/* $NetBSD: umcpmio.c,v 1.6 2025/04/02 01:22:20 riastradh Exp $ */
/*
* Copyright (c) 2024 Brad Spencer <
[email protected]>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: umcpmio.c,v 1.6 2025/04/02 01:22:20 riastradh Exp $");
/*
* Driver for the Microchip MCP2221 / MCP2221A USB multi-io chip
*/
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/file.h>
#include <sys/gpio.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/lwp.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/tty.h>
#include <sys/vnode.h>
#include <dev/i2c/i2cvar.h>
#include <dev/gpio/gpiovar.h>
#include <dev/hid/hid.h>
#include <dev/usb/uhidev.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbhid.h>
#include <dev/usb/umcpmio.h>
#include <dev/usb/umcpmio_hid_reports.h>
#include <dev/usb/umcpmio_io.h>
#include <dev/usb/umcpmio_subr.h>
int umcpmio_send_report(struct umcpmio_softc *, uint8_t *, size_t, uint8_t *,
int);
static const struct usb_devno umcpmio_devs[] = {
{ USB_VENDOR_MICROCHIP, USB_PRODUCT_MICROCHIP_MCP2221 },
};
#define umcpmio_lookup(v, p) usb_lookup(umcpmio_devs, v, p)
static int umcpmio_match(device_t, cfdata_t, void *);
static void umcpmio_attach(device_t, device_t, void *);
static int umcpmio_detach(device_t, int);
static int umcpmio_activate(device_t, enum devact);
static int umcpmio_verify_sysctl(SYSCTLFN_ARGS);
static int umcpmio_verify_dac_sysctl(SYSCTLFN_ARGS);
static int umcpmio_verify_adc_sysctl(SYSCTLFN_ARGS);
static int umcpmio_verify_gpioclock_dc_sysctl(SYSCTLFN_ARGS);
static int umcpmio_verify_gpioclock_cd_sysctl(SYSCTLFN_ARGS);
#define UMCPMIO_DEBUG 1
#ifdef UMCPMIO_DEBUG
#define DPRINTF(x) do { if (umcpmiodebug) printf x; } while (0)
#define DPRINTFN(n, x) do { if (umcpmiodebug > (n)) printf x; } while (0)
int umcpmiodebug = 0;
#else
#define DPRINTF(x) __nothing
#define DPRINTFN(n, x) __nothing
#endif
CFATTACH_DECL_NEW(umcpmio, sizeof(struct umcpmio_softc), umcpmio_match,
umcpmio_attach, umcpmio_detach, umcpmio_activate);
static void
WAITMS(int ms)
{
if (ms > 0)
delay(ms * 1000);
}
extern struct cfdriver umcpmio_cd;
static dev_type_open(umcpmio_dev_open);
static dev_type_read(umcpmio_dev_read);
static dev_type_write(umcpmio_dev_write);
static dev_type_close(umcpmio_dev_close);
static dev_type_ioctl(umcpmio_dev_ioctl);
const struct cdevsw umcpmio_cdevsw = {
.d_open = umcpmio_dev_open,
.d_close = umcpmio_dev_close,
.d_read = umcpmio_dev_read,
.d_write = umcpmio_dev_write,
.d_ioctl = umcpmio_dev_ioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = nommap,
.d_kqfilter = nokqfilter,
.d_discard = nodiscard,
.d_flag = D_OTHER
};
static const char umcpmio_valid_vrefs[] =
"4.096V, 2.048V, 1.024V, OFF, VDD";
static const char umcpmio_valid_dcs[] =
"75%, 50%, 25%, 0%";
static const char umcpmio_valid_cds[] =
"375kHz, 750kHz, 1.5MHz, 3MHz, 6MHz, 12MHz, 24MHz";
static void
umcpmio_dump_buffer(bool enabled, uint8_t *buf, u_int len, const char *name)
{
int i;
if (enabled) {
DPRINTF(("%s:", name));
for (i = 0; i < len; i++) {
DPRINTF((" %02x", buf[i]));
}
DPRINTF(("\n"));
}
}
/*
* Communication with the HID function requires sending a HID report
* request and then waiting for a response.
*
* The panic that occurs when trying to use the interrupt... i.e.
* attaching though this driver seems to be related to the fact that
* a spin lock is held and the USB stack wants to wait.
*
* The USB stack *IS* going to have to wait for the response from
* the device, somehow...
*
* It didn't seem possible to defer the uhidev_write to a thread.
* Attempts to yield() while spinning hard also did not work and
* not yield()ing didn't allow anything else to run.
*
*/
/*
* This is the panic you will get:
*
* panic: kernel diagnostic assertion "ci->ci_mtx_count == -1" failed: file "../../../../kern/kern_synch.c", line 762 mi_switch: cpu0: ci_mtx_count (-2) != -1 (block with spin-mutex held)
*/
static void
umcpmio_uhidev_intr(void *cookie, void *ibuf, u_int len)
{
struct umcpmio_softc *sc = cookie;
if (sc->sc_dying)
return;
DPRINTFN(30, ("umcpmio_uhidev_intr: len=%d\n", len));
mutex_enter(&sc->sc_res_mutex);
switch(len) {
case MCP2221_RES_BUFFER_SIZE:
if (sc->sc_res_buffer != NULL) {
memcpy(sc->sc_res_buffer, ibuf,
MCP2221_RES_BUFFER_SIZE);
sc->sc_res_ready = true;
cv_signal(&sc->sc_res_cv);
} else {
int d = umcpmiodebug;
device_printf(sc->sc_dev,
"umcpmio_uhidev_intr: NULL sc_res_buffer:"
" len=%d\n",
len);
umcpmiodebug = 20;
umcpmio_dump_buffer(true, (uint8_t *)ibuf, len,
"umcpmio_uhidev_intr: ibuf");
umcpmiodebug = d;
}
break;
default:
device_printf(sc->sc_dev,
"umcpmio_uhidev_intr: Unknown interrupt length: %d",
len);
break;
}
mutex_exit(&sc->sc_res_mutex);
}
/* Send a HID report. This needs to be called with the action mutex held */
int
umcpmio_send_report(struct umcpmio_softc *sc, uint8_t *sendbuf,
size_t sendlen, uint8_t *resbuf, int timeout)
{
int err = 0;
int err_count = 0;
if (sc->sc_dying)
return EIO;
KASSERT(mutex_owned(&sc->sc_action_mutex));
if (sc->sc_res_buffer != NULL) {
device_printf(sc->sc_dev,
"umcpmio_send_report: sc->sc_res_buffer is not NULL\n");
}
sc->sc_res_buffer = resbuf;
sc->sc_res_ready = false;
err = uhidev_write(sc->sc_hdev, sendbuf, sendlen);
if (err) {
DPRINTF(("umcpmio_send_report: uhidev_write errored with:"
" err=%d\n", err));
goto out;
}
DPRINTFN(30, ("umcpmio_send_report: about to wait on cv. err=%d\n",
err));
mutex_enter(&sc->sc_res_mutex);
while (!sc->sc_res_ready) {
DPRINTFN(20, ("umcpmio_send_report: LOOP for response."
" sc_res_ready=%d, err_count=%d, timeout=%d\n",
sc->sc_res_ready, err_count, mstohz(timeout)));
err = cv_timedwait_sig(&sc->sc_res_cv, &sc->sc_res_mutex,
mstohz(timeout));
/*
* We are only going to allow this to loop on an error,
* any error at all, so many times.
*/
if (err) {
DPRINTF(("umcpmio_send_report:"
" cv_timedwait_sig reported an error:"
" err=%d, sc->sc_res_ready=%d\n",
err, sc->sc_res_ready));
err_count++;
}
/*
* The CV was interrupted, but the buffer is ready so,
* clear the error and break out.
*/
if ((err == ERESTART) && (sc->sc_res_ready)) {
DPRINTF(("umcpmio_send_report:"
" ERESTART and buffer is ready\n"));
err = 0;
break;
}
/*
* Too many times though the loop, just break out. Turn
* a ERESTART (interruption) into a I/O error at this point.
*/
if (err_count > sc->sc_response_errcnt) {
DPRINTF(("umcpmio_send_report: err_count exceeded:"
" err=%d\n", err));
if (err == ERESTART)
err = EIO;
break;
}
/* This is a normal timeout, without interruption, try again */
if (err == EWOULDBLOCK) {
DPRINTF(("umcpmio_send_report: EWOULDBLOCK:"
" err_count=%d\n", err_count));
continue;
}
/*
* The CV was interrupted and the buffer wasn't filled
* in, so try again
*/
if ((err == ERESTART) && (!sc->sc_res_ready)) {
DPRINTF(("umcpmio_send_report:"
" ERESTART and buffer is NOT ready."
" err_count=%d\n", err_count));
continue;
}
}
sc->sc_res_buffer = NULL;
sc->sc_res_ready = false;
mutex_exit(&sc->sc_res_mutex);
/* Turn most errors into an I/O error */
if (err &&
err != ERESTART)
err = EIO;
out:
return err;
}
/* These are standard gpio reads and set calls */
static int
umcpmio_gpio_pin_read(void *arg, int pin)
{
struct umcpmio_softc *sc = arg;
int r = GPIO_PIN_LOW;
r = umcpmio_get_gpio_value(sc, pin, true);
return r;
}
static void
umcpmio_gpio_pin_write(void *arg, int pin, int value)
{
struct umcpmio_softc *sc = arg;
umcpmio_set_gpio_value_one(sc, pin, value, true);
}
/*
* Internal function that does the dirty work of setting a gpio
* pin to its "type".
