/*      $NetBSD: uhci.c,v 1.320 2025/04/26 07:06:53 skrll Exp $ */

/*
* Copyright (c) 1998, 2004, 2011, 2012, 2016, 2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson ([email protected]) at
* Carlstedt Research & Technology, Jared D. McNeill ([email protected]),
* Matthew R. Green ([email protected]) and Nick Hudson.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* USB Universal Host Controller driver.
* Handles e.g. PIIX3 and PIIX4.
*
* UHCI spec: http://www.intel.com/technology/usb/spec.htm
* USB spec: http://www.usb.org/developers/docs/
* PIIXn spec: ftp://download.intel.com/design/intarch/datashts/29055002.pdf
*             ftp://download.intel.com/design/intarch/datashts/29056201.pdf
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uhci.c,v 1.320 2025/04/26 07:06:53 skrll Exp $");

#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif

#include <sys/param.h>

#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/select.h>
#include <sys/sysctl.h>
#include <sys/systm.h>

#include <machine/endian.h>

#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_mem.h>

#include <dev/usb/uhcireg.h>
#include <dev/usb/uhcivar.h>
#include <dev/usb/usbroothub.h>
#include <dev/usb/usbhist.h>

/* Use bandwidth reclamation for control transfers. Some devices choke on it. */
/*#define UHCI_CTL_LOOP */

#ifdef UHCI_DEBUG
uhci_softc_t *thesc;
int uhcinoloop = 0;
#endif

#ifdef USB_DEBUG
#ifndef UHCI_DEBUG
#define uhcidebug 0
#else
static int uhcidebug = 0;

SYSCTL_SETUP(sysctl_hw_uhci_setup, "sysctl hw.uhci setup")
{
       int err;
       const struct sysctlnode *rnode;
       const struct sysctlnode *cnode;

       err = sysctl_createv(clog, 0, NULL, &rnode,
           CTLFLAG_PERMANENT, CTLTYPE_NODE, "uhci",
           SYSCTL_DESCR("uhci global controls"),
           NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);

       if (err)
               goto fail;

       /* control debugging printfs */
       err = sysctl_createv(clog, 0, &rnode, &cnode,
           CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
           "debug", SYSCTL_DESCR("Enable debugging output"),
           NULL, 0, &uhcidebug, sizeof(uhcidebug), CTL_CREATE, CTL_EOL);
       if (err)
               goto fail;

       return;
fail:
       aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
}

#endif /* UHCI_DEBUG */
#endif /* USB_DEBUG */

#define DPRINTF(FMT,A,B,C,D)    USBHIST_LOGN(uhcidebug,1,FMT,A,B,C,D)
#define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(uhcidebug,N,FMT,A,B,C,D)
#define UHCIHIST_FUNC()         USBHIST_FUNC()
#define UHCIHIST_CALLED(name)   USBHIST_CALLED(uhcidebug)

/*
* The UHCI controller is little endian, so on big endian machines
* the data stored in memory needs to be swapped.
*/

struct uhci_pipe {
       struct usbd_pipe pipe;
       int nexttoggle;

       u_char aborting;
       struct usbd_xfer *abortstart, abortend;

       /* Info needed for different pipe kinds. */
       union {
               /* Control pipe */
               struct {
                       uhci_soft_qh_t *sqh;
                       usb_dma_t reqdma;
                       uhci_soft_td_t *setup;
                       uhci_soft_td_t *stat;
               } ctrl;
               /* Interrupt pipe */
               struct {
                       int npoll;
                       uhci_soft_qh_t **qhs;
               } intr;
               /* Bulk pipe */
               struct {
                       uhci_soft_qh_t *sqh;
               } bulk;
               /* Isochronous pipe */
               struct isoc {
                       uhci_soft_td_t **stds;
                       int next, inuse;
               } isoc;
       };
};

typedef TAILQ_HEAD(ux_completeq, uhci_xfer) ux_completeq_t;

Static void             uhci_globalreset(uhci_softc_t *);
Static usbd_status      uhci_portreset(uhci_softc_t*, int);
Static void             uhci_reset(uhci_softc_t *);
Static usbd_status      uhci_run(uhci_softc_t *, int);
Static uhci_soft_td_t  *uhci_alloc_std(uhci_softc_t *);
Static void             uhci_free_std(uhci_softc_t *, uhci_soft_td_t *);
Static void             uhci_free_std_locked(uhci_softc_t *, uhci_soft_td_t *);
Static uhci_soft_qh_t  *uhci_alloc_sqh(uhci_softc_t *);
Static void             uhci_free_sqh(uhci_softc_t *, uhci_soft_qh_t *);
#if 0
Static void             uhci_enter_ctl_q(uhci_softc_t *, uhci_soft_qh_t *,
                           uhci_intr_info_t *);
Static void             uhci_exit_ctl_q(uhci_softc_t *, uhci_soft_qh_t *);
#endif

#if 0
Static void             uhci_free_std_chain(uhci_softc_t *, uhci_soft_td_t *,
                           uhci_soft_td_t *);
#endif
Static int              uhci_alloc_std_chain(uhci_softc_t *, struct usbd_xfer *,
                           int, int, uhci_soft_td_t **);
Static void             uhci_free_stds(uhci_softc_t *, struct uhci_xfer *);

Static void             uhci_reset_std_chain(uhci_softc_t *, struct usbd_xfer *,
                           int, int, int *, uhci_soft_td_t **);

Static void             uhci_poll_hub(void *);
Static void             uhci_check_intr(uhci_softc_t *, struct uhci_xfer *,
                           ux_completeq_t *);
Static void             uhci_idone(struct uhci_xfer *, ux_completeq_t *);

Static void             uhci_abortx(struct usbd_xfer *);

Static void             uhci_add_ls_ctrl(uhci_softc_t *, uhci_soft_qh_t *);
Static void             uhci_add_hs_ctrl(uhci_softc_t *, uhci_soft_qh_t *);
Static void             uhci_add_bulk(uhci_softc_t *, uhci_soft_qh_t *);
Static void             uhci_remove_ls_ctrl(uhci_softc_t *,uhci_soft_qh_t *);
Static void             uhci_remove_hs_ctrl(uhci_softc_t *,uhci_soft_qh_t *);
Static void             uhci_remove_bulk(uhci_softc_t *,uhci_soft_qh_t *);
Static void             uhci_add_loop(uhci_softc_t *);
Static void             uhci_rem_loop(uhci_softc_t *);

Static usbd_status      uhci_setup_isoc(struct usbd_pipe *);

Static struct usbd_xfer *
                       uhci_allocx(struct usbd_bus *, unsigned int);
Static void             uhci_freex(struct usbd_bus *, struct usbd_xfer *);
Static bool             uhci_dying(struct usbd_bus *);
Static void             uhci_get_lock(struct usbd_bus *, kmutex_t **);
Static int              uhci_roothub_ctrl(struct usbd_bus *,
                           usb_device_request_t *, void *, int);

Static int              uhci_device_ctrl_init(struct usbd_xfer *);
Static void             uhci_device_ctrl_fini(struct usbd_xfer *);
Static usbd_status      uhci_device_ctrl_transfer(struct usbd_xfer *);
Static usbd_status      uhci_device_ctrl_start(struct usbd_xfer *);
Static void             uhci_device_ctrl_abort(struct usbd_xfer *);
Static void             uhci_device_ctrl_close(struct usbd_pipe *);
Static void             uhci_device_ctrl_done(struct usbd_xfer *);

Static int              uhci_device_intr_init(struct usbd_xfer *);
Static void             uhci_device_intr_fini(struct usbd_xfer *);
Static usbd_status      uhci_device_intr_transfer(struct usbd_xfer *);
Static usbd_status      uhci_device_intr_start(struct usbd_xfer *);
Static void             uhci_device_intr_abort(struct usbd_xfer *);
Static void             uhci_device_intr_close(struct usbd_pipe *);
Static void             uhci_device_intr_done(struct usbd_xfer *);

Static int              uhci_device_bulk_init(struct usbd_xfer *);
Static void             uhci_device_bulk_fini(struct usbd_xfer *);
Static usbd_status      uhci_device_bulk_transfer(struct usbd_xfer *);
Static usbd_status      uhci_device_bulk_start(struct usbd_xfer *);
Static void             uhci_device_bulk_abort(struct usbd_xfer *);
Static void             uhci_device_bulk_close(struct usbd_pipe *);
Static void             uhci_device_bulk_done(struct usbd_xfer *);

Static int              uhci_device_isoc_init(struct usbd_xfer *);
Static void             uhci_device_isoc_fini(struct usbd_xfer *);
Static usbd_status      uhci_device_isoc_transfer(struct usbd_xfer *);
Static void             uhci_device_isoc_abort(struct usbd_xfer *);
Static void             uhci_device_isoc_close(struct usbd_pipe *);
Static void             uhci_device_isoc_done(struct usbd_xfer *);

Static usbd_status      uhci_root_intr_transfer(struct usbd_xfer *);
Static usbd_status      uhci_root_intr_start(struct usbd_xfer *);
Static void             uhci_root_intr_abort(struct usbd_xfer *);
Static void             uhci_root_intr_close(struct usbd_pipe *);
Static void             uhci_root_intr_done(struct usbd_xfer *);

Static usbd_status      uhci_open(struct usbd_pipe *);
Static void             uhci_poll(struct usbd_bus *);
Static void             uhci_softintr(void *);

Static void             uhci_add_intr(uhci_softc_t *, uhci_soft_qh_t *);
Static void             uhci_remove_intr(uhci_softc_t *, uhci_soft_qh_t *);
Static usbd_status      uhci_device_setintr(uhci_softc_t *,
                           struct uhci_pipe *, int);

Static void             uhci_device_clear_toggle(struct usbd_pipe *);
Static void             uhci_noop(struct usbd_pipe *);

static inline uhci_soft_qh_t *
                       uhci_find_prev_qh(uhci_soft_qh_t *, uhci_soft_qh_t *);

#ifdef UHCI_DEBUG
Static void             uhci_dump_all(uhci_softc_t *);
Static void             uhci_dumpregs(uhci_softc_t *);
Static void             uhci_dump_qhs(uhci_soft_qh_t *);
Static void             uhci_dump_qh(uhci_soft_qh_t *);
Static void             uhci_dump_tds(uhci_soft_td_t *);
Static void             uhci_dump_td(uhci_soft_td_t *);
Static void             uhci_dump_ii(struct uhci_xfer *);
void                    uhci_dump(void);
#endif

#define UBARR(sc) bus_space_barrier((sc)->iot, (sc)->ioh, 0, (sc)->sc_size, \
                       BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE)
#define UWRITE1(sc, r, x) \
do { UBARR(sc); bus_space_write_1((sc)->iot, (sc)->ioh, (r), (x)); \
} while (/*CONSTCOND*/0)
#define UWRITE2(sc, r, x) \
do { UBARR(sc); bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x)); \
} while (/*CONSTCOND*/0)
#define UWRITE4(sc, r, x) \
do { UBARR(sc); bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x)); \
} while (/*CONSTCOND*/0)

static __inline uint8_t
UREAD1(uhci_softc_t *sc, bus_size_t r)
{

       UBARR(sc);
       return bus_space_read_1(sc->iot, sc->ioh, r);
}

static __inline uint16_t
UREAD2(uhci_softc_t *sc, bus_size_t r)
{

       UBARR(sc);
       return bus_space_read_2(sc->iot, sc->ioh, r);
}

#ifdef UHCI_DEBUG
static __inline uint32_t
UREAD4(uhci_softc_t *sc, bus_size_t r)
{

       UBARR(sc);
       return bus_space_read_4(sc->iot, sc->ioh, r);
}
#endif

#define UHCICMD(sc, cmd) UWRITE2(sc, UHCI_CMD, cmd)
#define UHCISTS(sc) UREAD2(sc, UHCI_STS)

#define UHCI_RESET_TIMEOUT 100  /* ms, reset timeout */

#define UHCI_CURFRAME(sc) (UREAD2(sc, UHCI_FRNUM) & UHCI_FRNUM_MASK)

const struct usbd_bus_methods uhci_bus_methods = {
       .ubm_open =     uhci_open,
       .ubm_softint =  uhci_softintr,
       .ubm_dopoll =   uhci_poll,
       .ubm_allocx =   uhci_allocx,
       .ubm_freex =    uhci_freex,
       .ubm_abortx =   uhci_abortx,
       .ubm_dying =    uhci_dying,
       .ubm_getlock =  uhci_get_lock,
       .ubm_rhctrl =   uhci_roothub_ctrl,
};

const struct usbd_pipe_methods uhci_root_intr_methods = {
       .upm_transfer = uhci_root_intr_transfer,
       .upm_start =    uhci_root_intr_start,
       .upm_abort =    uhci_root_intr_abort,
       .upm_close =    uhci_root_intr_close,
       .upm_cleartoggle =      uhci_noop,
       .upm_done =     uhci_root_intr_done,
};

const struct usbd_pipe_methods uhci_device_ctrl_methods = {
       .upm_init =     uhci_device_ctrl_init,
       .upm_fini =     uhci_device_ctrl_fini,
       .upm_transfer = uhci_device_ctrl_transfer,
       .upm_start =    uhci_device_ctrl_start,
       .upm_abort =    uhci_device_ctrl_abort,
       .upm_close =    uhci_device_ctrl_close,
       .upm_cleartoggle =      uhci_noop,
       .upm_done =     uhci_device_ctrl_done,
};

const struct usbd_pipe_methods uhci_device_intr_methods = {
       .upm_init =     uhci_device_intr_init,
       .upm_fini =     uhci_device_intr_fini,
       .upm_transfer = uhci_device_intr_transfer,
       .upm_start =    uhci_device_intr_start,
       .upm_abort =    uhci_device_intr_abort,
       .upm_close =    uhci_device_intr_close,
       .upm_cleartoggle =      uhci_device_clear_toggle,
       .upm_done =     uhci_device_intr_done,
};

const struct usbd_pipe_methods uhci_device_bulk_methods = {
       .upm_init =     uhci_device_bulk_init,
       .upm_fini =     uhci_device_bulk_fini,
       .upm_transfer = uhci_device_bulk_transfer,
       .upm_start =    uhci_device_bulk_start,
       .upm_abort =    uhci_device_bulk_abort,
       .upm_close =    uhci_device_bulk_close,
       .upm_cleartoggle =      uhci_device_clear_toggle,
       .upm_done =     uhci_device_bulk_done,
};

const struct usbd_pipe_methods uhci_device_isoc_methods = {
       .upm_init =     uhci_device_isoc_init,
       .upm_fini =     uhci_device_isoc_fini,
       .upm_transfer = uhci_device_isoc_transfer,
       .upm_abort =    uhci_device_isoc_abort,
       .upm_close =    uhci_device_isoc_close,
       .upm_cleartoggle =      uhci_noop,
       .upm_done =     uhci_device_isoc_done,
};

static inline void
uhci_add_intr_list(uhci_softc_t *sc, struct uhci_xfer *ux)
{

       TAILQ_INSERT_TAIL(&sc->sc_intrhead, ux, ux_list);
}

static inline void
uhci_del_intr_list(uhci_softc_t *sc, struct uhci_xfer *ux)
{

       TAILQ_REMOVE(&sc->sc_intrhead, ux, ux_list);
}

static inline uhci_soft_qh_t *
uhci_find_prev_qh(uhci_soft_qh_t *pqh, uhci_soft_qh_t *sqh)
{
       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(15, "pqh=%#jx sqh=%#jx", (uintptr_t)pqh, (uintptr_t)sqh, 0, 0);

       for (; pqh->hlink != sqh; pqh = pqh->hlink) {
#if defined(DIAGNOSTIC) || defined(UHCI_DEBUG)
               usb_syncmem(&pqh->dma,
                   pqh->offs + offsetof(uhci_qh_t, qh_hlink),
                   sizeof(pqh->qh.qh_hlink),
                   BUS_DMASYNC_POSTWRITE);
               if (le32toh(pqh->qh.qh_hlink) & UHCI_PTR_T) {
                       printf("%s: QH not found\n", __func__);
                       return NULL;
               }
#endif
       }
       return pqh;
}

void
uhci_globalreset(uhci_softc_t *sc)
{
       UHCICMD(sc, UHCI_CMD_GRESET);   /* global reset */
       usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY); /* wait a little */
       UHCICMD(sc, 0);                 /* do nothing */
}

int
uhci_init(uhci_softc_t *sc)
{
       int i, j;
       uhci_soft_qh_t *clsqh, *chsqh, *bsqh, *sqh, *lsqh;
       uhci_soft_td_t *std;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();

#ifdef UHCI_DEBUG
       thesc = sc;

       if (uhcidebug >= 2)
               uhci_dumpregs(sc);
#endif

       sc->sc_suspend = PWR_RESUME;

       UWRITE2(sc, UHCI_INTR, 0);              /* disable interrupts */
       uhci_globalreset(sc);                   /* reset the controller */
       uhci_reset(sc);

