/*      $NetBSD: usb.c,v 1.203 2024/02/04 05:43:06 mrg Exp $    */

/*
* Copyright (c) 1998, 2002, 2008, 2012 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson ([email protected]) at
* Carlstedt Research & Technology and Matthew R. Green ([email protected]).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* USB specifications and other documentation can be found at
* http://www.usb.org/developers/docs/ and
* http://www.usb.org/developers/devclass_docs/
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: usb.c,v 1.203 2024/02/04 05:43:06 mrg Exp $");

#ifdef _KERNEL_OPT
#include "opt_usb.h"
#include "opt_ddb.h"
#include "opt_compat_netbsd.h"
#endif

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/device.h>
#include <sys/kthread.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/poll.h>
#include <sys/select.h>
#include <sys/vnode.h>
#include <sys/signalvar.h>
#include <sys/intr.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/bus.h>
#include <sys/once.h>
#include <sys/atomic.h>
#include <sys/sysctl.h>
#include <sys/compat_stub.h>
#include <sys/sdt.h>

#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_verbose.h>
#include <dev/usb/usb_quirks.h>
#include <dev/usb/usbhist.h>
#include <dev/usb/usb_sdt.h>

#include "ioconf.h"

#if defined(USB_DEBUG)

#ifndef USBHIST_SIZE
#define USBHIST_SIZE 50000
#endif

static struct kern_history_ent usbhistbuf[USBHIST_SIZE];
USBHIST_DEFINE(usbhist) = KERNHIST_INITIALIZER(usbhist, usbhistbuf);

#endif

#define USB_DEV_MINOR 255

#ifdef USB_DEBUG
/*
* 0  - do usual exploration
* 1  - do not use timeout exploration
* >1 - do no exploration
*/
int     usb_noexplore = 0;

#ifndef USB_DEBUG_DEFAULT
#define USB_DEBUG_DEFAULT 0
#endif

int     usbdebug = USB_DEBUG_DEFAULT;
SYSCTL_SETUP(sysctl_hw_usb_setup, "sysctl hw.usb setup")
{
       int err;
       const struct sysctlnode *rnode;
       const struct sysctlnode *cnode;

       err = sysctl_createv(clog, 0, NULL, &rnode,
           CTLFLAG_PERMANENT, CTLTYPE_NODE, "usb",
           SYSCTL_DESCR("usb global controls"),
           NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);

       if (err)
               goto fail;

       /* control debugging printfs */
       err = sysctl_createv(clog, 0, &rnode, &cnode,
           CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
           "debug", SYSCTL_DESCR("Enable debugging output"),
           NULL, 0, &usbdebug, sizeof(usbdebug), CTL_CREATE, CTL_EOL);
       if (err)
               goto fail;

       return;
fail:
       aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
}
#else
#define usb_noexplore 0
#endif

#define DPRINTF(FMT,A,B,C,D)    USBHIST_LOG(usbdebug,FMT,A,B,C,D)
#define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(usbdebug,N,FMT,A,B,C,D)

struct usb_softc {
#if 0
       device_t        sc_dev;         /* base device */
#endif
       struct usbd_bus *sc_bus;        /* USB controller */
       struct usbd_port sc_port;       /* dummy port for root hub */

       struct lwp      *sc_event_thread;
       struct lwp      *sc_attach_thread;

       char            sc_dying;
       bool            sc_pmf_registered;
};

struct usb_taskq {
       TAILQ_HEAD(, usb_task) tasks;
       kmutex_t lock;
       kcondvar_t cv;
       struct lwp *task_thread_lwp;
       const char *name;
       struct usb_task *current_task;
};

static struct usb_taskq usb_taskq[USB_NUM_TASKQS];

/* XXX wrong place */
#ifdef KDTRACE_HOOKS
#define __dtrace_used
#else
#define __dtrace_used   __unused
#endif

SDT_PROVIDER_DEFINE(usb);

SDT_PROBE_DEFINE3(usb, kernel, task, add,
   "struct usbd_device *"/*dev*/, "struct usb_task *"/*task*/, "int"/*q*/);
SDT_PROBE_DEFINE2(usb, kernel, task, rem__start,
   "struct usbd_device *"/*dev*/, "struct usb_task *"/*task*/);
SDT_PROBE_DEFINE3(usb, kernel, task, rem__done,
   "struct usbd_device *"/*dev*/,
   "struct usb_task *"/*task*/,
   "bool"/*removed*/);
SDT_PROBE_DEFINE4(usb, kernel, task, rem__wait__start,
   "struct usbd_device *"/*dev*/,
   "struct usb_task *"/*task*/,
   "int"/*queue*/,
   "kmutex_t *"/*interlock*/);
SDT_PROBE_DEFINE5(usb, kernel, task, rem__wait__done,
   "struct usbd_device *"/*dev*/,
   "struct usb_task *"/*task*/,
   "int"/*queue*/,
   "kmutex_t *"/*interlock*/,
   "bool"/*done*/);

SDT_PROBE_DEFINE1(usb, kernel, task, start,  "struct usb_task *"/*task*/);
SDT_PROBE_DEFINE1(usb, kernel, task, done,  "struct usb_task *"/*task*/);