*
* There are really two ways to do some of this, one is to set the pin
* to input and output, or whatever, using SRAM calls, the other is to
* use the GPIO config calls to set input and output and SRAM for
* everything else. This just uses SRAM for everything.
*/
static int
umcpmio_gpio_pin_ctlctl(void *arg, int pin, int flags)
{
struct umcpmio_softc *sc = arg;
struct mcp2221_set_sram_req set_sram_req;
struct mcp2221_set_sram_res set_sram_res;
struct mcp2221_get_sram_res current_sram_res;
struct mcp2221_get_gpio_cfg_res current_gpio_cfg_res;
int err = 0;
if (sc->sc_dying)
return 0;
KASSERT(mutex_owned(&sc->sc_action_mutex));
err = umcpmio_get_sram(sc, ¤t_sram_res, false);
if (err)
goto out;
err = umcpmio_get_gpio_cfg(sc, ¤t_gpio_cfg_res, false);
if (err)
goto out;
/*
* You can't just set one pin, you must set all of them, so copy the
* current settings for the pin we are not messing with.
*
* And, yes, of course, if the MCP-2210 is ever supported with this
* driver, this sort of unrolling will need to be turned into
* something different, but for now, just unroll as there are only
* 4 pins to care about.
*
*/
memset(&set_sram_req, 0, MCP2221_REQ_BUFFER_SIZE);
switch (pin) {
case 0:
set_sram_req.gp1_settings = current_sram_res.gp1_settings;
set_sram_req.gp2_settings = current_sram_res.gp2_settings;
set_sram_req.gp3_settings = current_sram_res.gp3_settings;
break;
case 1:
set_sram_req.gp0_settings = current_sram_res.gp0_settings;
set_sram_req.gp2_settings = current_sram_res.gp2_settings;
set_sram_req.gp3_settings = current_sram_res.gp3_settings;
break;
case 2:
set_sram_req.gp0_settings = current_sram_res.gp0_settings;
set_sram_req.gp1_settings = current_sram_res.gp1_settings;
set_sram_req.gp3_settings = current_sram_res.gp3_settings;
break;
case 3:
set_sram_req.gp0_settings = current_sram_res.gp0_settings;
set_sram_req.gp1_settings = current_sram_res.gp1_settings;
set_sram_req.gp2_settings = current_sram_res.gp2_settings;
break;
}
umcpmio_set_gpio_designation_sram(&set_sram_req, pin, flags);
umcpmio_set_gpio_dir_sram(&set_sram_req, pin, flags);
/*
* This part is unfortunate... if a pin is set to output, the
* value set on the pin is not mirrored by the chip into SRAM,
* but the chip will use the value from SRAM to set the value of
* the pin. What this means is that we have to learn the value
* from the GPIO config and make sure it is set properly when
* updating SRAM.
*/
if (current_gpio_cfg_res.gp0_pin_dir == MCP2221_GPIO_CFG_DIR_OUTPUT) {
if (current_gpio_cfg_res.gp0_pin_value == 1) {
set_sram_req.gp0_settings |=
MCP2221_SRAM_GPIO_OUTPUT_HIGH;
} else {
set_sram_req.gp0_settings &=
~MCP2221_SRAM_GPIO_OUTPUT_HIGH;
}
}
if (current_gpio_cfg_res.gp1_pin_dir == MCP2221_GPIO_CFG_DIR_OUTPUT) {
if (current_gpio_cfg_res.gp1_pin_value == 1) {
set_sram_req.gp1_settings |=
MCP2221_SRAM_GPIO_OUTPUT_HIGH;
} else {
set_sram_req.gp1_settings &=
~MCP2221_SRAM_GPIO_OUTPUT_HIGH;
}
}
if (current_gpio_cfg_res.gp2_pin_dir == MCP2221_GPIO_CFG_DIR_OUTPUT) {
if (current_gpio_cfg_res.gp2_pin_value == 1) {
set_sram_req.gp2_settings |=
MCP2221_SRAM_GPIO_OUTPUT_HIGH;
} else {
set_sram_req.gp2_settings &=
~MCP2221_SRAM_GPIO_OUTPUT_HIGH;
}
}
if (current_gpio_cfg_res.gp3_pin_dir == MCP2221_GPIO_CFG_DIR_OUTPUT) {
if (current_gpio_cfg_res.gp3_pin_value == 1) {
set_sram_req.gp3_settings |=
MCP2221_SRAM_GPIO_OUTPUT_HIGH;
} else {
set_sram_req.gp3_settings &=
~MCP2221_SRAM_GPIO_OUTPUT_HIGH;
}
}
err = umcpmio_put_sram(sc, &set_sram_req, &set_sram_res, false);
if (err)
goto out;
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&set_sram_res, MCP2221_RES_BUFFER_SIZE,
"umcpmio_gpio_pin_ctlctl set sram buffer copy");
if (set_sram_res.cmd != MCP2221_CMD_SET_SRAM ||
set_sram_res.completion != MCP2221_CMD_COMPLETE_OK) {
device_printf(sc->sc_dev, "umcpmio_gpio_pin_ctlctl:"
" not the command desired, or error: %02x %02x\n",
set_sram_res.cmd,
set_sram_res.completion);
err = EIO;
goto out;
}
sc->sc_gpio_pins[pin].pin_flags = flags;
err = 0;
out:
return err;
}
static void
umcpmio_gpio_pin_ctl(void *arg, int pin, int flags)
{
struct umcpmio_softc *sc = arg;
if (sc->sc_dying)
return;
mutex_enter(&sc->sc_action_mutex);
umcpmio_gpio_pin_ctlctl(sc, pin, flags);
mutex_exit(&sc->sc_action_mutex);
}
/*
* XXX -
*
* Since testing of gpio interrupts wasn't possible, this part probably
* is not complete. At the very least, there is a scheduled callout
* that needs to exist to read the interrupt status. The chip does not
* send anything on its own when the interrupt happens.
*/
static void *
umcpmio_gpio_intr_establish(void *vsc, int pin, int ipl, int irqmode,
int (*func)(void *), void *arg)
{
struct umcpmio_softc *sc = vsc;
struct umcpmio_irq *irq = &sc->sc_gpio_irqs[0];
struct mcp2221_set_sram_req set_sram_req;
struct mcp2221_set_sram_res set_sram_res;
struct mcp2221_get_sram_res current_sram_res;
int err = 0;
if (sc->sc_dying)
return NULL;
irq->sc_gpio_irqfunc = func;
irq->sc_gpio_irqarg = arg;
DPRINTF(("umcpmio_intr_establish: pin=%d, irqmode=%04x\n",
pin, irqmode));
mutex_enter(&sc->sc_action_mutex);
err = umcpmio_get_sram(sc, ¤t_sram_res, false);
if (err)
goto out;
memset(&set_sram_req, 0, MCP2221_REQ_BUFFER_SIZE);
set_sram_req.gp0_settings = current_sram_res.gp0_settings;
set_sram_req.gp2_settings = current_sram_res.gp2_settings;
set_sram_req.gp3_settings = current_sram_res.gp3_settings;
umcpmio_set_gpio_irq_sram(&set_sram_req, irqmode);
err = umcpmio_put_sram(sc, &set_sram_req, &set_sram_res, false);
if (err) {
device_printf(sc->sc_dev, "umcpmio_intr_establish:"
" set sram error: err=%d\n",
err);
goto out;
}
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&set_sram_res, MCP2221_RES_BUFFER_SIZE,
"umcpmio_intr_establish set sram buffer copy");
if (set_sram_res.cmd != MCP2221_CMD_SET_SRAM ||
set_sram_res.completion != MCP2221_CMD_COMPLETE_OK) {
device_printf(sc->sc_dev, "umcpmio_intr_establish:"
" not the command desired, or error: %02x %02x\n",
set_sram_res.cmd,
set_sram_res.completion);
goto out;
}
sc->sc_gpio_pins[1].pin_flags = GPIO_PIN_ALT2;
out:
mutex_exit(&sc->sc_action_mutex);
return irq;
}
static void
umcpmio_gpio_intr_disestablish(void *vsc, void *ih)
{
struct umcpmio_softc *sc = vsc;
struct mcp2221_set_sram_req set_sram_req;
struct mcp2221_set_sram_res set_sram_res;
struct mcp2221_get_sram_res current_sram_res;
int err = 0;
if (sc->sc_dying)
return;
DPRINTF(("umcpmio_intr_disestablish:\n"));
mutex_enter(&sc->sc_action_mutex);
err = umcpmio_get_sram(sc, ¤t_sram_res, false);
if (err)
goto out;
memset(&set_sram_req, 0, MCP2221_REQ_BUFFER_SIZE);
set_sram_req.gp0_settings = current_sram_res.gp0_settings;
set_sram_req.gp2_settings = current_sram_res.gp2_settings;
set_sram_req.gp3_settings = current_sram_res.gp3_settings;
umcpmio_set_gpio_irq_sram(&set_sram_req, 0);
err = umcpmio_put_sram(sc, &set_sram_req, &set_sram_res, true);
if (err) {
device_printf(sc->sc_dev, "umcpmio_intr_disestablish:"
" set sram error: err=%d\n",
err);
goto out;
}
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&set_sram_res, MCP2221_RES_BUFFER_SIZE,