       /* Allocate and initialize real frame array. */
       int err = usb_allocmem(sc->sc_bus.ub_dmatag,
           UHCI_FRAMELIST_COUNT * sizeof(uhci_physaddr_t),
           UHCI_FRAMELIST_ALIGN, USBMALLOC_COHERENT, &sc->sc_dma);
       if (err)
               return err;
       sc->sc_pframes = KERNADDR(&sc->sc_dma, 0);
       /* set frame number to 0 */
       UWRITE2(sc, UHCI_FRNUM, 0);
       /* set frame list */
       UWRITE4(sc, UHCI_FLBASEADDR, DMAADDR(&sc->sc_dma, 0));

       /* Initialise mutex early for uhci_alloc_* */
       mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
       mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);

       /*
        * Allocate a TD, inactive, that hangs from the last QH.
        * This is to avoid a bug in the PIIX that makes it run berserk
        * otherwise.
        */
       std = uhci_alloc_std(sc);
       if (std == NULL)
               return ENOMEM;
       std->link.std = NULL;
       std->td.td_link = htole32(UHCI_PTR_T);
       std->td.td_status = htole32(0); /* inactive */
       std->td.td_token = htole32(0);
       std->td.td_buffer = htole32(0);
       usb_syncmem(&std->dma, std->offs, sizeof(std->td),
           BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);

       /* Allocate the dummy QH marking the end and used for looping the QHs.*/
       lsqh = uhci_alloc_sqh(sc);
       if (lsqh == NULL)
               goto fail1;
       lsqh->hlink = NULL;
       lsqh->qh.qh_hlink = htole32(UHCI_PTR_T);        /* end of QH chain */
       lsqh->elink = std;
       lsqh->qh.qh_elink = htole32(std->physaddr | UHCI_PTR_TD);
       sc->sc_last_qh = lsqh;
       usb_syncmem(&lsqh->dma, lsqh->offs, sizeof(lsqh->qh),
           BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);

       /* Allocate the dummy QH where bulk traffic will be queued. */
       bsqh = uhci_alloc_sqh(sc);
       if (bsqh == NULL)
               goto fail2;
       bsqh->hlink = lsqh;
       bsqh->qh.qh_hlink = htole32(lsqh->physaddr | UHCI_PTR_QH);
       bsqh->elink = NULL;
       bsqh->qh.qh_elink = htole32(UHCI_PTR_T);
       sc->sc_bulk_start = sc->sc_bulk_end = bsqh;
       usb_syncmem(&bsqh->dma, bsqh->offs, sizeof(bsqh->qh),
           BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);

       /* Allocate dummy QH where high speed control traffic will be queued. */
       chsqh = uhci_alloc_sqh(sc);
       if (chsqh == NULL)
               goto fail3;
       chsqh->hlink = bsqh;
       chsqh->qh.qh_hlink = htole32(bsqh->physaddr | UHCI_PTR_QH);
       chsqh->elink = NULL;
       chsqh->qh.qh_elink = htole32(UHCI_PTR_T);
       sc->sc_hctl_start = sc->sc_hctl_end = chsqh;
       usb_syncmem(&chsqh->dma, chsqh->offs, sizeof(chsqh->qh),
           BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);

       /* Allocate dummy QH where control traffic will be queued. */
       clsqh = uhci_alloc_sqh(sc);
       if (clsqh == NULL)
               goto fail4;
       clsqh->hlink = chsqh;
       clsqh->qh.qh_hlink = htole32(chsqh->physaddr | UHCI_PTR_QH);
       clsqh->elink = NULL;
       clsqh->qh.qh_elink = htole32(UHCI_PTR_T);
       sc->sc_lctl_start = sc->sc_lctl_end = clsqh;
       usb_syncmem(&clsqh->dma, clsqh->offs, sizeof(clsqh->qh),
           BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);

       /*
        * Make all (virtual) frame list pointers point to the interrupt
        * queue heads and the interrupt queue heads at the control
        * queue head and point the physical frame list to the virtual.
        */
       for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
               std = uhci_alloc_std(sc);
               sqh = uhci_alloc_sqh(sc);
               if (std == NULL || sqh == NULL)
                       return USBD_NOMEM;
               std->link.sqh = sqh;
               std->td.td_link = htole32(sqh->physaddr | UHCI_PTR_QH);
               std->td.td_status = htole32(UHCI_TD_IOS); /* iso, inactive */
               std->td.td_token = htole32(0);
               std->td.td_buffer = htole32(0);
               usb_syncmem(&std->dma, std->offs, sizeof(std->td),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
               sqh->hlink = clsqh;
               sqh->qh.qh_hlink = htole32(clsqh->physaddr | UHCI_PTR_QH);
               sqh->elink = NULL;
               sqh->qh.qh_elink = htole32(UHCI_PTR_T);
               usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
               sc->sc_vframes[i].htd = std;
               sc->sc_vframes[i].etd = std;
               sc->sc_vframes[i].hqh = sqh;
               sc->sc_vframes[i].eqh = sqh;
               for (j = i;
                    j < UHCI_FRAMELIST_COUNT;
                    j += UHCI_VFRAMELIST_COUNT)
                       sc->sc_pframes[j] = htole32(std->physaddr);
       }
       usb_syncmem(&sc->sc_dma, 0,
           UHCI_FRAMELIST_COUNT * sizeof(uhci_physaddr_t),
           BUS_DMASYNC_PREWRITE);


       TAILQ_INIT(&sc->sc_intrhead);

       sc->sc_xferpool = pool_cache_init(sizeof(struct uhci_xfer), 0, 0, 0,
           "uhcixfer", NULL, IPL_USB, NULL, NULL, NULL);

       callout_init(&sc->sc_poll_handle, CALLOUT_MPSAFE);
       callout_setfunc(&sc->sc_poll_handle, uhci_poll_hub, sc);

       /* Set up the bus struct. */
       sc->sc_bus.ub_methods = &uhci_bus_methods;
       sc->sc_bus.ub_pipesize = sizeof(struct uhci_pipe);
       sc->sc_bus.ub_usedma = true;
       sc->sc_bus.ub_dmaflags = USBMALLOC_MULTISEG;

       UHCICMD(sc, UHCI_CMD_MAXP); /* Assume 64 byte packets at frame end */

       DPRINTF("Enabling...", 0, 0, 0, 0);

       err = uhci_run(sc, 1);          /* and here we go... */
       UWRITE2(sc, UHCI_INTR, UHCI_INTR_TOCRCIE | UHCI_INTR_RIE |
               UHCI_INTR_IOCE | UHCI_INTR_SPIE);       /* enable interrupts */
       return err;

fail4:
       uhci_free_sqh(sc, chsqh);
fail3:
       uhci_free_sqh(sc, lsqh);
fail2:
       uhci_free_sqh(sc, lsqh);
fail1:
       uhci_free_std(sc, std);

       return ENOMEM;
}

int
uhci_activate(device_t self, enum devact act)
{
       struct uhci_softc *sc = device_private(self);

       switch (act) {
       case DVACT_DEACTIVATE:
               sc->sc_dying = 1;
               return 0;
       default:
               return EOPNOTSUPP;
       }
}

void
uhci_childdet(device_t self, device_t child)
{
       struct uhci_softc *sc = device_private(self);

       KASSERT(sc->sc_child == child);
       sc->sc_child = NULL;
}

int
uhci_detach(struct uhci_softc *sc, int flags)
{
       int rv = 0;

       if (sc->sc_child != NULL)
               rv = config_detach(sc->sc_child, flags);

       if (rv != 0)
               return rv;

       KASSERT(sc->sc_intr_xfer == NULL);
       callout_halt(&sc->sc_poll_handle, NULL);
       callout_destroy(&sc->sc_poll_handle);

       mutex_destroy(&sc->sc_lock);
       mutex_destroy(&sc->sc_intr_lock);

       pool_cache_destroy(sc->sc_xferpool);

       /* XXX free other data structures XXX */

       return rv;
}

struct usbd_xfer *
uhci_allocx(struct usbd_bus *bus, unsigned int nframes)
{
       struct uhci_softc *sc = UHCI_BUS2SC(bus);
       struct usbd_xfer *xfer;

       xfer = pool_cache_get(sc->sc_xferpool, PR_WAITOK);
       if (xfer != NULL) {
               memset(xfer, 0, sizeof(struct uhci_xfer));

#ifdef DIAGNOSTIC
               struct uhci_xfer *uxfer = UHCI_XFER2UXFER(xfer);
               uxfer->ux_isdone = true;
               xfer->ux_state = XFER_BUSY;
#endif
       }
       return xfer;
}

void
uhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
{
       struct uhci_softc *sc = UHCI_BUS2SC(bus);
       struct uhci_xfer *uxfer __diagused = UHCI_XFER2UXFER(xfer);

       KASSERTMSG(xfer->ux_state == XFER_BUSY ||
           xfer->ux_status == USBD_NOT_STARTED,
           "xfer %p state %d\n", xfer, xfer->ux_state);
       KASSERTMSG(uxfer->ux_isdone || xfer->ux_status == USBD_NOT_STARTED,
           "xfer %p not done\n", xfer);
#ifdef DIAGNOSTIC
       xfer->ux_state = XFER_FREE;
#endif
       pool_cache_put(sc->sc_xferpool, xfer);
}

Static bool
uhci_dying(struct usbd_bus *bus)
{
       struct uhci_softc *sc = UHCI_BUS2SC(bus);

       return sc->sc_dying;
}

Static void
uhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
{
       struct uhci_softc *sc = UHCI_BUS2SC(bus);

       *lock = &sc->sc_lock;
}


/*
* Handle suspend/resume.
*
* We need to switch to polling mode here, because this routine is
* called from an interrupt context.  This is all right since we
* are almost suspended anyway.
*/
bool
uhci_resume(device_t dv, const pmf_qual_t *qual)
{
       uhci_softc_t *sc = device_private(dv);
       int cmd;

       cmd = UREAD2(sc, UHCI_CMD);
       UWRITE2(sc, UHCI_INTR, 0);
       uhci_globalreset(sc);
       uhci_reset(sc);
       if (cmd & UHCI_CMD_RS)
               uhci_run(sc, 0);

       /* restore saved state */
       UWRITE4(sc, UHCI_FLBASEADDR, DMAADDR(&sc->sc_dma, 0));
       UWRITE2(sc, UHCI_FRNUM, sc->sc_saved_frnum);
       UWRITE1(sc, UHCI_SOF, sc->sc_saved_sof);

       UHCICMD(sc, cmd | UHCI_CMD_FGR); /* force resume */
       usb_delay_ms(&sc->sc_bus, USB_RESUME_DELAY);
       UHCICMD(sc, cmd & ~UHCI_CMD_EGSM); /* back to normal */
       UWRITE2(sc, UHCI_INTR, UHCI_INTR_TOCRCIE |
           UHCI_INTR_RIE | UHCI_INTR_IOCE | UHCI_INTR_SPIE);
       UHCICMD(sc, UHCI_CMD_MAXP);
       uhci_run(sc, 1); /* and start traffic again */
       usb_delay_ms(&sc->sc_bus, USB_RESUME_RECOVERY);
#ifdef UHCI_DEBUG
       if (uhcidebug >= 2)
               uhci_dumpregs(sc);
#endif

       mutex_enter(&sc->sc_lock);
       sc->sc_suspend = PWR_RESUME;
       if (sc->sc_intr_xfer != NULL)
               callout_schedule(&sc->sc_poll_handle, sc->sc_ival);
       mutex_exit(&sc->sc_lock);

       return true;
}

bool
uhci_suspend(device_t dv, const pmf_qual_t *qual)
{
       uhci_softc_t *sc = device_private(dv);
       int cmd;

       mutex_enter(&sc->sc_lock);
       sc->sc_suspend = PWR_SUSPEND;
       if (sc->sc_intr_xfer != NULL)
               callout_halt(&sc->sc_poll_handle, &sc->sc_lock);
       mutex_exit(&sc->sc_lock);

       cmd = UREAD2(sc, UHCI_CMD);

#ifdef UHCI_DEBUG
       if (uhcidebug >= 2)
               uhci_dumpregs(sc);
#endif

       uhci_run(sc, 0); /* stop the controller */
       cmd &= ~UHCI_CMD_RS;

       /* save some state if BIOS doesn't */
       sc->sc_saved_frnum = UREAD2(sc, UHCI_FRNUM);
       sc->sc_saved_sof = UREAD1(sc, UHCI_SOF);

       UWRITE2(sc, UHCI_INTR, 0); /* disable intrs */

       UHCICMD(sc, cmd | UHCI_CMD_EGSM); /* enter suspend */
       usb_delay_ms(&sc->sc_bus, USB_RESUME_WAIT);

       return true;
}

#ifdef UHCI_DEBUG
Static void
uhci_dumpregs(uhci_softc_t *sc)
{
       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTF("cmd =%04jx  sts    =%04jx  intr   =%04jx  frnum =%04jx",
           UREAD2(sc, UHCI_CMD), UREAD2(sc, UHCI_STS),
           UREAD2(sc, UHCI_INTR), UREAD2(sc, UHCI_FRNUM));
       DPRINTF("sof =%04jx  portsc1=%04jx  portsc2=%04jx  flbase=%08jx",
           UREAD1(sc, UHCI_SOF), UREAD2(sc, UHCI_PORTSC1),
           UREAD2(sc, UHCI_PORTSC2), UREAD4(sc, UHCI_FLBASEADDR));
}

void
uhci_dump_td(uhci_soft_td_t *p)
{
       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       usb_syncmem(&p->dma, p->offs, sizeof(p->td),
           BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);

       DPRINTF("TD(%#jx) at 0x%08jx", (uintptr_t)p, p->physaddr, 0, 0);
       DPRINTF("   link=0x%08jx status=0x%08jx "
           "token=0x%08x buffer=0x%08x",
            le32toh(p->td.td_link),
            le32toh(p->td.td_status),
            le32toh(p->td.td_token),
            le32toh(p->td.td_buffer));

       DPRINTF("bitstuff=%jd crcto   =%jd nak     =%jd babble  =%jd",
           !!(le32toh(p->td.td_status) & UHCI_TD_BITSTUFF),
           !!(le32toh(p->td.td_status) & UHCI_TD_CRCTO),
           !!(le32toh(p->td.td_status) & UHCI_TD_NAK),
           !!(le32toh(p->td.td_status) & UHCI_TD_BABBLE));
       DPRINTF("dbuffer =%jd stalled =%jd active  =%jd ioc     =%jd",
           !!(le32toh(p->td.td_status) & UHCI_TD_DBUFFER),
           !!(le32toh(p->td.td_status) & UHCI_TD_STALLED),
           !!(le32toh(p->td.td_status) & UHCI_TD_ACTIVE),
           !!(le32toh(p->td.td_status) & UHCI_TD_IOC));
       DPRINTF("ios     =%jd ls      =%jd spd     =%jd",
           !!(le32toh(p->td.td_status) & UHCI_TD_IOS),
           !!(le32toh(p->td.td_status) & UHCI_TD_LS),
           !!(le32toh(p->td.td_status) & UHCI_TD_SPD), 0);
       DPRINTF("errcnt  =%jd actlen  =%jd pid=%02jx",
           UHCI_TD_GET_ERRCNT(le32toh(p->td.td_status)),
           UHCI_TD_GET_ACTLEN(le32toh(p->td.td_status)),
           UHCI_TD_GET_PID(le32toh(p->td.td_token)), 0);
       DPRINTF("addr=%jd  endpt=%jd  D=%jd  maxlen=%jd,",
           UHCI_TD_GET_DEVADDR(le32toh(p->td.td_token)),
           UHCI_TD_GET_ENDPT(le32toh(p->td.td_token)),
           UHCI_TD_GET_DT(le32toh(p->td.td_token)),
           UHCI_TD_GET_MAXLEN(le32toh(p->td.td_token)));
}

void
uhci_dump_qh(uhci_soft_qh_t *sqh)
{
       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh),
           BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);

       DPRINTF("QH(%#jx) at 0x%08jx: hlink=%08jx elink=%08jx", (uintptr_t)sqh,
           (int)sqh->physaddr, le32toh(sqh->qh.qh_hlink),
           le32toh(sqh->qh.qh_elink));

       usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_PREREAD);
}


#if 1
void
uhci_dump(void)
{
       uhci_dump_all(thesc);
}
#endif

void
uhci_dump_all(uhci_softc_t *sc)
{
       uhci_dumpregs(sc);
       /*printf("framelist[i].link = %08x\n", sc->sc_framelist[0].link);*/
       uhci_dump_qhs(sc->sc_lctl_start);
}


void
uhci_dump_qhs(uhci_soft_qh_t *sqh)
{
       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       uhci_dump_qh(sqh);