SDT_PROBE_DEFINE1(usb, kernel, bus, needs__explore,
   "struct usbd_bus *"/*bus*/);
SDT_PROBE_DEFINE1(usb, kernel, bus, needs__reattach,
   "struct usbd_bus *"/*bus*/);
SDT_PROBE_DEFINE1(usb, kernel, bus, discover__start,
   "struct usbd_bus *"/*bus*/);
SDT_PROBE_DEFINE1(usb, kernel, bus, discover__done,
   "struct usbd_bus *"/*bus*/);
SDT_PROBE_DEFINE1(usb, kernel, bus, explore__start,
   "struct usbd_bus *"/*bus*/);
SDT_PROBE_DEFINE1(usb, kernel, bus, explore__done,
   "struct usbd_bus *"/*bus*/);

SDT_PROBE_DEFINE1(usb, kernel, event, add,  "struct usb_event *"/*uep*/);
SDT_PROBE_DEFINE1(usb, kernel, event, drop,  "struct usb_event *"/*uep*/);

dev_type_open(usbopen);
dev_type_close(usbclose);
dev_type_read(usbread);
dev_type_ioctl(usbioctl);
dev_type_poll(usbpoll);
dev_type_kqfilter(usbkqfilter);

const struct cdevsw usb_cdevsw = {
       .d_open = usbopen,
       .d_close = usbclose,
       .d_read = usbread,
       .d_write = nowrite,
       .d_ioctl = usbioctl,
       .d_stop = nostop,
       .d_tty = notty,
       .d_poll = usbpoll,
       .d_mmap = nommap,
       .d_kqfilter = usbkqfilter,
       .d_discard = nodiscard,
       .d_flag = D_OTHER
};

Static void     usb_discover(struct usb_softc *);
Static void     usb_create_event_thread(device_t);
Static void     usb_event_thread(void *);
Static void     usb_task_thread(void *);

/*
* Count of USB busses
*/
int nusbbusses = 0;

#define USB_MAX_EVENTS 100
struct usb_event_q {
       struct usb_event ue;
       SIMPLEQ_ENTRY(usb_event_q) next;
};
Static SIMPLEQ_HEAD(, usb_event_q) usb_events =
       SIMPLEQ_HEAD_INITIALIZER(usb_events);
Static int usb_nevents = 0;
Static struct selinfo usb_selevent;
Static kmutex_t usb_event_lock;
Static kcondvar_t usb_event_cv;
/* XXX this is gross and broken */
Static proc_t *usb_async_proc;  /* process that wants USB SIGIO */
Static void *usb_async_sih;
Static int usb_dev_open = 0;
Static struct usb_event *usb_alloc_event(void);
Static void usb_free_event(struct usb_event *);
Static void usb_add_event(int, struct usb_event *);
Static int usb_get_next_event(struct usb_event *);
Static void usb_async_intr(void *);
Static void usb_soft_intr(void *);

Static const char *usbrev_str[] = USBREV_STR;

static int usb_match(device_t, cfdata_t, void *);
static void usb_attach(device_t, device_t, void *);
static int usb_detach(device_t, int);
static int usb_activate(device_t, enum devact);
static void usb_childdet(device_t, device_t);
static int usb_once_init(void);
static void usb_doattach(device_t);

CFATTACH_DECL3_NEW(usb, sizeof(struct usb_softc),
   usb_match, usb_attach, usb_detach, usb_activate, NULL, usb_childdet,
   DVF_DETACH_SHUTDOWN);

static const char *taskq_names[] = USB_TASKQ_NAMES;

int
usb_match(device_t parent, cfdata_t match, void *aux)
{
       USBHIST_FUNC(); USBHIST_CALLED(usbdebug);

       return UMATCH_GENERIC;
}

void
usb_attach(device_t parent, device_t self, void *aux)
{
       static ONCE_DECL(init_control);
       struct usb_softc *sc = device_private(self);
       int usbrev;

       sc->sc_bus = aux;
       usbrev = sc->sc_bus->ub_revision;

       cv_init(&sc->sc_bus->ub_needsexplore_cv, "usbevt");
       cv_init(&sc->sc_bus->ub_rhxfercv, "usbrhxfer");
       sc->sc_pmf_registered = false;

       aprint_naive("\n");
       aprint_normal(": USB revision %s", usbrev_str[usbrev]);
       switch (usbrev) {
       case USBREV_1_0:
       case USBREV_1_1:
       case USBREV_2_0:
       case USBREV_3_0:
       case USBREV_3_1:
               break;
       default:
               aprint_error(", not supported\n");
               sc->sc_dying = 1;
               return;
       }
       aprint_normal("\n");

       /* XXX we should have our own level */
       sc->sc_bus->ub_soft = softint_establish(SOFTINT_USB | SOFTINT_MPSAFE,
           usb_soft_intr, sc->sc_bus);
       if (sc->sc_bus->ub_soft == NULL) {
               aprint_error("%s: can't register softintr\n",
                            device_xname(self));
               sc->sc_dying = 1;
               return;
       }

       sc->sc_bus->ub_methods->ubm_getlock(sc->sc_bus, &sc->sc_bus->ub_lock);
       KASSERT(sc->sc_bus->ub_lock != NULL);

       RUN_ONCE(&init_control, usb_once_init);
       config_interrupts(self, usb_doattach);
}

