/*      $NetBSD: uatp.c,v 1.31 2022/03/28 12:45:04 riastradh Exp $      */

/*-
* Copyright (c) 2011-2014 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Taylor R. Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* uatp(4) - USB Apple Trackpad
*
* The uatp driver talks the protocol of the USB trackpads found in
* Apple laptops since 2005, including PowerBooks, iBooks, MacBooks,
* and MacBook Pros.  Some of these also present generic USB HID mice
* on another USB report id, which the ums(4) driver can handle, but
* Apple's protocol gives more detailed sensor data that lets us detect
* multiple fingers to emulate multi-button mice and scroll wheels.
*/

/*
* Protocol
*
* The device has a set of horizontal sensors, each being a column at a
* particular position on the x axis that tells you whether there is
* pressure anywhere on that column, and vertical sensors, each being a
* row at a particular position on the y axis that tells you whether
* there is pressure anywhere on that row.
*
* Whenever the device senses anything, it emits a readout of all of
* the sensors, in some model-dependent order.  (For the order, see
* read_sample_1 and read_sample_2.)  Each sensor datum is an unsigned
* eight-bit quantity representing some measure of pressure.  (Of
* course, it really measures capacitance, not pressure, but we'll call
* it `pressure' here.)
*/

/*
* Interpretation
*
* To interpret the finger's position on the trackpad, the driver
* computes a weighted average over all possible positions, weighted by
* the pressure at that position.  The weighted average is computed in
* the dimensions of the screen, rather than the trackpad, in order to
* admit a finer resolution of positions than the trackpad grid.
*
* To update the finger's position smoothly on the trackpad, the driver
* computes a weighted average of the old raw position, the old
* smoothed position, and the new smoothed position.  The weights are
* given by the old_raw_weight, old_smoothed_weight, and new_raw_weight
* sysctl knobs.
*
* Finally, to move the cursor, the driver takes the difference between
* the old and new positions and accelerates it according to some
* heuristic knobs that need to be reworked.
*
* Finally, there are some bells & whistles to detect tapping and to
* emulate a three-button mouse by leaving two or three fingers on the
* trackpad while pressing the button.
*/

/*
* Future work
*
* With the raw sensor data available, we could implement fancier bells
* & whistles too, such as pinch-to-zoom.  However, wsmouse supports
* only four-dimensional mice with buttons, and we already use two
* dimensions for mousing and two dimensions for scrolling, so there's
* no straightforward way to report zooming and other gestures to the
* operating system.  Probably a better way to do this would be just to
* attach uhid(4) instead of uatp(4) and to read the raw sensors data
* yourself -- but that requires hairy mode switching for recent models
* (see geyser34_enable_raw_mode).
*
* XXX Rework the acceleration knobs.
* XXX Implement edge scrolling.
* XXX Fix sysctl setup; preserve knobs across suspend/resume.
*     (uatp0 detaches and reattaches across suspend/resume, so as
*     written, the sysctl tree is torn down and rebuilt, losing any
*     state the user may have set.)
* XXX Refactor motion state so I can understand it again.
*     Should make a struct uatp_motion for all that state.
* XXX Add hooks for ignoring trackpad input while typing.
*/

/*
* Classifying devices
*
* I have only one MacBook to test this driver, but the driver should
* be applicable to almost every Apple laptop made since the beginning
* of 2005, so the driver reports lots of debugging output to help to
* classify devices.  Boot with `boot -v' (verbose) and check the
* output of `dmesg | grep uatp' to answer the following questions:
*
* - What devices (vendor, product, class, subclass, proto, USB HID
*   report dump) fail to attach when you think they should work?
*     (vendor not apple, class not hid, proto not mouse)
*
* - What devices have an unknown product id?
*     `unknown vendor/product id'
*
* - What devices have the wrong screen-to-trackpad ratios?
*     `... x sensors, scaled by ... for ... points on screen'
*     `... y sensors, scaled by ... for ... points on screen'
*   You can tweak hw.uatp0.x_ratio and hw.uatp0.y_ratio to adjust
*   this, up to a maximum of 384 for each value.
*
* - What devices have the wrong input size?
*     `expected input size ... but got ... for Apple trackpad'
*
* - What devices give wrong-sized packets?
*     `discarding ...-byte input'
*
* - What devices split packets in chunks?
*     `partial packet: ... bytes'
*
* - What devices develop large sensor readouts?
*     `large sensor readout: ...'
*
* - What devices have the wrong number of sensors?  Are there parts of
*   your trackpad that the system doesn't seem to notice?  You can
*   tweak hw.uatp0.x_sensors and hw.uatp0.y_sensors, up to a maximum
*   of 32 for each value.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uatp.c,v 1.31 2022/03/28 12:45:04 riastradh Exp $");