"umcpmio_intr_disestablish set sram buffer copy");
if (set_sram_res.cmd == MCP2221_CMD_SET_SRAM &&
set_sram_res.completion == MCP2221_CMD_COMPLETE_OK) {
device_printf(sc->sc_dev, "umcpmio_intr_disestablish:"
" not the command desired, or error: %02x %02x\n",
set_sram_res.cmd,
set_sram_res.completion);
goto out;
}
sc->sc_gpio_pins[1].pin_flags = GPIO_PIN_INPUT;
out:
mutex_exit(&sc->sc_action_mutex);
}
static bool
umcpmio_gpio_intrstr(void *vsc, int pin, int irqmode, char *buf, size_t buflen)
{
if (pin < 0 || pin >= MCP2221_NPINS) {
DPRINTF(("umcpmio_gpio_intrstr:"
" pin %d less than zero or too big\n",
pin));
return false;
}
if (pin != 1) {
DPRINTF(("umcpmio_gpio_intrstr: pin %d was not 1\n",
pin));
return false;
}
snprintf(buf, buflen, "GPIO %d", pin);
return true;
}
/* Clear status of the I2C engine */
static int
umcpmio_i2c_clear(struct umcpmio_softc *sc, bool takemutex)
{
int err = 0;
struct mcp2221_status_req status_req;
struct mcp2221_status_res status_res;
memset(&status_req, 0, MCP2221_REQ_BUFFER_SIZE);
status_req.cmd = MCP2221_CMD_STATUS;
status_req.cancel_transfer = MCP2221_I2C_DO_CANCEL;
if (takemutex)
mutex_enter(&sc->sc_action_mutex);
err = umcpmio_send_report(sc,
(uint8_t *)&status_req, MCP2221_REQ_BUFFER_SIZE,
(uint8_t *)&status_res, sc->sc_cv_wait);
if (takemutex)
mutex_exit(&sc->sc_action_mutex);
if (err) {
device_printf(sc->sc_dev, "umcpmio_i2c_clear: request error:"
" err=%d\n", err);
err = EIO;
goto out;
}
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&status_res, MCP2221_RES_BUFFER_SIZE,
"umcpmio_i2c_clear buffer copy");
if (status_res.cmd != MCP2221_CMD_STATUS &&
status_res.completion != MCP2221_CMD_COMPLETE_OK) {
device_printf(sc->sc_dev, "umcpmio_i2c_clear:"
" cmd exec: not the command desired, or error:"
" %02x %02x\n",
status_res.cmd,
status_res.completion);
err = EIO;
goto out;
}
umcpmio_dump_buffer(true,
(uint8_t *)&status_res, MCP2221_RES_BUFFER_SIZE,
"umcpmio_i2c_clear res buffer");
out:
return err;
}
/*
* There isn't much required to acquire or release the I2C bus, but the man
* pages says these are needed
*/
static int
umcpmio_acquire_bus(void *v, int flags)
{
return 0;
}
static void
umcpmio_release_bus(void *v, int flags)
{
return;
}
/*
* The I2C write and I2C read functions mostly use an algorithm that Adafruit
* came up with in their Python based driver. A lot of other people have used
* this same algorithm to good effect. If changes are made to the I2C read and
* write functions, it is HIGHLY advisable that a MCP2221 or MCP2221A be on
* hand to test them.
*/
/* This is what is considered a fatal return from the engine. */
static bool
umcpmio_i2c_fatal(uint8_t state)
{
int r = false;
if (state == MCP2221_ENGINE_ADDRNACK ||
state == MCP2221_ENGINE_STARTTIMEOUT ||
state == MCP2221_ENGINE_REPSTARTTIMEOUT ||
state == MCP2221_ENGINE_STOPTIMEOUT ||
state == MCP2221_ENGINE_READTIMEOUT ||
state == MCP2221_ENGINE_WRITETIMEOUT ||
state == MCP2221_ENGINE_ADDRTIMEOUT)
r = true;
return r;
}
static int
umcpmio_i2c_write(struct umcpmio_softc *sc, i2c_op_t op, i2c_addr_t addr,
const void *cmdbuf, size_t cmdlen, void *databuf, size_t datalen,
int flags)
{
struct mcp2221_i2c_req i2c_req;
struct mcp2221_i2c_res i2c_res;
struct mcp2221_status_res status_res;
int remaining;
int err = 0;
uint8_t cmd;
size_t totallen = 0;
int wretry = sc->sc_retry_busy_write;
int wsretry = sc->sc_retry_busy_write;
err = umcpmio_get_status(sc, &status_res, true);
if (err)
goto out;
if (status_res.internal_i2c_state != 0) {
DPRINTF(("umcpmio_i2c_write: internal state not zero,"
" clearing. internal_i2c_state=%02x\n",
status_res.internal_i2c_state));
err = umcpmio_i2c_clear(sc, true);
}
if (err)
goto out;
if (cmdbuf != NULL)
totallen += cmdlen;
if (databuf != NULL)
totallen += datalen;
again:
memset(&i2c_req, 0, MCP2221_REQ_BUFFER_SIZE);
cmd = MCP2221_I2C_WRITE_DATA_NS;
if (I2C_OP_STOP_P(op))
cmd = MCP2221_I2C_WRITE_DATA;
i2c_req.cmd = cmd;
i2c_req.lsblen = totallen;
i2c_req.msblen = 0;
i2c_req.slaveaddr = addr << 1;
remaining = 0;
if (cmdbuf != NULL) {
memcpy(&i2c_req.data[0], cmdbuf, cmdlen);
remaining = cmdlen;
}
if (databuf != NULL)
memcpy(&i2c_req.data[remaining], databuf, datalen);
DPRINTF(("umcpmio_i2c_write: I2C WRITE: cmd: %02x\n", cmd));
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&i2c_req, MCP2221_REQ_BUFFER_SIZE,
"umcpmio_i2c_write: write req buffer copy");
mutex_enter(&sc->sc_action_mutex);
err = umcpmio_send_report(sc,
(uint8_t *)&i2c_req, MCP2221_REQ_BUFFER_SIZE,
(uint8_t *)&i2c_res, sc->sc_cv_wait);
mutex_exit(&sc->sc_action_mutex);
if (err) {
device_printf(sc->sc_dev, "umcpmio_i2c_write request error:"
" err=%d\n", err);
err = EIO;
goto out;
}
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&i2c_res, MCP2221_RES_BUFFER_SIZE,
"umcpmio_i2c_write: write res buffer copy");
if (i2c_res.cmd == cmd &&
i2c_res.completion == MCP2221_CMD_COMPLETE_OK) {
/*
* Adafruit does a read back of the status at
* this point. We choose not to do that. That
* is done later anyway, and it seemed to be
* redundent.
*/
} else if (i2c_res.cmd == cmd &&
i2c_res.completion == MCP2221_I2C_ENGINE_BUSY) {
DPRINTF(("umcpmio_i2c_write:"
" I2C engine busy\n"));
if (umcpmio_i2c_fatal(i2c_res.internal_i2c_state)) {
err = EIO;
goto out;
}
wretry--;
if (wretry > 0) {
WAITMS(sc->sc_busy_delay);
goto again;
} else {
err = EBUSY;
goto out;
}
} else {
device_printf(sc->sc_dev, "umcpmio_i2c_write:"
" not the command desired, or error:"
" %02x %02x\n",
i2c_res.cmd,
i2c_res.completion);
err = EIO;
goto out;
}
while (wsretry > 0) {
wsretry--;
DPRINTF(("umcpmio_i2c_write: checking status loop:"
" wcretry=%d\n", wsretry));
err = umcpmio_get_status(sc, &status_res, true);
if (err) {
err = EIO;
break;
}
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&status_res,
MCP2221_RES_BUFFER_SIZE,
"umcpmio_i2c_write post check status");
/*
* Since there isn't any documentation on what
* some of the internal state means, it isn't
* clear that this is any different than than
* MCP2221_ENGINE_ADDRNACK in the other state
* register.
*/
if (status_res.internal_i2c_state20 &
MCP2221_ENGINE_T1_MASK_NACK) {
DPRINTF(("umcpmio_i2c_write post check:"
" engine internal state T1 says NACK\n"));
err = EIO;
break;
}
if (status_res.internal_i2c_state == 0) {
DPRINTF(("umcpmio_i2c_write post check:"
" engine internal state is ZERO\n"));
err = 0;
break;
}
if (status_res.internal_i2c_state ==
MCP2221_ENGINE_WRITINGNOSTOP &&
cmd == MCP2221_I2C_WRITE_DATA_NS) {
DPRINTF(("umcpmio_i2c_write post check:"
" engine internal state is WRITINGNOSTOP\n"));
err = 0;
break;
}
if (umcpmio_i2c_fatal(status_res.internal_i2c_state)) {
DPRINTF(("umcpmio_i2c_write post check:"
" engine internal state is fatal: %02x\n",
status_res.internal_i2c_state));
err = EIO;
break;
}
WAITMS(sc->sc_busy_delay);
}
out:
return err;
}
/*
* This one deviates a bit from Adafruit in that is supports a straight
* read and a write + read. That is, write a register to read from and
* then do the read.
