock, ec)
*
*      Lock and unlock the per-CPU entropy state.  This only prevents
*      access on the same CPU -- by hard interrupts, by soft
*      interrupts, or by other threads.
*
*      Blocks soft interrupts and preemption altogether; doesn't block
*      hard interrupts, but causes samples in hard interrupts to be
*      dropped.
*/
static struct entropy_cpu *
entropy_cpu_get(struct entropy_cpu_lock *lock)
{
       struct entropy_cpu *ec;

       ec = percpu_getref(entropy_percpu);
       lock->ecl_s = splsoftserial();
       KASSERT(!ec->ec_locked);
       ec->ec_locked = true;
       lock->ecl_pctr = lwp_pctr();
       __insn_barrier();

       return ec;
}

static void
entropy_cpu_put(struct entropy_cpu_lock *lock, struct entropy_cpu *ec)
{

       KASSERT(ec == percpu_getptr_remote(entropy_percpu, curcpu()));
       KASSERT(ec->ec_locked);

       __insn_barrier();
       KASSERT(lock->ecl_pctr == lwp_pctr());
       ec->ec_locked = false;
       splx(lock->ecl_s);
       percpu_putref(entropy_percpu);
}

/*
* entropy_seed(seed)
*
*      Seed the entropy pool with seed.  Meant to be called as early
*      as possible by the bootloader; may be called before or after
*      entropy_init.  Must be called before system reaches userland.
*      Must be called in thread or soft interrupt context, not in hard
*      interrupt context.  Must be called at most once.
*
*      Overwrites the seed in place.  Caller may then free the memory.
*/
static void
entropy_seed(rndsave_t *seed)
{
       SHA1_CTX ctx;
       uint8_t digest[SHA1_DIGEST_LENGTH];
       bool seeded;

       KASSERT(!cpu_intr_p());
       KASSERT(!cpu_softintr_p());
       KASSERT(cold);

       /*
        * Verify the checksum.  If the checksum fails, take the data
        * but ignore the entropy estimate -- the file may have been
        * incompletely written with garbage, which is harmless to add
        * but may not be as unpredictable as alleged.
        */
       SHA1Init(&ctx);
       SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
       SHA1Update(&ctx, seed->data, sizeof(seed->data));
       SHA1Final(digest, &ctx);
       CTASSERT(sizeof(seed->digest) == sizeof(digest));
       if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
               printf("entropy: invalid seed checksum\n");
               seed->entropy = 0;
       }
       explicit_memset(&ctx, 0, sizeof ctx);
       explicit_memset(digest, 0, sizeof digest);

       /*
        * If the entropy is insensibly large, try byte-swapping.
        * Otherwise assume the file is corrupted and act as though it
        * has zero entropy.
        */
       if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
               seed->entropy = bswap32(seed->entropy);
               if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
                       seed->entropy = 0;
       }

       /* Make sure the seed source is attached.  */
       attach_seed_rndsource();

       /* Test and set E->seeded.  */
       seeded = E->seeded;
       E->seeded = (seed->entropy > 0);

       /*
        * If we've been seeded, may be re-entering the same seed
        * (e.g., bootloader vs module init, or something).  No harm in
        * entering it twice, but it contributes no additional entropy.
        */
       if (seeded) {
               printf("entropy: double-seeded by bootloader\n");
               seed->entropy = 0;
       } else {
               printf("entropy: entering seed from bootloader"
                   " with %u bits of entropy\n", (unsigned)seed->entropy);
       }

       /* Enter it into the pool and promptly zero it.  */
       rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
           seed->entropy);
       explicit_memset(seed, 0, sizeof(*seed));
}

/*
* entropy_bootrequest()
*
*      Request entropy from all sources at boot, once config is
*      complete and interrupts are running but we are still cold.
*/
void
entropy_bootrequest(void)
{
       int error;

       KASSERT(!cpu_intr_p());
       KASSERT(!cpu_softintr_p());
       KASSERT(cold);

       /*
        * Request enough to satisfy the maximum entropy shortage.
        * This is harmless overkill if the bootloader provided a seed.
        */
       error = entropy_request(MINENTROPYBYTES, ENTROPY_WAIT);
       KASSERTMSG(error == 0, "error=%d", error);
}

/*
* entropy_epoch()
*
*      Returns the current entropy epoch.  If this changes, you should
*      reseed.  If -1, means system entropy has not yet reached full
*      entropy or been explicitly consolidated; never reverts back to
*      -1.  Never zero, so you can always use zero as an uninitialized
*      sentinel value meaning `reseed ASAP'.
*
*      Usage model:
*
*              struct foo {
*                      struct crypto_prng prng;
*                      unsigned epoch;
*              } *foo;
*
*              unsigned epoch = entropy_epoch();
*              if (__predict_false(epoch != foo->epoch)) {
*                      uint8_t seed[32];
*                      if (entropy_extract(seed, sizeof seed, 0) != 0)
*                              warn("no entropy");
*                      crypto_prng_reseed(&foo->prng, seed, sizeof seed);
*                      foo->epoch = epoch;
*              }
*/
unsigned
entropy_epoch(void)
{

       /*
        * Unsigned int, so no need for seqlock for an atomic read, but
        * make sure we read it afresh each time.
        */
       return atomic_load_relaxed(&E->epoch);
}

/*
* entropy_ready()
*
*      True if the entropy pool has full entropy.
*/
bool
entropy_ready(void)
{

       return atomic_load_relaxed(&E->bitsneeded) == 0;
}

/*
* entropy_account_cpu(ec)
*
*      Consider whether to consolidate entropy into the global pool
*      after we just added some into the current CPU's pending pool.
*
*      - If this CPU can provide enough entropy now, do so.
*
*      - If this and whatever else is available on other CPUs can
*        provide enough entropy, kick the consolidation thread.
*
*      - Otherwise, do as little as possible, except maybe consolidate
*        entropy at most once a minute.
*
*      Caller must be bound to a CPU and therefore have exclusive
*      access to ec.  Will acquire and release the global lock.
*/
static void
entropy_account_cpu(struct entropy_cpu *ec)
{
       struct entropy_cpu_lock lock;
       struct entropy_cpu *ec0;
       unsigned bitsdiff, samplesdiff;

       KASSERT(!cpu_intr_p());
       KASSERT(!cold);
       KASSERT(curlwp->l_pflag & LP_BOUND);

       /*
        * If there's no entropy needed, and entropy has been
        * consolidated in the last minute, do nothing.
        */
       if (__predict_true(atomic_load_relaxed(&E->bitsneeded) == 0) &&
           __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
           __predict_true((time_uptime - E->timestamp) <= 60))
               return;

       /*
        * Consider consolidation, under the global lock and with the
        * per-CPU state locked.
        */
       mutex_enter(&E->lock);
       ec0 = entropy_cpu_get(&lock);
       KASSERT(ec0 == ec);

       if (ec->ec_bitspending == 0 && ec->ec_samplespending == 0) {
               /* Raced with consolidation xcall.  Nothing to do.  */
       } else if (E->bitsneeded != 0 && E->bitsneeded <= ec->ec_bitspending) {
               /*
                * If we have not yet attained full entropy but we can
                * now, do so.  This way we disseminate entropy
                * promptly when it becomes available early at boot;
                * otherwise we leave it to the entropy consolidation
                * thread, which is rate-limited to mitigate side
                * channels and abuse.
                */
               uint8_t buf[ENTPOOL_CAPACITY];

               /* Transfer from the local pool to the global pool.  */
               entpool_extract(ec->ec_pool, buf, sizeof buf);
               entpool_enter(&E->pool, buf, sizeof buf);
               atomic_store_relaxed(&ec->ec_bitspending, 0);
               atomic_store_relaxed(&ec->ec_samplespending, 0);
               atomic_store_relaxed(&E->bitsneeded, 0);
               atomic_store_relaxed(&E->samplesneeded, 0);

               /* Notify waiters that we now have full entropy.  */
               entropy_notify();
               entropy_immediate_evcnt.ev_count++;
       } else {
               /* Determine how much we can add to the global pool.  */
               KASSERTMSG(E->bitspending <= MINENTROPYBITS,
                   "E->bitspending=%u", E->bitspending);
               bitsdiff = MIN(ec->ec_bitspending,
                   MINENTROPYBITS - E->bitspending);
               KASSERTMSG(E->samplespending <= MINSAMPLES,
                   "E->samplespending=%u", E->samplespending);
               samplesdiff = MIN(ec->ec_samplespending,
                   MINSAMPLES - E->samplespending);