#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif

#include <sys/types.h>
#include <sys/param.h>
#include <sys/atomic.h>
#include <sys/device.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/time.h>

/* Order is important here...sigh...  */
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/uhidev.h>
#include <dev/usb/usbhid.h>
#include <dev/hid/hid.h>

#include <dev/wscons/wsconsio.h>
#include <dev/wscons/wsmousevar.h>

#define CHECK(condition, fail) do {                                     \
       if (! (condition)) {                                            \
               aprint_error_dev(uatp_dev(sc), "%s: check failed: %s\n",\
                       __func__, #condition);                          \
               fail;                                                   \
       }                                                               \
} while (0)

#define UATP_DEBUG_ATTACH       __BIT(0)
#define UATP_DEBUG_MISC         __BIT(1)
#define UATP_DEBUG_WSMOUSE      __BIT(2)
#define UATP_DEBUG_IOCTL        __BIT(3)
#define UATP_DEBUG_RESET        __BIT(4)
#define UATP_DEBUG_INTR         __BIT(5)
#define UATP_DEBUG_PARSE        __BIT(6)
#define UATP_DEBUG_TAP          __BIT(7)
#define UATP_DEBUG_EMUL_BUTTON  __BIT(8)
#define UATP_DEBUG_ACCUMULATE   __BIT(9)
#define UATP_DEBUG_STATUS       __BIT(10)
#define UATP_DEBUG_SPURINTR     __BIT(11)
#define UATP_DEBUG_MOVE         __BIT(12)
#define UATP_DEBUG_ACCEL        __BIT(13)
#define UATP_DEBUG_TRACK_DIST   __BIT(14)
#define UATP_DEBUG_PALM         __BIT(15)

/*
* Unconditionally enable the debug output so you don't have to
* recompile the kernel to diagnose it.  This is not a high-throughput
* NIC driver or anything that will be hurt by a few conditionals.
*/
#define UATP_DEBUG      1

#if UATP_DEBUG
#  define DPRINTF(sc, flags, format) do {                               \
       if ((flags) & (sc)->sc_debug_flags) {                           \
               printf("%s: %s: ", device_xname(uatp_dev(sc)), __func__); \
               printf format;                                          \
       }                                                               \
} while (0)
#else
#  define DPRINTF(sc, flags, format) do {} while (0)
#endif

/* Maximum number of bytes in an incoming packet of sensor data.  */
#define UATP_MAX_INPUT_SIZE     81

/* Maximum number of sensors in each dimension.  */
#define UATP_MAX_X_SENSORS      32
#define UATP_MAX_Y_SENSORS      32
#define UATP_MAX_SENSORS        32
#define UATP_SENSORS            (UATP_MAX_X_SENSORS + UATP_MAX_Y_SENSORS)

/* Maximum accumulated sensor value.  */
#define UATP_MAX_ACC            0xff

/* Maximum screen dimension to sensor dimension ratios.  */
#define UATP_MAX_X_RATIO        0x180
#define UATP_MAX_Y_RATIO        0x180
#define UATP_MAX_RATIO          0x180

/* Maximum weight for positions in motion calculation.  */
#define UATP_MAX_WEIGHT         0x7f

/* Maximum possible trackpad position in a single dimension.  */
#define UATP_MAX_POSITION       (UATP_MAX_SENSORS * UATP_MAX_RATIO)

/* Bounds on acceleration.  */
#define UATP_MAX_MOTION_MULTIPLIER      16

/* Status bits transmitted in the last byte of an input packet.  */
#define UATP_STATUS_BUTTON      __BIT(0)        /* Button pressed */
#define UATP_STATUS_BASE        __BIT(2)        /* Base sensor data */
#define UATP_STATUS_POST_RESET  __BIT(4)        /* Post-reset */