*/
static int
umcpmio_i2c_read(struct umcpmio_softc *sc, i2c_op_t op, i2c_addr_t addr,
const void *cmdbuf, size_t cmdlen, void *databuf, size_t datalen, int
flags)
{
struct mcp2221_i2c_req i2c_req;
struct mcp2221_i2c_res i2c_res;
struct mcp2221_i2c_fetch_req i2c_fetch_req;
struct mcp2221_i2c_fetch_res i2c_fetch_res;
struct mcp2221_status_res status_res;
int err = 0;
uint8_t cmd;
int rretry = sc->sc_retry_busy_read;
if (cmdbuf != NULL) {
DPRINTF(("umcpmio_i2c_read: has a cmdbuf, doing write first:"
" addr=%02x\n", addr));
err = umcpmio_i2c_write(sc, I2C_OP_WRITE, addr, cmdbuf, cmdlen,
NULL, 0, flags);
}
if (err)
goto out;
err = umcpmio_get_status(sc, &status_res, true);
if (err)
goto out;
if (status_res.internal_i2c_state != 0 &&
status_res.internal_i2c_state != MCP2221_ENGINE_WRITINGNOSTOP) {
DPRINTF(("umcpmio_i2c_read:"
" internal state not zero and not WRITINGNOSTOP,"
" clearing. internal_i2c_state=%02x\n",
status_res.internal_i2c_state));
err = umcpmio_i2c_clear(sc, true);
}
if (err)
goto out;
memset(&i2c_req, 0, MCP2221_REQ_BUFFER_SIZE);
if (cmdbuf == NULL &&
status_res.internal_i2c_state != MCP2221_ENGINE_WRITINGNOSTOP) {
cmd = MCP2221_I2C_READ_DATA;
} else {
cmd = MCP2221_I2C_READ_DATA_RS;
}
/*
* The chip apparently can't do a READ without a STOP
* operation. Report that, and try treating it like a READ
* with a STOP. This won't work for a lot of devices.
*/
if (!I2C_OP_STOP_P(op) && sc->sc_reportreadnostop) {
device_printf(sc->sc_dev,
"umcpmio_i2c_read: ************ called with READ"
" without STOP ***************\n");
}
i2c_req.cmd = cmd;
i2c_req.lsblen = datalen;
i2c_req.msblen = 0;
i2c_req.slaveaddr = (addr << 1) | 0x01;
DPRINTF(("umcpmio_i2c_read: I2C READ normal read:"
" cmd=%02x, addr=%02x\n", cmd, addr));
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&i2c_req, MCP2221_RES_BUFFER_SIZE,
"umcpmio_i2c_read normal read req buffer copy");
mutex_enter(&sc->sc_action_mutex);
err = umcpmio_send_report(sc,
(uint8_t *)&i2c_req, MCP2221_REQ_BUFFER_SIZE,
(uint8_t *)&i2c_res, sc->sc_cv_wait);
mutex_exit(&sc->sc_action_mutex);
if (err) {
device_printf(sc->sc_dev, "umcpmio_i2c_read request error:"
" cmd=%02x, err=%d\n", cmd, err);
err = EIO;
goto out;
}
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&i2c_res, MCP2221_RES_BUFFER_SIZE,
"umcpmio_i2c_read read-request response buffer copy");
while (rretry > 0) {
rretry--;
DPRINTF(("umcpmio_i2c_read: fetch loop: rretry=%d\n", rretry));
err = 0;
memset(&i2c_fetch_req, 0, MCP2221_REQ_BUFFER_SIZE);
i2c_fetch_req.cmd = MCP2221_CMD_I2C_FETCH_READ_DATA;
mutex_enter(&sc->sc_action_mutex);
err = umcpmio_send_report(sc,
(uint8_t *)&i2c_fetch_req, MCP2221_REQ_BUFFER_SIZE,
(uint8_t *)&i2c_fetch_res, sc->sc_cv_wait);
mutex_exit(&sc->sc_action_mutex);
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&i2c_fetch_req, MCP2221_RES_BUFFER_SIZE,
"umcpmio_i2c_read fetch res buffer copy");
if (i2c_fetch_res.cmd != MCP2221_CMD_I2C_FETCH_READ_DATA) {
device_printf(sc->sc_dev, "umcpmio_i2c_read:"
" fetch2: not the command desired: %02x\n",
i2c_fetch_res.cmd);
err = EIO;
break;
}
if (i2c_fetch_res.completion ==
MCP2221_FETCH_READ_PARTIALDATA ||
i2c_fetch_res.fetchlen == MCP2221_FETCH_READERROR) {
DPRINTF(("umcpmio_i2c_read: fetch loop:"
" partial data or read error:"
" completion=%02x, fetchlen=%02x\n",
i2c_fetch_res.completion,
i2c_fetch_res.fetchlen));
WAITMS(sc->sc_busy_delay);
err = EAGAIN;
continue;
}
if (i2c_fetch_res.internal_i2c_state ==
MCP2221_ENGINE_ADDRNACK) {
DPRINTF(("umcpmio_i2c_read:"
" fetch loop: engine NACK\n"));
err = EIO;
break;
}
if (i2c_fetch_res.internal_i2c_state == 0 &&
i2c_fetch_res.fetchlen == 0) {
DPRINTF(("umcpmio_i2c_read: fetch loop:"
" internal state and fetch len are ZERO\n"));
err = 0;
break;
}
if (i2c_fetch_res.internal_i2c_state ==
MCP2221_ENGINE_READPARTIAL ||
i2c_fetch_res.internal_i2c_state ==
MCP2221_ENGINE_READCOMPLETE) {
DPRINTF(("umcpmio_i2c_read:"
" fetch loop: read partial or"
" read complete: internal_i2c_state=%02x\n",
i2c_fetch_res.internal_i2c_state));
err = 0;
break;
}
}
if (err == EAGAIN)
err = ETIMEDOUT;
if (err)
goto out;
if (databuf == NULL ||
i2c_fetch_res.fetchlen == MCP2221_FETCH_READERROR) {
DPRINTF(("umcpmio_i2c_read: copy data:"
" databuf is NULL\n"));
goto out;
}
const int size = uimin(i2c_fetch_res.fetchlen, datalen);
DPRINTF(("umcpmio_i2c_read: copy data: size=%d, fetchlen=%d\n",
size, i2c_fetch_res.fetchlen));
if (size > 0) {
memcpy(databuf, &i2c_fetch_res.data[0], size);
}
out:
return err;
}
static int
umcpmio_i2c_exec(void *v, i2c_op_t op, i2c_addr_t addr, const void *cmdbuf,
size_t cmdlen, void *databuf, size_t datalen, int flags)
{
struct umcpmio_softc *sc = v;
size_t totallen = 0;
int err = 0;
if (addr > 0x7f)
return ENOTSUP;
if (cmdbuf != NULL)
totallen += cmdlen;
if (databuf != NULL)
totallen += datalen;
/*
* There is a way to do a transfer that is larger than 60 bytes,
* but it requires that your break the transfer up into pieces and
* send them in 60 byte chunks. We just won't support that right now.
* It would be somewhat unusual for there to be a transfer that big,
* unless you are trying to do block transfers and that isn't natively
* supported by the chip anyway... so those have to be broken up and
* sent as bytes.
*/
if (totallen > 60)
return ENOTSUP;
if (I2C_OP_WRITE_P(op)) {
err = umcpmio_i2c_write(sc, op, addr, cmdbuf, cmdlen,
databuf, datalen, flags);
DPRINTF(("umcpmio_exec: I2C WRITE: err=%d\n", err));
} else {
err = umcpmio_i2c_read(sc, op, addr, cmdbuf, cmdlen,
databuf, datalen, flags);
DPRINTF(("umcpmio_exec: I2C READ: err=%d\n", err));
}
return err;
}
/* Accessing the ADC and DAC part of the chip */
#define UMCPMIO_DEV_UNIT(m) ((m) & 0x80 ? ((m) & 0x7f) / 3 : (m))
#define UMCPMIO_DEV_WHAT(m) ((m) & 0x80 ? (((m) & 0x7f) % 3) + 1 : CONTROL_DEV)
static int
umcpmio_dev_open(dev_t dev, int flags, int fmt, struct lwp *l)
{
struct umcpmio_softc *sc;
int dunit;
int pin = -1;
int error = 0;
sc = device_lookup_private(&umcpmio_cd, UMCPMIO_DEV_UNIT(minor(dev)));
if (!sc)
return ENXIO;
dunit = UMCPMIO_DEV_WHAT(minor(dev));
if (sc->sc_dev_open[dunit]) {
DPRINTF(("umcpmio_dev_open: dunit=%d BUSY\n", dunit));
return EBUSY;
}
/*
* The control device only allows for ioctl calls, so pretty
* much allow any sort of access. For the ADC, you perform a
* strict O_RDONLY and for the DAC a strict O_WRONLY. It is an
* error to try and do a O_RDWR It makes little sense to try
* and support select or poll. The ADC and DAC are always
* available for use.
*/
if (dunit != CONTROL_DEV &&
((flags & FREAD) && (flags & FWRITE))) {
DPRINTF(("umcpmio_dev_open: Not CONTROL device and trying to"
" do READ and WRITE\n"));
return EINVAL;
}
/*
* Ya, this unrolling will also have to be changed if the MCP-2210 is
* supported. There are currently only 4 pins, so don't worry too much
* about it. The MCP-2210 has RAM, so there would be a fifth for it.
*/
mutex_enter(&sc->sc_action_mutex);
if (dunit != CONTROL_DEV) {
switch (dunit) {
case GP1_DEV:
pin = 1;
break;
case GP2_DEV:
pin = 2;
break;
case GP3_DEV:
pin = 3;
break;
default:
error = EINVAL;
goto out;
}
/*
* XXX - we can probably do better here... it
* doesn't remember what the pin was set to and
* probably should.