               /*
                * This should make a difference unless we are already
                * saturated.
                */
               KASSERTMSG((bitsdiff || samplesdiff ||
                       E->bitspending == MINENTROPYBITS ||
                       E->samplespending == MINSAMPLES),
                   "bitsdiff=%u E->bitspending=%u ec->ec_bitspending=%u"
                   "samplesdiff=%u E->samplespending=%u"
                   " ec->ec_samplespending=%u"
                   " minentropybits=%u minsamples=%u",
                   bitsdiff, E->bitspending, ec->ec_bitspending,
                   samplesdiff, E->samplespending, ec->ec_samplespending,
                   (unsigned)MINENTROPYBITS, (unsigned)MINSAMPLES);

               /* Add to the global, subtract from the local.  */
               E->bitspending += bitsdiff;
               KASSERTMSG(E->bitspending <= MINENTROPYBITS,
                   "E->bitspending=%u", E->bitspending);
               atomic_store_relaxed(&ec->ec_bitspending,
                   ec->ec_bitspending - bitsdiff);

               E->samplespending += samplesdiff;
               KASSERTMSG(E->samplespending <= MINSAMPLES,
                   "E->samplespending=%u", E->samplespending);
               atomic_store_relaxed(&ec->ec_samplespending,
                   ec->ec_samplespending - samplesdiff);

               /* One or the other must have gone up from zero.  */
               KASSERT(E->bitspending || E->samplespending);

               if (E->bitsneeded <= E->bitspending ||
                   E->samplesneeded <= E->samplespending) {
                       /*
                        * Enough bits or at least samples between all
                        * the per-CPU pools.  Leave a note for the
                        * housekeeping thread to consolidate entropy
                        * next time it wakes up -- and wake it up if
                        * this is the first time, to speed things up.
                        *
                        * If we don't need any entropy, this doesn't
                        * mean much, but it is the only time we ever
                        * gather additional entropy in case the
                        * accounting has been overly optimistic.  This
                        * happens at most once a minute, so there's
                        * negligible performance cost.
                        */
                       E->consolidate = true;
                       if (E->epoch == (unsigned)-1)
                               cv_broadcast(&E->cv);
                       if (E->bitsneeded == 0)
                               entropy_discretionary_evcnt.ev_count++;
               } else {
                       /* Can't get full entropy.  Keep gathering.  */
                       entropy_partial_evcnt.ev_count++;
               }
       }

       entropy_cpu_put(&lock, ec);
       mutex_exit(&E->lock);
}

/*
* entropy_enter_early(buf, len, nbits)
*
*      Do entropy bookkeeping globally, before we have established
*      per-CPU pools.  Enter directly into the global pool in the hope
*      that we enter enough before the first entropy_extract to thwart
*      iterative-guessing attacks; entropy_extract will warn if not.
*/
static void
entropy_enter_early(const void *buf, size_t len, unsigned nbits)
{
       bool notify = false;
       int s;

       KASSERT(cold);

       /*
        * We're early at boot before multithreading and multi-CPU
        * operation, and we don't have softints yet to defer
        * processing from interrupt context, so we have to enter the
        * samples directly into the global pool.  But interrupts may
        * be enabled, and we enter this path from interrupt context,
        * so block interrupts until we're done.
        */
       s = splhigh();

       /* Enter it into the pool.  */
       entpool_enter(&E->pool, buf, len);

       /*
        * Decide whether to notify reseed -- we will do so if either:
        * (a) we transition from partial entropy to full entropy, or
        * (b) we get a batch of full entropy all at once.
        * We don't count timing samples because we assume, while cold,
        * there's not likely to be much jitter yet.
        */
       notify |= (E->bitsneeded && E->bitsneeded <= nbits);
       notify |= (nbits >= MINENTROPYBITS);

       /*
        * Subtract from the needed count and notify if appropriate.
        * We don't count samples here because entropy_timer might
        * still be returning zero at this point if there's no CPU
        * cycle counter.
        */
       E->bitsneeded -= MIN(E->bitsneeded, nbits);
       if (notify) {
               entropy_notify();
               entropy_immediate_evcnt.ev_count++;
       }

       splx(s);
}

/*
* entropy_enter(buf, len, nbits, count)
*
*      Enter len bytes of data from buf into the system's entropy
*      pool, stirring as necessary when the internal buffer fills up.
*      nbits is a lower bound on the number of bits of entropy in the
*      process that led to this sample.
*/
static void
entropy_enter(const void *buf, size_t len, unsigned nbits, bool count)
{
       struct entropy_cpu_lock lock;
       struct entropy_cpu *ec;
       unsigned bitspending, samplespending;
       int bound;

       KASSERTMSG(!cpu_intr_p(),
           "use entropy_enter_intr from interrupt context");
       KASSERTMSG(howmany(nbits, NBBY) <= len,
           "impossible entropy rate: %u bits in %zu-byte string", nbits, len);

       /*
        * If we're still cold, just use entropy_enter_early to put
        * samples directly into the global pool.
        */
       if (__predict_false(cold)) {
               entropy_enter_early(buf, len, nbits);
               return;
       }

       /*
        * Bind ourselves to the current CPU so we don't switch CPUs
        * between entering data into the current CPU's pool (and
        * updating the pending count) and transferring it to the
        * global pool in entropy_account_cpu.
        */
       bound = curlwp_bind();

       /*
        * With the per-CPU state locked, enter into the per-CPU pool
        * and count up what we can add.
        *
        * We don't count samples while cold because entropy_timer
        * might still be returning zero if there's no CPU cycle
        * counter.
        */
       ec = entropy_cpu_get(&lock);
       entpool_enter(ec->ec_pool, buf, len);
       bitspending = ec->ec_bitspending;
       bitspending += MIN(MINENTROPYBITS - bitspending, nbits);
       atomic_store_relaxed(&ec->ec_bitspending, bitspending);
       samplespending = ec->ec_samplespending;
       if (__predict_true(count)) {
               samplespending += MIN(MINSAMPLES - samplespending, 1);
               atomic_store_relaxed(&ec->ec_samplespending, samplespending);
       }
       entropy_cpu_put(&lock, ec);

       /* Consolidate globally if appropriate based on what we added.  */
       if (bitspending > 0 || samplespending >= MINSAMPLES)
               entropy_account_cpu(ec);

       curlwp_bindx(bound);
}

/*
* entropy_enter_intr(buf, len, nbits, count)
*
*      Enter up to len bytes of data from buf into the system's
*      entropy pool without stirring.  nbits is a lower bound on the
*      number of bits of entropy in the process that led to this
*      sample.  If the sample could be entered completely, assume
*      nbits of entropy pending; otherwise assume none, since we don't
*      know whether some parts of the sample are constant, for
*      instance.  Schedule a softint to stir the entropy pool if
*      needed.  Return true if used fully, false if truncated at all.
*
*      Using this in thread or softint context with no spin locks held
*      will work, but you might as well use entropy_enter in that
*      case.
*/
static bool
entropy_enter_intr(const void *buf, size_t len, unsigned nbits, bool count)
{
       struct entropy_cpu *ec;
       bool fullyused = false;
       uint32_t bitspending, samplespending;
       int s;

       KASSERTMSG(howmany(nbits, NBBY) <= len,
           "impossible entropy rate: %u bits in %zu-byte string", nbits, len);

       /*
        * If we're still cold, just use entropy_enter_early to put
        * samples directly into the global pool.
        */
       if (__predict_false(cold)) {
               entropy_enter_early(buf, len, nbits);
               return true;
       }

       /*
        * In case we were called in thread or interrupt context with
        * interrupts unblocked, block soft interrupts up to
        * IPL_SOFTSERIAL.  This way logic that is safe in interrupt
        * context or under a spin lock is also safe in less
        * restrictive contexts.
        */
       s = splsoftserial();

       /*
        * Acquire the per-CPU state.  If someone is in the middle of
        * using it, drop the sample.  Otherwise, take the lock so that
        * higher-priority interrupts will drop their samples.
        */
       ec = percpu_getref(entropy_percpu);
       if (ec->ec_locked) {
               ec->ec_evcnt->intrdrop.ev_count++;
               goto out0;
       }
       ec->ec_locked = true;
       __insn_barrier();

       /*
        * Enter as much as we can into the per-CPU pool.  If it was
        * truncated, schedule a softint to stir the pool and stop.
        */
       if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
               if (__predict_true(!cold))
                       softint_schedule(entropy_sih);
               ec->ec_evcnt->intrtrunc.ev_count++;
               goto out1;
       }
       fullyused = true;

       /*
        * Count up what we can contribute.
        *
        * We don't count samples while cold because entropy_timer
        * might still be returning zero if there's no CPU cycle
        * counter.
        */
       bitspending = ec->ec_bitspending;
       bitspending += MIN(MINENTROPYBITS - bitspending, nbits);
       atomic_store_relaxed(&ec->ec_bitspending, bitspending);
       if (__predict_true(count)) {
               samplespending = ec->ec_samplespending;
               samplespending += MIN(MINSAMPLES - samplespending, 1);
               atomic_store_relaxed(&ec->ec_samplespending, samplespending);
       }

