/*      $NetBSD: vhci.c,v 1.27 2022/03/12 15:30:51 riastradh Exp $ */

/*
* Copyright (c) 2019-2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Maxime Villard.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vhci.c,v 1.27 2022/03/12 15:30:51 riastradh Exp $");

#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif

#include <sys/param.h>

#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/systm.h>
#include <sys/mman.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/kcov.h>

#include <machine/endian.h>

#include "ioconf.h"

#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>

#include <dev/usb/usbroothub.h>
#include <dev/usb/vhci.h>

#ifdef VHCI_DEBUG
#define DPRINTF(fmt, ...)       printf(fmt, __VA_ARGS__)
#else
#define DPRINTF(fmt, ...)       __nothing
#endif

static usbd_status vhci_open(struct usbd_pipe *);
static void vhci_softintr(void *);

static struct usbd_xfer *vhci_allocx(struct usbd_bus *, unsigned int);
static void vhci_freex(struct usbd_bus *, struct usbd_xfer *);
static void vhci_get_lock(struct usbd_bus *, kmutex_t **);
static int vhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
   void *, int);

static const struct usbd_bus_methods vhci_bus_methods = {
       .ubm_open =     vhci_open,
       .ubm_softint =  vhci_softintr,
       .ubm_dopoll =   NULL,
       .ubm_allocx =   vhci_allocx,
       .ubm_freex =    vhci_freex,
       .ubm_getlock =  vhci_get_lock,
       .ubm_rhctrl =   vhci_roothub_ctrl,
};

static usbd_status vhci_device_ctrl_transfer(struct usbd_xfer *);
static usbd_status vhci_device_ctrl_start(struct usbd_xfer *);
static void vhci_device_ctrl_abort(struct usbd_xfer *);
static void vhci_device_ctrl_close(struct usbd_pipe *);
static void vhci_device_ctrl_cleartoggle(struct usbd_pipe *);
static void vhci_device_ctrl_done(struct usbd_xfer *);

static const struct usbd_pipe_methods vhci_device_ctrl_methods = {
       .upm_init =             NULL,
       .upm_fini =             NULL,
       .upm_transfer =         vhci_device_ctrl_transfer,
       .upm_start =            vhci_device_ctrl_start,
       .upm_abort =            vhci_device_ctrl_abort,
       .upm_close =            vhci_device_ctrl_close,
       .upm_cleartoggle =      vhci_device_ctrl_cleartoggle,
       .upm_done =             vhci_device_ctrl_done,
};

static usbd_status vhci_root_intr_transfer(struct usbd_xfer *);
static usbd_status vhci_root_intr_start(struct usbd_xfer *);
static void vhci_root_intr_abort(struct usbd_xfer *);
static void vhci_root_intr_close(struct usbd_pipe *);
static void vhci_root_intr_cleartoggle(struct usbd_pipe *);
static void vhci_root_intr_done(struct usbd_xfer *);

static const struct usbd_pipe_methods vhci_root_intr_methods = {
       .upm_init =             NULL,
       .upm_fini =             NULL,
       .upm_transfer =         vhci_root_intr_transfer,
       .upm_start =            vhci_root_intr_start,
       .upm_abort =            vhci_root_intr_abort,
       .upm_close =            vhci_root_intr_close,
       .upm_cleartoggle =      vhci_root_intr_cleartoggle,
       .upm_done =             vhci_root_intr_done,
};

/*
* There are three structures to understand: vxfers, packets, and ports.
*
* Each xfer from the point of view of the USB stack is a vxfer from the point
* of view of vHCI.
*
* A vxfer has a linked list containing a maximum of two packets: a request
* packet and possibly a data packet. Packets basically contain data exchanged
* between the Host and the virtual USB device. A packet is linked to both a
* vxfer and a port.
*
* A port is an abstraction of an actual USB port. Each virtual USB device gets
* connected to a port. A port has two lists:
*  - The Usb-To-Host list, containing packets to be fetched from the USB
*    device and provided to the host.
*  - The Host-To-Usb list, containing packets to be sent from the Host to the
*    USB device.
* Request packets are always in the H->U direction. Data packets however can
* be in both the H->U and U->H directions.
*
* With read() and write() operations on /dev/vhci, userland respectively
* "fetches" and "sends" packets from or to the virtual USB device, which
* respectively means reading/inserting packets in the H->U and U->H lists on
* the port where the virtual USB device is connected.
*
*             +------------------------------------------------+
*             |                 USB Stack                      |
*             +---------------------^--------------------------+
*                                   |
*             +---------------------V--------------------------+
*             | +----------------+    +-------------+          |
*             | | Request Packet |    | Data Packet |     Xfer |
*             | +-------|--------+    +----|---^----+          |
*             +---------|------------------|---|---------------+
*                       |                  |   |
*                       |   +--------------+   |
*                       |   |                  |
*             +---------|---|------------------|---------------+
*             |     +---V---V---+    +---------|-+             |
*             |     | H->U List |    | U->H List |   vHCI Port |
*             |     +-----|-----+    +-----^-----+             |
*             +-----------|----------------|-------------------+
*                         |                |
*             +-----------|----------------|-------------------+
*             |     +-----V-----+    +-----|-----+             |
*             |     |   read()  |    |  write()  |     vHCI FD |
*             |     +-----------+    +-----------+             |
*             +------------------------------------------------+
*/