*/
if (flags & FREAD) {
error = umcpmio_gpio_pin_ctlctl(sc, pin,
GPIO_PIN_ALT0);
} else {
if (pin == 1) {
error = EINVAL;
} else {
error = umcpmio_gpio_pin_ctlctl(sc,
pin, GPIO_PIN_ALT1);
}
}
}
if (error)
goto out;
sc->sc_dev_open[dunit] = true;
out:
mutex_exit(&sc->sc_action_mutex);
DPRINTF(("umcpmio_dev_open: Opened dunit=%d, pin=%d, error=%d\n",
dunit, pin, error));
return error;
}
/* Read an ADC value */
static int
umcpmio_dev_read(dev_t dev, struct uio *uio, int flags)
{
struct umcpmio_softc *sc;
struct mcp2221_status_res status_res;
int dunit;
int error = 0;
uint8_t adc_lsb;
uint8_t adc_msb;
uint16_t buf;
sc = device_lookup_private(&umcpmio_cd, UMCPMIO_DEV_UNIT(minor(dev)));
if (sc == NULL)
return ENXIO;
dunit = UMCPMIO_DEV_WHAT(minor(dev));
if (dunit == CONTROL_DEV) {
error = EINVAL;
goto out;
}
while (uio->uio_resid && !sc->sc_dying) {
error = umcpmio_get_status(sc, &status_res, true);
if (error)
break;
switch (dunit) {
case GP1_DEV:
adc_lsb = status_res.adc_channel0_lsb;
adc_msb = status_res.adc_channel0_msb;
break;
case GP2_DEV:
adc_lsb = status_res.adc_channel1_lsb;
adc_msb = status_res.adc_channel1_msb;
break;
case GP3_DEV:
adc_lsb = status_res.adc_channel2_lsb;
adc_msb = status_res.adc_channel2_msb;
break;
default:
error = EINVAL;
break;
}
if (error)
break;
if (sc->sc_dying)
break;
buf = adc_msb << 8;
buf |= adc_lsb;
error = uiomove(&buf, 2, uio);
if (error)
break;
}
out:
return error;
}
/* Write to the DAC */
static int
umcpmio_dev_write(dev_t dev, struct uio *uio, int flags)
{
struct umcpmio_softc *sc;
int dunit;
int error = 0;
sc = device_lookup_private(&umcpmio_cd, UMCPMIO_DEV_UNIT(minor(dev)));
if (sc == NULL)
return ENXIO;
dunit = UMCPMIO_DEV_WHAT(minor(dev));
if (dunit == CONTROL_DEV) {
error = EINVAL;
goto out;
}
while (uio->uio_resid && !sc->sc_dying) {
uint8_t buf;
if ((error = uiomove(&buf, 1, uio)) != 0)
break;
if (sc->sc_dying)
break;
error = umcpmio_set_dac_value_one(sc, buf, true);
if (error)
break;
}
out:
return error;
}
/* Close everything up */
static int
umcpmio_dev_close(dev_t dev, int flags, int fmt, struct lwp *l)
{
struct umcpmio_softc *sc;
int dunit;
int pin;
int error = 0;
sc = device_lookup_private(&umcpmio_cd, UMCPMIO_DEV_UNIT(minor(dev)));
if (sc->sc_dying)
return EIO;
dunit = UMCPMIO_DEV_WHAT(minor(dev));
mutex_enter(&sc->sc_action_mutex);
if (dunit != CONTROL_DEV) {
switch (dunit) {
case GP1_DEV:
pin = 1;
break;
case GP2_DEV:
pin = 2;
break;
case GP3_DEV:
pin = 3;
break;
default:
error = EINVAL;
goto out;
break;
}
/*
* XXX - Ya, this really could be done better.
* Probably should read the sram config and
* maybe the gpio config and save out what the
* pin was set to.
*/
error = umcpmio_gpio_pin_ctlctl(sc, pin, GPIO_PIN_INPUT);
}
out:
sc->sc_dev_open[dunit] = false;
mutex_exit(&sc->sc_action_mutex);
return error;
}
static int
umcpmio_dev_ioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
{
struct umcpmio_softc *sc;
struct mcp2221_status_res get_status_res;
struct mcp2221_get_sram_res get_sram_res;
struct mcp2221_get_gpio_cfg_res get_gpio_cfg_res;
struct mcp2221_get_flash_res get_flash_res;
struct mcp2221_status_res *ioctl_get_status;
struct mcp2221_get_sram_res *ioctl_get_sram;
struct mcp2221_get_gpio_cfg_res *ioctl_get_gpio_cfg;
struct umcpmio_ioctl_get_flash *ioctl_get_flash;
struct umcpmio_ioctl_put_flash *ioctl_put_flash;
struct mcp2221_put_flash_req put_flash_req;
struct mcp2221_put_flash_res put_flash_res;
int dunit;
int error = 0;
sc = device_lookup_private(&umcpmio_cd, UMCPMIO_DEV_UNIT(minor(dev)));
if (sc->sc_dying)
return EIO;
dunit = UMCPMIO_DEV_WHAT(minor(dev));
if (dunit != CONTROL_DEV) {
/*
* It actually is fine to call ioctl with a unsupported
* cmd, but be a little noisy if debug is enabled.
*/
DPRINTF(("umcpmio_dev_ioctl: dunit is not the CONTROL device:"
" dunit=%d, cmd=%ld\n", dunit, cmd));
return EINVAL;
}
mutex_enter(&sc->sc_action_mutex);
switch (cmd) {
/*
* The GET calls use a shadow buffer for each type of
* call. That probably isn't actually needed and the
* memcpy could be avoided. but... it is only ever 64
* bytes, so maybe not a big deal.
*/
case UMCPMIO_GET_STATUS:
ioctl_get_status = (struct mcp2221_status_res *)data;
error = umcpmio_get_status(sc, &get_status_res, false);
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&get_status_res, MCP2221_RES_BUFFER_SIZE,
"umcpmio_dev_ioctl: UMCPMIO_GET_STATUS: get_status_res");
DPRINTF(("umcpmio_dev_ioctl: UMCPMIO_GET_STATUS:"
" umcpmio_get_status error=%d\n", error));
if (error)
break;
memcpy(ioctl_get_status, &get_status_res,
MCP2221_RES_BUFFER_SIZE);
break;
case UMCPMIO_GET_SRAM:
ioctl_get_sram = (struct mcp2221_get_sram_res *)data;
error = umcpmio_get_sram(sc, &get_sram_res, false);
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&get_sram_res, MCP2221_RES_BUFFER_SIZE,
"umcpmio_dev_ioctl: UMCPMIO_GET_SRAM: get_sram_res");
DPRINTF(("umcpmio_dev_ioctl: UMCPMIO_GET_SRAM:"
" umcpmio_get_sram error=%d\n", error));
if (error)
break;
memcpy(ioctl_get_sram, &get_sram_res,
MCP2221_RES_BUFFER_SIZE);
break;
case UMCPMIO_GET_GP_CFG:
ioctl_get_gpio_cfg = (struct mcp2221_get_gpio_cfg_res *)data;
error = umcpmio_get_gpio_cfg(sc, &get_gpio_cfg_res, false);
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&get_gpio_cfg_res, MCP2221_RES_BUFFER_SIZE,
"umcpmio_dev_ioctl: UMCPMIO_GET_GP_CFG: get_gpio_cfg_res");
DPRINTF(("umcpmio_dev_ioctl: UMCPMIO_GET_GP_CFG:"
" umcpmio_get_gpio_cfg error=%d\n", error));
if (error)
break;
memcpy(ioctl_get_gpio_cfg, &get_gpio_cfg_res,
MCP2221_RES_BUFFER_SIZE);
break;
case UMCPMIO_GET_FLASH:
ioctl_get_flash = (struct umcpmio_ioctl_get_flash *)data;
error = umcpmio_get_flash(sc, ioctl_get_flash->subcode,
&get_flash_res, false);
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&get_flash_res, MCP2221_RES_BUFFER_SIZE,
"umcpmio_dev_ioctl: UMCPMIO_GET_FLASH: get_flash_res");
DPRINTF(("umcpmio_dev_ioctl: UMCPMIO_GET_FLASH:"
" umcpmio_get_flash subcode=%d, error=%d\n",
ioctl_get_flash->subcode, error));
if (error)
break;
memcpy(&ioctl_get_flash->get_flash_res, &get_flash_res,
MCP2221_RES_BUFFER_SIZE);
break;
case UMCPMIO_PUT_FLASH:
/*
* We only allow the flash parts related to gpio to be changed.
* Bounce any attempt to do something else. Also use a shadow
* buffer for the put, so we get to control just literally
* everything about the write to flash.
*/
ioctl_put_flash = (struct umcpmio_ioctl_put_flash *)data;
DPRINTF(("umcpmio_dev_ioctl: UMCPMIO_PUT_FLASH:"
" umcpmio_put_flash subcode=%d\n",
ioctl_put_flash->subcode));
if (ioctl_put_flash->subcode != MCP2221_FLASH_SUBCODE_GP) {
error = EINVAL;
break;
}
memset(&put_flash_req, 0, MCP2221_REQ_BUFFER_SIZE);
put_flash_req.subcode = ioctl_put_flash->subcode;
put_flash_req.u.gp.gp0_settings =
ioctl_put_flash->put_flash_req.u.gp.gp0_settings;
put_flash_req.u.gp.gp1_settings =
ioctl_put_flash->put_flash_req.u.gp.gp1_settings;
put_flash_req.u.gp.gp2_settings =
ioctl_put_flash->put_flash_req.u.gp.gp2_settings;
put_flash_req.u.gp.gp3_settings =
ioctl_put_flash->put_flash_req.u.gp.gp3_settings;
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&ioctl_put_flash->put_flash_req,
MCP2221_REQ_BUFFER_SIZE,
"umcpmio_dev_ioctl: UMCPMIO_PUT_FLASH:"
" ioctl put_flash_req");
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&put_flash_req, MCP2221_REQ_BUFFER_SIZE,
"umcpmio_dev_ioctl:"
" UMCPMIO_PUT_FLASH: put_flash_req");
memset(&put_flash_res, 0, MCP2221_RES_BUFFER_SIZE);
error = umcpmio_put_flash(sc, &put_flash_req,
&put_flash_res, false);
if (error)
break;
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&put_flash_res, MCP2221_RES_BUFFER_SIZE,
"umcpmio_dev_ioctl: UMCPMIO_PUT_FLASH:"
" put_flash_res");
memcpy(&ioctl_put_flash->put_flash_res, &put_flash_res,
MCP2221_RES_BUFFER_SIZE);
break;
default:
error = EINVAL;
}
mutex_exit(&sc->sc_action_mutex);
return error;
}
/* This is for sysctl variables that don't actually change the chip. */
int
umcpmio_verify_sysctl(SYSCTLFN_ARGS)
{
int error, t;
struct sysctlnode node;
node = *rnode;
t = *(int *)rnode->sysctl_data;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (t < 0)
return EINVAL;
*(int *)rnode->sysctl_data = t;
return 0;
}
/*
* sysctl validation for stuff that interacts with the chip needs to
* happen in a transaction. The read of the current state and the
* update to new state can't allow for someone to sneak in between the
* two.