#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_output.h>
#include <ddb/db_command.h>

static void
db_usb_xfer(db_expr_t addr, bool have_addr, db_expr_t count,
   const char *modif)
{
       struct usbd_xfer *xfer = (struct usbd_xfer *)(uintptr_t)addr;

       if (!have_addr) {
               db_printf("%s: need usbd_xfer address\n", __func__);
               return;
       }

       db_printf("usb xfer: %p pipe %p priv %p buffer %p\n",
           xfer, xfer->ux_pipe, xfer->ux_priv, xfer->ux_buffer);
       db_printf(" len %x actlen %x flags %x timeout %x status %x\n",
           xfer->ux_length, xfer->ux_actlen, xfer->ux_flags, xfer->ux_timeout,
           xfer->ux_status);
       db_printf(" callback %p done %x state %x tm_set %x tm_reset %x\n",
           xfer->ux_callback, xfer->ux_done, xfer->ux_state,
           xfer->ux_timeout_set, xfer->ux_timeout_reset);
}

static void
db_usb_xferlist(db_expr_t addr, bool have_addr, db_expr_t count,
   const char *modif)
{
       struct usbd_pipe *pipe = (struct usbd_pipe *)(uintptr_t)addr;
       struct usbd_xfer *xfer;

       if (!have_addr) {
               db_printf("%s: need usbd_pipe address\n", __func__);
               return;
       }

       db_printf("usb pipe: %p\n", pipe);
       unsigned xfercount = 0;
       SIMPLEQ_FOREACH(xfer, &pipe->up_queue, ux_next) {
               db_printf("  xfer = %p%s", xfer,
                   xfercount == 0 || xfercount % 2 == 0 ? "" : "\n");
               xfercount++;
       }
}

static const struct db_command db_usb_command_table[] = {
       { DDB_ADD_CMD("usbxfer",        db_usb_xfer,    0,
         "display a USB xfer structure",
         NULL, NULL) },
       { DDB_ADD_CMD("usbxferlist",    db_usb_xferlist,        0,
         "display a USB xfer structure given pipe",
         NULL, NULL) },
       { DDB_END_CMD },
};

static void
usb_init_ddb(void)
{

       (void)db_register_tbl(DDB_SHOW_CMD, db_usb_command_table);
}
#else
#define usb_init_ddb() /* nothing */
#endif

static int
usb_once_init(void)
{
       struct usb_taskq *taskq;
       int i;

       USBHIST_LINK_STATIC(usbhist);

       selinit(&usb_selevent);
       mutex_init(&usb_event_lock, MUTEX_DEFAULT, IPL_NONE);
       cv_init(&usb_event_cv, "usbrea");

       for (i = 0; i < USB_NUM_TASKQS; i++) {
               taskq = &usb_taskq[i];

               TAILQ_INIT(&taskq->tasks);
               /*
                * Since USB task methods usb_{add,rem}_task are callable
                * from any context, we have to make this lock a spinlock.
                */
               mutex_init(&taskq->lock, MUTEX_DEFAULT, IPL_USB);
               cv_init(&taskq->cv, "usbtsk");
               taskq->name = taskq_names[i];
               taskq->current_task = NULL;
               if (kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
                   usb_task_thread, taskq, &taskq->task_thread_lwp,
                   "%s", taskq->name)) {
                       printf("unable to create task thread: %s\n", taskq->name);
                       panic("usb_create_event_thread task");
               }
               /*
                * XXX we should make sure these threads are alive before
                * end up using them in usb_doattach().
                */
       }

       KASSERT(usb_async_sih == NULL);
       usb_async_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
          usb_async_intr, NULL);

       usb_init_ddb();

       return 0;
}

static void
usb_doattach(device_t self)
{
       struct usb_softc *sc = device_private(self);
       struct usbd_device *dev;
       usbd_status err;
       int speed;
       struct usb_event *ue;

       USBHIST_FUNC(); USBHIST_CALLED(usbdebug);

       KASSERT(KERNEL_LOCKED_P());

       /* Protected by KERNEL_LOCK */
       nusbbusses++;

       sc->sc_bus->ub_usbctl = self;
       sc->sc_port.up_power = USB_MAX_POWER;

       switch (sc->sc_bus->ub_revision) {
       case USBREV_1_0:
       case USBREV_1_1:
               speed = USB_SPEED_FULL;
               break;
       case USBREV_2_0:
               speed = USB_SPEED_HIGH;
               break;
       case USBREV_3_0:
               speed = USB_SPEED_SUPER;
               break;
       case USBREV_3_1:
               speed = USB_SPEED_SUPER_PLUS;
               break;
       default:
               panic("usb_doattach");
       }

       ue = usb_alloc_event();
       ue->u.ue_ctrlr.ue_bus = device_unit(self);
       usb_add_event(USB_EVENT_CTRLR_ATTACH, ue);

       sc->sc_attach_thread = curlwp;
       err = usbd_new_device(self, sc->sc_bus, 0, speed, 0,
                 &sc->sc_port);
       sc->sc_attach_thread = NULL;
       if (!err) {
               dev = sc->sc_port.up_dev;
               if (dev->ud_hub == NULL) {
                       sc->sc_dying = 1;
                       aprint_error("%s: root device is not a hub\n",
                                    device_xname(self));
                       return;
               }
               sc->sc_bus->ub_roothub = dev;
               usb_create_event_thread(self);
       } else {
               aprint_error("%s: root hub problem, error=%s\n",
                            device_xname(self), usbd_errstr(err));
               sc->sc_dying = 1;
       }