       /* Schedule a softint if we added anything and it matters.  */
       if (__predict_false(atomic_load_relaxed(&E->bitsneeded) ||
               atomic_load_relaxed(&entropy_depletion)) &&
           (nbits != 0 || count) &&
           __predict_true(!cold))
               softint_schedule(entropy_sih);

out1:   /* Release the per-CPU state.  */
       KASSERT(ec->ec_locked);
       __insn_barrier();
       ec->ec_locked = false;
out0:   percpu_putref(entropy_percpu);
       splx(s);

       return fullyused;
}

/*
* entropy_softintr(cookie)
*
*      Soft interrupt handler for entering entropy.  Takes care of
*      stirring the local CPU's entropy pool if it filled up during
*      hard interrupts, and promptly crediting entropy from the local
*      CPU's entropy pool to the global entropy pool if needed.
*/
static void
entropy_softintr(void *cookie)
{
       struct entropy_cpu_lock lock;
       struct entropy_cpu *ec;
       unsigned bitspending, samplespending;

       /*
        * With the per-CPU state locked, stir the pool if necessary
        * and determine if there's any pending entropy on this CPU to
        * account globally.
        */
       ec = entropy_cpu_get(&lock);
       ec->ec_evcnt->softint.ev_count++;
       entpool_stir(ec->ec_pool);
       bitspending = ec->ec_bitspending;
       samplespending = ec->ec_samplespending;
       entropy_cpu_put(&lock, ec);

       /* Consolidate globally if appropriate based on what we added.  */
       if (bitspending > 0 || samplespending >= MINSAMPLES)
               entropy_account_cpu(ec);
}

/*
* entropy_thread(cookie)
*
*      Handle any asynchronous entropy housekeeping.
*/
static void
entropy_thread(void *cookie)
{
       bool consolidate;

#ifndef _RUMPKERNEL             /* XXX rump starts threads before cold */
       KASSERT(!cold);
#endif

       for (;;) {
               /*
                * Wait until there's full entropy somewhere among the
                * CPUs, as confirmed at most once per minute, or
                * someone wants to consolidate.
                */
               if (entropy_pending()) {
                       consolidate = true;
               } else {
                       mutex_enter(&E->lock);
                       if (!E->consolidate)
                               cv_timedwait(&E->cv, &E->lock, 60*hz);
                       consolidate = E->consolidate;
                       E->consolidate = false;
                       mutex_exit(&E->lock);
               }

               if (consolidate) {
                       /* Do it.  */
                       entropy_do_consolidate();

                       /* Mitigate abuse.  */
                       kpause("entropy", false, hz, NULL);
               }
       }
}

struct entropy_pending_count {
       uint32_t bitspending;
       uint32_t samplespending;
};

/*
* entropy_pending()
*
*      True if enough bits or samples are pending on other CPUs to
*      warrant consolidation.
*/
static bool
entropy_pending(void)
{
       struct entropy_pending_count count = { 0, 0 }, *C = &count;

       percpu_foreach(entropy_percpu, &entropy_pending_cpu, C);
       return C->bitspending >= MINENTROPYBITS ||
           C->samplespending >= MINSAMPLES;
}

static void
entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
{
       struct entropy_cpu *ec = ptr;
       struct entropy_pending_count *C = cookie;
       uint32_t cpu_bitspending;
       uint32_t cpu_samplespending;

       cpu_bitspending = atomic_load_relaxed(&ec->ec_bitspending);
       cpu_samplespending = atomic_load_relaxed(&ec->ec_samplespending);
       C->bitspending += MIN(MINENTROPYBITS - C->bitspending,
           cpu_bitspending);
       C->samplespending += MIN(MINSAMPLES - C->samplespending,
           cpu_samplespending);
}

/*
* entropy_do_consolidate()
*
*      Issue a cross-call to gather entropy on all CPUs and advance
*      the entropy epoch.
*/
static void
entropy_do_consolidate(void)
{
       static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
       static struct timeval lasttime; /* serialized by E->lock */
       struct entpool pool;
       uint8_t buf[ENTPOOL_CAPACITY];
       unsigned bitsdiff, samplesdiff;
       uint64_t ticket;

       KASSERT(!cold);
       ASSERT_SLEEPABLE();

       /* Gather entropy on all CPUs into a temporary pool.  */
       memset(&pool, 0, sizeof pool);
       ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
       xc_wait(ticket);

       /* Acquire the lock to notify waiters.  */
       mutex_enter(&E->lock);

       /* Count another consolidation.  */
       entropy_consolidate_evcnt.ev_count++;

       /* Note when we last consolidated, i.e. now.  */
       E->timestamp = time_uptime;

       /* Mix what we gathered into the global pool.  */
       entpool_extract(&pool, buf, sizeof buf);
       entpool_enter(&E->pool, buf, sizeof buf);
       explicit_memset(&pool, 0, sizeof pool);

       /* Count the entropy that was gathered.  */
       bitsdiff = MIN(E->bitsneeded, E->bitspending);
       atomic_store_relaxed(&E->bitsneeded, E->bitsneeded - bitsdiff);
       E->bitspending -= bitsdiff;
       if (__predict_false(E->bitsneeded > 0) && bitsdiff != 0) {
               if ((boothowto & AB_DEBUG) != 0 &&
                   ratecheck(&lasttime, &interval)) {
                       printf("WARNING:"
                           " consolidating less than full entropy\n");
               }
       }

       samplesdiff = MIN(E->samplesneeded, E->samplespending);
       atomic_store_relaxed(&E->samplesneeded,
           E->samplesneeded - samplesdiff);
       E->samplespending -= samplesdiff;

       /* Advance the epoch and notify waiters.  */
       entropy_notify();

       /* Release the lock.  */
       mutex_exit(&E->lock);
}

/*
* entropy_consolidate_xc(vpool, arg2)
*
*      Extract output from the local CPU's input pool and enter it
*      into a temporary pool passed as vpool.
*/
static void
entropy_consolidate_xc(void *vpool, void *arg2 __unused)
{
       struct entpool *pool = vpool;
       struct entropy_cpu_lock lock;
       struct entropy_cpu *ec;
       uint8_t buf[ENTPOOL_CAPACITY];
       uint32_t extra[7];
       unsigned i = 0;

       /* Grab CPU number and cycle counter to mix extra into the pool.  */
       extra[i++] = cpu_number();
       extra[i++] = entropy_timer();

       /*
        * With the per-CPU state locked, extract from the per-CPU pool
        * and count it as no longer pending.
        */
       ec = entropy_cpu_get(&lock);
       extra[i++] = entropy_timer();
       entpool_extract(ec->ec_pool, buf, sizeof buf);
       atomic_store_relaxed(&ec->ec_bitspending, 0);
       atomic_store_relaxed(&ec->ec_samplespending, 0);
       extra[i++] = entropy_timer();
       entropy_cpu_put(&lock, ec);
       extra[i++] = entropy_timer();

       /*
        * Copy over statistics, and enter the per-CPU extract and the
        * extra timing into the temporary pool, under the global lock.
        */
       mutex_enter(&E->lock);
       extra[i++] = entropy_timer();
       entpool_enter(pool, buf, sizeof buf);
       explicit_memset(buf, 0, sizeof buf);
       extra[i++] = entropy_timer();
       KASSERT(i == __arraycount(extra));
       entpool_enter(pool, extra, sizeof extra);
       explicit_memset(extra, 0, sizeof extra);
       mutex_exit(&E->lock);
}

/*
* entropy_notify()
*
*      Caller just contributed entropy to the global pool.  Advance
*      the entropy epoch and notify waiters.
*
*      Caller must hold the global entropy lock.
*/
static void
entropy_notify(void)
{
       static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
       static struct timeval lasttime; /* serialized by E->lock */
       static bool ready = false, besteffort = false;
       unsigned epoch;

       KASSERT(__predict_false(cold) || mutex_owned(&E->lock));

       /*
        * If this is the first time, print a message to the console
        * that we're ready so operators can compare it to the timing
        * of other events.
        *
        * If we didn't get full entropy from reliable sources, report
        * instead that we are running on fumes with best effort.  (If
        * we ever do get full entropy after that, print the ready
        * message once.)
        */
       if (__predict_false(!ready)) {
               if (E->bitsneeded == 0) {
                       printf("entropy: ready\n");
                       ready = true;
               } else if (E->samplesneeded == 0 && !besteffort) {
                       printf("entropy: best effort\n");
                       besteffort = true;
               }
       }