struct vhci_xfer;

typedef struct vhci_packet {
       /* General. */
       TAILQ_ENTRY(vhci_packet) portlist;
       TAILQ_ENTRY(vhci_packet) xferlist;
       struct vhci_xfer *vxfer;
       bool utoh;
       uint8_t addr;

       /* Type. */
       struct {
               bool req:1;
               bool res:1;
               bool dat:1;
       } type;

       /* Exposed for FD operations. */
       uint8_t *buf;
       size_t size;
       size_t cursor;
} vhci_packet_t;

typedef TAILQ_HEAD(, vhci_packet) vhci_packet_list_t;

#define VHCI_NADDRS     16      /* maximum supported by USB */

typedef struct {
       kmutex_t lock;
       int status;
       int change;
       struct {
               vhci_packet_list_t usb_to_host;
               vhci_packet_list_t host_to_usb;
       } endpoints[VHCI_NADDRS];
} vhci_port_t;

typedef struct {
       struct usbd_pipe pipe;
} vhci_pipe_t;

typedef struct vhci_xfer {
       /* General. */
       struct usbd_xfer xfer;

       /* Port where the xfer occurs. */
       vhci_port_t *port;

       /* Packets in the xfer. */
       size_t npkts;
       vhci_packet_list_t pkts;

       /* Header storage. */
       vhci_request_t reqbuf;
       vhci_response_t resbuf;

       /* Used for G/C. */
       TAILQ_ENTRY(vhci_xfer) freelist;
} vhci_xfer_t;

typedef TAILQ_HEAD(, vhci_xfer) vhci_xfer_list_t;

#define VHCI_INDEX2PORT(idx)    (idx)
#define VHCI_NPORTS             8       /* above 8, update TODO-bitmap */
#define VHCI_NBUSES             8

typedef struct {
       device_t sc_dev;

       struct usbd_bus sc_bus;
       bool sc_dying;
       kmutex_t sc_lock;

       /*
        * Intr Root. Used to attach the devices.
        */
       struct usbd_xfer *sc_intrxfer;

       /*
        * The ports. Zero is for the roothub, one and beyond for the USB
        * devices.
        */
       size_t sc_nports;
       vhci_port_t sc_port[VHCI_NPORTS];

       device_t sc_child; /* /dev/usb# device */
} vhci_softc_t;

typedef struct {
       u_int port;
       uint8_t addr;
       vhci_softc_t *softc;
} vhci_fd_t;

extern struct cfdriver vhci_cd;

/* -------------------------------------------------------------------------- */

static void
vhci_pkt_ctrl_create(vhci_port_t *port, struct usbd_xfer *xfer, bool utoh,
   uint8_t addr)
{
       vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
       vhci_packet_list_t *reqlist, *reslist, *datlist = NULL;
       vhci_packet_t *req, *res = NULL, *dat = NULL;
       size_t npkts = 0;

       /* Request packet. */
       reqlist = &port->endpoints[addr].host_to_usb;
       req = kmem_zalloc(sizeof(*req), KM_SLEEP);
       req->vxfer = vxfer;
       req->utoh = false;
       req->addr = addr;
       req->type.req = true;
       req->buf = (uint8_t *)&vxfer->reqbuf;
       req->size = sizeof(vxfer->reqbuf);
       req->cursor = 0;
       npkts++;

       /* Init the request buffer. */
       memset(&vxfer->reqbuf, 0, sizeof(vxfer->reqbuf));
       vxfer->reqbuf.type = VHCI_REQ_CTRL;
       memcpy(&vxfer->reqbuf.u.ctrl, &xfer->ux_request,
           sizeof(xfer->ux_request));

       /* Response packet. */
       if (utoh && (xfer->ux_length > 0)) {
               reslist = &port->endpoints[addr].usb_to_host;
               res = kmem_zalloc(sizeof(*res), KM_SLEEP);
               res->vxfer = vxfer;
               res->utoh = true;
               res->addr = addr;
               res->type.res = true;
               res->buf = (uint8_t *)&vxfer->resbuf;
               res->size = sizeof(vxfer->resbuf);
               res->cursor = 0;
               npkts++;
       }