*
* We use text for the values of a lot of these variables so you don't
* need the datasheet in front of you. You get to do that with
* umcpmioctl(8).
*/
static struct umcpmio_sysctl_name umcpmio_vref_names[] = {
{
.text = "4.096V",
},
{
.text = "2.048V",
},
{
.text = "1.024V",
},
{
.text = "OFF",
},
{
.text = "VDD",
}
};
int
umcpmio_verify_dac_sysctl(SYSCTLFN_ARGS)
{
char buf[UMCPMIO_VREF_NAME];
char cbuf[UMCPMIO_VREF_NAME];
struct umcpmio_softc *sc;
struct sysctlnode node;
int error = 0;
int vrm;
size_t i;
struct mcp2221_get_sram_res sram_res;
node = *rnode;
sc = node.sysctl_data;
mutex_enter(&sc->sc_action_mutex);
error = umcpmio_get_sram(sc, &sram_res, false);
if (error)
goto out;
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&sram_res, MCP2221_RES_BUFFER_SIZE,
"umcpmio_verify_dac_sysctl SRAM res buffer");
if (sram_res.dac_reference_voltage & MCP2221_SRAM_DAC_IS_VRM) {
vrm = sram_res.dac_reference_voltage &
MCP2221_SRAM_DAC_VRM_MASK;
switch (vrm) {
case MCP2221_SRAM_DAC_VRM_4096V:
strncpy(buf, "4.096V", UMCPMIO_VREF_NAME);
break;
case MCP2221_SRAM_DAC_VRM_2048V:
strncpy(buf, "2.048V", UMCPMIO_VREF_NAME);
break;
case MCP2221_SRAM_DAC_VRM_1024V:
strncpy(buf, "1.024V", UMCPMIO_VREF_NAME);
break;
case MCP2221_SRAM_DAC_VRM_OFF:
default:
strncpy(buf, "OFF", UMCPMIO_VREF_NAME);
break;
}
} else {
strncpy(buf, "VDD", UMCPMIO_VREF_NAME);
}
strncpy(cbuf, buf, UMCPMIO_VREF_NAME);
node.sysctl_data = buf;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
goto out;
for (i = 0; i < __arraycount(umcpmio_vref_names); i++) {
if (strncmp(node.sysctl_data, umcpmio_vref_names[i].text,
UMCPMIO_VREF_NAME) == 0) {
break;
}
}
if (i == __arraycount(umcpmio_vref_names)) {
error = EINVAL;
goto out;
}
if (strncmp(cbuf, buf, UMCPMIO_VREF_NAME) == 0) {
error = 0;
goto out;
}
DPRINTF(("umcpmio_verify_dac_sysctl: setting DAC vref: %s\n", buf));
error = umcpmio_set_dac_vref_one(sc, buf, false);
out:
mutex_exit(&sc->sc_action_mutex);
return error;
}
int
umcpmio_verify_adc_sysctl(SYSCTLFN_ARGS)
{
char buf[UMCPMIO_VREF_NAME];
char cbuf[UMCPMIO_VREF_NAME];
struct umcpmio_softc *sc;
struct sysctlnode node;
int error = 0;
int vrm;
size_t i;
struct mcp2221_get_sram_res sram_res;
node = *rnode;
sc = node.sysctl_data;
mutex_enter(&sc->sc_action_mutex);
error = umcpmio_get_sram(sc, &sram_res, false);
if (error)
goto out;
if (sram_res.irq_adc_reference_voltage & MCP2221_SRAM_ADC_IS_VRM) {
vrm = sram_res.irq_adc_reference_voltage &
MCP2221_SRAM_ADC_VRM_MASK;
switch (vrm) {
case MCP2221_SRAM_ADC_VRM_4096V:
strncpy(buf, "4.096V", UMCPMIO_VREF_NAME);
break;
case MCP2221_SRAM_ADC_VRM_2048V:
strncpy(buf, "2.048V", UMCPMIO_VREF_NAME);
break;
case MCP2221_SRAM_ADC_VRM_1024V:
strncpy(buf, "1.024V", UMCPMIO_VREF_NAME);
break;
case MCP2221_SRAM_ADC_VRM_OFF:
default:
strncpy(buf, "OFF", UMCPMIO_VREF_NAME);
break;
}
} else {
strncpy(buf, "VDD", UMCPMIO_VREF_NAME);
}
strncpy(cbuf, buf, UMCPMIO_VREF_NAME);
node.sysctl_data = buf;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
goto out;
for (i = 0; i < __arraycount(umcpmio_vref_names); i++) {
if (strncmp(node.sysctl_data, umcpmio_vref_names[i].text,
UMCPMIO_VREF_NAME) == 0) {
break;
}
}
if (i == __arraycount(umcpmio_vref_names)) {
error = EINVAL;
goto out;
}
if (strncmp(cbuf, buf, UMCPMIO_VREF_NAME) == 0) {
error = 0;
goto out;
}
DPRINTF(("umcpmio_verify_adc_sysctl: setting ADC vref: %s\n", buf));
error = umcpmio_set_adc_vref_one(sc, buf, false);
out:
mutex_exit(&sc->sc_action_mutex);
return error;
}
static struct umcpmio_sysctl_name umcpmio_dc_names[] = {
{
.text = "75%",
},
{
.text = "50%",
},
{
.text = "25%",
},
{
.text = "0%",
}
};
static int
umcpmio_verify_gpioclock_dc_sysctl(SYSCTLFN_ARGS)
{
char buf[UMCPMIO_VREF_NAME];
char cbuf[UMCPMIO_VREF_NAME];
struct umcpmio_softc *sc;
struct sysctlnode node;
int error = 0;
uint8_t duty_cycle;
size_t i;
struct mcp2221_get_sram_res sram_res;
node = *rnode;
sc = node.sysctl_data;
mutex_enter(&sc->sc_action_mutex);
error = umcpmio_get_sram(sc, &sram_res, false);
if (error)
goto out;
duty_cycle = sram_res.clock_divider & MCP2221_SRAM_GPIO_CLOCK_DC_MASK;
DPRINTF(("umcpmio_verify_gpioclock_dc_sysctl: current duty cycle:"
" %02x\n", duty_cycle));
switch (duty_cycle) {
case MCP2221_SRAM_GPIO_CLOCK_DC_75:
strncpy(buf, "75%", UMCPMIO_DC_NAME);
break;
case MCP2221_SRAM_GPIO_CLOCK_DC_50:
strncpy(buf, "50%", UMCPMIO_DC_NAME);
break;
case MCP2221_SRAM_GPIO_CLOCK_DC_25:
strncpy(buf, "25%", UMCPMIO_DC_NAME);
break;
case MCP2221_SRAM_GPIO_CLOCK_DC_0:
default:
strncpy(buf, "0%", UMCPMIO_DC_NAME);
break;
}
strncpy(cbuf, buf, UMCPMIO_VREF_NAME);
node.sysctl_data = buf;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
goto out;
for (i = 0; i < __arraycount(umcpmio_dc_names); i++) {
if (strncmp(node.sysctl_data, umcpmio_dc_names[i].text,
UMCPMIO_VREF_NAME) == 0) {
break;
}
}
if (i == __arraycount(umcpmio_dc_names)) {
error = EINVAL;
goto out;
}
if (strncmp(cbuf, buf, UMCPMIO_VREF_NAME) == 0) {
error = 0;
goto out;
}
DPRINTF(("umcpmio_verify_gpioclock_dc_sysctl:"
" setting GPIO clock duty cycle: %s\n", buf));
error = umcpmio_set_gpioclock_dc_one(sc, buf, false);
out:
mutex_exit(&sc->sc_action_mutex);
return error;
}
static struct umcpmio_sysctl_name umcpmio_cd_names[] = {
{
.text = "375kHz",
},
{
.text = "750kHz",
},
{
.text = "1.5MHz",
},
{
.text = "3MHz",
},
{
.text = "6MHz",
},
{
.text = "12MHz",
},
{
.text = "24MHz",
}
};
static int
umcpmio_verify_gpioclock_cd_sysctl(SYSCTLFN_ARGS)
{
char buf[UMCPMIO_CD_NAME];
char cbuf[UMCPMIO_CD_NAME];
struct umcpmio_softc *sc;
struct sysctlnode node;
int error = 0;
uint8_t clock_divider;
size_t i;
struct mcp2221_get_sram_res sram_res;
node = *rnode;
sc = node.sysctl_data;
mutex_enter(&sc->sc_action_mutex);
error = umcpmio_get_sram(sc, &sram_res, false);
if (error)
goto out;
clock_divider = sram_res.clock_divider &
MCP2221_SRAM_GPIO_CLOCK_CD_MASK;
DPRINTF(("umcpmio_verify_gpioclock_cd_sysctl: current clock divider:"
" %02x\n", clock_divider));
switch (clock_divider) {
case MCP2221_SRAM_GPIO_CLOCK_CD_375KHZ:
strncpy(buf, "375kHz", UMCPMIO_CD_NAME);
break;
case MCP2221_SRAM_GPIO_CLOCK_CD_750KHZ:
strncpy(buf, "750kHz", UMCPMIO_CD_NAME);
break;
case MCP2221_SRAM_GPIO_CLOCK_CD_1P5MHZ:
strncpy(buf, "1.5MHz", UMCPMIO_CD_NAME);
break;
case MCP2221_SRAM_GPIO_CLOCK_CD_3MHZ:
strncpy(buf, "3MHz", UMCPMIO_CD_NAME);
break;
case MCP2221_SRAM_GPIO_CLOCK_CD_6MHZ:
strncpy(buf, "6MHz", UMCPMIO_CD_NAME);
break;
case MCP2221_SRAM_GPIO_CLOCK_CD_12MHZ:
strncpy(buf, "12MHz", UMCPMIO_CD_NAME);
break;
case MCP2221_SRAM_GPIO_CLOCK_CD_24MHZ:
strncpy(buf, "24MHz", UMCPMIO_CD_NAME);
break;
default:
strncpy(buf, "12MHz", UMCPMIO_CD_NAME);
break;
}
strncpy(cbuf, buf, UMCPMIO_CD_NAME);