       /*
        * Drop this reference after the first set of attachments in the
        * event thread.
        */
       config_pending_incr(self);

       if (!pmf_device_register(self, NULL, NULL))
               aprint_error_dev(self, "couldn't establish power handler\n");
       else
               sc->sc_pmf_registered = true;

       return;
}

void
usb_create_event_thread(device_t self)
{
       struct usb_softc *sc = device_private(self);

       if (kthread_create(PRI_NONE, 0, NULL,
           usb_event_thread, sc, &sc->sc_event_thread,
           "%s", device_xname(self))) {
               printf("%s: unable to create event thread for\n",
                      device_xname(self));
               panic("usb_create_event_thread");
       }
}

bool
usb_in_event_thread(device_t dev)
{
       struct usb_softc *sc;

       if (cold)
               return true;

       for (; dev; dev = device_parent(dev)) {
               if (device_is_a(dev, "usb"))
                       break;
       }
       if (dev == NULL)
               return false;
       sc = device_private(dev);

       return curlwp == sc->sc_event_thread || curlwp == sc->sc_attach_thread;
}

/*
* Add a task to be performed by the task thread.  This function can be
* called from any context and the task will be executed in a process
* context ASAP.
*/
void
usb_add_task(struct usbd_device *dev, struct usb_task *task, int queue)
{
       struct usb_taskq *taskq;

       USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
       SDT_PROBE3(usb, kernel, task, add,  dev, task, queue);

       KASSERT(0 <= queue);
       KASSERT(queue < USB_NUM_TASKQS);
       taskq = &usb_taskq[queue];
       mutex_enter(&taskq->lock);
       if (atomic_cas_uint(&task->queue, USB_NUM_TASKQS, queue) ==
           USB_NUM_TASKQS) {
               DPRINTFN(2, "task=%#jx", (uintptr_t)task, 0, 0, 0);
               TAILQ_INSERT_TAIL(&taskq->tasks, task, next);
               cv_signal(&taskq->cv);
       } else {
               DPRINTFN(2, "task=%#jx on q", (uintptr_t)task, 0, 0, 0);
       }
       mutex_exit(&taskq->lock);
}

/*
* usb_rem_task(dev, task)
*
*      If task is queued to run, remove it from the queue.  Return
*      true if it successfully removed the task from the queue, false
*      if not.
*
*      Caller is _not_ guaranteed that the task is not running when
*      this is done.
*
*      Never sleeps.
*/
bool
usb_rem_task(struct usbd_device *dev, struct usb_task *task)
{
       unsigned queue;

       USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
       SDT_PROBE2(usb, kernel, task, rem__start,  dev, task);

       while ((queue = task->queue) != USB_NUM_TASKQS) {
               struct usb_taskq *taskq = &usb_taskq[queue];
               mutex_enter(&taskq->lock);
               if (__predict_true(task->queue == queue)) {
                       TAILQ_REMOVE(&taskq->tasks, task, next);
                       task->queue = USB_NUM_TASKQS;
                       mutex_exit(&taskq->lock);
                       SDT_PROBE3(usb, kernel, task, rem__done,
                           dev, task, true);
                       return true; /* removed from the queue */
               }
               mutex_exit(&taskq->lock);
       }

       SDT_PROBE3(usb, kernel, task, rem__done,  dev, task, false);
       return false;           /* was not removed from the queue */
}

/*
* usb_rem_task_wait(dev, task, queue, interlock)
*
*      If task is scheduled to run, remove it from the queue.  If it
*      may have already begun to run, drop interlock if not null, wait
*      for it to complete, and reacquire interlock if not null.
*      Return true if it successfully removed the task from the queue,
*      false if not.
*
*      Caller MUST guarantee that task will not be scheduled on a
*      _different_ queue, at least until after this returns.
*
*      If caller guarantees that task will not be scheduled on the
*      same queue before this returns, then caller is guaranteed that
*      the task is not running at all when this returns.
*
*      May sleep.
*/
bool
usb_rem_task_wait(struct usbd_device *dev, struct usb_task *task, int queue,
   kmutex_t *interlock)
{
       struct usb_taskq *taskq;
       int queue1;
       bool removed;

       USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
       SDT_PROBE4(usb, kernel, task, rem__wait__start,
           dev, task, queue, interlock);
       ASSERT_SLEEPABLE();
       KASSERT(0 <= queue);
       KASSERT(queue < USB_NUM_TASKQS);

       taskq = &usb_taskq[queue];
       mutex_enter(&taskq->lock);
       queue1 = task->queue;
       if (queue1 == USB_NUM_TASKQS) {
               /*
                * It is not on the queue.  It may be about to run, or
                * it may have already finished running -- there is no
                * stopping it now.  Wait for it if it is running.
                */
               if (interlock)
                       mutex_exit(interlock);
               while (taskq->current_task == task)
                       cv_wait(&taskq->cv, &taskq->lock);
               removed = false;
       } else {
               /*
                * It is still on the queue.  We can stop it before the
                * task thread will run it.
                */
               KASSERTMSG(queue1 == queue, "task %p on q%d expected on q%d",
                   task, queue1, queue);
               TAILQ_REMOVE(&taskq->tasks, task, next);
               task->queue = USB_NUM_TASKQS;
               removed = true;
       }
       mutex_exit(&taskq->lock);

       /*
        * If there's an interlock, and we dropped it to wait,
        * reacquire it.
        */
       if (interlock && !removed)
               mutex_enter(interlock);

       SDT_PROBE5(usb, kernel, task, rem__wait__done,
           dev, task, queue, interlock, removed);
       return removed;
}

/*
* usb_task_pending(dev, task)
*
*      True if task is queued, false if not.  Note that if task is
*      already running, it is not considered queued.
*
*      For _negative_ diagnostic assertions only:
*
*              KASSERT(!usb_task_pending(dev, task));
*/
bool
usb_task_pending(struct usbd_device *dev, struct usb_task *task)
{

       return task->queue != USB_NUM_TASKQS;
}

void
usb_event_thread(void *arg)
{
       struct usb_softc *sc = arg;
       struct usbd_bus *bus = sc->sc_bus;