/* Forward declarations */

struct uatp_softc;              /* Device driver state.  */
struct uatp_descriptor;         /* Descriptor for a particular model.  */
struct uatp_parameters;         /* Parameters common to a set of models.  */
struct uatp_knobs;              /* User-settable configuration knobs.  */
enum uatp_tap_state {
       TAP_STATE_INITIAL,
       TAP_STATE_TAPPING,
       TAP_STATE_TAPPED,
       TAP_STATE_DOUBLE_TAPPING,
       TAP_STATE_DRAGGING_DOWN,
       TAP_STATE_DRAGGING_UP,
       TAP_STATE_TAPPING_IN_DRAG,
};

static const struct uatp_descriptor *find_uatp_descriptor
   (const struct uhidev_attach_arg *);
static device_t uatp_dev(const struct uatp_softc *);
static uint8_t *uatp_x_sample(struct uatp_softc *);
static uint8_t *uatp_y_sample(struct uatp_softc *);
static int *uatp_x_acc(struct uatp_softc *);
static int *uatp_y_acc(struct uatp_softc *);
static void uatp_clear_position(struct uatp_softc *);
static unsigned int uatp_x_sensors(const struct uatp_softc *);
static unsigned int uatp_y_sensors(const struct uatp_softc *);
static unsigned int uatp_x_ratio(const struct uatp_softc *);
static unsigned int uatp_y_ratio(const struct uatp_softc *);
static unsigned int uatp_old_raw_weight(const struct uatp_softc *);
static unsigned int uatp_old_smoothed_weight(const struct uatp_softc *);
static unsigned int uatp_new_raw_weight(const struct uatp_softc *);
static int scale_motion(const struct uatp_softc *, int, int *,
   const unsigned int *, const unsigned int *);
static int uatp_scale_motion(const struct uatp_softc *, int, int *);
static int uatp_scale_fast_motion(const struct uatp_softc *, int, int *);
static int uatp_match(device_t, cfdata_t, void *);
static void uatp_attach(device_t, device_t, void *);
static void uatp_setup_sysctl(struct uatp_softc *);
static bool uatp_setup_sysctl_knob(struct uatp_softc *, int *, const char *,
   const char *);
static void uatp_childdet(device_t, device_t);
static int uatp_detach(device_t, int);
static int uatp_activate(device_t, enum devact);
static int uatp_enable(void *);
static void uatp_disable(void *);
static int uatp_ioctl(void *, unsigned long, void *, int, struct lwp *);
static void geyser34_enable_raw_mode(struct uatp_softc *);
static void geyser34_initialize(struct uatp_softc *);
static void geyser34_finalize(struct uatp_softc *);
static void geyser34_deferred_reset(struct uatp_softc *);
static void geyser34_reset_task(void *);
static void uatp_intr(void *, void *, unsigned int);
static bool base_sample_softc_flag(const struct uatp_softc *, const uint8_t *);
static bool base_sample_input_flag(const struct uatp_softc *, const uint8_t *);
static void read_sample_1(uint8_t *, uint8_t *, const uint8_t *);
static void read_sample_2(uint8_t *, uint8_t *, const uint8_t *);
static void accumulate_sample_1(struct uatp_softc *);
static void accumulate_sample_2(struct uatp_softc *);
static void uatp_input(struct uatp_softc *, uint32_t, int, int, int, int);
static uint32_t uatp_tapped_buttons(struct uatp_softc *);
static bool interpret_input(struct uatp_softc *, int *, int *, int *, int *,
   uint32_t *);
static unsigned int interpret_dimension(struct uatp_softc *, const int *,
   unsigned int, unsigned int, unsigned int *, unsigned int *);
static void tap_initialize(struct uatp_softc *);
static void tap_finalize(struct uatp_softc *);
static void tap_enable(struct uatp_softc *);
static void tap_disable(struct uatp_softc *);
static void tap_transition(struct uatp_softc *, enum uatp_tap_state,
   const struct timeval *, unsigned int, unsigned int);
static void tap_transition_initial(struct uatp_softc *);
static void tap_transition_tapping(struct uatp_softc *, const struct timeval *,
   unsigned int);
static void tap_transition_double_tapping(struct uatp_softc *,
   const struct timeval *, unsigned int);
static void tap_transition_dragging_down(struct uatp_softc *);
static void tap_transition_tapping_in_drag(struct uatp_softc *,
   const struct timeval *, unsigned int);
static void tap_transition_tapped(struct uatp_softc *, const struct timeval *);
static void tap_transition_dragging_up(struct uatp_softc *);
static void tap_reset(struct uatp_softc *);
static void tap_reset_wait(struct uatp_softc *);
static void tap_touched(struct uatp_softc *, unsigned int);
static bool tap_released(struct uatp_softc *);
static void schedule_untap(struct uatp_softc *);
static void untap_callout(void *);
static uint32_t emulated_buttons(struct uatp_softc *, unsigned int);
static void update_position(struct uatp_softc *, unsigned int,
   unsigned int, unsigned int, int *, int *, int *, int *);
static void move_mouse(struct uatp_softc *, unsigned int, unsigned int,
   int *, int *);
static void scroll_wheel(struct uatp_softc *, unsigned int, unsigned int,
   int *, int *);
static void move(struct uatp_softc *, const char *, unsigned int, unsigned int,
   int *, int *, int *, int *, unsigned int *, unsigned int *, int *, int *);
static int smooth(struct uatp_softc *, unsigned int, unsigned int,
   unsigned int);
static bool motion_below_threshold(struct uatp_softc *, unsigned int,
   int, int);
static int accelerate(struct uatp_softc *, unsigned int, unsigned int,
   unsigned int, unsigned int, bool, int *);