       /*
        * uhci_dump_qhs displays all the QHs and TDs from the given QH onwards
        * Traverses sideways first, then down.
        *
        * QH1
        * QH2
        * No QH
        * TD2.1
        * TD2.2
        * TD1.1
        * etc.
        *
        * TD2.x being the TDs queued at QH2 and QH1 being referenced from QH1.
        */

       usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh),
           BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
       if (sqh->hlink != NULL && !(le32toh(sqh->qh.qh_hlink) & UHCI_PTR_T))
               uhci_dump_qhs(sqh->hlink);
       else
               DPRINTF("No QH", 0, 0, 0, 0);
       usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_PREREAD);

       if (sqh->elink != NULL && !(le32toh(sqh->qh.qh_elink) & UHCI_PTR_T))
               uhci_dump_tds(sqh->elink);
       else
               DPRINTF("No QH", 0, 0, 0, 0);
}

void
uhci_dump_tds(uhci_soft_td_t *std)
{
       uhci_soft_td_t *td;
       int stop;

       for (td = std; td != NULL; td = td->link.std) {
               uhci_dump_td(td);

               /*
                * Check whether the link pointer in this TD marks
                * the link pointer as end of queue. This avoids
                * printing the free list in case the queue/TD has
                * already been moved there (seatbelt).
                */
               usb_syncmem(&td->dma, td->offs + offsetof(uhci_td_t, td_link),
                   sizeof(td->td.td_link),
                   BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
               stop = (le32toh(td->td.td_link) & UHCI_PTR_T ||
                       le32toh(td->td.td_link) == 0);
               usb_syncmem(&td->dma, td->offs + offsetof(uhci_td_t, td_link),
                   sizeof(td->td.td_link), BUS_DMASYNC_PREREAD);
               if (stop)
                       break;
       }
}

Static void
uhci_dump_ii(struct uhci_xfer *ux)
{
       struct usbd_pipe *pipe;
       usb_endpoint_descriptor_t *ed;
       struct usbd_device *dev;

       if (ux == NULL) {
               printf("ux NULL\n");
               return;
       }
       pipe = ux->ux_xfer.ux_pipe;
       if (pipe == NULL) {
               printf("ux %p: done=%d pipe=NULL\n", ux, ux->ux_isdone);
               return;
       }
       if (pipe->up_endpoint == NULL) {
               printf("ux %p: done=%d pipe=%p pipe->up_endpoint=NULL\n",
                      ux, ux->ux_isdone, pipe);
               return;
       }
       if (pipe->up_dev == NULL) {
               printf("ux %p: done=%d pipe=%p pipe->up_dev=NULL\n",
                      ux, ux->ux_isdone, pipe);
               return;
       }
       ed = pipe->up_endpoint->ue_edesc;
       dev = pipe->up_dev;
       printf("ux %p: done=%d dev=%p vid=0x%04x pid=0x%04x addr=%d pipe=%p ep=0x%02x attr=0x%02x\n",
              ux, ux->ux_isdone, dev,
              UGETW(dev->ud_ddesc.idVendor),
              UGETW(dev->ud_ddesc.idProduct),
              dev->ud_addr, pipe,
              ed->bEndpointAddress, ed->bmAttributes);
}

void uhci_dump_iis(struct uhci_softc *sc);
void
uhci_dump_iis(struct uhci_softc *sc)
{
       struct uhci_xfer *ux;

       printf("interrupt list:\n");
       TAILQ_FOREACH(ux, &sc->sc_intrhead, ux_list)
               uhci_dump_ii(ux);
}

void iidump(void);
void iidump(void) { uhci_dump_iis(thesc); }

#endif

/*
* This routine is executed periodically and simulates interrupts
* from the root controller interrupt pipe for port status change.
*/
void
uhci_poll_hub(void *addr)
{
       struct uhci_softc *sc = addr;
       struct usbd_xfer *xfer;
       u_char *p;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       mutex_enter(&sc->sc_lock);

       /*
        * If the intr xfer has completed or been synchronously
        * aborted, we have nothing to do.
        */
       xfer = sc->sc_intr_xfer;
       if (xfer == NULL)
               goto out;
       KASSERT(xfer->ux_status == USBD_IN_PROGRESS);

       /*
        * If the intr xfer for which we were scheduled is done, and
        * another intr xfer has been submitted, let that one be dealt
        * with when the callout fires again.
        *
        * The call to callout_pending is racy, but the transition
        * from pending to invoking happens atomically.  The
        * callout_ack ensures callout_invoking does not return true
        * due to this invocation of the callout; the lock ensures the
        * next invocation of the callout cannot callout_ack (unless it
        * had already run to completion and nulled sc->sc_intr_xfer,
        * in which case would have bailed out already).
        */
       callout_ack(&sc->sc_poll_handle);
       if (callout_pending(&sc->sc_poll_handle) ||
           callout_invoking(&sc->sc_poll_handle))
               goto out;

       /*
        * Check flags for the two interrupt ports, and set them in the
        * buffer if an interrupt arrived; otherwise arrange .
        */
       p = xfer->ux_buf;
       p[0] = 0;
       if (UREAD2(sc, UHCI_PORTSC1) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC))
               p[0] |= 1<<1;
       if (UREAD2(sc, UHCI_PORTSC2) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC))
               p[0] |= 1<<2;
       if (p[0] == 0) {
               /*
                * No change -- try again in a while, unless we're
                * suspending, in which case we'll try again after
                * resume.
                */
               if (sc->sc_suspend != PWR_SUSPEND)
                       callout_schedule(&sc->sc_poll_handle, sc->sc_ival);
               goto out;
       }

       /*
        * Interrupt completed, and the xfer has not been completed or
        * synchronously aborted.  Complete the xfer now.
        */
       xfer->ux_actlen = 1;
       xfer->ux_status = USBD_NORMAL_COMPLETION;
#ifdef DIAGNOSTIC
       UHCI_XFER2UXFER(xfer)->ux_isdone = true;
#endif
       usb_transfer_complete(xfer);

out:    mutex_exit(&sc->sc_lock);
}

void
uhci_root_intr_done(struct usbd_xfer *xfer)
{
       struct uhci_softc *sc = UHCI_XFER2SC(xfer);

       KASSERT(mutex_owned(&sc->sc_lock));

       /* Claim the xfer so it doesn't get completed again.  */
       KASSERT(sc->sc_intr_xfer == xfer);
       KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
       sc->sc_intr_xfer = NULL;
}

/*
* Let the last QH loop back to the high speed control transfer QH.
* This is what intel calls "bandwidth reclamation" and improves
* USB performance a lot for some devices.
* If we are already looping, just count it.
*/
void
uhci_add_loop(uhci_softc_t *sc)
{
       UHCIHIST_FUNC(); UHCIHIST_CALLED();

#ifdef UHCI_DEBUG
       if (uhcinoloop)
               return;
#endif
       if (++sc->sc_loops == 1) {
               DPRINTFN(5, "add loop", 0, 0, 0, 0);
               /* Note, we don't loop back the soft pointer. */
               sc->sc_last_qh->qh.qh_hlink =
                   htole32(sc->sc_hctl_start->physaddr | UHCI_PTR_QH);
               usb_syncmem(&sc->sc_last_qh->dma,
                   sc->sc_last_qh->offs + offsetof(uhci_qh_t, qh_hlink),
                   sizeof(sc->sc_last_qh->qh.qh_hlink),
                   BUS_DMASYNC_PREWRITE);
       }
}

void
uhci_rem_loop(uhci_softc_t *sc)
{
       UHCIHIST_FUNC(); UHCIHIST_CALLED();

#ifdef UHCI_DEBUG
       if (uhcinoloop)
               return;
#endif
       if (--sc->sc_loops == 0) {
               DPRINTFN(5, "remove loop", 0, 0, 0, 0);
               sc->sc_last_qh->qh.qh_hlink = htole32(UHCI_PTR_T);
               usb_syncmem(&sc->sc_last_qh->dma,
                   sc->sc_last_qh->offs + offsetof(uhci_qh_t, qh_hlink),
                   sizeof(sc->sc_last_qh->qh.qh_hlink),
                   BUS_DMASYNC_PREWRITE);
       }
}

/* Add high speed control QH, called with lock held. */
void
uhci_add_hs_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
       uhci_soft_qh_t *eqh;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       KASSERT(mutex_owned(&sc->sc_lock));

       DPRINTFN(10, "sqh %#jx", (uintptr_t)sqh, 0, 0, 0);
       eqh = sc->sc_hctl_end;
       usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(eqh->qh.qh_hlink),
           BUS_DMASYNC_POSTWRITE);
       sqh->hlink       = eqh->hlink;
       sqh->qh.qh_hlink = eqh->qh.qh_hlink;
       usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh),
           BUS_DMASYNC_PREWRITE);
       eqh->hlink       = sqh;
       eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
       sc->sc_hctl_end = sqh;
       usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(eqh->qh.qh_hlink), BUS_DMASYNC_PREWRITE);
#ifdef UHCI_CTL_LOOP
       uhci_add_loop(sc);
#endif
}

/* Remove high speed control QH, called with lock held. */
void
uhci_remove_hs_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
       uhci_soft_qh_t *pqh;
       uint32_t elink;

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(10, "sqh %#jx", (uintptr_t)sqh, 0, 0, 0);
#ifdef UHCI_CTL_LOOP
       uhci_rem_loop(sc);
#endif
       /*
        * The T bit should be set in the elink of the QH so that the HC
        * doesn't follow the pointer.  This condition may fail if the
        * the transferred packet was short so that the QH still points
        * at the last used TD.
        * In this case we set the T bit and wait a little for the HC
        * to stop looking at the TD.
        * Note that if the TD chain is large enough, the controller
        * may still be looking at the chain at the end of this function.
        * uhci_free_std_chain() will make sure the controller stops
        * looking at it quickly, but until then we should not change
        * sqh->hlink.
        */
       usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_elink),
           sizeof(sqh->qh.qh_elink),
           BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
       elink = le32toh(sqh->qh.qh_elink);
       usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_elink),
           sizeof(sqh->qh.qh_elink), BUS_DMASYNC_PREREAD);
       if (!(elink & UHCI_PTR_T)) {
               sqh->qh.qh_elink = htole32(UHCI_PTR_T);
               usb_syncmem(&sqh->dma,
                   sqh->offs + offsetof(uhci_qh_t, qh_elink),
                   sizeof(sqh->qh.qh_elink),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
               delay(UHCI_QH_REMOVE_DELAY);
       }

       pqh = uhci_find_prev_qh(sc->sc_hctl_start, sqh);
       usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(sqh->qh.qh_hlink), BUS_DMASYNC_POSTWRITE);
       pqh->hlink = sqh->hlink;
       pqh->qh.qh_hlink = sqh->qh.qh_hlink;
       usb_syncmem(&pqh->dma, pqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(pqh->qh.qh_hlink), BUS_DMASYNC_PREWRITE);
       delay(UHCI_QH_REMOVE_DELAY);
       if (sc->sc_hctl_end == sqh)
               sc->sc_hctl_end = pqh;
}

/* Add low speed control QH, called with lock held. */
void
uhci_add_ls_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
       uhci_soft_qh_t *eqh;

       KASSERT(mutex_owned(&sc->sc_lock));

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(10, "sqh %#jx", (uintptr_t)sqh, 0, 0, 0);

       eqh = sc->sc_lctl_end;
       usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(eqh->qh.qh_hlink), BUS_DMASYNC_POSTWRITE);
       sqh->hlink = eqh->hlink;
       sqh->qh.qh_hlink = eqh->qh.qh_hlink;
       usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh),
           BUS_DMASYNC_PREWRITE);
       eqh->hlink = sqh;
       eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
       usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(eqh->qh.qh_hlink), BUS_DMASYNC_PREWRITE);
       sc->sc_lctl_end = sqh;
}

/* Remove low speed control QH, called with lock held. */
void
uhci_remove_ls_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
       uhci_soft_qh_t *pqh;
       uint32_t elink;

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(10, "sqh %#jx", (uintptr_t)sqh, 0, 0, 0);

       /* See comment in uhci_remove_hs_ctrl() */
       usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_elink),
           sizeof(sqh->qh.qh_elink),
           BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
       elink = le32toh(sqh->qh.qh_elink);
       usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_elink),
           sizeof(sqh->qh.qh_elink), BUS_DMASYNC_PREREAD);
       if (!(elink & UHCI_PTR_T)) {
               sqh->qh.qh_elink = htole32(UHCI_PTR_T);
               usb_syncmem(&sqh->dma,
                   sqh->offs + offsetof(uhci_qh_t, qh_elink),
                   sizeof(sqh->qh.qh_elink),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
               delay(UHCI_QH_REMOVE_DELAY);
       }
       pqh = uhci_find_prev_qh(sc->sc_lctl_start, sqh);
       usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(sqh->qh.qh_hlink), BUS_DMASYNC_POSTWRITE);
       pqh->hlink = sqh->hlink;
       pqh->qh.qh_hlink = sqh->qh.qh_hlink;
       usb_syncmem(&pqh->dma, pqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(pqh->qh.qh_hlink),
           BUS_DMASYNC_PREWRITE);
       delay(UHCI_QH_REMOVE_DELAY);
       if (sc->sc_lctl_end == sqh)
               sc->sc_lctl_end = pqh;
}

/* Add bulk QH, called with lock held. */
void
uhci_add_bulk(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
       uhci_soft_qh_t *eqh;

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(10, "sqh %#jx", (uintptr_t)sqh, 0, 0, 0);

       eqh = sc->sc_bulk_end;
       usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(eqh->qh.qh_hlink), BUS_DMASYNC_POSTWRITE);
       sqh->hlink = eqh->hlink;
       sqh->qh.qh_hlink = eqh->qh.qh_hlink;
       usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh),
           BUS_DMASYNC_PREWRITE);
       eqh->hlink = sqh;
       eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
       usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(eqh->qh.qh_hlink), BUS_DMASYNC_PREWRITE);
       sc->sc_bulk_end = sqh;
       uhci_add_loop(sc);
}

/* Remove bulk QH, called with lock held. */
void
uhci_remove_bulk(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
       uhci_soft_qh_t *pqh;

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(10, "sqh %#jx", (uintptr_t)sqh, 0, 0, 0);

       uhci_rem_loop(sc);
       /* See comment in uhci_remove_hs_ctrl() */
       usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_elink),
           sizeof(sqh->qh.qh_elink),
           BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
       if (!(sqh->qh.qh_elink & htole32(UHCI_PTR_T))) {
               sqh->qh.qh_elink = htole32(UHCI_PTR_T);
               usb_syncmem(&sqh->dma,
                   sqh->offs + offsetof(uhci_qh_t, qh_elink),
                   sizeof(sqh->qh.qh_elink),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
               delay(UHCI_QH_REMOVE_DELAY);
       }
       pqh = uhci_find_prev_qh(sc->sc_bulk_start, sqh);
       usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(sqh->qh.qh_hlink), BUS_DMASYNC_POSTWRITE);
       pqh->hlink       = sqh->hlink;
       pqh->qh.qh_hlink = sqh->qh.qh_hlink;
       usb_syncmem(&pqh->dma, pqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(pqh->qh.qh_hlink), BUS_DMASYNC_PREWRITE);
       delay(UHCI_QH_REMOVE_DELAY);
       if (sc->sc_bulk_end == sqh)
               sc->sc_bulk_end = pqh;
}

Static int uhci_intr1(uhci_softc_t *);

int
uhci_intr(void *arg)
{
       uhci_softc_t *sc = arg;
       int ret = 0;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       mutex_spin_enter(&sc->sc_intr_lock);

       if (sc->sc_dying || !device_has_power(sc->sc_dev))
               goto done;

       if (sc->sc_bus.ub_usepolling || UREAD2(sc, UHCI_INTR) == 0) {
               DPRINTFN(16, "ignored interrupt while polling", 0, 0, 0, 0);
               goto done;
       }

       ret = uhci_intr1(sc);

done:
       mutex_spin_exit(&sc->sc_intr_lock);
       return ret;
}

int
uhci_intr1(uhci_softc_t *sc)
{
       int status;
       int ack;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();

#ifdef UHCI_DEBUG
       if (uhcidebug >= 15) {
               DPRINTF("sc %#jx", (uintptr_t)sc, 0, 0, 0);
               uhci_dumpregs(sc);
       }
#endif

       KASSERT(mutex_owned(&sc->sc_intr_lock));

       status = UREAD2(sc, UHCI_STS) & UHCI_STS_ALLINTRS;
       /* Check if the interrupt was for us. */
       if (status == 0)
               return 0;

       if (sc->sc_suspend != PWR_RESUME) {
#ifdef DIAGNOSTIC
               printf("%s: interrupt while not operating ignored\n",
                      device_xname(sc->sc_dev));
#endif
               UWRITE2(sc, UHCI_STS, status); /* acknowledge the ints */
               return 0;
       }

       ack = 0;
       if (status & UHCI_STS_USBINT)
               ack |= UHCI_STS_USBINT;
       if (status & UHCI_STS_USBEI)
               ack |= UHCI_STS_USBEI;
       if (status & UHCI_STS_RD) {
               ack |= UHCI_STS_RD;
#ifdef UHCI_DEBUG
               printf("%s: resume detect\n", device_xname(sc->sc_dev));
#endif
       }
       if (status & UHCI_STS_HSE) {
               ack |= UHCI_STS_HSE;
               printf("%s: host system error\n", device_xname(sc->sc_dev));
       }
       if (status & UHCI_STS_HCPE) {
               ack |= UHCI_STS_HCPE;
               printf("%s: host controller process error\n",
                      device_xname(sc->sc_dev));
       }