       USBHIST_FUNC(); USBHIST_CALLED(usbdebug);

       KASSERT(KERNEL_LOCKED_P());

       /*
        * In case this controller is a companion controller to an
        * EHCI controller we need to wait until the EHCI controller
        * has grabbed the port.
        * XXX It would be nicer to do this with a tsleep(), but I don't
        * know how to synchronize the creation of the threads so it
        * will work.
        */
       if (bus->ub_revision < USBREV_2_0) {
               usb_delay_ms(bus, 500);
       }

       /* Make sure first discover does something. */
       mutex_enter(bus->ub_lock);
       sc->sc_bus->ub_needsexplore = 1;
       usb_discover(sc);
       mutex_exit(bus->ub_lock);

       /* Drop the config_pending reference from attach. */
       config_pending_decr(bus->ub_usbctl);

       mutex_enter(bus->ub_lock);
       while (!sc->sc_dying) {
#if 0 /* not yet */
               while (sc->sc_bus->ub_usepolling)
                       kpause("usbpoll", true, hz, bus->ub_lock);
#endif

               if (usb_noexplore < 2)
                       usb_discover(sc);

               cv_timedwait(&bus->ub_needsexplore_cv,
                   bus->ub_lock, usb_noexplore ? 0 : hz * 60);

               DPRINTFN(2, "sc %#jx woke up", (uintptr_t)sc, 0, 0, 0);
       }
       sc->sc_event_thread = NULL;

       /* In case parent is waiting for us to exit. */
       cv_signal(&bus->ub_needsexplore_cv);
       mutex_exit(bus->ub_lock);

       DPRINTF("sc %#jx exit", (uintptr_t)sc, 0, 0, 0);
       kthread_exit(0);
}

void
usb_task_thread(void *arg)
{
       struct usb_task *task;
       struct usb_taskq *taskq;
       bool mpsafe;

       taskq = arg;

       USBHIST_FUNC();
       USBHIST_CALLARGS(usbdebug, "start taskq %#jx",
           (uintptr_t)taskq, 0, 0, 0);

       mutex_enter(&taskq->lock);
       for (;;) {
               task = TAILQ_FIRST(&taskq->tasks);
               if (task == NULL) {
                       cv_wait(&taskq->cv, &taskq->lock);
                       task = TAILQ_FIRST(&taskq->tasks);
               }
               DPRINTFN(2, "woke up task=%#jx", (uintptr_t)task, 0, 0, 0);
               if (task != NULL) {
                       mpsafe = ISSET(task->flags, USB_TASKQ_MPSAFE);
                       TAILQ_REMOVE(&taskq->tasks, task, next);
                       task->queue = USB_NUM_TASKQS;
                       taskq->current_task = task;
                       mutex_exit(&taskq->lock);

                       if (!mpsafe)
                               KERNEL_LOCK(1, curlwp);
                       SDT_PROBE1(usb, kernel, task, start,  task);
                       task->fun(task->arg);
                       /* Can't dereference task after this point.  */
                       SDT_PROBE1(usb, kernel, task, done,  task);
                       if (!mpsafe)
                               KERNEL_UNLOCK_ONE(curlwp);

                       mutex_enter(&taskq->lock);
                       KASSERTMSG(taskq->current_task == task,
                           "somebody scribbled on usb taskq %p", taskq);
                       taskq->current_task = NULL;
                       cv_broadcast(&taskq->cv);
               }
       }
       mutex_exit(&taskq->lock);
}

int
usbctlprint(void *aux, const char *pnp)
{
       /* only "usb"es can attach to host controllers */
       if (pnp)
               aprint_normal("usb at %s", pnp);

       return UNCONF;
}

int
usbopen(dev_t dev, int flag, int mode, struct lwp *l)
{
       int unit = minor(dev);
       struct usb_softc *sc;

       if (nusbbusses == 0)
               return ENXIO;

       if (unit == USB_DEV_MINOR) {
               if (usb_dev_open)
                       return EBUSY;
               usb_dev_open = 1;
               mutex_enter(&proc_lock);
               atomic_store_relaxed(&usb_async_proc, NULL);
               mutex_exit(&proc_lock);
               return 0;
       }

       sc = device_lookup_private(&usb_cd, unit);
       if (!sc)
               return ENXIO;

       if (sc->sc_dying)
               return EIO;

       return 0;
}

int
usbread(dev_t dev, struct uio *uio, int flag)
{
       struct usb_event *ue;
       struct usb_event30 *ueo = NULL; /* XXXGCC */
       int useold = 0;
       int error, n;

       if (minor(dev) != USB_DEV_MINOR)
               return ENXIO;

       switch (uio->uio_resid) {
       case sizeof(struct usb_event30):
               ueo = kmem_zalloc(sizeof(struct usb_event30), KM_SLEEP);
               useold = 1;
               /* FALLTHROUGH */
       case sizeof(struct usb_event):
               ue = usb_alloc_event();
               break;
       default:
               return EINVAL;
       }

       error = 0;
       mutex_enter(&usb_event_lock);
       for (;;) {
               n = usb_get_next_event(ue);
               if (n != 0)
                       break;
               if (flag & IO_NDELAY) {
                       error = EWOULDBLOCK;
                       break;
               }
               error = cv_wait_sig(&usb_event_cv, &usb_event_lock);
               if (error)
                       break;
       }
       mutex_exit(&usb_event_lock);
       if (!error) {
               if (useold) { /* copy fields to old struct */
                       MODULE_HOOK_CALL(usb_subr_copy_30_hook,
                           (ue, ueo, uio), enosys(), error);
                       if (error == ENOSYS)
                               error = EINVAL;