       /* Data packet. */
       if (xfer->ux_length > 0) {
               if (utoh) {
                       datlist = &port->endpoints[addr].usb_to_host;
               } else {
                       datlist = &port->endpoints[addr].host_to_usb;
               }
               dat = kmem_zalloc(sizeof(*dat), KM_SLEEP);
               dat->vxfer = vxfer;
               dat->utoh = utoh;
               dat->addr = addr;
               dat->type.dat = true;
               dat->buf = xfer->ux_buf;
               dat->size = xfer->ux_length;
               dat->cursor = 0;
               npkts++;
       }

       /* Insert in the xfer. */
       vxfer->port = port;
       vxfer->npkts = npkts;
       TAILQ_INIT(&vxfer->pkts);
       TAILQ_INSERT_TAIL(&vxfer->pkts, req, xferlist);
       if (res != NULL)
               TAILQ_INSERT_TAIL(&vxfer->pkts, res, xferlist);
       if (dat != NULL)
               TAILQ_INSERT_TAIL(&vxfer->pkts, dat, xferlist);

       /* Insert in the port. */
       KASSERT(mutex_owned(&port->lock));
       TAILQ_INSERT_TAIL(reqlist, req, portlist);
       if (res != NULL)
               TAILQ_INSERT_TAIL(reslist, res, portlist);
       if (dat != NULL)
               TAILQ_INSERT_TAIL(datlist, dat, portlist);
}

static void
vhci_pkt_destroy(vhci_softc_t *sc, vhci_packet_t *pkt)
{
       vhci_xfer_t *vxfer = pkt->vxfer;
       vhci_port_t *port = vxfer->port;
       vhci_packet_list_t *pktlist;

       KASSERT(mutex_owned(&port->lock));

       /* Remove from the port. */
       if (pkt->utoh) {
               pktlist = &port->endpoints[pkt->addr].usb_to_host;
       } else {
               pktlist = &port->endpoints[pkt->addr].host_to_usb;
       }
       TAILQ_REMOVE(pktlist, pkt, portlist);

       /* Remove from the xfer. */
       TAILQ_REMOVE(&vxfer->pkts, pkt, xferlist);
       kmem_free(pkt, sizeof(*pkt));

       /* Unref. */
       KASSERT(vxfer->npkts > 0);
       vxfer->npkts--;
       if (vxfer->npkts > 0)
               return;
       KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
}

/* -------------------------------------------------------------------------- */

static usbd_status
vhci_open(struct usbd_pipe *pipe)
{
       struct usbd_device *dev = pipe->up_dev;
       struct usbd_bus *bus = dev->ud_bus;
       usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
       vhci_softc_t *sc = bus->ub_hcpriv;
       uint8_t addr = dev->ud_addr;

       if (sc->sc_dying)
               return USBD_IOERROR;

       DPRINTF("%s: called, type=%d\n", __func__,
           UE_GET_XFERTYPE(ed->bmAttributes));

       if (addr == bus->ub_rhaddr) {
               switch (ed->bEndpointAddress) {
               case USB_CONTROL_ENDPOINT:
                       DPRINTF("%s: roothub_ctrl\n", __func__);
                       pipe->up_methods = &roothub_ctrl_methods;
                       break;
               case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
                       DPRINTF("%s: root_intr\n", __func__);
                       pipe->up_methods = &vhci_root_intr_methods;
                       break;
               default:
                       DPRINTF("%s: inval\n", __func__);
                       return USBD_INVAL;
               }
       } else {
               switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
               case UE_CONTROL:
                       pipe->up_methods = &vhci_device_ctrl_methods;
                       break;
               case UE_INTERRUPT:
               case UE_BULK:
               default:
                       goto bad;
               }
       }

       return USBD_NORMAL_COMPLETION;

bad:
       return USBD_NOMEM;
}

static void
vhci_softintr(void *v)
{
       DPRINTF("%s: called\n", __func__);
}

static struct usbd_xfer *
vhci_allocx(struct usbd_bus *bus, unsigned int nframes)
{
       vhci_xfer_t *vxfer;

       vxfer = kmem_zalloc(sizeof(*vxfer), KM_SLEEP);
#ifdef DIAGNOSTIC
       vxfer->xfer.ux_state = XFER_BUSY;
#endif
       return (struct usbd_xfer *)vxfer;
}

static void
vhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
{
       vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;

       KASSERT(vxfer->npkts == 0);
       KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);

#ifdef DIAGNOSTIC
       vxfer->xfer.ux_state = XFER_FREE;
#endif
       kmem_free(vxfer, sizeof(*vxfer));
}

static void
vhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
{
       vhci_softc_t *sc = bus->ub_hcpriv;