       /* When HCHalted=1 and Run/Stop=0 , it is normal */
       if ((status & UHCI_STS_HCH) && (UREAD2(sc, UHCI_CMD) & UHCI_CMD_RS)) {
               /* no acknowledge needed */
               if (!sc->sc_dying) {
                       printf("%s: host controller halted\n",
                           device_xname(sc->sc_dev));
#ifdef UHCI_DEBUG
                       uhci_dump_all(sc);
#endif
               }
               sc->sc_dying = 1;
       }

       if (!ack)
               return 0;       /* nothing to acknowledge */
       UWRITE2(sc, UHCI_STS, ack); /* acknowledge the ints */

       usb_schedsoftintr(&sc->sc_bus);

       DPRINTFN(15, "sc %#jx done", (uintptr_t)sc, 0, 0, 0);

       return 1;
}

void
uhci_softintr(void *v)
{
       struct usbd_bus *bus = v;
       uhci_softc_t *sc = UHCI_BUS2SC(bus);
       struct uhci_xfer *ux, *nextux;
       ux_completeq_t cq;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTF("sc %#jx", (uintptr_t)sc, 0, 0, 0);

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

       TAILQ_INIT(&cq);
       /*
        * Interrupts on UHCI really suck.  When the host controller
        * interrupts because a transfer is completed there is no
        * way of knowing which transfer it was.  You can scan down
        * the TDs and QHs of the previous frame to limit the search,
        * but that assumes that the interrupt was not delayed by more
        * than 1 ms, which may not always be true (e.g. after debug
        * output on a slow console).
        * We scan all interrupt descriptors to see if any have
        * completed.
        */
       TAILQ_FOREACH_SAFE(ux, &sc->sc_intrhead, ux_list, nextux) {
               uhci_check_intr(sc, ux, &cq);
       }

       /*
        * We abuse ux_list for the interrupt and complete lists and
        * interrupt transfers will get re-added here so use
        * the _SAFE version of TAILQ_FOREACH.
        */
       TAILQ_FOREACH_SAFE(ux, &cq, ux_list, nextux) {
               DPRINTF("ux %#jx", (uintptr_t)ux, 0, 0, 0);
               usb_transfer_complete(&ux->ux_xfer);
       }

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
}

/* Check for an interrupt. */
void
uhci_check_intr(uhci_softc_t *sc, struct uhci_xfer *ux, ux_completeq_t *cqp)
{
       uhci_soft_td_t *std, *fstd = NULL, *lstd = NULL;
       uint32_t status;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(15, "ux %#jx", (uintptr_t)ux, 0, 0, 0);

       KASSERT(ux != NULL);

       struct usbd_xfer *xfer = &ux->ux_xfer;
       if (xfer->ux_status == USBD_CANCELLED ||
           xfer->ux_status == USBD_TIMEOUT) {
               DPRINTF("aborted xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
               return;
       }

       switch (ux->ux_type) {
       case UX_CTRL:
               fstd = ux->ux_setup;
               lstd = ux->ux_stat;
               break;
       case UX_BULK:
       case UX_INTR:
       case UX_ISOC:
               fstd = ux->ux_stdstart;
               lstd = ux->ux_stdend;
               break;
       default:
               KASSERT(false);
               break;
       }
       if (fstd == NULL)
               return;

       KASSERT(lstd != NULL);

       usb_syncmem(&lstd->dma,
           lstd->offs + offsetof(uhci_td_t, td_status),
           sizeof(lstd->td.td_status),
           BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
       status = le32toh(lstd->td.td_status);
       usb_syncmem(&lstd->dma,
           lstd->offs + offsetof(uhci_td_t, td_status),
           sizeof(lstd->td.td_status),
           BUS_DMASYNC_PREREAD);

       /* If the last TD is not marked active we can complete */
       if (!(status & UHCI_TD_ACTIVE)) {
done:
               DPRINTFN(12, "ux=%#jx done", (uintptr_t)ux, 0, 0, 0);
               uhci_idone(ux, cqp);
               return;
       }

       /*
        * If the last TD is still active we need to check whether there
        * is an error somewhere in the middle, or whether there was a
        * short packet (SPD and not ACTIVE).
        */
       DPRINTFN(12, "active ux=%#jx", (uintptr_t)ux, 0, 0, 0);
       for (std = fstd; std != lstd; std = std->link.std) {
               usb_syncmem(&std->dma,
                   std->offs + offsetof(uhci_td_t, td_status),
                   sizeof(std->td.td_status),
                   BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
               status = le32toh(std->td.td_status);
               usb_syncmem(&std->dma,
                   std->offs + offsetof(uhci_td_t, td_status),
                   sizeof(std->td.td_status), BUS_DMASYNC_PREREAD);

               /* If there's an active TD the xfer isn't done. */
               if (status & UHCI_TD_ACTIVE) {
                       DPRINTFN(12, "ux=%#jx std=%#jx still active",
                           (uintptr_t)ux, (uintptr_t)std, 0, 0);
                       return;
               }

               /* Any kind of error makes the xfer done. */
               if (status & UHCI_TD_STALLED)
                       goto done;

               /*
                * If the data phase of a control transfer is short, we need
                * to complete the status stage
                */

               if ((status & UHCI_TD_SPD) && ux->ux_type == UX_CTRL) {
                       struct uhci_pipe *upipe =
                           UHCI_PIPE2UPIPE(xfer->ux_pipe);
                       uhci_soft_qh_t *sqh = upipe->ctrl.sqh;
                       uhci_soft_td_t *stat = upipe->ctrl.stat;

                       DPRINTFN(12, "ux=%#jx std=%#jx control status"
                           "phase needs completion", (uintptr_t)ux,
                           (uintptr_t)ux->ux_stdstart, 0, 0);

                       sqh->qh.qh_elink =
                           htole32(stat->physaddr | UHCI_PTR_TD);
                       usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh),
                           BUS_DMASYNC_PREWRITE);
                       break;
               }

               /* We want short packets, and it is short: it's done */
               usb_syncmem(&std->dma,
                   std->offs + offsetof(uhci_td_t, td_token),
                   sizeof(std->td.td_token),
                   BUS_DMASYNC_POSTWRITE);

               if ((status & UHCI_TD_SPD) &&
                       UHCI_TD_GET_ACTLEN(status) <
                       UHCI_TD_GET_MAXLEN(le32toh(std->td.td_token))) {
                       goto done;
               }
       }
}

/* Called with USB lock held. */
void
uhci_idone(struct uhci_xfer *ux, ux_completeq_t *cqp)
{
       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       struct usbd_xfer *xfer = &ux->ux_xfer;
       uhci_softc_t *sc __diagused = UHCI_XFER2SC(xfer);
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
       uhci_soft_td_t *std;
       uint32_t status = 0, nstatus;
       int actlen;

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

       DPRINTFN(12, "ux=%#jx", (uintptr_t)ux, 0, 0, 0);

       /*
        * Try to claim this xfer for completion.  If it has already
        * completed or aborted, drop it on the floor.
        */
       if (!usbd_xfer_trycomplete(xfer))
               return;

#ifdef DIAGNOSTIC
#ifdef UHCI_DEBUG
       if (ux->ux_isdone) {
               DPRINTF("--- dump start ---", 0, 0, 0, 0);
               uhci_dump_ii(ux);
               DPRINTF("--- dump end ---", 0, 0, 0, 0);
       }
#endif
       KASSERT(!ux->ux_isdone);
       KASSERTMSG(!ux->ux_isdone, "xfer %p type %d status %d", xfer,
           ux->ux_type, xfer->ux_status);
       ux->ux_isdone = true;
#endif

       if (xfer->ux_nframes != 0) {
               /* Isoc transfer, do things differently. */
               uhci_soft_td_t **stds = upipe->isoc.stds;
               int i, n, nframes, len;

               DPRINTFN(5, "ux=%#jx isoc ready", (uintptr_t)ux, 0, 0, 0);

               nframes = xfer->ux_nframes;
               actlen = 0;
               n = ux->ux_curframe;
               for (i = 0; i < nframes; i++) {
                       std = stds[n];
#ifdef UHCI_DEBUG
                       if (uhcidebug >= 5) {
                               DPRINTF("isoc TD %jd", i, 0, 0, 0);
                               DPRINTF("--- dump start ---", 0, 0, 0, 0);
                               uhci_dump_td(std);
                               DPRINTF("--- dump end ---", 0, 0, 0, 0);
                       }
#endif
                       if (++n >= UHCI_VFRAMELIST_COUNT)
                               n = 0;
                       usb_syncmem(&std->dma,
                           std->offs + offsetof(uhci_td_t, td_status),
                           sizeof(std->td.td_status),
                           BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
                       status = le32toh(std->td.td_status);
                       len = UHCI_TD_GET_ACTLEN(status);
                       xfer->ux_frlengths[i] = len;
                       actlen += len;
               }
               upipe->isoc.inuse -= nframes;
               xfer->ux_actlen = actlen;
               xfer->ux_status = USBD_NORMAL_COMPLETION;
               goto end;
       }

#ifdef UHCI_DEBUG
       DPRINTFN(10, "ux=%#jx, xfer=%#jx, pipe=%#jx ready", (uintptr_t)ux,
           (uintptr_t)xfer, (uintptr_t)upipe, 0);
       if (uhcidebug >= 10) {
               DPRINTF("--- dump start ---", 0, 0, 0, 0);
               uhci_dump_tds(ux->ux_stdstart);
               DPRINTF("--- dump end ---", 0, 0, 0, 0);
       }
#endif

       /* The transfer is done, compute actual length and status. */
       actlen = 0;
       for (std = ux->ux_stdstart; std != NULL; std = std->link.std) {
               usb_syncmem(&std->dma, std->offs, sizeof(std->td),
                   BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
               nstatus = le32toh(std->td.td_status);
               if (nstatus & UHCI_TD_ACTIVE)
                       break;

               status = nstatus;
               if (UHCI_TD_GET_PID(le32toh(std->td.td_token)) !=
                       UHCI_TD_PID_SETUP)
                       actlen += UHCI_TD_GET_ACTLEN(status);
               else {
                       /*
                        * UHCI will report CRCTO in addition to a STALL or NAK
                        * for a SETUP transaction.  See section 3.2.2, "TD
                        * CONTROL AND STATUS".
                        */
                       if (status & (UHCI_TD_STALLED | UHCI_TD_NAK))
                               status &= ~UHCI_TD_CRCTO;
               }
       }
       /* If there are left over TDs we need to update the toggle. */
       if (std != NULL)
               upipe->nexttoggle = UHCI_TD_GET_DT(le32toh(std->td.td_token));

       status &= UHCI_TD_ERROR;
       DPRINTFN(10, "actlen=%jd, status=%#jx", actlen, status, 0, 0);
       xfer->ux_actlen = actlen;
       if (status != 0) {

               DPRINTFN((status == UHCI_TD_STALLED) * 10,
                   "error, addr=%jd, endpt=0x%02jx",
                   xfer->ux_pipe->up_dev->ud_addr,
                   xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress,
                   0, 0);
               DPRINTFN((status == UHCI_TD_STALLED) * 10,
                   "bitstuff=%jd crcto   =%jd nak     =%jd babble  =%jd",
                   !!(status & UHCI_TD_BITSTUFF),
                   !!(status & UHCI_TD_CRCTO),
                   !!(status & UHCI_TD_NAK),
                   !!(status & UHCI_TD_BABBLE));
               DPRINTFN((status == UHCI_TD_STALLED) * 10,
                   "dbuffer =%jd stalled =%jd active  =%jd",
                   !!(status & UHCI_TD_DBUFFER),
                   !!(status & UHCI_TD_STALLED),
                   !!(status & UHCI_TD_ACTIVE),
                   0);

               if (status == UHCI_TD_STALLED)
                       xfer->ux_status = USBD_STALLED;
               else
                       xfer->ux_status = USBD_IOERROR; /* more info XXX */
       } else {
               xfer->ux_status = USBD_NORMAL_COMPLETION;
       }

end:
       uhci_del_intr_list(sc, ux);
       if (cqp)
               TAILQ_INSERT_TAIL(cqp, ux, ux_list);

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
       DPRINTFN(12, "ux=%#jx done", (uintptr_t)ux, 0, 0, 0);
}

void
uhci_poll(struct usbd_bus *bus)
{
       uhci_softc_t *sc = UHCI_BUS2SC(bus);

       if (UREAD2(sc, UHCI_STS) & UHCI_STS_USBINT) {
               mutex_spin_enter(&sc->sc_intr_lock);
               uhci_intr1(sc);
               mutex_spin_exit(&sc->sc_intr_lock);
       }
}

void
uhci_reset(uhci_softc_t *sc)
{
       int n;

       UHCICMD(sc, UHCI_CMD_HCRESET);
       /* The reset bit goes low when the controller is done. */
       for (n = 0; n < UHCI_RESET_TIMEOUT &&
                   (UREAD2(sc, UHCI_CMD) & UHCI_CMD_HCRESET); n++)
               usb_delay_ms(&sc->sc_bus, 1);
       if (n >= UHCI_RESET_TIMEOUT)
               printf("%s: controller did not reset\n",
                      device_xname(sc->sc_dev));
}

usbd_status
uhci_run(uhci_softc_t *sc, int run)
{
       int n, running;
       uint16_t cmd;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       run = run != 0;

       DPRINTF("setting run=%jd", run, 0, 0, 0);
       cmd = UREAD2(sc, UHCI_CMD);
       if (run)
               cmd |= UHCI_CMD_RS;
       else
               cmd &= ~UHCI_CMD_RS;
       UHCICMD(sc, cmd);
       for (n = 0; n < 10; n++) {
               running = !(UREAD2(sc, UHCI_STS) & UHCI_STS_HCH);
               /* return when we've entered the state we want */
               if (run == running) {
                       DPRINTF("done cmd=%#jx sts=%#jx",
                           UREAD2(sc, UHCI_CMD), UREAD2(sc, UHCI_STS), 0, 0);
                       return USBD_NORMAL_COMPLETION;
               }
               usb_delay_ms(&sc->sc_bus, 1);
       }
       printf("%s: cannot %s\n", device_xname(sc->sc_dev),
              run ? "start" : "stop");
       return USBD_IOERROR;
}

/*
* Memory management routines.
*  uhci_alloc_std allocates TDs
*  uhci_alloc_sqh allocates QHs
* These two routines do their own free list management,
* partly for speed, partly because allocating DMAable memory
* has page size granularity so much memory would be wasted if
* only one TD/QH (32 bytes) was placed in each allocated chunk.
*/

uhci_soft_td_t *
uhci_alloc_std(uhci_softc_t *sc)
{
       uhci_soft_td_t *std;
       int i, offs;
       usb_dma_t dma;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       mutex_enter(&sc->sc_lock);
       if (sc->sc_freetds == NULL) {
               DPRINTFN(2, "allocating chunk", 0, 0, 0, 0);
               mutex_exit(&sc->sc_lock);

               int err = usb_allocmem(sc->sc_bus.ub_dmatag, UHCI_STD_SIZE * UHCI_STD_CHUNK,
                   UHCI_TD_ALIGN, USBMALLOC_COHERENT, &dma);
               if (err)
                       return NULL;

               mutex_enter(&sc->sc_lock);
               for (i = 0; i < UHCI_STD_CHUNK; i++) {
                       offs = i * UHCI_STD_SIZE;
                       std = KERNADDR(&dma, offs);
                       std->physaddr = DMAADDR(&dma, offs);
                       std->dma = dma;
                       std->offs = offs;
                       std->link.std = sc->sc_freetds;
                       sc->sc_freetds = std;
               }
       }
       std = sc->sc_freetds;
       sc->sc_freetds = std->link.std;
       mutex_exit(&sc->sc_lock);

       memset(&std->td, 0, sizeof(uhci_td_t));

       return std;
}

#define TD_IS_FREE 0x12345678

void
uhci_free_std_locked(uhci_softc_t *sc, uhci_soft_td_t *std)
{
       KASSERT(mutex_owned(&sc->sc_lock));