                       if (!error)
                               error = uiomove((void *)ueo, sizeof(*ueo), uio);
               } else
                       error = uiomove((void *)ue, sizeof(*ue), uio);
       }
       usb_free_event(ue);
       if (ueo)
               kmem_free(ueo, sizeof(struct usb_event30));

       return error;
}

int
usbclose(dev_t dev, int flag, int mode,
   struct lwp *l)
{
       int unit = minor(dev);

       if (unit == USB_DEV_MINOR) {
               mutex_enter(&proc_lock);
               atomic_store_relaxed(&usb_async_proc, NULL);
               mutex_exit(&proc_lock);
               usb_dev_open = 0;
       }

       return 0;
}

int
usbioctl(dev_t devt, u_long cmd, void *data, int flag, struct lwp *l)
{
       struct usb_softc *sc;
       int unit = minor(devt);

       USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "cmd %#jx", cmd, 0, 0, 0);

       if (unit == USB_DEV_MINOR) {
               switch (cmd) {
               case FIONBIO:
                       /* All handled in the upper FS layer. */
                       return 0;

               case FIOASYNC:
                       mutex_enter(&proc_lock);
                       atomic_store_relaxed(&usb_async_proc,
                           *(int *)data ? l->l_proc : NULL);
                       mutex_exit(&proc_lock);
                       return 0;

               default:
                       return EINVAL;
               }
       }

       sc = device_lookup_private(&usb_cd, unit);

       if (sc->sc_dying)
               return EIO;

       int error = 0;
       switch (cmd) {
#ifdef USB_DEBUG
       case USB_SETDEBUG:
               if (!(flag & FWRITE))
                       return EBADF;
               usbdebug  = ((*(int *)data) & 0x000000ff);
               break;
#endif /* USB_DEBUG */
       case USB_REQUEST:
       {
               struct usb_ctl_request *ur = (void *)data;
               int len = UGETW(ur->ucr_request.wLength);
               struct iovec iov;
               struct uio uio;
               void *ptr = 0;
               int addr = ur->ucr_addr;
               usbd_status err;

               if (!(flag & FWRITE)) {
                       error = EBADF;
                       goto fail;
               }

               DPRINTF("USB_REQUEST addr=%jd len=%jd", addr, len, 0, 0);
               if (len < 0 || len > 32768) {
                       error = EINVAL;
                       goto fail;
               }
               if (addr < 0 || addr >= USB_MAX_DEVICES) {
                       error = EINVAL;
                       goto fail;
               }
               size_t dindex = usb_addr2dindex(addr);
               if (sc->sc_bus->ub_devices[dindex] == NULL) {
                       error = EINVAL;
                       goto fail;
               }
               if (len != 0) {
                       iov.iov_base = (void *)ur->ucr_data;
                       iov.iov_len = len;
                       uio.uio_iov = &iov;
                       uio.uio_iovcnt = 1;
                       uio.uio_resid = len;
                       uio.uio_offset = 0;
                       uio.uio_rw =
                               ur->ucr_request.bmRequestType & UT_READ ?
                               UIO_READ : UIO_WRITE;
                       uio.uio_vmspace = l->l_proc->p_vmspace;
                       ptr = kmem_alloc(len, KM_SLEEP);
                       if (uio.uio_rw == UIO_WRITE) {
                               error = uiomove(ptr, len, &uio);
                               if (error)
                                       goto ret;
                       }
               }
               err = usbd_do_request_flags(sc->sc_bus->ub_devices[dindex],
                         &ur->ucr_request, ptr, ur->ucr_flags, &ur->ucr_actlen,
                         USBD_DEFAULT_TIMEOUT);
               if (err) {
                       error = EIO;
                       goto ret;
               }
               if (len > ur->ucr_actlen)
                       len = ur->ucr_actlen;
               if (len != 0) {
                       if (uio.uio_rw == UIO_READ) {
                               error = uiomove(ptr, len, &uio);
                               if (error)
                                       goto ret;
                       }
               }
       ret:
               if (ptr) {
                       len = UGETW(ur->ucr_request.wLength);
                       kmem_free(ptr, len);
               }
               break;
       }

       case USB_DEVICEINFO:
       {
               struct usbd_device *dev;
               struct usb_device_info *di = (void *)data;
               int addr = di->udi_addr;

               if (addr < 0 || addr >= USB_MAX_DEVICES) {
                       error = EINVAL;
                       goto fail;
               }
               size_t dindex = usb_addr2dindex(addr);
               if ((dev = sc->sc_bus->ub_devices[dindex]) == NULL) {
                       error = ENXIO;
                       goto fail;
               }
               usbd_fill_deviceinfo(dev, di, 1);
               break;
       }

       case USB_DEVICEINFO_30:
       {
               struct usbd_device *dev;
               struct usb_device_info30 *di = (void *)data;
               int addr = di->udi_addr;

               if (addr < 1 || addr >= USB_MAX_DEVICES) {
                       error = EINVAL;
                       goto fail;
               }
               size_t dindex = usb_addr2dindex(addr);
               if ((dev = sc->sc_bus->ub_devices[dindex]) == NULL) {
                       error = ENXIO;
                       goto fail;
               }
               MODULE_HOOK_CALL(usb_subr_fill_30_hook,
                   (dev, di, 1, usbd_devinfo_vp, usbd_printBCD),
                   enosys(), error);
               if (error == ENOSYS)
                       error = EINVAL;
               if (error)
                       goto fail;
               break;
       }

       case USB_DEVICESTATS:
               *(struct usb_device_stats *)data = sc->sc_bus->ub_stats;
               break;

       default:
               error = EINVAL;
       }

fail:

       DPRINTF("... done (error = %jd)", error, 0, 0, 0);

       return error;
}

int
usbpoll(dev_t dev, int events, struct lwp *l)
{
       int revents, mask;

       if (minor(dev) == USB_DEV_MINOR) {
               revents = 0;
               mask = POLLIN | POLLRDNORM;

               mutex_enter(&usb_event_lock);
               if (events & mask && usb_nevents > 0)
                       revents |= events & mask;
               if (revents == 0 && events & mask)
                       selrecord(l, &usb_selevent);
               mutex_exit(&usb_event_lock);

               return revents;
       } else {
               return 0;
       }
}

static void
filt_usbrdetach(struct knote *kn)
{

       mutex_enter(&usb_event_lock);
       selremove_knote(&usb_selevent, kn);
       mutex_exit(&usb_event_lock);
}

static int
filt_usbread(struct knote *kn, long hint)
{

       if (usb_nevents == 0)
               return 0;

       kn->kn_data = sizeof(struct usb_event);
       return 1;
}

static const struct filterops usbread_filtops = {
       .f_flags = FILTEROP_ISFD,
       .f_attach = NULL,
       .f_detach = filt_usbrdetach,
       .f_event = filt_usbread,
};

int
usbkqfilter(dev_t dev, struct knote *kn)
{

       switch (kn->kn_filter) {
       case EVFILT_READ:
               if (minor(dev) != USB_DEV_MINOR)
                       return 1;
               kn->kn_fop = &usbread_filtops;
               break;

       default:
               return EINVAL;
       }

       kn->kn_hook = NULL;

       mutex_enter(&usb_event_lock);
       selrecord_knote(&usb_selevent, kn);
       mutex_exit(&usb_event_lock);

       return 0;
}

/* Explore device tree from the root. */
Static void
usb_discover(struct usb_softc *sc)
{
       struct usbd_bus *bus = sc->sc_bus;

       USBHIST_FUNC(); USBHIST_CALLED(usbdebug);

       KASSERT(KERNEL_LOCKED_P());
       KASSERT(mutex_owned(bus->ub_lock));

       if (usb_noexplore > 1)
               return;

       /*
        * We need mutual exclusion while traversing the device tree,
        * but this is guaranteed since this function is only called
        * from the event thread for the controller.
        *
        * Also, we now have bus->ub_lock held, and in combination
        * with ub_exploring, avoids interferring with polling.
        */
       SDT_PROBE1(usb, kernel, bus, discover__start,  bus);
       while (bus->ub_needsexplore && !sc->sc_dying) {
               bus->ub_needsexplore = 0;
               mutex_exit(sc->sc_bus->ub_lock);
               SDT_PROBE1(usb, kernel, bus, explore__start,  bus);
               bus->ub_roothub->ud_hub->uh_explore(bus->ub_roothub);
               SDT_PROBE1(usb, kernel, bus, explore__done,  bus);
               mutex_enter(bus->ub_lock);
       }
       SDT_PROBE1(usb, kernel, bus, discover__done,  bus);
}

void
usb_needs_explore(struct usbd_device *dev)
{

       USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
       SDT_PROBE1(usb, kernel, bus, needs__explore,  dev->ud_bus);

       mutex_enter(dev->ud_bus->ub_lock);
       dev->ud_bus->ub_needsexplore = 1;
       cv_signal(&dev->ud_bus->ub_needsexplore_cv);
       mutex_exit(dev->ud_bus->ub_lock);
}

void
usb_needs_reattach(struct usbd_device *dev)
{

       USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
       SDT_PROBE1(usb, kernel, bus, needs__reattach,  dev->ud_bus);

       mutex_enter(dev->ud_bus->ub_lock);
       dev->ud_powersrc->up_reattach = 1;
       dev->ud_bus->ub_needsexplore = 1;
       cv_signal(&dev->ud_bus->ub_needsexplore_cv);
       mutex_exit(dev->ud_bus->ub_lock);
}

/* Called at with usb_event_lock held. */
int
usb_get_next_event(struct usb_event *ue)
{
       struct usb_event_q *ueq;

       KASSERT(mutex_owned(&usb_event_lock));

       if (usb_nevents <= 0)
               return 0;
       ueq = SIMPLEQ_FIRST(&usb_events);
#ifdef DIAGNOSTIC
       if (ueq == NULL) {
               printf("usb: usb_nevents got out of sync! %d\n", usb_nevents);
               usb_nevents = 0;
               return 0;
       }
#endif
       if (ue)
               *ue = ueq->ue;
       SIMPLEQ_REMOVE_HEAD(&usb_events, next);
       usb_free_event((struct usb_event *)(void *)ueq);
       usb_nevents--;
       return 1;
}

void
usbd_add_dev_event(int type, struct usbd_device *udev)
{
       struct usb_event *ue = usb_alloc_event();

       usbd_fill_deviceinfo(udev, &ue->u.ue_device, false);
       usb_add_event(type, ue);
}

void
usbd_add_drv_event(int type, struct usbd_device *udev, device_t dev)
{
       struct usb_event *ue = usb_alloc_event();

       ue->u.ue_driver.ue_cookie = udev->ud_cookie;
       strncpy(ue->u.ue_driver.ue_devname, device_xname(dev),
           sizeof(ue->u.ue_driver.ue_devname));
       usb_add_event(type, ue);
}