       *lock = &sc->sc_lock;
}

static int
vhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
   void *buf, int buflen)
{
       vhci_softc_t *sc = bus->ub_hcpriv;
       vhci_port_t *port;
       usb_hub_descriptor_t hubd;
       uint16_t len, value, index;
       int totlen = 0;

       len = UGETW(req->wLength);
       value = UGETW(req->wValue);
       index = UGETW(req->wIndex);

#define C(x,y) ((x) | ((y) << 8))
       switch (C(req->bRequest, req->bmRequestType)) {
       case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
               switch (value) {
               case C(0, UDESC_DEVICE): {
                       usb_device_descriptor_t devd;

                       totlen = uimin(buflen, sizeof(devd));
                       memcpy(&devd, buf, totlen);
                       USETW(devd.idVendor, 0);
                       USETW(devd.idProduct, 0);
                       memcpy(buf, &devd, totlen);
                       break;
               }
#define sd ((usb_string_descriptor_t *)buf)
               case C(1, UDESC_STRING):
                       /* Vendor */
                       totlen = usb_makestrdesc(sd, len, "NetBSD");
                       break;
               case C(2, UDESC_STRING):
                       /* Product */
                       totlen = usb_makestrdesc(sd, len, "VHCI root hub");
                       break;
#undef sd
               default:
                       /* default from usbroothub */
                       return buflen;
               }
               break;

       case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
               switch (value) {
               case UHF_PORT_RESET:
                       if (index < 1 || index >= sc->sc_nports) {
                               return -1;
                       }
                       port = &sc->sc_port[VHCI_INDEX2PORT(index)];
                       port->status |= UPS_C_PORT_RESET;
                       break;
               case UHF_PORT_POWER:
                       break;
               default:
                       return -1;
               }
               break;

       /* Hub requests. */
       case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
               break;
       case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
               if (index < 1 || index >= sc->sc_nports) {
                       return -1;
               }
               port = &sc->sc_port[VHCI_INDEX2PORT(index)];
               switch (value) {
               case UHF_PORT_ENABLE:
                       port->status &= ~UPS_PORT_ENABLED;
                       break;
               case UHF_C_PORT_ENABLE:
                       port->change |= UPS_C_PORT_ENABLED;
                       break;
               default:
                       return -1;
               }
               break;

       case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
               totlen = uimin(buflen, sizeof(hubd));
               memcpy(&hubd, buf, totlen);
               hubd.bNbrPorts = sc->sc_nports - 1;
               hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE;
               totlen = uimin(totlen, hubd.bDescLength);
               memcpy(buf, &hubd, totlen);
               break;

       case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
               /* XXX The other HCs do this */
               memset(buf, 0, len);
               totlen = len;
               break;

       case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
               usb_port_status_t ps;

               if (index < 1 || index >= sc->sc_nports) {
                       return -1;
               }
               port = &sc->sc_port[VHCI_INDEX2PORT(index)];
               USETW(ps.wPortStatus, port->status);
               USETW(ps.wPortChange, port->change);
               totlen = uimin(len, sizeof(ps));
               memcpy(buf, &ps, totlen);
               break;
       }
       default:
               /* default from usbroothub */
               return buflen;
       }

       return totlen;
}

/* -------------------------------------------------------------------------- */

static usbd_status
vhci_device_ctrl_transfer(struct usbd_xfer *xfer)
{

       DPRINTF("%s: called\n", __func__);

       /* Pipe isn't running, start first */
       return vhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}

static usbd_status
vhci_device_ctrl_start(struct usbd_xfer *xfer)
{
       usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc;
       usb_device_request_t *req = &xfer->ux_request;
       struct usbd_device *dev = xfer->ux_pipe->up_dev;
       vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
       vhci_port_t *port;
       bool isread = (req->bmRequestType & UT_READ) != 0;
       uint8_t addr = UE_GET_ADDR(ed->bEndpointAddress);
       int portno, ret;

       KASSERT(addr == 0);
       KASSERT(xfer->ux_rqflags & URQ_REQUEST);
       KASSERT(dev->ud_myhsport != NULL);
       portno = dev->ud_myhsport->up_portno;

       DPRINTF("%s: type=0x%02x, len=%d, isread=%d, portno=%d\n",
           __func__, req->bmRequestType, UGETW(req->wLength), isread, portno);

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

       if (sc->sc_dying)
               return USBD_IOERROR;

       port = &sc->sc_port[portno];

       mutex_enter(&port->lock);
       if (port->status & UPS_PORT_ENABLED) {
               xfer->ux_status = USBD_IN_PROGRESS;
               vhci_pkt_ctrl_create(port, xfer, isread, addr);
               ret = USBD_IN_PROGRESS;
       } else {
               ret = USBD_IOERROR;
       }
       mutex_exit(&port->lock);

       return ret;
}

static void
vhci_device_ctrl_abort(struct usbd_xfer *xfer)
{
       vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
       vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
       vhci_port_t *port = vxfer->port;
       vhci_packet_t *pkt;