node.sysctl_data = buf;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
goto out;
for (i = 0; i < __arraycount(umcpmio_cd_names); i++) {
if (strncmp(node.sysctl_data, umcpmio_cd_names[i].text,
UMCPMIO_CD_NAME) == 0) {
break;
}
}
if (i == __arraycount(umcpmio_cd_names)) {
error = EINVAL;
goto out;
}
if (strncmp(cbuf, buf, UMCPMIO_CD_NAME) == 0) {
error = 0;
goto out;
}
DPRINTF(("umcpmio_verify_gpioclock_cd_sysctl:"
" setting GPIO clock clock divider: %s\n",
buf));
error = umcpmio_set_gpioclock_cd_one(sc, buf, false);
out:
mutex_exit(&sc->sc_action_mutex);
return error;
}
static int
umcpmio_sysctl_init(struct umcpmio_softc *sc)
{
int error;
const struct sysctlnode *cnode;
int sysctlroot_num, i2c_num, adc_dac_num, adc_num, dac_num, gpio_num;
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
0, CTLTYPE_NODE, device_xname(sc->sc_dev),
SYSCTL_DESCR("mcpmio controls"),
NULL, 0, NULL, 0,
CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
return error;
sysctlroot_num = cnode->sysctl_num;
#ifdef UMCPMIO_DEBUG
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READWRITE, CTLTYPE_INT, "debug",
SYSCTL_DESCR("Debug level"),
umcpmio_verify_sysctl, 0, &umcpmiodebug, 0,
CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READWRITE, CTLTYPE_BOOL, "dump_buffers",
SYSCTL_DESCR("Dump buffer when debugging"),
NULL, 0, &sc->sc_dumpbuffer, 0,
CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
#endif
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READWRITE, CTLTYPE_INT, "response_wait",
SYSCTL_DESCR("How long to wait in ms for a response"
" for a HID report"),
umcpmio_verify_sysctl, 0, &sc->sc_cv_wait, 0,
CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READWRITE, CTLTYPE_INT, "response_errcnt",
SYSCTL_DESCR("How many errors to allow on a response"),
umcpmio_verify_sysctl, 0, &sc->sc_response_errcnt, 0,
CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
0, CTLTYPE_NODE, "i2c",
SYSCTL_DESCR("I2C controls"),
NULL, 0, NULL, 0,
CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
i2c_num = cnode->sysctl_num;
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
0, CTLTYPE_NODE, "adcdac",
SYSCTL_DESCR("ADC and DAC controls"),
NULL, 0, NULL, 0,
CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
adc_dac_num = cnode->sysctl_num;
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
0, CTLTYPE_NODE, "adc",
SYSCTL_DESCR("ADC controls"),
NULL, 0, NULL, 0,
CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
adc_num = cnode->sysctl_num;
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
0, CTLTYPE_NODE, "dac",
SYSCTL_DESCR("DAC controls"),
NULL, 0, NULL, 0,
CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
dac_num = cnode->sysctl_num;
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
0, CTLTYPE_NODE, "gpio",
SYSCTL_DESCR("GPIO controls"),
NULL, 0, NULL, 0,
CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
gpio_num = cnode->sysctl_num;
/* I2C */
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READWRITE, CTLTYPE_BOOL, "reportreadnostop",
SYSCTL_DESCR("Report that a READ without STOP was attempted"
" by a device"),
NULL, 0, &sc->sc_reportreadnostop, 0,
CTL_HW, sysctlroot_num, i2c_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READWRITE, CTLTYPE_INT, "busy_delay",
SYSCTL_DESCR("How long to wait in ms when the I2C engine is busy"),
umcpmio_verify_sysctl, 0, &sc->sc_busy_delay, 0,
CTL_HW, sysctlroot_num, i2c_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READWRITE, CTLTYPE_INT, "retry_busy_read",
SYSCTL_DESCR("How many times to retry a busy I2C read"),
umcpmio_verify_sysctl, 0, &sc->sc_retry_busy_read, 0,
CTL_HW, sysctlroot_num, i2c_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READWRITE, CTLTYPE_INT, "retry_busy_write",
SYSCTL_DESCR("How many times to retry a busy I2C write"),
umcpmio_verify_sysctl, 0, &sc->sc_retry_busy_write, 0,
CTL_HW, sysctlroot_num, i2c_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
/* GPIO */
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READWRITE, CTLTYPE_INT, "irq_poll",
SYSCTL_DESCR("How often to poll for a IRQ change"),
umcpmio_verify_sysctl, 0, &sc->sc_irq_poll, 0,
CTL_HW, sysctlroot_num, gpio_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READONLY, CTLTYPE_STRING, "clock_duty_cycles",
SYSCTL_DESCR("Valid duty cycles for GPIO clock on"
" GP1 ALT3 duty cycle"),
0, 0, __UNCONST(umcpmio_valid_dcs), sizeof(umcpmio_valid_dcs) + 1,
CTL_HW, sysctlroot_num, gpio_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READWRITE, CTLTYPE_STRING, "clock_duty_cycle",
SYSCTL_DESCR("GPIO clock on GP1 ALT3 duty cycle"),
umcpmio_verify_gpioclock_dc_sysctl, 0, (void *)sc, UMCPMIO_DC_NAME,
CTL_HW, sysctlroot_num, gpio_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READONLY, CTLTYPE_STRING, "clock_dividers",
SYSCTL_DESCR("Valid clock dividers for GPIO clock on GP1"
" with ALT3"),
0, 0, __UNCONST(umcpmio_valid_cds), sizeof(umcpmio_valid_cds) + 1,
CTL_HW, sysctlroot_num, gpio_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READWRITE, CTLTYPE_STRING, "clock_divider",
SYSCTL_DESCR("GPIO clock on GP1 ALT3 clock divider"),
umcpmio_verify_gpioclock_cd_sysctl, 0, (void *)sc, UMCPMIO_CD_NAME,
CTL_HW, sysctlroot_num, gpio_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
/* ADC and DAC */
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READONLY, CTLTYPE_STRING, "vrefs",
SYSCTL_DESCR("Valid vref values for ADC and DAC"),
0, 0,
__UNCONST(umcpmio_valid_vrefs), sizeof(umcpmio_valid_vrefs) + 1,
CTL_HW, sysctlroot_num, adc_dac_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
/* ADC */
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READWRITE, CTLTYPE_STRING, "vref",
SYSCTL_DESCR("ADC voltage reference"),
umcpmio_verify_adc_sysctl, 0, (void *)sc, UMCPMIO_VREF_NAME,
CTL_HW, sysctlroot_num, adc_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
/* DAC */
if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
CTLFLAG_READWRITE, CTLTYPE_STRING, "vref",
SYSCTL_DESCR("DAC voltage reference"),
umcpmio_verify_dac_sysctl, 0, (void *)sc, UMCPMIO_VREF_NAME,
CTL_HW, sysctlroot_num, dac_num, CTL_CREATE, CTL_EOL)) != 0)
return error;
return 0;
}
static int
umcpmio_match(device_t parent, cfdata_t match, void *aux)
{
struct uhidev_attach_arg *uha = aux;
return umcpmio_lookup(uha->uiaa->uiaa_vendor, uha->uiaa->uiaa_product)
!= NULL ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
/*
* This driver could be extended to support the MCP-2210 which is MCP's
* USB to SPI / gpio chip. It also appears to be a something like the
* PIC16F1455 used in the MCP2221 / MCP2221A. It is likely that a lot
* of this could use tables to drive behavior.