       /* Set the epoch; roll over from UINTMAX-1 to 1.  */
       if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
           ratecheck(&lasttime, &interval)) {
               epoch = E->epoch + 1;
               if (epoch == 0 || epoch == (unsigned)-1)
                       epoch = 1;
               atomic_store_relaxed(&E->epoch, epoch);
       }
       KASSERT(E->epoch != (unsigned)-1);

       /* Notify waiters.  */
       if (__predict_true(!cold)) {
               cv_broadcast(&E->cv);
               selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
       }

       /* Count another notification.  */
       entropy_notify_evcnt.ev_count++;
}

/*
* entropy_consolidate()
*
*      Trigger entropy consolidation and wait for it to complete, or
*      return EINTR if interrupted by a signal.
*
*      This should be used sparingly, not periodically -- requiring
*      conscious intervention by the operator or a clear policy
*      decision.  Otherwise, the kernel will automatically consolidate
*      when enough entropy has been gathered into per-CPU pools to
*      transition to full entropy.
*/
int
entropy_consolidate(void)
{
       uint64_t ticket;
       int error;

       KASSERT(!cold);
       ASSERT_SLEEPABLE();

       mutex_enter(&E->lock);
       ticket = entropy_consolidate_evcnt.ev_count;
       E->consolidate = true;
       cv_broadcast(&E->cv);
       while (ticket == entropy_consolidate_evcnt.ev_count) {
               error = cv_wait_sig(&E->cv, &E->lock);
               if (error)
                       break;
       }
       mutex_exit(&E->lock);

       return error;
}

/*
* sysctl -w kern.entropy.consolidate=1
*
*      Trigger entropy consolidation and wait for it to complete.
*      Writable only by superuser.  This, writing to /dev/random, and
*      ioctl(RNDADDDATA) are the only ways for the system to
*      consolidate entropy if the operator knows something the kernel
*      doesn't about how unpredictable the pending entropy pools are.
*/
static int
sysctl_entropy_consolidate(SYSCTLFN_ARGS)
{
       struct sysctlnode node = *rnode;
       int arg = 0;
       int error;

       node.sysctl_data = &arg;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;
       if (arg)
               error = entropy_consolidate();

       return error;
}

/*
* entropy_gather()
*
*      Trigger gathering entropy from all on-demand sources, and, if
*      requested, wait for synchronous sources (but not asynchronous
*      sources) to complete, or fail with EINTR if interrupted by a
*      signal.
*/
int
entropy_gather(void)
{
       int error;

       mutex_enter(&E->lock);
       error = entropy_request(ENTROPY_CAPACITY, ENTROPY_WAIT|ENTROPY_SIG);
       mutex_exit(&E->lock);

       return error;
}

/*
* sysctl -w kern.entropy.gather=1
*
*      Trigger gathering entropy from all on-demand sources, and wait
*      for synchronous sources (but not asynchronous sources) to
*      complete.  Writable only by superuser.
*/
static int
sysctl_entropy_gather(SYSCTLFN_ARGS)
{
       struct sysctlnode node = *rnode;
       int arg = 0;
       int error;

       node.sysctl_data = &arg;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;
       if (arg)
               error = entropy_gather();

       return error;
}

/*
* entropy_extract(buf, len, flags)
*
*      Extract len bytes from the global entropy pool into buf.
*
*      Caller MUST NOT expose these bytes directly -- must use them
*      ONLY to seed a cryptographic pseudorandom number generator
*      (`CPRNG'), a.k.a. deterministic random bit generator (`DRBG'),
*      and then erase them.  entropy_extract does not, on its own,
*      provide backtracking resistance -- it must be combined with a
*      PRNG/DRBG that does.
*
*      This may be used very early at boot, before even entropy_init
*      has been called.
*
*      You generally shouldn't use this directly -- use cprng(9)
*      instead.
*
*      Flags may have:
*
*              ENTROPY_WAIT    Wait for entropy if not available yet.
*              ENTROPY_SIG     Allow interruption by a signal during wait.
*              ENTROPY_HARDFAIL Either fill the buffer with full entropy,
*                              or fail without filling it at all.
*
*      Return zero on success, or error on failure:
*
*              EWOULDBLOCK     No entropy and ENTROPY_WAIT not set.
*              EINTR/ERESTART  No entropy, ENTROPY_SIG set, and interrupted.
*
*      If ENTROPY_WAIT is set, allowed only in thread context.  If
*      ENTROPY_WAIT is not set, allowed also in softint context -- may
*      sleep on an adaptive lock up to IPL_SOFTSERIAL.  Forbidden in
*      hard interrupt context.
*/
int
entropy_extract(void *buf, size_t len, int flags)
{
       static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
       static struct timeval lasttime; /* serialized by E->lock */
       bool printed = false;
       int s = -1/*XXXGCC*/, error;

       if (ISSET(flags, ENTROPY_WAIT)) {
               ASSERT_SLEEPABLE();
               KASSERT(!cold);
       }

       /* Refuse to operate in interrupt context.  */
       KASSERT(!cpu_intr_p());

       /*
        * If we're cold, we are only contending with interrupts on the
        * current CPU, so block them.  Otherwise, we are _not_
        * contending with interrupts on the current CPU, but we are
        * contending with other threads, to exclude them with a mutex.
        */
       if (__predict_false(cold))
               s = splhigh();
       else
               mutex_enter(&E->lock);

       /* Wait until there is enough entropy in the system.  */
       error = 0;
       if (E->bitsneeded > 0 && E->samplesneeded == 0) {
               /*
                * We don't have full entropy from reliable sources,
                * but we gathered a plausible number of samples from
                * other sources such as timers.  Try asking for more
                * from any sources we can, but don't worry if it
                * fails -- best effort.
                */
               (void)entropy_request(ENTROPY_CAPACITY, flags);
       } else while (E->bitsneeded > 0 && E->samplesneeded > 0) {
               /* Ask for more, synchronously if possible.  */
               error = entropy_request(len, flags);
               if (error)
                       break;

               /* If we got enough, we're done.  */
               if (E->bitsneeded == 0 || E->samplesneeded == 0) {
                       KASSERT(error == 0);
                       break;
               }

               /* If not waiting, stop here.  */
               if (!ISSET(flags, ENTROPY_WAIT)) {
                       error = EWOULDBLOCK;
                       break;
               }

               /* Wait for some entropy to come in and try again.  */
               KASSERT(!cold);
               if (!printed) {
                       printf("entropy: pid %d (%s) waiting for entropy(7)\n",
                           curproc->p_pid, curproc->p_comm);
                       printed = true;
               }

               if (ISSET(flags, ENTROPY_SIG)) {
                       error = cv_timedwait_sig(&E->cv, &E->lock, hz);
                       if (error && error != EWOULDBLOCK)
                               break;
               } else {
                       cv_timedwait(&E->cv, &E->lock, hz);
               }
       }

       /*
        * Count failure -- but fill the buffer nevertheless, unless
        * the caller specified ENTROPY_HARDFAIL.
        */
       if (error) {
               if (ISSET(flags, ENTROPY_HARDFAIL))
                       goto out;
               entropy_extract_fail_evcnt.ev_count++;
       }

       /*
        * Report a warning if we haven't yet reached full entropy.
        * This is the only case where we consider entropy to be
        * `depleted' without kern.entropy.depletion enabled -- when we
        * only have partial entropy, an adversary may be able to
        * narrow the state of the pool down to a small number of
        * possibilities; the output then enables them to confirm a
        * guess, reducing its entropy from the adversary's perspective
        * to zero.
        *
        * This should only happen if the operator has chosen to
        * consolidate, either through sysctl kern.entropy.consolidate
        * or by writing less than full entropy to /dev/random as root
        * (which /dev/random promises will immediately affect
        * subsequent output, for better or worse).
        */
       if (E->bitsneeded > 0 && E->samplesneeded > 0) {
               if (__predict_false(E->epoch == (unsigned)-1) &&
                   ratecheck(&lasttime, &interval)) {
                       printf("WARNING:"
                           " system needs entropy for security;"
                           " see entropy(7)\n");
               }
               atomic_store_relaxed(&E->bitsneeded, MINENTROPYBITS);
               atomic_store_relaxed(&E->samplesneeded, MINSAMPLES);
       }

       /* Extract data from the pool, and `deplete' if we're doing that.  */
       entpool_extract(&E->pool, buf, len);
       if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
           error == 0) {
               unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
               unsigned bitsneeded = E->bitsneeded;
               unsigned samplesneeded = E->samplesneeded;

               bitsneeded += MIN(MINENTROPYBITS - bitsneeded, cost);
               samplesneeded += MIN(MINSAMPLES - samplesneeded, cost);

               atomic_store_relaxed(&E->bitsneeded, bitsneeded);
               atomic_store_relaxed(&E->samplesneeded, samplesneeded);
               entropy_deplete_evcnt.ev_count++;
       }

out:    /* Release the global lock and return the error.  */
       if (__predict_false(cold))
               splx(s);
       else
               mutex_exit(&E->lock);
       return error;
}