       DPRINTF("%s: called\n", __func__);

       KASSERT(mutex_owned(&sc->sc_lock));

       callout_halt(&xfer->ux_callout, &sc->sc_lock);

       /* If anyone else beat us, we're done.  */
       KASSERT(xfer->ux_status != USBD_CANCELLED);
       if (xfer->ux_status != USBD_IN_PROGRESS)
               return;

       mutex_enter(&port->lock);
       while (vxfer->npkts > 0) {
               pkt = TAILQ_FIRST(&vxfer->pkts);
               KASSERT(pkt != NULL);
               vhci_pkt_destroy(sc, pkt);
       }
       KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
       mutex_exit(&port->lock);

       xfer->ux_status = USBD_CANCELLED;
       usb_transfer_complete(xfer);
       KASSERT(mutex_owned(&sc->sc_lock));
}

static void
vhci_device_ctrl_close(struct usbd_pipe *pipe)
{
       DPRINTF("%s: called\n", __func__);
}

static void
vhci_device_ctrl_cleartoggle(struct usbd_pipe *pipe)
{
       DPRINTF("%s: called\n", __func__);
}

static void
vhci_device_ctrl_done(struct usbd_xfer *xfer)
{
       DPRINTF("%s: called\n", __func__);
}

/* -------------------------------------------------------------------------- */

static usbd_status
vhci_root_intr_transfer(struct usbd_xfer *xfer)
{

       DPRINTF("%s: called\n", __func__);

       /* Pipe isn't running, start first */
       return vhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}

static usbd_status
vhci_root_intr_start(struct usbd_xfer *xfer)
{
       vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;

       DPRINTF("%s: called, len=%zu\n", __func__, (size_t)xfer->ux_length);

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

       if (sc->sc_dying)
               return USBD_IOERROR;

       KASSERT(sc->sc_intrxfer == NULL);
       sc->sc_intrxfer = xfer;
       xfer->ux_status = USBD_IN_PROGRESS;

       return USBD_IN_PROGRESS;
}

static void
vhci_root_intr_abort(struct usbd_xfer *xfer)
{
       vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;

       DPRINTF("%s: called\n", __func__);

       KASSERT(mutex_owned(&sc->sc_lock));
       KASSERT(xfer->ux_pipe->up_intrxfer == xfer);

       /* If xfer has already completed, nothing to do here.  */
       if (sc->sc_intrxfer == NULL)
               return;

       /*
        * Otherwise, sc->sc_intrxfer had better be this transfer.
        * Cancel it.
        */
       KASSERT(sc->sc_intrxfer == xfer);
       KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
       xfer->ux_status = USBD_CANCELLED;
       usb_transfer_complete(xfer);
}

static void
vhci_root_intr_close(struct usbd_pipe *pipe)
{
       vhci_softc_t *sc __diagused = pipe->up_dev->ud_bus->ub_hcpriv;

       DPRINTF("%s: called\n", __func__);

       KASSERT(mutex_owned(&sc->sc_lock));

       /*
        * Caller must guarantee the xfer has completed first, by
        * closing the pipe only after normal completion or an abort.
        */
       KASSERT(sc->sc_intrxfer == NULL);
}

static void
vhci_root_intr_cleartoggle(struct usbd_pipe *pipe)
{
       DPRINTF("%s: called\n", __func__);
}

static void
vhci_root_intr_done(struct usbd_xfer *xfer)
{
       vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;

       KASSERT(mutex_owned(&sc->sc_lock));

       /* Claim the xfer so it doesn't get completed again.  */
       KASSERT(sc->sc_intrxfer == xfer);
       KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
       sc->sc_intrxfer = NULL;
}

/* -------------------------------------------------------------------------- */

static void
vhci_usb_attach(vhci_fd_t *vfd)
{
       vhci_softc_t *sc = vfd->softc;
       vhci_port_t *port;
       struct usbd_xfer *xfer;
       u_char *p;

       port = &sc->sc_port[vfd->port];

       mutex_enter(&sc->sc_lock);

       mutex_enter(&port->lock);
       port->status = UPS_CURRENT_CONNECT_STATUS | UPS_PORT_ENABLED |
           UPS_PORT_POWER;
       port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;
       mutex_exit(&port->lock);

       xfer = sc->sc_intrxfer;

       if (xfer == NULL) {
               goto done;
       }
       KASSERT(xfer->ux_status == USBD_IN_PROGRESS);