*/
static void
umcpmio_attach(device_t parent, device_t self, void *aux)
{
struct umcpmio_softc *sc = device_private(self);
struct uhidev_attach_arg *uha = aux;
struct gpiobus_attach_args gba;
struct i2cbus_attach_args iba;
struct mcp2221_status_res status_res;
int err;
sc->sc_dev = self;
sc->sc_hdev = uha->parent;
sc->sc_udev = uha->uiaa->uiaa_device;
sc->sc_umcpmiolog = NULL;
sc->sc_dumpbuffer = false;
sc->sc_reportreadnostop = true;
sc->sc_cv_wait = 2500;
sc->sc_response_errcnt = 5;
sc->sc_busy_delay = 1;
sc->sc_retry_busy_read = 50;
sc->sc_retry_busy_write = 50;
sc->sc_irq_poll = 10;
sc->sc_dev_open[CONTROL_DEV] = false;
sc->sc_dev_open[GP1_DEV] = false;
sc->sc_dev_open[GP2_DEV] = false;
sc->sc_dev_open[GP3_DEV] = false;
aprint_normal("\n");
if ((err = umcpmio_sysctl_init(sc)) != 0) {
aprint_error_dev(self, "Can't setup sysctl tree (%d)\n", err);
return;
}
mutex_init(&sc->sc_action_mutex, MUTEX_DEFAULT, IPL_NONE);
cv_init(&sc->sc_res_cv, "mcpres");
mutex_init(&sc->sc_res_mutex, MUTEX_DEFAULT, IPL_NONE);
sc->sc_res_buffer = NULL;
sc->sc_res_ready = false;
err = uhidev_open(sc->sc_hdev, &umcpmio_uhidev_intr, sc);
if (err) {
aprint_error_dev(sc->sc_dev, "umcpmio_attach: "
" uhidev_open: err=%d\n", err);
return;
}
/*
* It is not clear that this should be needed, but it was noted
* that the device would sometimes not be ready if this delay
* was not present. In fact, the attempts to set stuff a
* little later would sometimes fail.
*/
delay(1000);
err = umcpmio_get_status(sc, &status_res, true);
if (err) {
aprint_error_dev(sc->sc_dev, "umcpmio_attach: "
" umcpmio_get_status: err=%d\n", err);
return;
}
aprint_normal_dev(sc->sc_dev,
"Hardware revision: %d.%d, Firmware revision: %d.%d\n",
status_res.mcp2221_hardware_rev_major,
status_res.mcp2221_hardware_rev_minor,
status_res.mcp2221_firmware_rev_major,
status_res.mcp2221_firmware_rev_minor);
/*
* The datasheet suggests that it is possble for this
* to fail if the I2C port is currently being used.
* However... since you just plugged in the chip, the
* I2C port should not really be in use at that moment.
* In any case, try hard to set this and don't make it
* fatal if it did not get set.
*/
int i2cspeed;
for (i2cspeed = 0; i2cspeed < 3; i2cspeed++) {
err = umcpmio_set_i2c_speed_one(sc, I2C_SPEED_SM, true);
if (err) {
aprint_error_dev(sc->sc_dev, "umcpmio_attach:"
" set I2C speed: err=%d\n",
err);
delay(300);
}
break;
}
struct mcp2221_get_sram_res get_sram_res;
err = umcpmio_get_sram(sc, &get_sram_res, true);
if (err) {
aprint_error_dev(sc->sc_dev, "umcpmio_attach:"
" get sram error: err=%d\n",
err);
return;
}
umcpmio_dump_buffer(sc->sc_dumpbuffer,
(uint8_t *)&get_sram_res, MCP2221_RES_BUFFER_SIZE,
"umcpmio_attach get sram buffer copy");
/*
* There are only 4 pins right now, just unroll
* any loops
*/
sc->sc_gpio_pins[0].pin_num = 0;
sc->sc_gpio_pins[0].pin_caps = GPIO_PIN_INPUT;
sc->sc_gpio_pins[0].pin_caps |= GPIO_PIN_OUTPUT;
sc->sc_gpio_pins[0].pin_caps |= GPIO_PIN_ALT0;
sc->sc_gpio_pins[0].pin_caps |= GPIO_PIN_ALT3;
sc->sc_gpio_pins[0].pin_flags =
umcpmio_sram_gpio_to_flags(get_sram_res.gp0_settings);
sc->sc_gpio_pins[0].pin_intrcaps = 0;
snprintf(sc->sc_gpio_pins[0].pin_defname, 4, "GP0");
sc->sc_gpio_pins[1].pin_num = 1;
sc->sc_gpio_pins[1].pin_caps = GPIO_PIN_INPUT;
sc->sc_gpio_pins[1].pin_caps |= GPIO_PIN_OUTPUT;
sc->sc_gpio_pins[1].pin_caps |= GPIO_PIN_ALT0;
sc->sc_gpio_pins[1].pin_caps |= GPIO_PIN_ALT1;
sc->sc_gpio_pins[1].pin_caps |= GPIO_PIN_ALT2;
sc->sc_gpio_pins[1].pin_caps |= GPIO_PIN_ALT3;
sc->sc_gpio_pins[1].pin_flags =
umcpmio_sram_gpio_to_flags(get_sram_res.gp1_settings);
/* XXX - lets not advertise this right now... */
#if 0
sc->sc_gpio_pins[1].pin_intrcaps = GPIO_INTR_POS_EDGE;
sc->sc_gpio_pins[1].pin_intrcaps |= GPIO_INTR_NEG_EDGE;
sc->sc_gpio_pins[1].pin_intrcaps |= GPIO_INTR_DOUBLE_EDGE;
sc->sc_gpio_pins[1].pin_intrcaps |= GPIO_INTR_MPSAFE;
#endif
sc->sc_gpio_pins[1].pin_intrcaps = 0;
snprintf(sc->sc_gpio_pins[1].pin_defname, 4, "GP1");
sc->sc_gpio_pins[2].pin_num = 2;
sc->sc_gpio_pins[2].pin_caps = GPIO_PIN_INPUT;
sc->sc_gpio_pins[2].pin_caps |= GPIO_PIN_OUTPUT;
sc->sc_gpio_pins[2].pin_caps |= GPIO_PIN_ALT0;
sc->sc_gpio_pins[2].pin_caps |= GPIO_PIN_ALT1;
sc->sc_gpio_pins[2].pin_caps |= GPIO_PIN_ALT3;
sc->sc_gpio_pins[2].pin_flags =
umcpmio_sram_gpio_to_flags(get_sram_res.gp2_settings);
sc->sc_gpio_pins[2].pin_intrcaps = 0;
snprintf(sc->sc_gpio_pins[2].pin_defname, 4, "GP2");
sc->sc_gpio_pins[3].pin_num = 3;
sc->sc_gpio_pins[3].pin_caps = GPIO_PIN_INPUT;
sc->sc_gpio_pins[3].pin_caps |= GPIO_PIN_OUTPUT;
sc->sc_gpio_pins[3].pin_caps |= GPIO_PIN_ALT0;
sc->sc_gpio_pins[3].pin_caps |= GPIO_PIN_ALT1;
sc->sc_gpio_pins[3].pin_caps |= GPIO_PIN_ALT3;
sc->sc_gpio_pins[3].pin_flags =
umcpmio_sram_gpio_to_flags(get_sram_res.gp3_settings);
sc->sc_gpio_pins[3].pin_intrcaps = 0;
snprintf(sc->sc_gpio_pins[3].pin_defname, 4, "GP3");
sc->sc_gpio_gc.gp_cookie = sc;
sc->sc_gpio_gc.gp_pin_read = umcpmio_gpio_pin_read;
sc->sc_gpio_gc.gp_pin_write = umcpmio_gpio_pin_write;
sc->sc_gpio_gc.gp_pin_ctl = umcpmio_gpio_pin_ctl;
sc->sc_gpio_gc.gp_intr_establish = umcpmio_gpio_intr_establish;
sc->sc_gpio_gc.gp_intr_disestablish = umcpmio_gpio_intr_disestablish;
sc->sc_gpio_gc.gp_intr_str = umcpmio_gpio_intrstr;
gba.gba_gc = &sc->sc_gpio_gc;
gba.gba_pins = sc->sc_gpio_pins;
gba.gba_npins = MCP2221_NPINS;
sc->sc_gpio_dev = config_found(self, &gba, gpiobus_print,
CFARGS(.iattr = "gpiobus"));
iic_tag_init(&sc->sc_i2c_tag);
sc->sc_i2c_tag.ic_cookie = sc;
sc->sc_i2c_tag.ic_acquire_bus = umcpmio_acquire_bus;
sc->sc_i2c_tag.ic_release_bus = umcpmio_release_bus;
sc->sc_i2c_tag.ic_exec = umcpmio_i2c_exec;
memset(&iba, 0, sizeof(iba));
iba.iba_tag = &sc->sc_i2c_tag;
sc->sc_i2c_dev = config_found(self, &iba, iicbus_print,
CFARGS(.iattr = "i2cbus"));
}
static int
umcpmio_detach(device_t self, int flags)
{
struct umcpmio_softc *sc = device_private(self);
int err;
DPRINTF(("umcpmio_detach: sc=%p flags=%d\n", sc, flags));
mutex_enter(&sc->sc_action_mutex);
sc->sc_dying = 1;
err = config_detach_children(self, flags);
if (err)
return err;
uhidev_close(sc->sc_hdev);
mutex_destroy(&sc->sc_res_mutex);
cv_destroy(&sc->sc_res_cv);
sysctl_teardown(&sc->sc_umcpmiolog);
mutex_exit(&sc->sc_action_mutex);
mutex_destroy(&sc->sc_action_mutex);
return 0;
}
static int
umcpmio_activate(device_t self, enum devact act)
{
struct umcpmio_softc *sc = device_private(self);
DPRINTFN(5, ("umcpmio_activate: %d\n", act));
switch (act) {
case DVACT_DEACTIVATE:
sc->sc_dying = 1;
return 0;
default:
return EOPNOTSUPP;
}
}