#ifdef DIAGNOSTIC
       if (le32toh(std->td.td_token) == TD_IS_FREE) {
               printf("%s: freeing free TD %p\n", __func__, std);
               return;
       }
       std->td.td_token = htole32(TD_IS_FREE);
#endif

       std->link.std = sc->sc_freetds;
       sc->sc_freetds = std;
}

void
uhci_free_std(uhci_softc_t *sc, uhci_soft_td_t *std)
{
       mutex_enter(&sc->sc_lock);
       uhci_free_std_locked(sc, std);
       mutex_exit(&sc->sc_lock);
}

uhci_soft_qh_t *
uhci_alloc_sqh(uhci_softc_t *sc)
{
       uhci_soft_qh_t *sqh;
       int i, offs;
       usb_dma_t dma;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       mutex_enter(&sc->sc_lock);
       if (sc->sc_freeqhs == NULL) {
               DPRINTFN(2, "allocating chunk", 0, 0, 0, 0);
               mutex_exit(&sc->sc_lock);

               int err = usb_allocmem(sc->sc_bus.ub_dmatag, UHCI_SQH_SIZE * UHCI_SQH_CHUNK,
                   UHCI_QH_ALIGN, USBMALLOC_COHERENT, &dma);
               if (err)
                       return NULL;

               mutex_enter(&sc->sc_lock);
               for (i = 0; i < UHCI_SQH_CHUNK; i++) {
                       offs = i * UHCI_SQH_SIZE;
                       sqh = KERNADDR(&dma, offs);
                       sqh->physaddr = DMAADDR(&dma, offs);
                       sqh->dma = dma;
                       sqh->offs = offs;
                       sqh->hlink = sc->sc_freeqhs;
                       sc->sc_freeqhs = sqh;
               }
       }
       sqh = sc->sc_freeqhs;
       sc->sc_freeqhs = sqh->hlink;
       mutex_exit(&sc->sc_lock);

       memset(&sqh->qh, 0, sizeof(uhci_qh_t));

       return sqh;
}

void
uhci_free_sqh(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
       KASSERT(mutex_owned(&sc->sc_lock));

       sqh->hlink = sc->sc_freeqhs;
       sc->sc_freeqhs = sqh;
}

#if 0
void
uhci_free_std_chain(uhci_softc_t *sc, uhci_soft_td_t *std,
                   uhci_soft_td_t *stdend)
{
       uhci_soft_td_t *p;
       uint32_t td_link;

       /*
        * to avoid race condition with the controller which may be looking
        * at this chain, we need to first invalidate all links, and
        * then wait for the controller to move to another queue
        */
       for (p = std; p != stdend; p = p->link.std) {
               usb_syncmem(&p->dma,
                   p->offs + offsetof(uhci_td_t, td_link),
                   sizeof(p->td.td_link),
                   BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
               td_link = le32toh(p->td.td_link);
               usb_syncmem(&p->dma,
                   p->offs + offsetof(uhci_td_t, td_link),
                   sizeof(p->td.td_link),
                   BUS_DMASYNC_PREREAD);
               if ((td_link & UHCI_PTR_T) == 0) {
                       p->td.td_link = htole32(UHCI_PTR_T);
                       usb_syncmem(&p->dma,
                           p->offs + offsetof(uhci_td_t, td_link),
                           sizeof(p->td.td_link),
                           BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
               }
       }
       delay(UHCI_QH_REMOVE_DELAY);

       for (; std != stdend; std = p) {
               p = std->link.std;
               uhci_free_std(sc, std);
       }
}
#endif

int
uhci_alloc_std_chain(uhci_softc_t *sc, struct usbd_xfer *xfer, int len,
   int rd, uhci_soft_td_t **sp)
{
       struct uhci_xfer *uxfer = UHCI_XFER2UXFER(xfer);
       uint16_t flags = xfer->ux_flags;
       uhci_soft_td_t *p;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       DPRINTFN(8, "xfer=%#jx pipe=%#jx", (uintptr_t)xfer,
           (uintptr_t)xfer->ux_pipe, 0, 0);

       ASSERT_SLEEPABLE();
       KASSERT(sp);

       int maxp = UGETW(xfer->ux_pipe->up_endpoint->ue_edesc->wMaxPacketSize);
       if (maxp == 0) {
               printf("%s: maxp=0\n", __func__);
               return EINVAL;
       }
       size_t ntd = howmany(len, maxp);
       /*
        * if our transfer is bigger than PAGE_SIZE and maxp not a factor of
        * PAGE_SIZE then we will need another TD per page.
        */
       if (len > PAGE_SIZE && (PAGE_SIZE % maxp) != 0) {
               ntd += howmany(len, PAGE_SIZE);
       }

       /*
        * Might need one more TD if we're writing a ZLP
        */
       if (!rd && (flags & USBD_FORCE_SHORT_XFER)) {
               ntd++;
       }
       DPRINTFN(10, "maxp=%jd ntd=%jd", maxp, ntd, 0, 0);

       uxfer->ux_stds = NULL;
       uxfer->ux_nstd = ntd;
       if (ntd == 0) {
               *sp = NULL;
               DPRINTF("ntd=0", 0, 0, 0, 0);
               return 0;
       }
       uxfer->ux_stds = kmem_alloc(sizeof(uhci_soft_td_t *) * ntd,
           KM_SLEEP);

       for (int i = 0; i < ntd; i++) {
               p = uhci_alloc_std(sc);
               if (p == NULL) {
                       if (i != 0) {
                               uxfer->ux_nstd = i;
                               uhci_free_stds(sc, uxfer);
                       }
                       kmem_free(uxfer->ux_stds,
                           sizeof(uhci_soft_td_t *) * ntd);
                       return ENOMEM;
               }
               uxfer->ux_stds[i] = p;
       }

       *sp = uxfer->ux_stds[0];

       return 0;
}

Static void
uhci_free_stds(uhci_softc_t *sc, struct uhci_xfer *ux)
{
       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       DPRINTFN(8, "ux=%#jx", (uintptr_t)ux, 0, 0, 0);

       mutex_enter(&sc->sc_lock);
       for (size_t i = 0; i < ux->ux_nstd; i++) {
               uhci_soft_td_t *std = ux->ux_stds[i];
#ifdef DIAGNOSTIC
               if (le32toh(std->td.td_token) == TD_IS_FREE) {
                       printf("%s: freeing free TD %p\n", __func__, std);
                       return;
               }
               std->td.td_token = htole32(TD_IS_FREE);
#endif
               ux->ux_stds[i]->link.std = sc->sc_freetds;
               sc->sc_freetds = std;
       }
       mutex_exit(&sc->sc_lock);
}


Static void
uhci_reset_std_chain(uhci_softc_t *sc, struct usbd_xfer *xfer,
   int length, int isread, int *toggle, uhci_soft_td_t **lstd)
{
       struct uhci_xfer *uxfer = UHCI_XFER2UXFER(xfer);
       struct usbd_pipe *pipe = xfer->ux_pipe;
       usb_dma_t *dma = &xfer->ux_dmabuf;
       uint16_t flags = xfer->ux_flags;
       uhci_soft_td_t *std, *prev;
       int len = length;
       int tog = *toggle;
       int maxp;
       uint32_t status;
       size_t i, offs;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(8, "xfer=%#jx len %jd isread %jd toggle %jd", (uintptr_t)xfer,
           len, isread, *toggle);

       KASSERT(len != 0 || (!isread && (flags & USBD_FORCE_SHORT_XFER)));

       maxp = UGETW(pipe->up_endpoint->ue_edesc->wMaxPacketSize);
       KASSERT(maxp != 0);

       int addr = xfer->ux_pipe->up_dev->ud_addr;
       int endpt = xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress;

       status = UHCI_TD_ZERO_ACTLEN(UHCI_TD_SET_ERRCNT(3) | UHCI_TD_ACTIVE);
       if (pipe->up_dev->ud_speed == USB_SPEED_LOW)
               status |= UHCI_TD_LS;
       if (flags & USBD_SHORT_XFER_OK)
               status |= UHCI_TD_SPD;
       usb_syncmem(dma, 0, len,
           isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
       std = prev = NULL;
       for (offs = i = 0; len != 0 && i < uxfer->ux_nstd; i++, prev = std) {
               int l = len;
               std = uxfer->ux_stds[i];

               const bus_addr_t sbp = DMAADDR(dma, offs);
               const bus_addr_t ebp = DMAADDR(dma, offs + l - 1);
               if (((sbp ^ ebp) & ~PAGE_MASK) != 0)
                       l = PAGE_SIZE - (DMAADDR(dma, offs) & PAGE_MASK);

               if (l > maxp)
                       l = maxp;

               if (prev) {
                       prev->link.std = std;
                       prev->td.td_link = htole32(
                           std->physaddr | UHCI_PTR_VF | UHCI_PTR_TD
                           );
                       usb_syncmem(&prev->dma, prev->offs, sizeof(prev->td),
                           BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
               }

               usb_syncmem(&std->dma, std->offs, sizeof(std->td),
                   BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);

               std->td.td_link = htole32(UHCI_PTR_T | UHCI_PTR_VF | UHCI_PTR_TD);
               std->td.td_status = htole32(status);
               std->td.td_token = htole32(
                   UHCI_TD_SET_ENDPT(UE_GET_ADDR(endpt)) |
                   UHCI_TD_SET_DEVADDR(addr) |
                   UHCI_TD_SET_PID(isread ? UHCI_TD_PID_IN : UHCI_TD_PID_OUT) |
                   UHCI_TD_SET_DT(tog) |
                   UHCI_TD_SET_MAXLEN(l)
                   );
               std->td.td_buffer = htole32(DMAADDR(dma, offs));

               std->link.std = NULL;

               usb_syncmem(&std->dma, std->offs, sizeof(std->td),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
               tog ^= 1;

               offs += l;
               len -= l;
       }
       KASSERTMSG(len == 0, "xfer %p alen %d len %d mps %d ux_nqtd %zu i %zu",
           xfer, length, len, maxp, uxfer->ux_nstd, i);

       if (!isread &&
           (flags & USBD_FORCE_SHORT_XFER) &&
           length % maxp == 0) {
               /* Force a 0 length transfer at the end. */
               KASSERTMSG(i < uxfer->ux_nstd, "i=%zu nstd=%zu", i,
                   uxfer->ux_nstd);
               std = uxfer->ux_stds[i++];

               std->td.td_link = htole32(UHCI_PTR_T | UHCI_PTR_VF | UHCI_PTR_TD);
               std->td.td_status = htole32(status);
               std->td.td_token = htole32(
                   UHCI_TD_SET_ENDPT(UE_GET_ADDR(endpt)) |
                   UHCI_TD_SET_DEVADDR(addr) |
                   UHCI_TD_SET_PID(UHCI_TD_PID_OUT) |
                   UHCI_TD_SET_DT(tog) |
                   UHCI_TD_SET_MAXLEN(0)
                   );
               std->td.td_buffer = 0;
               usb_syncmem(&std->dma, std->offs, sizeof(std->td),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);

               std->link.std = NULL;
               if (prev) {
                       prev->link.std = std;
                       prev->td.td_link = htole32(
                           std->physaddr | UHCI_PTR_VF | UHCI_PTR_TD
                           );
                       usb_syncmem(&prev->dma, prev->offs, sizeof(prev->td),
                           BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
               }
               tog ^= 1;
       }
       *lstd = std;
       *toggle = tog;
}

void
uhci_device_clear_toggle(struct usbd_pipe *pipe)
{
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(pipe);
       upipe->nexttoggle = 0;
}

void
uhci_noop(struct usbd_pipe *pipe)
{
}

int
uhci_device_bulk_init(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc = UHCI_XFER2SC(xfer);
       struct uhci_xfer *uxfer = UHCI_XFER2UXFER(xfer);
       usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc;
       int endpt = ed->bEndpointAddress;
       int isread = UE_GET_DIR(endpt) == UE_DIR_IN;
       int len = xfer->ux_bufsize;
       int err = 0;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(3, "xfer=%#jx len=%jd flags=%jd", (uintptr_t)xfer, len,
           xfer->ux_flags, 0);

       if (sc->sc_dying)
               return USBD_IOERROR;

       KASSERT(!(xfer->ux_rqflags & URQ_REQUEST));

       uxfer->ux_type = UX_BULK;
       err = uhci_alloc_std_chain(sc, xfer, len, isread, &uxfer->ux_stdstart);
       if (err)
               return err;

#ifdef UHCI_DEBUG
       if (uhcidebug >= 10) {
               DPRINTF("--- dump start ---", 0, 0, 0, 0);
               uhci_dump_tds(uxfer->ux_stdstart);
               DPRINTF("--- dump end ---", 0, 0, 0, 0);
       }
#endif

       return 0;
}

Static void
uhci_device_bulk_fini(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc = UHCI_XFER2SC(xfer);
       struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);

       KASSERT(ux->ux_type == UX_BULK);

       if (ux->ux_nstd) {
               uhci_free_stds(sc, ux);
               kmem_free(ux->ux_stds, sizeof(uhci_soft_td_t *) * ux->ux_nstd);
       }
}

usbd_status
uhci_device_bulk_transfer(struct usbd_xfer *xfer)
{

       /* Pipe isn't running, so start it first.  */
       return uhci_device_bulk_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}

usbd_status
uhci_device_bulk_start(struct usbd_xfer *xfer)
{
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
       struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
       uhci_softc_t *sc = UHCI_XFER2SC(xfer);
       uhci_soft_td_t *data, *dataend;
       uhci_soft_qh_t *sqh;
       int len;
       int endpt;
       int isread;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(3, "xfer=%#jx len=%jd flags=%jd", (uintptr_t)xfer,
           xfer->ux_length, xfer->ux_flags, 0);

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

       if (sc->sc_dying)
               return USBD_IOERROR;

       KASSERT(!(xfer->ux_rqflags & URQ_REQUEST));
       KASSERT(xfer->ux_length <= xfer->ux_bufsize);

       len = xfer->ux_length;
       endpt = upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress;
       isread = UE_GET_DIR(endpt) == UE_DIR_IN;
       sqh = upipe->bulk.sqh;

       uhci_reset_std_chain(sc, xfer, len, isread, &upipe->nexttoggle,
           &dataend);

       data = ux->ux_stdstart;
       ux->ux_stdend = dataend;
       dataend->td.td_status |= htole32(UHCI_TD_IOC);
       usb_syncmem(&dataend->dma,
           dataend->offs + offsetof(uhci_td_t, td_status),
           sizeof(dataend->td.td_status),
           BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);

#ifdef UHCI_DEBUG
       if (uhcidebug >= 10) {
               DPRINTF("--- dump start ---", 0, 0, 0, 0);
               DPRINTFN(10, "before transfer", 0, 0, 0, 0);
               uhci_dump_tds(data);
               DPRINTF("--- dump end ---", 0, 0, 0, 0);
       }
#endif

       KASSERT(ux->ux_isdone);
#ifdef DIAGNOSTIC
       ux->ux_isdone = false;
#endif

       sqh->elink = data;
       sqh->qh.qh_elink = htole32(data->physaddr | UHCI_PTR_TD);
       /* uhci_add_bulk() will do usb_syncmem(sqh) */

       uhci_add_bulk(sc, sqh);
       uhci_add_intr_list(sc, ux);
       xfer->ux_status = USBD_IN_PROGRESS;
       usbd_xfer_schedule_timeout(xfer);

       return USBD_IN_PROGRESS;
}

/* Abort a device bulk request. */
void
uhci_device_bulk_abort(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc __diagused = UHCI_XFER2SC(xfer);

       KASSERT(mutex_owned(&sc->sc_lock));

       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       usbd_xfer_abort(xfer);
}

/*
* To allow the hardware time to notice we simply wait.
*/
Static void
uhci_abortx(struct usbd_xfer *xfer)
{
       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
       uhci_softc_t *sc = UHCI_XFER2SC(xfer);
       uhci_soft_td_t *std;

       DPRINTFN(1,"xfer=%#jx", (uintptr_t)xfer, 0, 0, 0);

       KASSERT(mutex_owned(&sc->sc_lock));
       ASSERT_SLEEPABLE();

       KASSERTMSG((xfer->ux_status == USBD_CANCELLED ||
               xfer->ux_status == USBD_TIMEOUT),
           "bad abort status: %d", xfer->ux_status);

       /*
        * If we're dying, skip the hardware action and just notify the
        * software that we're done.
        */
       if (sc->sc_dying) {
               DPRINTFN(4, "xfer %#jx dying %ju", (uintptr_t)xfer,
                   xfer->ux_status, 0, 0);
               goto dying;
       }

       /*
        * HC Step 1: Make interrupt routine and hardware ignore xfer.
        */
       uhci_del_intr_list(sc, ux);

       DPRINTF("stop ux=%#jx", (uintptr_t)ux, 0, 0, 0);
       for (std = ux->ux_stdstart; std != NULL; std = std->link.std) {
               usb_syncmem(&std->dma,
                   std->offs + offsetof(uhci_td_t, td_status),
                   sizeof(std->td.td_status),
                   BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
               std->td.td_status &= htole32(~(UHCI_TD_ACTIVE | UHCI_TD_IOC));
               usb_syncmem(&std->dma,
                   std->offs + offsetof(uhci_td_t, td_status),
                   sizeof(std->td.td_status),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
       }