       /*
        * Mark our port has having changed state. Uhub will then fetch
        * status/change and see it needs to perform an attach.
        */
       p = xfer->ux_buf;
       memset(p, 0, xfer->ux_length);
       p[0] = __BIT(vfd->port); /* TODO-bitmap */
       xfer->ux_actlen = xfer->ux_length;
       xfer->ux_status = USBD_NORMAL_COMPLETION;

       usb_transfer_complete(xfer);

done:
       mutex_exit(&sc->sc_lock);
}

static void
vhci_port_flush(vhci_softc_t *sc, vhci_port_t *port)
{
       vhci_packet_list_t *pktlist;
       vhci_packet_t *pkt, *nxt;
       vhci_xfer_list_t vxferlist;
       vhci_xfer_t *vxfer;
       uint8_t addr;

       KASSERT(mutex_owned(&sc->sc_lock));
       KASSERT(mutex_owned(&port->lock));

       TAILQ_INIT(&vxferlist);

       for (addr = 0; addr < VHCI_NADDRS; addr++) {
               /* Drop all the packets in the H->U direction. */
               pktlist = &port->endpoints[addr].host_to_usb;
               TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
                       vxfer = pkt->vxfer;
                       KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
                       vhci_pkt_destroy(sc, pkt);
                       if (vxfer->npkts == 0)
                               TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
               }
               KASSERT(TAILQ_FIRST(pktlist) == NULL);

               /* Drop all the packets in the U->H direction. */
               pktlist = &port->endpoints[addr].usb_to_host;
               TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
                       vxfer = pkt->vxfer;
                       KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
                       vhci_pkt_destroy(sc, pkt);
                       if (vxfer->npkts == 0)
                               TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
               }
               KASSERT(TAILQ_FIRST(pktlist) == NULL);

               /* Terminate all the xfers collected. */
               while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
                       struct usbd_xfer *xfer = &vxfer->xfer;
                       TAILQ_REMOVE(&vxferlist, vxfer, freelist);

                       xfer->ux_status = USBD_TIMEOUT;
                       usb_transfer_complete(xfer);
               }
       }
}

static void
vhci_usb_detach(vhci_fd_t *vfd)
{
       vhci_softc_t *sc = vfd->softc;
       vhci_port_t *port;
       struct usbd_xfer *xfer;
       u_char *p;

       port = &sc->sc_port[vfd->port];

       mutex_enter(&sc->sc_lock);

       xfer = sc->sc_intrxfer;
       if (xfer == NULL) {
               goto done;
       }
       KASSERT(xfer->ux_status == USBD_IN_PROGRESS);

       mutex_enter(&port->lock);

       port->status = 0;
       port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;

       /*
        * Mark our port has having changed state. Uhub will then fetch
        * status/change and see it needs to perform a detach.
        */
       p = xfer->ux_buf;
       memset(p, 0, xfer->ux_length);
       p[0] = __BIT(vfd->port); /* TODO-bitmap */
       xfer->ux_actlen = xfer->ux_length;
       xfer->ux_status = USBD_NORMAL_COMPLETION;

       usb_transfer_complete(xfer);
       vhci_port_flush(sc, port);

       mutex_exit(&port->lock);
done:
       mutex_exit(&sc->sc_lock);
}

static int
vhci_get_info(vhci_fd_t *vfd, struct vhci_ioc_get_info *args)
{
       vhci_softc_t *sc = vfd->softc;
       vhci_port_t *port;

       port = &sc->sc_port[vfd->port];

       args->nports = VHCI_NPORTS;
       args->port = vfd->port;
       mutex_enter(&port->lock);
       args->status = port->status;
       mutex_exit(&port->lock);
       args->addr = vfd->addr;

       return 0;
}

static int
vhci_set_port(vhci_fd_t *vfd, struct vhci_ioc_set_port *args)
{
       vhci_softc_t *sc = vfd->softc;

       if (args->port == 0 || args->port >= sc->sc_nports)
               return EINVAL;

       vfd->port = args->port;

       return 0;
}

static int
vhci_set_addr(vhci_fd_t *vfd, struct vhci_ioc_set_addr *args)
{
       if (args->addr >= VHCI_NADDRS)
               return EINVAL;

       vfd->addr = args->addr;

       return 0;
}

/* -------------------------------------------------------------------------- */

static dev_type_open(vhci_fd_open);

const struct cdevsw vhci_cdevsw = {
       .d_open = vhci_fd_open,
       .d_close = noclose,
       .d_read = noread,
       .d_write = nowrite,
       .d_ioctl = noioctl,
       .d_stop = nostop,
       .d_tty = notty,
       .d_poll = nopoll,
       .d_mmap = nommap,
       .d_kqfilter = nokqfilter,
       .d_discard = nodiscard,
       .d_flag = D_OTHER | D_MPSAFE
};