Static struct usb_event *
usb_alloc_event(void)
{
       /* Yes, this is right; we allocate enough so that we can use it later */
       return kmem_zalloc(sizeof(struct usb_event_q), KM_SLEEP);
}

Static void
usb_free_event(struct usb_event *uep)
{
       kmem_free(uep, sizeof(struct usb_event_q));
}

Static void
usb_add_event(int type, struct usb_event *uep)
{
       struct usb_event_q *ueq;
       struct timeval thetime;

       USBHIST_FUNC(); USBHIST_CALLED(usbdebug);

       microtime(&thetime);
       /* Don't want to wait here with usb_event_lock held */
       ueq = (struct usb_event_q *)(void *)uep;
       ueq->ue = *uep;
       ueq->ue.ue_type = type;
       TIMEVAL_TO_TIMESPEC(&thetime, &ueq->ue.ue_time);
       SDT_PROBE1(usb, kernel, event, add,  uep);

       mutex_enter(&usb_event_lock);
       if (++usb_nevents >= USB_MAX_EVENTS) {
               /* Too many queued events, drop an old one. */
               DPRINTF("event dropped", 0, 0, 0, 0);
#ifdef KDTRACE_HOOKS
               struct usb_event oue;
               if (usb_get_next_event(&oue))
                       SDT_PROBE1(usb, kernel, event, drop,  &oue);
#else
               usb_get_next_event(NULL);
#endif
       }
       SIMPLEQ_INSERT_TAIL(&usb_events, ueq, next);
       cv_signal(&usb_event_cv);
       selnotify(&usb_selevent, 0, 0);
       if (atomic_load_relaxed(&usb_async_proc) != NULL) {
               kpreempt_disable();
               softint_schedule(usb_async_sih);
               kpreempt_enable();
       }
       mutex_exit(&usb_event_lock);
}

Static void
usb_async_intr(void *cookie)
{
       proc_t *proc;

       mutex_enter(&proc_lock);
       if ((proc = atomic_load_relaxed(&usb_async_proc)) != NULL)
               psignal(proc, SIGIO);
       mutex_exit(&proc_lock);
}

Static void
usb_soft_intr(void *arg)
{
       struct usbd_bus *bus = arg;

       mutex_enter(bus->ub_lock);
       bus->ub_methods->ubm_softint(bus);
       mutex_exit(bus->ub_lock);
}

void
usb_schedsoftintr(struct usbd_bus *bus)
{

       USBHIST_FUNC();
       USBHIST_CALLARGS(usbdebug, "polling=%jd", bus->ub_usepolling, 0, 0, 0);

       /* In case the bus never finished setting up. */
       if (__predict_false(bus->ub_soft == NULL))
               return;

       if (bus->ub_usepolling) {
               bus->ub_methods->ubm_softint(bus);
       } else {
               kpreempt_disable();
               softint_schedule(bus->ub_soft);
               kpreempt_enable();
       }
}

int
usb_activate(device_t self, enum devact act)
{
       struct usb_softc *sc = device_private(self);

       switch (act) {
       case DVACT_DEACTIVATE:
               sc->sc_dying = 1;
               return 0;
       default:
               return EOPNOTSUPP;
       }
}

void
usb_childdet(device_t self, device_t child)
{
       int i;
       struct usb_softc *sc = device_private(self);
       struct usbd_device *dev;

       if ((dev = sc->sc_port.up_dev) == NULL || dev->ud_subdevlen == 0)
               return;

       for (i = 0; i < dev->ud_subdevlen; i++)
               if (dev->ud_subdevs[i] == child)
                       dev->ud_subdevs[i] = NULL;
}

int
usb_detach(device_t self, int flags)
{
       struct usb_softc *sc = device_private(self);
       struct usb_event *ue;
       int rc;

       USBHIST_FUNC(); USBHIST_CALLED(usbdebug);

       /* Make all devices disconnect. */
       if (sc->sc_port.up_dev != NULL &&
           (rc = usb_disconnect_port(&sc->sc_port, self, flags)) != 0)
               return rc;

       if (sc->sc_pmf_registered)
               pmf_device_deregister(self);
       /* Kill off event thread. */
       sc->sc_dying = 1;
       while (sc->sc_event_thread != NULL) {
               mutex_enter(sc->sc_bus->ub_lock);
               cv_signal(&sc->sc_bus->ub_needsexplore_cv);
               cv_timedwait(&sc->sc_bus->ub_needsexplore_cv,
                   sc->sc_bus->ub_lock, hz * 60);
               mutex_exit(sc->sc_bus->ub_lock);
       }
       DPRINTF("event thread dead", 0, 0, 0, 0);

       if (sc->sc_bus->ub_soft != NULL) {
               softint_disestablish(sc->sc_bus->ub_soft);
               sc->sc_bus->ub_soft = NULL;
       }

       ue = usb_alloc_event();
       ue->u.ue_ctrlr.ue_bus = device_unit(self);
       usb_add_event(USB_EVENT_CTRLR_DETACH, ue);

       cv_destroy(&sc->sc_bus->ub_needsexplore_cv);
       cv_destroy(&sc->sc_bus->ub_rhxfercv);

       return 0;
}