       /*
        * HC Step 2: Wait until we know hardware has finished any possible
        * use of the xfer.
        */
       /* Hardware finishes in 1ms */
       usb_delay_ms_locked(upipe->pipe.up_dev->ud_bus, 2, &sc->sc_lock);
dying:
#ifdef DIAGNOSTIC
       ux->ux_isdone = true;
#endif
       DPRINTFN(14, "end", 0, 0, 0, 0);

       KASSERT(mutex_owned(&sc->sc_lock));
}

/* Close a device bulk pipe. */
void
uhci_device_bulk_close(struct usbd_pipe *pipe)
{
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(pipe);
       uhci_softc_t *sc = UHCI_PIPE2SC(pipe);

       KASSERT(mutex_owned(&sc->sc_lock));

       uhci_free_sqh(sc, upipe->bulk.sqh);

       pipe->up_endpoint->ue_toggle = upipe->nexttoggle;
}

int
uhci_device_ctrl_init(struct usbd_xfer *xfer)
{
       struct uhci_xfer *uxfer = UHCI_XFER2UXFER(xfer);
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
       usb_device_request_t *req = &xfer->ux_request;
       struct usbd_device *dev = upipe->pipe.up_dev;
       uhci_softc_t *sc = dev->ud_bus->ub_hcpriv;
       uhci_soft_td_t *data = NULL;
       int len;
       usbd_status err;
       int isread;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(3, "xfer=%#jx len=%jd, addr=%jd, endpt=%jd",
           (uintptr_t)xfer, xfer->ux_bufsize, dev->ud_addr,
           upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress);

       isread = req->bmRequestType & UT_READ;
       len = xfer->ux_bufsize;

       uxfer->ux_type = UX_CTRL;
       /* Set up data transaction */
       if (len != 0) {
               err = uhci_alloc_std_chain(sc, xfer, len, isread, &data);
               if (err)
                       return err;
       }
       /* Set up interrupt info. */
       uxfer->ux_setup = upipe->ctrl.setup;
       uxfer->ux_stat = upipe->ctrl.stat;
       uxfer->ux_data = data;

       return 0;
}

Static void
uhci_device_ctrl_fini(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc = UHCI_XFER2SC(xfer);
       struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);

       KASSERT(ux->ux_type == UX_CTRL);

       if (ux->ux_nstd) {
               uhci_free_stds(sc, ux);
               kmem_free(ux->ux_stds, sizeof(uhci_soft_td_t *) * ux->ux_nstd);
       }
}

usbd_status
uhci_device_ctrl_transfer(struct usbd_xfer *xfer)
{

       /* Pipe isn't running, so start it first.  */
       return uhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}

usbd_status
uhci_device_ctrl_start(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc = UHCI_XFER2SC(xfer);
       struct uhci_xfer *uxfer = UHCI_XFER2UXFER(xfer);
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
       usb_device_request_t *req = &xfer->ux_request;
       struct usbd_device *dev = upipe->pipe.up_dev;
       int addr = dev->ud_addr;
       int endpt = upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress;
       uhci_soft_td_t *setup, *stat, *next, *dataend;
       uhci_soft_qh_t *sqh;
       int len;
       int isread;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

       if (sc->sc_dying)
               return USBD_IOERROR;

       KASSERT(xfer->ux_rqflags & URQ_REQUEST);

       DPRINTFN(3, "type=0x%02jx, request=0x%02jx, "
           "wValue=0x%04jx, wIndex=0x%04jx",
           req->bmRequestType, req->bRequest, UGETW(req->wValue),
           UGETW(req->wIndex));
       DPRINTFN(3, "len=%jd, addr=%jd, endpt=%jd",
           UGETW(req->wLength), dev->ud_addr, endpt, 0);

       isread = req->bmRequestType & UT_READ;
       len = UGETW(req->wLength);

       setup = upipe->ctrl.setup;
       stat = upipe->ctrl.stat;
       sqh = upipe->ctrl.sqh;

       memcpy(KERNADDR(&upipe->ctrl.reqdma, 0), req, sizeof(*req));
       usb_syncmem(&upipe->ctrl.reqdma, 0, sizeof(*req), BUS_DMASYNC_PREWRITE);

       /* Set up data transaction */
       if (len != 0) {
               upipe->nexttoggle = 1;
               next = uxfer->ux_data;
               uhci_reset_std_chain(sc, xfer, len, isread,
                   &upipe->nexttoggle, &dataend);
               dataend->link.std = stat;
               dataend->td.td_link = htole32(stat->physaddr | UHCI_PTR_TD);
               usb_syncmem(&dataend->dma,
                   dataend->offs + offsetof(uhci_td_t, td_link),
                   sizeof(dataend->td.td_link),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
       } else {
               next = stat;
       }

       const uint32_t status = UHCI_TD_ZERO_ACTLEN(
           UHCI_TD_SET_ERRCNT(3) |
           UHCI_TD_ACTIVE |
           (dev->ud_speed == USB_SPEED_LOW ? UHCI_TD_LS : 0)
           );
       setup->link.std = next;
       setup->td.td_link = htole32(next->physaddr | UHCI_PTR_TD);
       setup->td.td_status = htole32(status);
       setup->td.td_token = htole32(UHCI_TD_SETUP(sizeof(*req), endpt, addr));
       setup->td.td_buffer = htole32(DMAADDR(&upipe->ctrl.reqdma, 0));

       usb_syncmem(&setup->dma, setup->offs, sizeof(setup->td),
           BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);

       stat->link.std = NULL;
       stat->td.td_link = htole32(UHCI_PTR_T);
       stat->td.td_status = htole32(status | UHCI_TD_IOC);
       stat->td.td_token =
               htole32(isread ? UHCI_TD_OUT(0, endpt, addr, 1) :
                                UHCI_TD_IN (0, endpt, addr, 1));
       stat->td.td_buffer = htole32(0);
       usb_syncmem(&stat->dma, stat->offs, sizeof(stat->td),
           BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);

#ifdef UHCI_DEBUG
       if (uhcidebug >= 10) {
               DPRINTF("--- dump start ---", 0, 0, 0, 0);
               DPRINTF("before transfer", 0, 0, 0, 0);
               uhci_dump_tds(setup);
               DPRINTF("--- dump end ---", 0, 0, 0, 0);
       }
#endif

       /* Set up interrupt info. */
       uxfer->ux_setup = setup;
       uxfer->ux_stat = stat;
       KASSERT(uxfer->ux_isdone);
#ifdef DIAGNOSTIC
       uxfer->ux_isdone = false;
#endif

       sqh->elink = setup;
       sqh->qh.qh_elink = htole32(setup->physaddr | UHCI_PTR_TD);
       /* uhci_add_?s_ctrl() will do usb_syncmem(sqh) */

       if (dev->ud_speed == USB_SPEED_LOW)
               uhci_add_ls_ctrl(sc, sqh);
       else
               uhci_add_hs_ctrl(sc, sqh);
       uhci_add_intr_list(sc, uxfer);
#ifdef UHCI_DEBUG
       if (uhcidebug >= 12) {
               uhci_soft_td_t *std;
               uhci_soft_qh_t *xqh;
               uhci_soft_qh_t *sxqh;
               int maxqh = 0;
               uhci_physaddr_t link;
               DPRINTFN(12, "--- dump start ---", 0, 0, 0, 0);
               DPRINTFN(12, "follow from [0]", 0, 0, 0, 0);
               for (std = sc->sc_vframes[0].htd, link = 0;
                    (link & UHCI_PTR_QH) == 0;
                    std = std->link.std) {
                       link = le32toh(std->td.td_link);
                       uhci_dump_td(std);
               }
               sxqh = (uhci_soft_qh_t *)std;
               uhci_dump_qh(sxqh);
               for (xqh = sxqh;
                    xqh != NULL;
                    xqh = (maxqh++ == 5 || xqh->hlink == sxqh ||
                       xqh->hlink == xqh ? NULL : xqh->hlink)) {
                       uhci_dump_qh(xqh);
               }
               DPRINTFN(12, "Enqueued QH:", 0, 0, 0, 0);
               uhci_dump_qh(sqh);
               uhci_dump_tds(sqh->elink);
               DPRINTF("--- dump end ---", 0, 0, 0, 0);
       }
#endif
       xfer->ux_status = USBD_IN_PROGRESS;
       usbd_xfer_schedule_timeout(xfer);

       return USBD_IN_PROGRESS;
}

int
uhci_device_intr_init(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc = UHCI_XFER2SC(xfer);
       struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
       usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc;
       int endpt = ed->bEndpointAddress;
       int isread = UE_GET_DIR(endpt) == UE_DIR_IN;
       int len = xfer->ux_bufsize;
       int err;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       DPRINTFN(3, "xfer=%#jx len=%jd flags=%jd", (uintptr_t)xfer,
           xfer->ux_length, xfer->ux_flags, 0);

       KASSERT(!(xfer->ux_rqflags & URQ_REQUEST));
       KASSERT(len != 0);

       ux->ux_type = UX_INTR;
       ux->ux_nstd = 0;
       err = uhci_alloc_std_chain(sc, xfer, len, isread, &ux->ux_stdstart);

       return err;
}

Static void
uhci_device_intr_fini(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc = UHCI_XFER2SC(xfer);
       struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);

       KASSERT(ux->ux_type == UX_INTR);

       if (ux->ux_nstd) {
               uhci_free_stds(sc, ux);
               kmem_free(ux->ux_stds, sizeof(uhci_soft_td_t *) * ux->ux_nstd);
       }
}

usbd_status
uhci_device_intr_transfer(struct usbd_xfer *xfer)
{

       /* Pipe isn't running, so start it first.  */
       return uhci_device_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}

usbd_status
uhci_device_intr_start(struct usbd_xfer *xfer)
{
       struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
       uhci_softc_t *sc = UHCI_XFER2SC(xfer);
       uhci_soft_td_t *data, *dataend;
       uhci_soft_qh_t *sqh;
       int isread, endpt;
       int i;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       DPRINTFN(3, "xfer=%#jx len=%jd flags=%jd", (uintptr_t)xfer,
           xfer->ux_length, xfer->ux_flags, 0);

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

       if (sc->sc_dying)
               return USBD_IOERROR;

       KASSERT(!(xfer->ux_rqflags & URQ_REQUEST));
       KASSERT(xfer->ux_length <= xfer->ux_bufsize);

       endpt = upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress;
       isread = UE_GET_DIR(endpt) == UE_DIR_IN;

       data = ux->ux_stdstart;

       KASSERT(ux->ux_isdone);
#ifdef DIAGNOSTIC
       ux->ux_isdone = false;
#endif

       /* Take lock to protect nexttoggle */
       uhci_reset_std_chain(sc, xfer, xfer->ux_length, isread,
           &upipe->nexttoggle, &dataend);

       dataend->td.td_status |= htole32(UHCI_TD_IOC);
       usb_syncmem(&dataend->dma,
           dataend->offs + offsetof(uhci_td_t, td_status),
           sizeof(dataend->td.td_status),
           BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
       ux->ux_stdend = dataend;

#ifdef UHCI_DEBUG
       if (uhcidebug >= 10) {
               DPRINTF("--- dump start ---", 0, 0, 0, 0);
               uhci_dump_tds(data);
               uhci_dump_qh(upipe->intr.qhs[0]);
               DPRINTF("--- dump end ---", 0, 0, 0, 0);
       }
#endif

       DPRINTFN(10, "qhs[0]=%#jx", (uintptr_t)upipe->intr.qhs[0], 0, 0, 0);
       for (i = 0; i < upipe->intr.npoll; i++) {
               sqh = upipe->intr.qhs[i];
               sqh->elink = data;
               sqh->qh.qh_elink = htole32(data->physaddr | UHCI_PTR_TD);
               usb_syncmem(&sqh->dma,
                   sqh->offs + offsetof(uhci_qh_t, qh_elink),
                   sizeof(sqh->qh.qh_elink),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
       }
       uhci_add_intr_list(sc, ux);
       xfer->ux_status = USBD_IN_PROGRESS;

#ifdef UHCI_DEBUG
       if (uhcidebug >= 10) {
               DPRINTF("--- dump start ---", 0, 0, 0, 0);
               uhci_dump_tds(data);
               uhci_dump_qh(upipe->intr.qhs[0]);
               DPRINTF("--- dump end ---", 0, 0, 0, 0);
       }
#endif

       return USBD_IN_PROGRESS;
}

/* Abort a device control request. */
void
uhci_device_ctrl_abort(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc __diagused = UHCI_XFER2SC(xfer);

       KASSERT(mutex_owned(&sc->sc_lock));

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       usbd_xfer_abort(xfer);
}

/* Close a device control pipe. */
void
uhci_device_ctrl_close(struct usbd_pipe *pipe)
{
       uhci_softc_t *sc = UHCI_PIPE2SC(pipe);
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(pipe);

       uhci_free_sqh(sc, upipe->ctrl.sqh);
       uhci_free_std_locked(sc, upipe->ctrl.setup);
       uhci_free_std_locked(sc, upipe->ctrl.stat);

       usb_freemem(&upipe->ctrl.reqdma);
}

/* Abort a device interrupt request. */
void
uhci_device_intr_abort(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc __diagused = UHCI_XFER2SC(xfer);

       KASSERT(mutex_owned(&sc->sc_lock));

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTF("xfer=%#jx", (uintptr_t)xfer, 0, 0, 0);

       usbd_xfer_abort(xfer);
}

/* Close a device interrupt pipe. */
void
uhci_device_intr_close(struct usbd_pipe *pipe)
{
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(pipe);
       uhci_softc_t *sc = UHCI_PIPE2SC(pipe);
       int i, npoll;

       KASSERT(mutex_owned(&sc->sc_lock));

       /* Unlink descriptors from controller data structures. */
       npoll = upipe->intr.npoll;
       for (i = 0; i < npoll; i++)
               uhci_remove_intr(sc, upipe->intr.qhs[i]);

       /*
        * We now have to wait for any activity on the physical
        * descriptors to stop.
        */
       usb_delay_ms_locked(&sc->sc_bus, 2, &sc->sc_lock);

       for (i = 0; i < npoll; i++)
               uhci_free_sqh(sc, upipe->intr.qhs[i]);
       kmem_free(upipe->intr.qhs, npoll * sizeof(uhci_soft_qh_t *));
}

int
uhci_device_isoc_init(struct usbd_xfer *xfer)
{
       struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);

       KASSERT(!(xfer->ux_rqflags & URQ_REQUEST));
       KASSERT(xfer->ux_nframes != 0);
       KASSERT(ux->ux_isdone);

       ux->ux_type = UX_ISOC;
       return 0;
}

Static void
uhci_device_isoc_fini(struct usbd_xfer *xfer)
{
       struct uhci_xfer *ux __diagused = UHCI_XFER2UXFER(xfer);

       KASSERT(ux->ux_type == UX_ISOC);
}

usbd_status
uhci_device_isoc_transfer(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc = UHCI_XFER2SC(xfer);

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(5, "xfer=%#jx", (uintptr_t)xfer, 0, 0, 0);

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

       /* insert into schedule, */

       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
       struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
       struct isoc *isoc = &upipe->isoc;
       uhci_soft_td_t *std = NULL;
       uint32_t buf, len, status, offs;
       int i, next, nframes;
       int rd = UE_GET_DIR(upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress) == UE_DIR_IN;

       DPRINTFN(5, "used=%jd next=%jd xfer=%#jx nframes=%jd",
           isoc->inuse, isoc->next, (uintptr_t)xfer, xfer->ux_nframes);

       if (sc->sc_dying)
               return USBD_IOERROR;

       if (xfer->ux_status == USBD_IN_PROGRESS) {
               /* This request has already been entered into the frame list */
               printf("%s: xfer=%p in frame list\n", __func__, xfer);
               /* XXX */
       }

#ifdef DIAGNOSTIC
       if (isoc->inuse >= UHCI_VFRAMELIST_COUNT)
               printf("%s: overflow!\n", __func__);
#endif

       KASSERT(xfer->ux_nframes != 0);

       if (xfer->ux_length)
               usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
                   rd ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);

       next = isoc->next;
       if (next == -1) {
               /* Not in use yet, schedule it a few frames ahead. */
               next = (UREAD2(sc, UHCI_FRNUM) + 3) % UHCI_VFRAMELIST_COUNT;
               DPRINTFN(2, "start next=%jd", next, 0, 0, 0);
       }

       xfer->ux_status = USBD_IN_PROGRESS;
       ux->ux_curframe = next;

       offs = 0;
       status = UHCI_TD_ZERO_ACTLEN(UHCI_TD_SET_ERRCNT(0) |
                                    UHCI_TD_ACTIVE |
                                    UHCI_TD_IOS);
       nframes = xfer->ux_nframes;
       for (i = 0; i < nframes; i++) {
               buf = DMAADDR(&xfer->ux_dmabuf, offs);
               std = isoc->stds[next];
               if (++next >= UHCI_VFRAMELIST_COUNT)
                       next = 0;
               len = xfer->ux_frlengths[i];