static int vhci_fd_ioctl(file_t *, u_long, void *);
static int vhci_fd_close(file_t *);
static int vhci_fd_read(struct file *, off_t *, struct uio *, kauth_cred_t, int);
static int vhci_fd_write(struct file *, off_t *, struct uio *, kauth_cred_t, int);

const struct fileops vhci_fileops = {
       .fo_read = vhci_fd_read,
       .fo_write = vhci_fd_write,
       .fo_ioctl = vhci_fd_ioctl,
       .fo_fcntl = fnullop_fcntl,
       .fo_poll = fnullop_poll,
       .fo_stat = fbadop_stat,
       .fo_close = vhci_fd_close,
       .fo_kqfilter = fnullop_kqfilter,
       .fo_restart = fnullop_restart,
       .fo_mmap = NULL,
};

static int
vhci_fd_open(dev_t dev, int flags, int type, struct lwp *l)
{
       vhci_softc_t *sc;
       vhci_fd_t *vfd;
       struct file *fp;
       int error, fd;

       sc = device_lookup_private(&vhci_cd, minor(dev));
       if (sc == NULL)
               return EXDEV;

       error = fd_allocfile(&fp, &fd);
       if (error)
               return error;

       vfd = kmem_alloc(sizeof(*vfd), KM_SLEEP);
       vfd->port = 1;
       vfd->addr = 0;
       vfd->softc = sc;

       return fd_clone(fp, fd, flags, &vhci_fileops, vfd);
}

static int
vhci_fd_close(file_t *fp)
{
       vhci_fd_t *vfd = fp->f_data;

       KASSERT(vfd != NULL);
       vhci_usb_detach(vfd);

       kmem_free(vfd, sizeof(*vfd));
       fp->f_data = NULL;

       return 0;
}

static int
vhci_fd_read(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   int flags)
{
       vhci_fd_t *vfd = fp->f_data;
       vhci_softc_t *sc = vfd->softc;
       vhci_packet_list_t *pktlist;
       vhci_packet_t *pkt, *nxt;
       vhci_xfer_list_t vxferlist;
       vhci_xfer_t *vxfer;
       vhci_port_t *port;
       int error = 0;
       uint8_t *buf;
       size_t size;

       if (uio->uio_resid == 0)
               return 0;
       port = &sc->sc_port[vfd->port];
       pktlist = &port->endpoints[vfd->addr].host_to_usb;

       TAILQ_INIT(&vxferlist);

       mutex_enter(&port->lock);

       if (!(port->status & UPS_PORT_ENABLED)) {
               error = ENOBUFS;
               goto out;
       }

       TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
               vxfer = pkt->vxfer;
               buf = pkt->buf + pkt->cursor;

               KASSERT(pkt->size >= pkt->cursor);
               size = uimin(uio->uio_resid, pkt->size - pkt->cursor);

               KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);

               error = uiomove(buf, size, uio);
               if (error) {
                       DPRINTF("%s: error = %d\n", __func__, error);
                       goto out;
               }

               pkt->cursor += size;

               if (pkt->cursor == pkt->size) {
                       vhci_pkt_destroy(sc, pkt);
                       if (vxfer->npkts == 0) {
                               TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
                       }
               }
               if (uio->uio_resid == 0) {
                       break;
               }
       }

out:
       mutex_exit(&port->lock);

       while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
               struct usbd_xfer *xfer = &vxfer->xfer;
               TAILQ_REMOVE(&vxferlist, vxfer, freelist);

               mutex_enter(&sc->sc_lock);
               xfer->ux_actlen = xfer->ux_length;
               xfer->ux_status = USBD_NORMAL_COMPLETION;
               usb_transfer_complete(xfer);
               mutex_exit(&sc->sc_lock);
       }

       return error;
}

static int
vhci_fd_write(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   int flags)
{
       vhci_fd_t *vfd = fp->f_data;
       vhci_softc_t *sc = vfd->softc;
       vhci_packet_list_t *pktlist;
       vhci_packet_t *pkt, *nxt;
       vhci_xfer_list_t vxferlist;
       vhci_xfer_t *vxfer;
       vhci_port_t *port;
       int error = 0;
       uint8_t *buf;
       size_t pktsize, size;

       if (uio->uio_resid == 0)
               return 0;
       port = &sc->sc_port[vfd->port];
       pktlist = &port->endpoints[vfd->addr].usb_to_host;

       TAILQ_INIT(&vxferlist);

       mutex_enter(&port->lock);

       if (!(port->status & UPS_PORT_ENABLED)) {
               error = ENOBUFS;
               goto out;
       }

       TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
               vxfer = pkt->vxfer;
               buf = pkt->buf + pkt->cursor;

               pktsize = pkt->size;
               if (pkt->type.dat)
                       pktsize = ulmin(vxfer->resbuf.size, pktsize);