/*
* entropy_poll(events)
*
*      Return the subset of events ready, and if it is not all of
*      events, record curlwp as waiting for entropy.
*/
int
entropy_poll(int events)
{
       int revents = 0;

       KASSERT(!cold);

       /* Always ready for writing.  */
       revents |= events & (POLLOUT|POLLWRNORM);

       /* Narrow it down to reads.  */
       events &= POLLIN|POLLRDNORM;
       if (events == 0)
               return revents;

       /*
        * If we have reached full entropy and we're not depleting
        * entropy, we are forever ready.
        */
       if (__predict_true(atomic_load_relaxed(&E->bitsneeded) == 0 ||
               atomic_load_relaxed(&E->samplesneeded) == 0) &&
           __predict_true(!atomic_load_relaxed(&entropy_depletion)))
               return revents | events;

       /*
        * Otherwise, check whether we need entropy under the lock.  If
        * we don't, we're ready; if we do, add ourselves to the queue.
        */
       mutex_enter(&E->lock);
       if (E->bitsneeded == 0 || E->samplesneeded == 0)
               revents |= events;
       else
               selrecord(curlwp, &E->selq);
       mutex_exit(&E->lock);

       return revents;
}

/*
* filt_entropy_read_detach(kn)
*
*      struct filterops::f_detach callback for entropy read events:
*      remove kn from the list of waiters.
*/
static void
filt_entropy_read_detach(struct knote *kn)
{

       KASSERT(!cold);

       mutex_enter(&E->lock);
       selremove_knote(&E->selq, kn);
       mutex_exit(&E->lock);
}

/*
* filt_entropy_read_event(kn, hint)
*
*      struct filterops::f_event callback for entropy read events:
*      poll for entropy.  Caller must hold the global entropy lock if
*      hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
*/
static int
filt_entropy_read_event(struct knote *kn, long hint)
{
       int ret;

       KASSERT(!cold);

       /* Acquire the lock, if caller is outside entropy subsystem.  */
       if (hint == NOTE_SUBMIT)
               KASSERT(mutex_owned(&E->lock));
       else
               mutex_enter(&E->lock);

       /*
        * If we still need entropy, can't read anything; if not, can
        * read arbitrarily much.
        */
       if (E->bitsneeded != 0 && E->samplesneeded != 0) {
               ret = 0;
       } else {
               if (atomic_load_relaxed(&entropy_depletion))
                       kn->kn_data = ENTROPY_CAPACITY; /* bytes */
               else
                       kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
               ret = 1;
       }

       /* Release the lock, if caller is outside entropy subsystem.  */
       if (hint == NOTE_SUBMIT)
               KASSERT(mutex_owned(&E->lock));
       else
               mutex_exit(&E->lock);

       return ret;
}

/* XXX Makes sense only for /dev/u?random.  */
static const struct filterops entropy_read_filtops = {
       .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
       .f_attach = NULL,
       .f_detach = filt_entropy_read_detach,
       .f_event = filt_entropy_read_event,
};

/*
* entropy_kqfilter(kn)
*
*      Register kn to receive entropy event notifications.  May be
*      EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
*/
int
entropy_kqfilter(struct knote *kn)
{

       KASSERT(!cold);

       switch (kn->kn_filter) {
       case EVFILT_READ:
               /* Enter into the global select queue.  */
               mutex_enter(&E->lock);
               kn->kn_fop = &entropy_read_filtops;
               selrecord_knote(&E->selq, kn);
               mutex_exit(&E->lock);
               return 0;
       case EVFILT_WRITE:
               /* Can always dump entropy into the system.  */
               kn->kn_fop = &seltrue_filtops;
               return 0;
       default:
               return EINVAL;
       }
}

/*
* rndsource_setcb(rs, get, getarg)
*
*      Set the request callback for the entropy source rs, if it can
*      provide entropy on demand.  Must precede rnd_attach_source.
*/
void
rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
   void *getarg)
{

       rs->get = get;
       rs->getarg = getarg;
}

/*
* rnd_attach_source(rs, name, type, flags)
*
*      Attach the entropy source rs.  Must be done after
*      rndsource_setcb, if any, and before any calls to rnd_add_data.
*/
void
rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
   uint32_t flags)
{
       uint32_t extra[4];
       unsigned i = 0;

       KASSERTMSG(name[0] != '\0', "rndsource must have nonempty name");

       /* Grab cycle counter to mix extra into the pool.  */
       extra[i++] = entropy_timer();

       /*
        * Apply some standard flags:
        *
        * - We do not bother with network devices by default, for
        *   hysterical raisins (perhaps: because it is often the case
        *   that an adversary can influence network packet timings).
        */
       switch (type) {
       case RND_TYPE_NET:
               flags |= RND_FLAG_NO_COLLECT;
               break;
       }

       /* Sanity-check the callback if RND_FLAG_HASCB is set.  */
       KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);

       /* Initialize the random source.  */
       memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
       strlcpy(rs->name, name, sizeof(rs->name));
       memset(&rs->time_delta, 0, sizeof(rs->time_delta));
       memset(&rs->value_delta, 0, sizeof(rs->value_delta));
       rs->total = 0;
       rs->type = type;
       rs->flags = flags;
       if (entropy_percpu != NULL)
               rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
       extra[i++] = entropy_timer();

       /* Wire it into the global list of random sources.  */
       if (__predict_true(!cold))
               mutex_enter(&E->lock);
       LIST_INSERT_HEAD(&E->sources, rs, list);
       if (__predict_true(!cold))
               mutex_exit(&E->lock);
       extra[i++] = entropy_timer();

       /* Request that it provide entropy ASAP, if we can.  */
       if (ISSET(flags, RND_FLAG_HASCB))
               (*rs->get)(ENTROPY_CAPACITY, rs->getarg);
       extra[i++] = entropy_timer();

       /* Mix the extra into the pool.  */
       KASSERT(i == __arraycount(extra));
       entropy_enter(extra, sizeof extra, 0, /*count*/__predict_true(!cold));
       explicit_memset(extra, 0, sizeof extra);
}

/*
* rnd_detach_source(rs)
*
*      Detach the entropy source rs.  May sleep waiting for users to
*      drain.  Further use is not allowed.
*/
void
rnd_detach_source(struct krndsource *rs)
{

       /*
        * If we're cold (shouldn't happen, but hey), just remove it
        * from the list -- there's nothing allocated.
        */
       if (__predict_false(cold) && entropy_percpu == NULL) {
               LIST_REMOVE(rs, list);
               return;
       }

       /* We may have to wait for entropy_request.  */
       ASSERT_SLEEPABLE();

       /* Wait until the source list is not in use, and remove it.  */
       mutex_enter(&E->lock);
       while (E->sourcelock)
               cv_wait(&E->sourcelock_cv, &E->lock);
       LIST_REMOVE(rs, list);
       mutex_exit(&E->lock);

       /* Free the per-CPU data.  */
       percpu_free(rs->state, sizeof(struct rndsource_cpu));
}

/*
* rnd_lock_sources(flags)
*
*      Lock the list of entropy sources.  Caller must hold the global
*      entropy lock.  If successful, no rndsource will go away until
*      rnd_unlock_sources even while the caller releases the global
*      entropy lock.
*
*      May be called very early at boot, before entropy_init.
*
*      If flags & ENTROPY_WAIT, wait for concurrent access to finish.
*      If flags & ENTROPY_SIG, allow interruption by signal.
*/
static int __attribute__((warn_unused_result))
rnd_lock_sources(int flags)
{
       int error;

       KASSERT(__predict_false(cold) || mutex_owned(&E->lock));
       KASSERT(!cpu_intr_p());

       while (E->sourcelock) {
               KASSERT(!cold);
               if (!ISSET(flags, ENTROPY_WAIT))
                       return EWOULDBLOCK;
               if (ISSET(flags, ENTROPY_SIG)) {
                       error = cv_wait_sig(&E->sourcelock_cv, &E->lock);
                       if (error)
                               return error;
               } else {
                       cv_wait(&E->sourcelock_cv, &E->lock);
               }
       }

       E->sourcelock = curlwp;
       return 0;
}

/*
* rnd_unlock_sources()
*
*      Unlock the list of sources after rnd_lock_sources.  Caller must
*      hold the global entropy lock.
*
*      May be called very early at boot, before entropy_init.
*/
static void
rnd_unlock_sources(void)
{

       KASSERT(__predict_false(cold) || mutex_owned(&E->lock));
       KASSERT(!cpu_intr_p());

       KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
           curlwp, E->sourcelock);
       E->sourcelock = NULL;
       if (__predict_true(!cold))
               cv_signal(&E->sourcelock_cv);
}