               KASSERTMSG(len <= __SHIFTOUT_MASK(UHCI_TD_MAXLEN_MASK),
                   "len %d", len);
               std->td.td_buffer = htole32(buf);
               usb_syncmem(&xfer->ux_dmabuf, offs, len,
                   rd ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
               if (i == nframes - 1)
                       status |= UHCI_TD_IOC;
               std->td.td_status = htole32(status);
               std->td.td_token &= htole32(~UHCI_TD_MAXLEN_MASK);
               std->td.td_token |= htole32(UHCI_TD_SET_MAXLEN(len));
               usb_syncmem(&std->dma, std->offs, sizeof(std->td),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
#ifdef UHCI_DEBUG
               if (uhcidebug >= 5) {
                       DPRINTF("--- dump start ---", 0, 0, 0, 0);
                       DPRINTF("TD %jd", i, 0, 0, 0);
                       uhci_dump_td(std);
                       DPRINTF("--- dump end ---", 0, 0, 0, 0);
               }
#endif
               offs += len;
               const bus_addr_t bend __diagused =
                   DMAADDR(&xfer->ux_dmabuf, offs - 1);

               KASSERT(((buf ^ bend) & ~PAGE_MASK) == 0);
       }
       isoc->next = next;
       isoc->inuse += xfer->ux_nframes;

       /* Set up interrupt info. */
       ux->ux_stdstart = std;
       ux->ux_stdend = std;

       KASSERT(ux->ux_isdone);
#ifdef DIAGNOSTIC
       ux->ux_isdone = false;
#endif
       uhci_add_intr_list(sc, ux);

       return USBD_IN_PROGRESS;
}

void
uhci_device_isoc_abort(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc = UHCI_XFER2SC(xfer);
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
       struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
       uhci_soft_td_t **stds = upipe->isoc.stds;
       uhci_soft_td_t *std;
       int i, n, nframes, maxlen, len;

       KASSERT(mutex_owned(&sc->sc_lock));

       /* Transfer is already done. */
       if (xfer->ux_status != USBD_NOT_STARTED &&
           xfer->ux_status != USBD_IN_PROGRESS) {
               return;
       }

       /* Give xfer the requested abort code. */
       xfer->ux_status = USBD_CANCELLED;

       /* make hardware ignore it, */
       nframes = xfer->ux_nframes;
       n = ux->ux_curframe;
       maxlen = 0;
       for (i = 0; i < nframes; i++) {
               std = stds[n];
               usb_syncmem(&std->dma,
                   std->offs + offsetof(uhci_td_t, td_status),
                   sizeof(std->td.td_status),
                   BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
               std->td.td_status &= htole32(~(UHCI_TD_ACTIVE | UHCI_TD_IOC));
               usb_syncmem(&std->dma,
                   std->offs + offsetof(uhci_td_t, td_status),
                   sizeof(std->td.td_status),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
               usb_syncmem(&std->dma,
                   std->offs + offsetof(uhci_td_t, td_token),
                   sizeof(std->td.td_token),
                   BUS_DMASYNC_POSTWRITE);
               len = UHCI_TD_GET_MAXLEN(le32toh(std->td.td_token));
               if (len > maxlen)
                       maxlen = len;
               if (++n >= UHCI_VFRAMELIST_COUNT)
                       n = 0;
       }

       /* and wait until we are sure the hardware has finished. */
       delay(maxlen);

#ifdef DIAGNOSTIC
       ux->ux_isdone = true;
#endif
       /* Remove from interrupt list. */
       uhci_del_intr_list(sc, ux);

       /* Run callback. */
       usb_transfer_complete(xfer);

       KASSERT(mutex_owned(&sc->sc_lock));
}

void
uhci_device_isoc_close(struct usbd_pipe *pipe)
{
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(pipe);
       uhci_softc_t *sc = UHCI_PIPE2SC(pipe);
       uhci_soft_td_t *std, *vstd;
       struct isoc *isoc;
       int i;

       KASSERT(mutex_owned(&sc->sc_lock));

       /*
        * Make sure all TDs are marked as inactive.
        * Wait for completion.
        * Unschedule.
        * Deallocate.
        */
       isoc = &upipe->isoc;

       for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
               std = isoc->stds[i];
               usb_syncmem(&std->dma,
                   std->offs + offsetof(uhci_td_t, td_status),
                   sizeof(std->td.td_status),
                   BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
               std->td.td_status &= htole32(~UHCI_TD_ACTIVE);
               usb_syncmem(&std->dma,
                   std->offs + offsetof(uhci_td_t, td_status),
                   sizeof(std->td.td_status),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
       }
       /* wait for completion */
       usb_delay_ms_locked(&sc->sc_bus, 2, &sc->sc_lock);

       for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
               std = isoc->stds[i];
               for (vstd = sc->sc_vframes[i].htd;
                    vstd != NULL && vstd->link.std != std;
                    vstd = vstd->link.std)
                       ;
               if (vstd == NULL) {
                       /*panic*/
                       printf("%s: %p not found\n", __func__, std);
                       mutex_exit(&sc->sc_lock);
                       return;
               }
               vstd->link = std->link;
               usb_syncmem(&std->dma,
                   std->offs + offsetof(uhci_td_t, td_link),
                   sizeof(std->td.td_link),
                   BUS_DMASYNC_POSTWRITE);
               vstd->td.td_link = std->td.td_link;
               usb_syncmem(&vstd->dma,
                   vstd->offs + offsetof(uhci_td_t, td_link),
                   sizeof(vstd->td.td_link),
                   BUS_DMASYNC_PREWRITE);
               uhci_free_std_locked(sc, std);
       }

       kmem_free(isoc->stds, UHCI_VFRAMELIST_COUNT * sizeof(uhci_soft_td_t *));
}

usbd_status
uhci_setup_isoc(struct usbd_pipe *pipe)
{
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(pipe);
       uhci_softc_t *sc = UHCI_PIPE2SC(pipe);
       int addr = upipe->pipe.up_dev->ud_addr;
       int endpt = upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress;
       int rd = UE_GET_DIR(endpt) == UE_DIR_IN;
       uhci_soft_td_t *std, *vstd;
       uint32_t token;
       struct isoc *isoc;
       int i;

       isoc = &upipe->isoc;

       isoc->stds = kmem_alloc(
           UHCI_VFRAMELIST_COUNT * sizeof(uhci_soft_td_t *), KM_SLEEP);
       if (isoc->stds == NULL)
               return USBD_NOMEM;

       token = rd ? UHCI_TD_IN (0, endpt, addr, 0) :
                    UHCI_TD_OUT(0, endpt, addr, 0);

       /* Allocate the TDs and mark as inactive; */
       for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
               std = uhci_alloc_std(sc);
               if (std == 0)
                       goto bad;
               std->td.td_status = htole32(UHCI_TD_IOS); /* iso, inactive */
               std->td.td_token = htole32(token);
               usb_syncmem(&std->dma, std->offs, sizeof(std->td),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
               isoc->stds[i] = std;
       }

       mutex_enter(&sc->sc_lock);

       /* Insert TDs into schedule. */
       for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
               std = isoc->stds[i];
               vstd = sc->sc_vframes[i].htd;
               usb_syncmem(&vstd->dma,
                   vstd->offs + offsetof(uhci_td_t, td_link),
                   sizeof(vstd->td.td_link),
                   BUS_DMASYNC_POSTWRITE);
               std->link = vstd->link;
               std->td.td_link = vstd->td.td_link;
               usb_syncmem(&std->dma,
                   std->offs + offsetof(uhci_td_t, td_link),
                   sizeof(std->td.td_link),
                   BUS_DMASYNC_PREWRITE);
               vstd->link.std = std;
               vstd->td.td_link = htole32(std->physaddr | UHCI_PTR_TD);
               usb_syncmem(&vstd->dma,
                   vstd->offs + offsetof(uhci_td_t, td_link),
                   sizeof(vstd->td.td_link),
                   BUS_DMASYNC_PREWRITE);
       }
       mutex_exit(&sc->sc_lock);

       isoc->next = -1;
       isoc->inuse = 0;

       return USBD_NORMAL_COMPLETION;

bad:
       while (--i >= 0)
               uhci_free_std(sc, isoc->stds[i]);
       kmem_free(isoc->stds, UHCI_VFRAMELIST_COUNT * sizeof(uhci_soft_td_t *));
       return USBD_NOMEM;
}

void
uhci_device_isoc_done(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc __diagused = UHCI_XFER2SC(xfer);
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
       struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
       int rd = UE_GET_DIR(upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress) == UE_DIR_IN;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(4, "length=%jd, ux_state=0x%08jx",
           xfer->ux_actlen, xfer->ux_state, 0, 0);

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

#ifdef DIAGNOSTIC
       if (ux->ux_stdend == NULL) {
               printf("%s: xfer=%p stdend==NULL\n", __func__, xfer);
#ifdef UHCI_DEBUG
               DPRINTF("--- dump start ---", 0, 0, 0, 0);
               uhci_dump_ii(ux);
               DPRINTF("--- dump end ---", 0, 0, 0, 0);
#endif
               return;
       }
#endif

       /* Turn off the interrupt since it is active even if the TD is not. */
       usb_syncmem(&ux->ux_stdend->dma,
           ux->ux_stdend->offs + offsetof(uhci_td_t, td_status),
           sizeof(ux->ux_stdend->td.td_status),
           BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
       ux->ux_stdend->td.td_status &= htole32(~UHCI_TD_IOC);
       usb_syncmem(&ux->ux_stdend->dma,
           ux->ux_stdend->offs + offsetof(uhci_td_t, td_status),
           sizeof(ux->ux_stdend->td.td_status),
           BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);

       if (xfer->ux_length)
               usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
                   rd ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
}

void
uhci_device_intr_done(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc __diagused = UHCI_XFER2SC(xfer);
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
       uhci_soft_qh_t *sqh;
       int i, npoll;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(5, "length=%jd", xfer->ux_actlen, 0, 0, 0);

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

       npoll = upipe->intr.npoll;
       for (i = 0; i < npoll; i++) {
               sqh = upipe->intr.qhs[i];
               sqh->elink = NULL;
               sqh->qh.qh_elink = htole32(UHCI_PTR_T);
               usb_syncmem(&sqh->dma,
                   sqh->offs + offsetof(uhci_qh_t, qh_elink),
                   sizeof(sqh->qh.qh_elink),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
       }
       const int endpt = upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress;
       const bool isread = UE_GET_DIR(endpt) == UE_DIR_IN;
       usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
           isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
}

/* Deallocate request data structures */
void
uhci_device_ctrl_done(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc = UHCI_XFER2SC(xfer);
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
       int len = UGETW(xfer->ux_request.wLength);
       int isread = (xfer->ux_request.bmRequestType & UT_READ);

       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
       KASSERT(xfer->ux_rqflags & URQ_REQUEST);

       /* XXXNH move to uhci_idone??? */
       if (upipe->pipe.up_dev->ud_speed == USB_SPEED_LOW)
               uhci_remove_ls_ctrl(sc, upipe->ctrl.sqh);
       else
               uhci_remove_hs_ctrl(sc, upipe->ctrl.sqh);

       if (len) {
               usb_syncmem(&xfer->ux_dmabuf, 0, len,
                   isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
       }
       usb_syncmem(&upipe->ctrl.reqdma, 0,
           sizeof(usb_device_request_t),  BUS_DMASYNC_POSTWRITE);

       DPRINTF("length=%jd", xfer->ux_actlen, 0, 0, 0);
}

/* Deallocate request data structures */
void
uhci_device_bulk_done(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc = UHCI_XFER2SC(xfer);
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
       usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc;
       int endpt = ed->bEndpointAddress;
       int isread = UE_GET_DIR(endpt) == UE_DIR_IN;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(5, "xfer=%#jx sc=%#jx upipe=%#jx", (uintptr_t)xfer,
           (uintptr_t)sc, (uintptr_t)upipe, 0);

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

       uhci_remove_bulk(sc, upipe->bulk.sqh);

       if (xfer->ux_length) {
               usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
                   isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
       }

       DPRINTFN(5, "length=%jd", xfer->ux_actlen, 0, 0, 0);
}

/* Add interrupt QH, called with vflock. */
void
uhci_add_intr(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
       struct uhci_vframe *vf = &sc->sc_vframes[sqh->pos];
       uhci_soft_qh_t *eqh;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(4, "n=%jd sqh=%#jx", sqh->pos, (uintptr_t)sqh, 0, 0);

       eqh = vf->eqh;
       usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(eqh->qh.qh_hlink), BUS_DMASYNC_POSTWRITE);
       sqh->hlink       = eqh->hlink;
       sqh->qh.qh_hlink = eqh->qh.qh_hlink;
       usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(sqh->qh.qh_hlink), BUS_DMASYNC_PREWRITE);
       eqh->hlink       = sqh;
       eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
       usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(eqh->qh.qh_hlink), BUS_DMASYNC_PREWRITE);
       vf->eqh = sqh;
       vf->bandwidth++;
}

/* Remove interrupt QH. */
void
uhci_remove_intr(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
       struct uhci_vframe *vf = &sc->sc_vframes[sqh->pos];
       uhci_soft_qh_t *pqh;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(4, "n=%jd sqh=%#jx", sqh->pos, (uintptr_t)sqh, 0, 0);

       /* See comment in uhci_remove_ctrl() */

       usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_elink),
           sizeof(sqh->qh.qh_elink),
           BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
       if (!(sqh->qh.qh_elink & htole32(UHCI_PTR_T))) {
               sqh->qh.qh_elink = htole32(UHCI_PTR_T);
               usb_syncmem(&sqh->dma,
                   sqh->offs + offsetof(uhci_qh_t, qh_elink),
                   sizeof(sqh->qh.qh_elink),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
               delay(UHCI_QH_REMOVE_DELAY);
       }

       pqh = uhci_find_prev_qh(vf->hqh, sqh);
       usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(sqh->qh.qh_hlink),
           BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
       pqh->hlink       = sqh->hlink;
       pqh->qh.qh_hlink = sqh->qh.qh_hlink;
       usb_syncmem(&pqh->dma, pqh->offs + offsetof(uhci_qh_t, qh_hlink),
           sizeof(pqh->qh.qh_hlink),
           BUS_DMASYNC_PREWRITE);
       delay(UHCI_QH_REMOVE_DELAY);
       if (vf->eqh == sqh)
               vf->eqh = pqh;
       vf->bandwidth--;
}

usbd_status
uhci_device_setintr(uhci_softc_t *sc, struct uhci_pipe *upipe, int ival)
{
       uhci_soft_qh_t *sqh;
       int i, npoll;
       u_int bestbw, bw, bestoffs, offs;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTFN(2, "pipe=%#jx", (uintptr_t)upipe, 0, 0, 0);
       if (ival == 0) {
               printf("%s: 0 interval\n", __func__);
               return USBD_INVAL;
       }

       if (ival > UHCI_VFRAMELIST_COUNT)
               ival = UHCI_VFRAMELIST_COUNT;
       npoll = howmany(UHCI_VFRAMELIST_COUNT, ival);
       DPRINTF("ival=%jd npoll=%jd", ival, npoll, 0, 0);

       upipe->intr.npoll = npoll;
       upipe->intr.qhs =
               kmem_alloc(npoll * sizeof(uhci_soft_qh_t *), KM_SLEEP);

       /*
        * Figure out which offset in the schedule that has most
        * bandwidth left over.
        */
#define MOD(i) ((i) & (UHCI_VFRAMELIST_COUNT-1))
       for (bestoffs = offs = 0, bestbw = ~0; offs < ival; offs++) {
               for (bw = i = 0; i < npoll; i++)
                       bw += sc->sc_vframes[MOD(i * ival + offs)].bandwidth;
               if (bw < bestbw) {
                       bestbw = bw;
                       bestoffs = offs;
               }
       }
       DPRINTF("bw=%jd offs=%jd", bestbw, bestoffs, 0, 0);
       for (i = 0; i < npoll; i++) {
               upipe->intr.qhs[i] = sqh = uhci_alloc_sqh(sc);
               sqh->elink = NULL;
               sqh->qh.qh_elink = htole32(UHCI_PTR_T);
               usb_syncmem(&sqh->dma,
                   sqh->offs + offsetof(uhci_qh_t, qh_elink),
                   sizeof(sqh->qh.qh_elink),
                   BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
               sqh->pos = MOD(i * ival + bestoffs);
       }
#undef MOD

       mutex_enter(&sc->sc_lock);
       /* Enter QHs into the controller data structures. */
       for (i = 0; i < npoll; i++)
               uhci_add_intr(sc, upipe->intr.qhs[i]);
       mutex_exit(&sc->sc_lock);