               KASSERT(pktsize >= pkt->cursor);
               size = uimin(uio->uio_resid, pktsize - pkt->cursor);

               KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);

               error = uiomove(buf, size, uio);
               if (error) {
                       DPRINTF("%s: error = %d\n", __func__, error);
                       goto out;
               }

               pkt->cursor += size;

               if (pkt->cursor == pktsize) {
                       vhci_pkt_destroy(sc, pkt);
                       if (vxfer->npkts == 0) {
                               TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
                       }
               }
               if (uio->uio_resid == 0) {
                       break;
               }
       }

out:
       mutex_exit(&port->lock);

       while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
               struct usbd_xfer *xfer = &vxfer->xfer;
               TAILQ_REMOVE(&vxferlist, vxfer, freelist);

               mutex_enter(&sc->sc_lock);
               xfer->ux_actlen = ulmin(vxfer->resbuf.size, xfer->ux_length);
               xfer->ux_status = USBD_NORMAL_COMPLETION;
               usb_transfer_complete(xfer);
               mutex_exit(&sc->sc_lock);
       }

       return error;
}

static int
vhci_fd_ioctl(file_t *fp, u_long cmd, void *data)
{
       vhci_fd_t *vfd = fp->f_data;

       KASSERT(vfd != NULL);

       switch (cmd) {
       case VHCI_IOC_GET_INFO:
               return vhci_get_info(vfd, data);
       case VHCI_IOC_SET_PORT:
               return vhci_set_port(vfd, data);
       case VHCI_IOC_SET_ADDR:
               return vhci_set_addr(vfd, data);
       case VHCI_IOC_USB_ATTACH:
               vhci_usb_attach(vfd);
               return 0;
       case VHCI_IOC_USB_DETACH:
               vhci_usb_detach(vfd);
               return 0;
       default:
               return EINVAL;
       }
}

/* -------------------------------------------------------------------------- */

static int vhci_match(device_t, cfdata_t, void *);
static void vhci_attach(device_t, device_t, void *);
static int vhci_activate(device_t, enum devact);

CFATTACH_DECL_NEW(vhci, sizeof(vhci_softc_t), vhci_match, vhci_attach,
   NULL, vhci_activate);

void
vhciattach(int nunits)
{
       struct cfdata *cf;
       int error;
       size_t i;

       error = config_cfattach_attach(vhci_cd.cd_name, &vhci_ca);
       if (error) {
               aprint_error("%s: unable to register cfattach\n",
                   vhci_cd.cd_name);
               (void)config_cfdriver_detach(&vhci_cd);
               return;
       }

       for (i = 0; i < VHCI_NBUSES; i++) {
               cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
               cf->cf_name = vhci_cd.cd_name;
               cf->cf_atname = vhci_cd.cd_name;
               cf->cf_unit = i;
               cf->cf_fstate = FSTATE_STAR;
               config_attach_pseudo(cf);
       }
}

static int
vhci_activate(device_t self, enum devact act)
{
       vhci_softc_t *sc = device_private(self);

       switch (act) {
       case DVACT_DEACTIVATE:
               sc->sc_dying = 1;
               return 0;
       default:
               return EOPNOTSUPP;
       }
}

static int
vhci_match(device_t parent, cfdata_t match, void *aux)
{
       return 1;
}

static void
vhci_attach(device_t parent, device_t self, void *aux)
{
       vhci_softc_t *sc = device_private(self);
       vhci_port_t *port;
       uint8_t addr;
       size_t i;

       sc->sc_dev = self;
       sc->sc_bus.ub_revision = USBREV_2_0;
       sc->sc_bus.ub_hctype = USBHCTYPE_VHCI;
       sc->sc_bus.ub_busnum = device_unit(self);
       sc->sc_bus.ub_usedma = false;
       sc->sc_bus.ub_methods = &vhci_bus_methods;
       sc->sc_bus.ub_pipesize = sizeof(vhci_pipe_t);
       sc->sc_bus.ub_hcpriv = sc;
       sc->sc_dying = false;
       mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);

       sc->sc_nports = VHCI_NPORTS;
       for (i = 0; i < sc->sc_nports; i++) {
               port = &sc->sc_port[i];
               mutex_init(&port->lock, MUTEX_DEFAULT, IPL_SOFTUSB);
               for (addr = 0; addr < VHCI_NADDRS; addr++) {
                       TAILQ_INIT(&port->endpoints[addr].usb_to_host);
                       TAILQ_INIT(&port->endpoints[addr].host_to_usb);
               }
               kcov_remote_register(KCOV_REMOTE_VHCI,
                   KCOV_REMOTE_VHCI_ID(sc->sc_bus.ub_busnum, i));
       }

       sc->sc_child = config_found(self, &sc->sc_bus, usbctlprint, CFARGS_NONE);
}