/*
* rnd_sources_locked()
*
*      True if we hold the list of rndsources locked, for diagnostic
*      assertions.
*
*      May be called very early at boot, before entropy_init.
*/
static bool __diagused
rnd_sources_locked(void)
{

       return E->sourcelock == curlwp;
}

/*
* entropy_request(nbytes, flags)
*
*      Request nbytes bytes of entropy from all sources in the system.
*      OK if we overdo it.  Caller must hold the global entropy lock;
*      will release and re-acquire it.
*
*      May be called very early at boot, before entropy_init.
*
*      If flags & ENTROPY_WAIT, wait for concurrent access to finish.
*      If flags & ENTROPY_SIG, allow interruption by signal.
*/
static int
entropy_request(size_t nbytes, int flags)
{
       struct krndsource *rs;
       int error;

       KASSERT(__predict_false(cold) || mutex_owned(&E->lock));
       KASSERT(!cpu_intr_p());
       if ((flags & ENTROPY_WAIT) != 0 && __predict_false(!cold))
               ASSERT_SLEEPABLE();

       /*
        * Lock the list of entropy sources to block rnd_detach_source
        * until we're done, and to serialize calls to the entropy
        * callbacks as guaranteed to drivers.
        */
       error = rnd_lock_sources(flags);
       if (error)
               return error;
       entropy_request_evcnt.ev_count++;

       /* Clamp to the maximum reasonable request.  */
       nbytes = MIN(nbytes, ENTROPY_CAPACITY);

       /* Walk the list of sources.  */
       LIST_FOREACH(rs, &E->sources, list) {
               /* Skip sources without callbacks.  */
               if (!ISSET(rs->flags, RND_FLAG_HASCB))
                       continue;

               /*
                * Skip sources that are disabled altogether -- we
                * would just ignore their samples anyway.
                */
               if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
                       continue;

               /* Drop the lock while we call the callback.  */
               if (__predict_true(!cold))
                       mutex_exit(&E->lock);
               (*rs->get)(nbytes, rs->getarg);
               if (__predict_true(!cold))
                       mutex_enter(&E->lock);
       }

       /* Request done; unlock the list of entropy sources.  */
       rnd_unlock_sources();
       return 0;
}

static inline uint32_t
rnd_delta_estimate(rnd_delta_t *d, uint32_t v, int32_t delta)
{
       int32_t delta2, delta3;

       /*
        * Calculate the second and third order differentials
        */
       delta2 = d->dx - delta;
       if (delta2 < 0)
               delta2 = -delta2; /* XXX arithmetic overflow */

       delta3 = d->d2x - delta2;
       if (delta3 < 0)
               delta3 = -delta3; /* XXX arithmetic overflow */

       d->x = v;
       d->dx = delta;
       d->d2x = delta2;

       /*
        * If any delta is 0, we got no entropy.  If all are non-zero, we
        * might have something.
        */
       if (delta == 0 || delta2 == 0 || delta3 == 0)
               return 0;

       return 1;
}

static inline uint32_t
rnd_dt_estimate(struct krndsource *rs, uint32_t t)
{
       int32_t delta;
       uint32_t ret;
       rnd_delta_t *d;
       struct rndsource_cpu *rc;

       rc = percpu_getref(rs->state);
       d = &rc->rc_timedelta;

       if (t < d->x) {
               delta = UINT32_MAX - d->x + t;
       } else {
               delta = d->x - t;
       }

       if (delta < 0) {
               delta = -delta; /* XXX arithmetic overflow */
       }

       ret = rnd_delta_estimate(d, t, delta);

       KASSERT(d->x == t);
       KASSERT(d->dx == delta);
       percpu_putref(rs->state);
       return ret;
}

/*
* rnd_add_uint32(rs, value)
*
*      Enter 32 bits of data from an entropy source into the pool.
*
*      May be called from any context or with spin locks held, but may
*      drop data.
*
*      This is meant for cheaply taking samples from devices that
*      aren't designed to be hardware random number generators.
*/
void
rnd_add_uint32(struct krndsource *rs, uint32_t value)
{
       bool intr_p = true;

       rnd_add_data_internal(rs, &value, sizeof value, 0, intr_p);
}

void
_rnd_add_uint32(struct krndsource *rs, uint32_t value)
{
       bool intr_p = true;

       rnd_add_data_internal(rs, &value, sizeof value, 0, intr_p);
}

void
_rnd_add_uint64(struct krndsource *rs, uint64_t value)
{
       bool intr_p = true;

       rnd_add_data_internal(rs, &value, sizeof value, 0, intr_p);
}

/*
* rnd_add_data(rs, buf, len, entropybits)
*
*      Enter data from an entropy source into the pool, with a
*      driver's estimate of how much entropy the physical source of
*      the data has.  If RND_FLAG_NO_ESTIMATE, we ignore the driver's
*      estimate and treat it as zero.
*
*      rs MAY but SHOULD NOT be NULL.  If rs is NULL, MUST NOT be
*      called from interrupt context or with spin locks held.
*
*      If rs is non-NULL, MAY but SHOULD NOT be called from interrupt
*      context, in which case act like rnd_add_data_intr -- if the
*      sample buffer is full, schedule a softint and drop any
*      additional data on the floor.  (This may change later once we
*      fix drivers that still call this from interrupt context to use
*      rnd_add_data_intr instead.)  MUST NOT be called with spin locks
*      held if not in hard interrupt context -- i.e., MUST NOT be
*      called in thread context or softint context with spin locks
*      held.
*/
void
rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
   uint32_t entropybits)
{
       bool intr_p = cpu_intr_p(); /* XXX make this unconditionally false */

       /*
        * Weird legacy exception that we should rip out and replace by
        * creating new rndsources to attribute entropy to the callers:
        * If there's no rndsource, just enter the data and time now.
        */
       if (rs == NULL) {
               uint32_t extra;

               KASSERT(!intr_p);
               KASSERTMSG(howmany(entropybits, NBBY) <= len,
                   "%s: impossible entropy rate:"
                   " %"PRIu32" bits in %"PRIu32"-byte string",
                   rs ? rs->name : "(anonymous)", entropybits, len);
               entropy_enter(buf, len, entropybits, /*count*/false);
               extra = entropy_timer();
               entropy_enter(&extra, sizeof extra, 0, /*count*/false);
               explicit_memset(&extra, 0, sizeof extra);
               return;
       }

       rnd_add_data_internal(rs, buf, len, entropybits, intr_p);
}

/*
* rnd_add_data_intr(rs, buf, len, entropybits)
*
*      Try to enter data from an entropy source into the pool, with a
*      driver's estimate of how much entropy the physical source of
*      the data has.  If RND_FLAG_NO_ESTIMATE, we ignore the driver's
*      estimate and treat it as zero.  If the sample buffer is full,
*      schedule a softint and drop any additional data on the floor.
*/
void
rnd_add_data_intr(struct krndsource *rs, const void *buf, uint32_t len,
   uint32_t entropybits)
{
       bool intr_p = true;

       rnd_add_data_internal(rs, buf, len, entropybits, intr_p);
}

/*
* rnd_add_data_internal(rs, buf, len, entropybits, intr_p)
*
*      Internal subroutine to decide whether or not to enter data or
*      timing for a particular rndsource, and if so, to enter it.
*
*      intr_p is true for callers from interrupt context or spin locks
*      held, and false for callers from thread or soft interrupt
*      context and no spin locks held.
*/
static void
rnd_add_data_internal(struct krndsource *rs, const void *buf, uint32_t len,
   uint32_t entropybits, bool intr_p)
{
       uint32_t flags;

       KASSERTMSG(howmany(entropybits, NBBY) <= len,
           "%s: impossible entropy rate:"
           " %"PRIu32" bits in %"PRIu32"-byte string",
           rs ? rs->name : "(anonymous)", entropybits, len);

       /*
        * Hold up the reset xcall before it zeroes the entropy counts
        * on this CPU or globally.  Otherwise, we might leave some
        * nonzero entropy attributed to an untrusted source in the
        * event of a race with a change to flags.
        */
       kpreempt_disable();

       /* Load a snapshot of the flags.  Ioctl may change them under us.  */
       flags = atomic_load_relaxed(&rs->flags);

       /*
        * Skip if:
        * - we're not collecting entropy, or
        * - the operator doesn't want to collect entropy from this, or
        * - neither data nor timings are being collected from this.
        */
       if (!atomic_load_relaxed(&entropy_collection) ||
           ISSET(flags, RND_FLAG_NO_COLLECT) ||
           !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
               goto out;

       /* If asked, ignore the estimate.  */
       if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
               entropybits = 0;