       DPRINTFN(5, "returns %#jx", (uintptr_t)upipe, 0, 0, 0);

       return USBD_NORMAL_COMPLETION;
}

/* Open a new pipe. */
usbd_status
uhci_open(struct usbd_pipe *pipe)
{
       uhci_softc_t *sc = UHCI_PIPE2SC(pipe);
       struct usbd_bus *bus = pipe->up_dev->ud_bus;
       struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(pipe);
       usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
       int ival;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTF("pipe=%#jx, addr=%jd, endpt=%jd (%jd)",
           (uintptr_t)pipe, pipe->up_dev->ud_addr, ed->bEndpointAddress,
           bus->ub_rhaddr);

       if (sc->sc_dying)
               return USBD_IOERROR;

       upipe->aborting = 0;
       /* toggle state needed for bulk endpoints */
       upipe->nexttoggle = pipe->up_endpoint->ue_toggle;

       if (pipe->up_dev->ud_addr == bus->ub_rhaddr) {
               switch (ed->bEndpointAddress) {
               case USB_CONTROL_ENDPOINT:
                       pipe->up_methods = &roothub_ctrl_methods;
                       break;
               case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
                       pipe->up_methods = &uhci_root_intr_methods;
                       break;
               default:
                       return USBD_INVAL;
               }
       } else {
               switch (ed->bmAttributes & UE_XFERTYPE) {
               case UE_CONTROL:
                       pipe->up_methods = &uhci_device_ctrl_methods;
                       upipe->ctrl.sqh = uhci_alloc_sqh(sc);
                       if (upipe->ctrl.sqh == NULL)
                               goto bad;
                       upipe->ctrl.setup = uhci_alloc_std(sc);
                       if (upipe->ctrl.setup == NULL) {
                               uhci_free_sqh(sc, upipe->ctrl.sqh);
                               goto bad;
                       }
                       upipe->ctrl.stat = uhci_alloc_std(sc);
                       if (upipe->ctrl.stat == NULL) {
                               uhci_free_sqh(sc, upipe->ctrl.sqh);
                               uhci_free_std(sc, upipe->ctrl.setup);
                               goto bad;
                       }
                       int err = usb_allocmem(sc->sc_bus.ub_dmatag,
                           sizeof(usb_device_request_t), 0,
                           USBMALLOC_COHERENT, &upipe->ctrl.reqdma);
                       if (err) {
                               uhci_free_sqh(sc, upipe->ctrl.sqh);
                               uhci_free_std(sc, upipe->ctrl.setup);
                               uhci_free_std(sc, upipe->ctrl.stat);
                               goto bad;
                       }
                       break;
               case UE_INTERRUPT:
                       pipe->up_methods = &uhci_device_intr_methods;
                       ival = pipe->up_interval;
                       if (ival == USBD_DEFAULT_INTERVAL)
                               ival = ed->bInterval;
                       return uhci_device_setintr(sc, upipe, ival);
               case UE_ISOCHRONOUS:
                       pipe->up_serialise = false;
                       pipe->up_methods = &uhci_device_isoc_methods;
                       return uhci_setup_isoc(pipe);
               case UE_BULK:
                       pipe->up_methods = &uhci_device_bulk_methods;
                       upipe->bulk.sqh = uhci_alloc_sqh(sc);
                       if (upipe->bulk.sqh == NULL)
                               goto bad;
                       break;
               }
       }
       return USBD_NORMAL_COMPLETION;

bad:
       return USBD_NOMEM;
}

/*
* Data structures and routines to emulate the root hub.
*/
/*
* The USB hub protocol requires that SET_FEATURE(PORT_RESET) also
* enables the port, and also states that SET_FEATURE(PORT_ENABLE)
* should not be used by the USB subsystem.  As we cannot issue a
* SET_FEATURE(PORT_ENABLE) externally, we must ensure that the port
* will be enabled as part of the reset.
*
* On the VT83C572, the port cannot be successfully enabled until the
* outstanding "port enable change" and "connection status change"
* events have been reset.
*/
Static usbd_status
uhci_portreset(uhci_softc_t *sc, int index)
{
       int lim, port, x;
       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       if (index == 1)
               port = UHCI_PORTSC1;
       else if (index == 2)
               port = UHCI_PORTSC2;
       else
               return USBD_IOERROR;

       x = URWMASK(UREAD2(sc, port));
       UWRITE2(sc, port, x | UHCI_PORTSC_PR);

       usb_delay_ms(&sc->sc_bus, USB_PORT_ROOT_RESET_DELAY);

       DPRINTF("uhci port %jd reset, status0 = 0x%04jx", index,
           UREAD2(sc, port), 0, 0);

       x = URWMASK(UREAD2(sc, port));
       UWRITE2(sc, port, x & ~(UHCI_PORTSC_PR | UHCI_PORTSC_SUSP));

       delay(100);

       DPRINTF("uhci port %jd reset, status1 = 0x%04jx", index,
           UREAD2(sc, port), 0, 0);

       x = URWMASK(UREAD2(sc, port));
       UWRITE2(sc, port, x  | UHCI_PORTSC_PE);

       for (lim = 10; --lim > 0;) {
               usb_delay_ms(&sc->sc_bus, USB_PORT_RESET_DELAY);

               x = UREAD2(sc, port);
               DPRINTF("uhci port %jd iteration %ju, status = 0x%04jx", index,
                   lim, x, 0);

               if (!(x & UHCI_PORTSC_CCS)) {
                       /*
                        * No device is connected (or was disconnected
                        * during reset).  Consider the port reset.
                        * The delay must be long enough to ensure on
                        * the initial iteration that the device
                        * connection will have been registered.  50ms
                        * appears to be sufficient, but 20ms is not.
                        */
                       DPRINTFN(3, "uhci port %jd loop %ju, device detached",
                           index, lim, 0, 0);
                       break;
               }

               if (x & (UHCI_PORTSC_POEDC | UHCI_PORTSC_CSC)) {
                       /*
                        * Port enabled changed and/or connection
                        * status changed were set.  Reset either or
                        * both raised flags (by writing a 1 to that
                        * bit), and wait again for state to settle.
                        */
                       UWRITE2(sc, port, URWMASK(x) |
                               (x & (UHCI_PORTSC_POEDC | UHCI_PORTSC_CSC)));
                       continue;
               }

               if (x & UHCI_PORTSC_PE)
                       /* Port is enabled */
                       break;

               UWRITE2(sc, port, URWMASK(x) | UHCI_PORTSC_PE);
       }

       DPRINTFN(3, "uhci port %jd reset, status2 = 0x%04jx", index,
           UREAD2(sc, port), 0, 0);

       if (lim <= 0) {
               DPRINTF("uhci port %jd reset timed out", index,
                   0, 0, 0);
               return USBD_TIMEOUT;
       }

       sc->sc_isreset = 1;
       return USBD_NORMAL_COMPLETION;
}

Static int
uhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
   void *buf, int buflen)
{
       uhci_softc_t *sc = UHCI_BUS2SC(bus);
       int port, x;
       int status, change, totlen = 0;
       uint16_t len, value, index;
       usb_port_status_t ps;
       usbd_status err;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       if (sc->sc_dying)
               return -1;

       DPRINTF("type=0x%02jx request=%02jx", req->bmRequestType,
           req->bRequest, 0, 0);

       len = UGETW(req->wLength);
       value = UGETW(req->wValue);
       index = UGETW(req->wIndex);

#define C(x,y) ((x) | ((y) << 8))
       switch (C(req->bRequest, req->bmRequestType)) {
       case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
               DPRINTF("wValue=0x%04jx", value, 0, 0, 0);
               if (len == 0)
                       break;
               switch (value) {
#define sd ((usb_string_descriptor_t *)buf)
               case C(2, UDESC_STRING):
                       /* Product */
                       totlen = usb_makestrdesc(sd, len, "UHCI root hub");
                       break;
#undef sd
               default:
                       /* default from usbroothub */
                       return buflen;
               }
               break;

       /* Hub requests */
       case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
               break;
       case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
               DPRINTF("UR_CLEAR_PORT_FEATURE port=%jd feature=%jd", index,
                   value, 0, 0);
               if (index == 1)
                       port = UHCI_PORTSC1;
               else if (index == 2)
                       port = UHCI_PORTSC2;
               else {
                       return -1;
               }
               switch(value) {
               case UHF_PORT_ENABLE:
                       x = URWMASK(UREAD2(sc, port));
                       UWRITE2(sc, port, x & ~UHCI_PORTSC_PE);
                       break;
               case UHF_PORT_SUSPEND:
                       x = URWMASK(UREAD2(sc, port));
                       if (!(x & UHCI_PORTSC_SUSP)) /* not suspended */
                               break;
                       UWRITE2(sc, port, x | UHCI_PORTSC_RD);
                       /* see USB2 spec ch. 7.1.7.7 */
                       usb_delay_ms(&sc->sc_bus, 20);
                       UWRITE2(sc, port, x & ~UHCI_PORTSC_SUSP);
                       /* 10ms resume delay must be provided by caller */
                       break;
               case UHF_PORT_RESET:
                       x = URWMASK(UREAD2(sc, port));
                       UWRITE2(sc, port, x & ~UHCI_PORTSC_PR);
                       break;
               case UHF_C_PORT_CONNECTION:
                       x = URWMASK(UREAD2(sc, port));
                       UWRITE2(sc, port, x | UHCI_PORTSC_CSC);
                       break;
               case UHF_C_PORT_ENABLE:
                       x = URWMASK(UREAD2(sc, port));
                       UWRITE2(sc, port, x | UHCI_PORTSC_POEDC);
                       break;
               case UHF_C_PORT_OVER_CURRENT:
                       x = URWMASK(UREAD2(sc, port));
                       UWRITE2(sc, port, x | UHCI_PORTSC_OCIC);
                       break;
               case UHF_C_PORT_RESET:
                       sc->sc_isreset = 0;
                       break;
               case UHF_PORT_CONNECTION:
               case UHF_PORT_OVER_CURRENT:
               case UHF_PORT_POWER:
               case UHF_PORT_LOW_SPEED:
               case UHF_C_PORT_SUSPEND:
               default:
                       return -1;
               }
               break;
       case C(UR_GET_BUS_STATE, UT_READ_CLASS_OTHER):
               if (index == 1)
                       port = UHCI_PORTSC1;
               else if (index == 2)
                       port = UHCI_PORTSC2;
               else {
                       return -1;
               }
               if (len > 0) {
                       *(uint8_t *)buf =
                           UHCI_PORTSC_GET_LS(UREAD2(sc, port));
                       totlen = 1;
               }
               break;
       case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
               if (len == 0)
                       break;
               if ((value & 0xff) != 0) {
                       return -1;
               }
               usb_hub_descriptor_t hubd;

               totlen = uimin(buflen, sizeof(hubd));
               memcpy(&hubd, buf, totlen);
               hubd.bNbrPorts = 2;
               memcpy(buf, &hubd, totlen);
               break;
       case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
               if (len != 4) {
                       return -1;
               }
               memset(buf, 0, len);
               totlen = len;
               break;
       case C(UR_GET_STATUS, UT_READ_CLASS_OTHER):
               if (index == 1)
                       port = UHCI_PORTSC1;
               else if (index == 2)
                       port = UHCI_PORTSC2;
               else {
                       return -1;
               }
               if (len != 4) {
                       return -1;
               }
               x = UREAD2(sc, port);
               status = change = 0;
               if (x & UHCI_PORTSC_CCS)
                       status |= UPS_CURRENT_CONNECT_STATUS;
               if (x & UHCI_PORTSC_CSC)
                       change |= UPS_C_CONNECT_STATUS;
               if (x & UHCI_PORTSC_PE)
                       status |= UPS_PORT_ENABLED;
               if (x & UHCI_PORTSC_POEDC)
                       change |= UPS_C_PORT_ENABLED;
               if (x & UHCI_PORTSC_OCI)
                       status |= UPS_OVERCURRENT_INDICATOR;
               if (x & UHCI_PORTSC_OCIC)
                       change |= UPS_C_OVERCURRENT_INDICATOR;
               if (x & UHCI_PORTSC_SUSP)
                       status |= UPS_SUSPEND;
               if (x & UHCI_PORTSC_LSDA)
                       status |= UPS_LOW_SPEED;
               status |= UPS_PORT_POWER;
               if (sc->sc_isreset)
                       change |= UPS_C_PORT_RESET;
               USETW(ps.wPortStatus, status);
               USETW(ps.wPortChange, change);
               totlen = uimin(len, sizeof(ps));
               memcpy(buf, &ps, totlen);
               break;
       case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
               return -1;
       case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
               break;
       case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
               if (index == 1)
                       port = UHCI_PORTSC1;
               else if (index == 2)
                       port = UHCI_PORTSC2;
               else {
                       return -1;
               }
               switch(value) {
               case UHF_PORT_ENABLE:
                       x = URWMASK(UREAD2(sc, port));
                       UWRITE2(sc, port, x | UHCI_PORTSC_PE);
                       break;
               case UHF_PORT_SUSPEND:
                       x = URWMASK(UREAD2(sc, port));
                       UWRITE2(sc, port, x | UHCI_PORTSC_SUSP);
                       break;
               case UHF_PORT_RESET:
                       err = uhci_portreset(sc, index);
                       if (err != USBD_NORMAL_COMPLETION)
                               return -1;
                       return 0;
               case UHF_PORT_POWER:
                       /* Pretend we turned on power */
                       return 0;
               case UHF_C_PORT_CONNECTION:
               case UHF_C_PORT_ENABLE:
               case UHF_C_PORT_OVER_CURRENT:
               case UHF_PORT_CONNECTION:
               case UHF_PORT_OVER_CURRENT:
               case UHF_PORT_LOW_SPEED:
               case UHF_C_PORT_SUSPEND:
               case UHF_C_PORT_RESET:
               default:
                       return -1;
               }
               break;
       default:
               /* default from usbroothub */
               DPRINTF("returning %jd (usbroothub default)",
                   buflen, 0, 0, 0);
               return buflen;
       }

       DPRINTF("returning %jd", totlen, 0, 0, 0);

       return totlen;
}

/* Abort a root interrupt request. */
void
uhci_root_intr_abort(struct usbd_xfer *xfer)
{
       uhci_softc_t *sc = UHCI_XFER2SC(xfer);

       KASSERT(mutex_owned(&sc->sc_lock));
       KASSERT(xfer->ux_pipe->up_intrxfer == xfer);

       /*
        * Try to stop the callout before it starts.  If we got in too
        * late, too bad; but if the callout had yet to run and time
        * out the xfer, cancel it ourselves.
        */
       callout_stop(&sc->sc_poll_handle);
       if (sc->sc_intr_xfer == NULL)
               return;

       KASSERT(sc->sc_intr_xfer == xfer);
       KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
       xfer->ux_status = USBD_CANCELLED;
#ifdef DIAGNOSTIC
       UHCI_XFER2UXFER(xfer)->ux_isdone = true;
#endif
       usb_transfer_complete(xfer);
}

usbd_status
uhci_root_intr_transfer(struct usbd_xfer *xfer)
{

       /* Pipe isn't running, start first */
       return uhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}

/* Start a transfer on the root interrupt pipe */
usbd_status
uhci_root_intr_start(struct usbd_xfer *xfer)
{
       struct usbd_pipe *pipe = xfer->ux_pipe;
       uhci_softc_t *sc = UHCI_PIPE2SC(pipe);
       unsigned int ival;

       UHCIHIST_FUNC(); UHCIHIST_CALLED();
       DPRINTF("xfer=%#jx len=%jd flags=%jd", (uintptr_t)xfer, xfer->ux_length,
           xfer->ux_flags, 0);

       KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));

       if (sc->sc_dying)
               return USBD_IOERROR;

       KASSERT(sc->sc_intr_xfer == NULL);

       /* XXX temporary variable needed to avoid gcc3 warning */
       ival = xfer->ux_pipe->up_endpoint->ue_edesc->bInterval;
       sc->sc_ival = mstohz(ival);
       if (sc->sc_suspend == PWR_RESUME)
               callout_schedule(&sc->sc_poll_handle, sc->sc_ival);
       sc->sc_intr_xfer = xfer;
       xfer->ux_status = USBD_IN_PROGRESS;

       return USBD_IN_PROGRESS;
}

/* Close the root interrupt pipe. */
void
uhci_root_intr_close(struct usbd_pipe *pipe)
{
       uhci_softc_t *sc __diagused = UHCI_PIPE2SC(pipe);
       UHCIHIST_FUNC(); UHCIHIST_CALLED();

       KASSERT(mutex_owned(&sc->sc_lock));

       /*
        * The caller must arrange to have aborted the pipe already, so
        * there can be no intr xfer in progress.  The callout may
        * still be pending from a prior intr xfer -- if it has already
        * fired, it will see there is nothing to do, and do nothing.
        */
       KASSERT(sc->sc_intr_xfer == NULL);
       KASSERT(!callout_pending(&sc->sc_poll_handle));
}