       /* If we are collecting data, enter them.  */
       if (ISSET(flags, RND_FLAG_COLLECT_VALUE)) {
               rnd_add_data_1(rs, buf, len, entropybits, /*count*/false,
                   RND_FLAG_COLLECT_VALUE, intr_p);
       }

       /* If we are collecting timings, enter one.  */
       if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
               uint32_t extra;
               bool count;

               /* Sample a timer.  */
               extra = entropy_timer();

               /* If asked, do entropy estimation on the time.  */
               if ((flags & (RND_FLAG_ESTIMATE_TIME|RND_FLAG_NO_ESTIMATE)) ==
                   RND_FLAG_ESTIMATE_TIME && __predict_true(!cold))
                       count = rnd_dt_estimate(rs, extra);
               else
                       count = false;

               rnd_add_data_1(rs, &extra, sizeof extra, 0, count,
                   RND_FLAG_COLLECT_TIME, intr_p);
       }

out:    /* Allow concurrent changes to flags to finish.  */
       kpreempt_enable();
}

static unsigned
add_sat(unsigned a, unsigned b)
{
       unsigned c = a + b;

       return (c < a ? UINT_MAX : c);
}

/*
* rnd_add_data_1(rs, buf, len, entropybits, count, flag)
*
*      Internal subroutine to call either entropy_enter_intr, if we're
*      in interrupt context, or entropy_enter if not, and to count the
*      entropy in an rndsource.
*/
static void
rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
   uint32_t entropybits, bool count, uint32_t flag, bool intr_p)
{
       bool fullyused;

       /*
        * For the interrupt-like path, use entropy_enter_intr and take
        * note of whether it consumed the full sample; otherwise, use
        * entropy_enter, which always consumes the full sample.
        */
       if (intr_p) {
               fullyused = entropy_enter_intr(buf, len, entropybits, count);
       } else {
               entropy_enter(buf, len, entropybits, count);
               fullyused = true;
       }

       /*
        * If we used the full sample, note how many bits were
        * contributed from this source.
        */
       if (fullyused) {
               if (__predict_false(cold)) {
                       const int s = splhigh();
                       rs->total = add_sat(rs->total, entropybits);
                       switch (flag) {
                       case RND_FLAG_COLLECT_TIME:
                               rs->time_delta.insamples =
                                   add_sat(rs->time_delta.insamples, 1);
                               break;
                       case RND_FLAG_COLLECT_VALUE:
                               rs->value_delta.insamples =
                                   add_sat(rs->value_delta.insamples, 1);
                               break;
                       }
                       splx(s);
               } else {
                       struct rndsource_cpu *rc = percpu_getref(rs->state);

                       atomic_store_relaxed(&rc->rc_entropybits,
                           add_sat(rc->rc_entropybits, entropybits));
                       switch (flag) {
                       case RND_FLAG_COLLECT_TIME:
                               atomic_store_relaxed(&rc->rc_timesamples,
                                   add_sat(rc->rc_timesamples, 1));
                               break;
                       case RND_FLAG_COLLECT_VALUE:
                               atomic_store_relaxed(&rc->rc_datasamples,
                                   add_sat(rc->rc_datasamples, 1));
                               break;
                       }
                       percpu_putref(rs->state);
               }
       }
}

/*
* rnd_add_data_sync(rs, buf, len, entropybits)
*
*      Same as rnd_add_data.  Originally used in rndsource callbacks,
*      to break an unnecessary cycle; no longer really needed.
*/
void
rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
   uint32_t entropybits)
{

       rnd_add_data(rs, buf, len, entropybits);
}

/*
* rndsource_entropybits(rs)
*
*      Return approximately the number of bits of entropy that have
*      been contributed via rs so far.  Approximate if other CPUs may
*      be calling rnd_add_data concurrently.
*/
static unsigned
rndsource_entropybits(struct krndsource *rs)
{
       unsigned nbits = rs->total;

       KASSERT(!cold);
       KASSERT(rnd_sources_locked());
       percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
       return nbits;
}

static void
rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
{
       struct rndsource_cpu *rc = ptr;
       unsigned *nbitsp = cookie;
       unsigned cpu_nbits;

       cpu_nbits = atomic_load_relaxed(&rc->rc_entropybits);
       *nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
}

/*
* rndsource_to_user(rs, urs)
*
*      Copy a description of rs out to urs for userland.
*/
static void
rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
{

       KASSERT(!cold);
       KASSERT(rnd_sources_locked());

       /* Avoid kernel memory disclosure.  */
       memset(urs, 0, sizeof(*urs));

       CTASSERT(sizeof(urs->name) == sizeof(rs->name));
       strlcpy(urs->name, rs->name, sizeof(urs->name));
       urs->total = rndsource_entropybits(rs);
       urs->type = rs->type;
       urs->flags = atomic_load_relaxed(&rs->flags);
}

/*
* rndsource_to_user_est(rs, urse)
*
*      Copy a description of rs and estimation statistics out to urse
*      for userland.
*/
static void
rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
{

       KASSERT(!cold);
       KASSERT(rnd_sources_locked());

       /* Avoid kernel memory disclosure.  */
       memset(urse, 0, sizeof(*urse));

       /* Copy out the rndsource description.  */
       rndsource_to_user(rs, &urse->rt);

       /* Gather the statistics.  */
       urse->dt_samples = rs->time_delta.insamples;
       urse->dt_total = 0;
       urse->dv_samples = rs->value_delta.insamples;
       urse->dv_total = urse->rt.total;
       percpu_foreach(rs->state, rndsource_to_user_est_cpu, urse);
}

static void
rndsource_to_user_est_cpu(void *ptr, void *cookie, struct cpu_info *ci)
{
       struct rndsource_cpu *rc = ptr;
       rndsource_est_t *urse = cookie;

       urse->dt_samples = add_sat(urse->dt_samples,
           atomic_load_relaxed(&rc->rc_timesamples));
       urse->dv_samples = add_sat(urse->dv_samples,
           atomic_load_relaxed(&rc->rc_datasamples));
}

/*
* entropy_reset_xc(arg1, arg2)
*
*      Reset the current CPU's pending entropy to zero.
*/
static void
entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
{
       uint32_t extra = entropy_timer();
       struct entropy_cpu_lock lock;
       struct entropy_cpu *ec;

       /*
        * With the per-CPU state locked, zero the pending count and
        * enter a cycle count for fun.
        */
       ec = entropy_cpu_get(&lock);
       ec->ec_bitspending = 0;
       ec->ec_samplespending = 0;
       entpool_enter(ec->ec_pool, &extra, sizeof extra);
       entropy_cpu_put(&lock, ec);
}

/*
* entropy_reset()
*
*      Assume the entropy pool has been exposed, e.g. because the VM
*      has been cloned.  Nix all the pending entropy and set the
*      needed to maximum.
*/
void
entropy_reset(void)
{

       xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
       mutex_enter(&E->lock);
       E->bitspending = 0;
       E->samplespending = 0;
       atomic_store_relaxed(&E->bitsneeded, MINENTROPYBITS);
       atomic_store_relaxed(&E->samplesneeded, MINSAMPLES);
       E->consolidate = false;
       mutex_exit(&E->lock);
}

/*
* entropy_ioctl(cmd, data)
*
*      Handle various /dev/random ioctl queries.
*/
int
entropy_ioctl(unsigned long cmd, void *data)
{
       struct krndsource *rs;
       bool privileged;
       int error;

       KASSERT(!cold);

       /* Verify user's authorization to perform the ioctl.  */
       switch (cmd) {
       case RNDGETENTCNT:
       case RNDGETPOOLSTAT:
       case RNDGETSRCNUM:
       case RNDGETSRCNAME:
       case RNDGETESTNUM:
       case RNDGETESTNAME:
               error = kauth_authorize_device(kauth_cred_get(),
                   KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
               break;
       case RNDCTL:
               error = kauth_authorize_device(kauth_cred_get(),
                   KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
               break;
       case RNDADDDATA:
               error = kauth_authorize_device(kauth_cred_get(),
                   KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
               /* Ascertain whether the user's inputs should be counted.  */
               if (kauth_authorize_device(kauth_cred_get(),
                       KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
                       NULL, NULL, NULL, NULL) == 0)
                       privileged = true;
               break;
       default: {
               /*
                * XXX Hack to avoid changing module ABI so this can be
                * pulled up.  Later, we can just remove the argument.
                */
               static const struct fileops fops = {
                       .fo_ioctl = rnd_system_ioctl,
               };
               struct file f = {
                       .f_ops = &fops,
               };
               MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
                   enosys(), error);
#if defined(_LP64)
               if (error == ENOSYS)
                       MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
                           enosys(), error);
#endif
               if (error == ENOSYS)
                       error = ENOTTY;
               break;
       }
       }

       /* If anything went wrong with authorization, stop here.  */
       if (error)
               return error;

       /* Dispatch on the command.  */
       switch (cmd) {
       case RNDGETENTCNT: {    /* Get current entropy count in bits.  */
               uint32_t *countp = data;

               mutex_enter(&E->lock);
               *countp = MINENTROPYBITS - E->bitsneeded;
               mutex_exit(&E->lock);

               break;
       }
       case RNDGETPOOLSTAT: {  /* Get entropy pool statistics.  */
               rndpoolstat_t *pstat = data;

               mutex_enter(&E->lock);

               /* parameters */
               pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
               pstat->threshold = MINENTROPYBITS/NBBY; /* bytes */
               pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */

               /* state */
               pstat->added = 0; /* XXX total entropy_enter count */
               pstat->curentropy = MINENTROPYBITS - E->bitsneeded; /* bits */
               pstat->removed = 0; /* XXX total entropy_extract count */
               pstat->discarded = 0; /* XXX bits of entropy beyond capacity */

               /*
                * This used to be bits of data fabricated in some
                * sense; we'll take it to mean number of samples,
                * excluding the bits of entropy from HWRNG or seed.
                */
               pstat->generated = MINSAMPLES - E->samplesneeded;
               pstat->generated -= MIN(pstat->generated, pstat->curentropy);

               mutex_exit(&E->lock);
               break;
       }
       case RNDGETSRCNUM: {    /* Get entropy sources by number.  */
               rndstat_t *stat = data;
               uint32_t start = 0, i = 0;

               /* Skip if none requested; fail if too many requested.  */
               if (stat->count == 0)
                       break;
               if (stat->count > RND_MAXSTATCOUNT)
                       return EINVAL;

               /*
                * Under the lock, find the first one, copy out as many
                * as requested, and report how many we copied out.
                */
               mutex_enter(&E->lock);
               error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
               if (error) {
                       mutex_exit(&E->lock);
                       return error;
               }
               LIST_FOREACH(rs, &E->sources, list) {
                       if (start++ == stat->start)
                               break;
               }
               while (i < stat->count && rs != NULL) {
                       mutex_exit(&E->lock);
                       rndsource_to_user(rs, &stat->source[i++]);
                       mutex_enter(&E->lock);
                       rs = LIST_NEXT(rs, list);
               }
               KASSERT(i <= stat->count);
               stat->count = i;
               rnd_unlock_sources();
               mutex_exit(&E->lock);
               break;
       }
       case RNDGETESTNUM: {    /* Get sources and estimates by number.  */
               rndstat_est_t *estat = data;
               uint32_t start = 0, i = 0;

               /* Skip if none requested; fail if too many requested.  */
               if (estat->count == 0)
                       break;
               if (estat->count > RND_MAXSTATCOUNT)
                       return EINVAL;

               /*
                * Under the lock, find the first one, copy out as many
                * as requested, and report how many we copied out.
                */
               mutex_enter(&E->lock);
               error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
               if (error) {
                       mutex_exit(&E->lock);
                       return error;
               }
               LIST_FOREACH(rs, &E->sources, list) {
                       if (start++ == estat->start)
                               break;
               }
               while (i < estat->count && rs != NULL) {
                       mutex_exit(&E->lock);
                       rndsource_to_user_est(rs, &estat->source[i++]);
                       mutex_enter(&E->lock);
                       rs = LIST_NEXT(rs, list);
               }
               KASSERT(i <= estat->count);
               estat->count = i;
               rnd_unlock_sources();
               mutex_exit(&E->lock);
               break;
       }
       case RNDGETSRCNAME: {   /* Get entropy sources by name.  */
               rndstat_name_t *nstat = data;
               const size_t n = sizeof(rs->name);

               CTASSERT(sizeof(rs->name) == sizeof(nstat->name));

               /*
                * Under the lock, search by name.  If found, copy it
                * out; if not found, fail with ENOENT.
                */
               mutex_enter(&E->lock);
               error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
               if (error) {
                       mutex_exit(&E->lock);
                       return error;
               }
               LIST_FOREACH(rs, &E->sources, list) {
                       if (strncmp(rs->name, nstat->name, n) == 0)
                               break;
               }
               if (rs != NULL) {
                       mutex_exit(&E->lock);
                       rndsource_to_user(rs, &nstat->source);
                       mutex_enter(&E->lock);
               } else {
                       error = ENOENT;
               }
               rnd_unlock_sources();
               mutex_exit(&E->lock);
               break;
       }
       case RNDGETESTNAME: {   /* Get sources and estimates by name.  */
               rndstat_est_name_t *enstat = data;
               const size_t n = sizeof(rs->name);

               CTASSERT(sizeof(rs->name) == sizeof(enstat->name));

               /*
                * Under the lock, search by name.  If found, copy it
                * out; if not found, fail with ENOENT.
                */
               mutex_enter(&E->lock);
               error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
               if (error) {
                       mutex_exit(&E->lock);
                       return error;
               }
               LIST_FOREACH(rs, &E->sources, list) {
                       if (strncmp(rs->name, enstat->name, n) == 0)
                               break;
               }
               if (rs != NULL) {
                       mutex_exit(&E->lock);
                       rndsource_to_user_est(rs, &enstat->source);
                       mutex_enter(&E->lock);
               } else {
                       error = ENOENT;
               }
               rnd_unlock_sources();
               mutex_exit(&E->lock);
               break;
       }
       case RNDCTL: {          /* Modify entropy source flags.  */
               rndctl_t *rndctl = data;
               const size_t n = sizeof(rs->name);
               uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
               uint32_t flags;
               bool reset = false, request = false;

               CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));

               /* Whitelist the flags that user can change.  */
               rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;

               /*
                * For each matching rndsource, either by type if
                * specified or by name if not, set the masked flags.
                */
               mutex_enter(&E->lock);
               LIST_FOREACH(rs, &E->sources, list) {
                       if (rndctl->type != 0xff) {
                               if (rs->type != rndctl->type)
                                       continue;
                       } else if (rndctl->name[0] != '\0') {
                               if (strncmp(rs->name, rndctl->name, n) != 0)
                                       continue;
                       }
                       flags = rs->flags & ~rndctl->mask;
                       flags |= rndctl->flags & rndctl->mask;
                       if ((rs->flags & resetflags) == 0 &&
                           (flags & resetflags) != 0)
                               reset = true;
                       if ((rs->flags ^ flags) & resetflags)
                               request = true;
                       atomic_store_relaxed(&rs->flags, flags);
               }
               mutex_exit(&E->lock);

               /*
                * If we disabled estimation or collection, nix all the
                * pending entropy and set needed to the maximum.
                */
               if (reset)
                       entropy_reset();

               /*
                * If we changed any of the estimation or collection
                * flags, request new samples from everyone -- either
                * to make up for what we just lost, or to get new
                * samples from what we just added.
                *
                * Failing on signal, while waiting for another process
                * to finish requesting entropy, is OK here even though
                * we have committed side effects, because this ioctl
                * command is idempotent, so repeating it is safe.
                */
               if (request)
                       error = entropy_gather();
               break;
       }
       case RNDADDDATA: {      /* Enter seed into entropy pool.  */
               rnddata_t *rdata = data;
               unsigned entropybits = 0;

               if (!atomic_load_relaxed(&entropy_collection))
                       break;  /* thanks but no thanks */
               if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
                       return EINVAL;

               /*
                * This ioctl serves as the userland alternative a
                * bootloader-provided seed -- typically furnished by
                * /etc/rc.d/random_seed.  We accept the user's entropy
                * claim only if
                *
                * (a) the user is privileged, and
                * (b) we have not entered a bootloader seed.
                *
                * under the assumption that the user may use this to
                * load a seed from disk that we have already loaded
                * from the bootloader, so we don't double-count it.
                */
               if (privileged && rdata->entropy && rdata->len) {
                       mutex_enter(&E->lock);
                       if (!E->seeded) {
                               entropybits = MIN(rdata->entropy,
                                   MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
                               E->seeded = true;
                       }
                       mutex_exit(&E->lock);
               }

               /* Enter the data and consolidate entropy.  */
               rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
                   entropybits);
               error = entropy_consolidate();
               break;
       }
       default:
               error = ENOTTY;
       }

       /* Return any error that may have come up.  */
       return error;
}

/* Legacy entry points */

void
rnd_seed(void *seed, size_t len)
{

       if (len != sizeof(rndsave_t)) {
               printf("entropy: invalid seed length: %zu,"
                   " expected sizeof(rndsave_t) = %zu\n",
                   len, sizeof(rndsave_t));
               return;
       }
       entropy_seed(seed);
}

void
rnd_init(void)
{

       entropy_init();
}

void
rnd_init_softint(void)
{

       entropy_init_late();
       entropy_bootrequest();
}

int
rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
{

       return entropy_ioctl(cmd, data);
}