struct uatp_knobs {
       /*
        * Button emulation.  What do we do when two or three fingers
        * are on the trackpad when the user presses the button?
        */
       unsigned int two_finger_buttons;
       unsigned int three_finger_buttons;

#if 0
       /*
        * Edge scrolling.
        *
        * XXX Implement this.  What units should these be in?
        */
       unsigned int top_edge;
       unsigned int bottom_edge;
       unsigned int left_edge;
       unsigned int right_edge;
#endif

       /*
        * Multifinger tracking.  What do we do with multiple fingers?
        * 0. Ignore them.
        * 1. Try to interpret them as ordinary mousing.
        * 2. Act like a two-dimensional scroll wheel.
        */
       unsigned int multifinger_track;

       /*
        * Sensor parameters.
        */
       unsigned int x_sensors;
       unsigned int x_ratio;
       unsigned int y_sensors;
       unsigned int y_ratio;
       unsigned int sensor_threshold;
       unsigned int sensor_normalizer;
       unsigned int palm_width;
       unsigned int old_raw_weight;
       unsigned int old_smoothed_weight;
       unsigned int new_raw_weight;

       /*
        * Motion parameters.
        *
        * XXX There should be a more principled model of acceleration.
        */
       unsigned int motion_remainder;
       unsigned int motion_threshold;
       unsigned int motion_multiplier;
       unsigned int motion_divisor;
       unsigned int fast_motion_threshold;
       unsigned int fast_motion_multiplier;
       unsigned int fast_motion_divisor;
       unsigned int fast_per_direction;
       unsigned int motion_delay;

       /*
        * Tapping.
        */
       unsigned int tap_limit_msec;
       unsigned int double_tap_limit_msec;
       unsigned int one_finger_tap_buttons;
       unsigned int two_finger_tap_buttons;
       unsigned int three_finger_tap_buttons;
       unsigned int tap_track_distance_limit;
};

static const struct uatp_knobs default_knobs = {
       /*
        * Button emulation.  Fingers on the trackpad don't change it
        * by default -- it's still the left button.
        *
        * XXX The left button should have a name.
        */
        .two_finger_buttons    = 1,
        .three_finger_buttons  = 1,

#if 0
       /*
        * Edge scrolling.  Off by default.
        */
       .top_edge               = 0,
       .bottom_edge            = 0,
       .left_edge              = 0,
       .right_edge             = 0,
#endif

       /*
        * Multifinger tracking.  Ignore by default.
        */
        .multifinger_track     = 0,

       /*
        * Sensor parameters.
        */
       .x_sensors              = 0,    /* default for model */
       .x_ratio                = 0,    /* default for model */
       .y_sensors              = 0,    /* default for model */
       .y_ratio                = 0,    /* default for model */
       .sensor_threshold       = 5,
       .sensor_normalizer      = 5,
       .palm_width             = 0,    /* palm detection disabled */
       .old_raw_weight         = 0,
       .old_smoothed_weight    = 5,
       .new_raw_weight         = 1,

       /*
        * Motion parameters.
        */
       .motion_remainder       = 1,
       .motion_threshold       = 0,
       .motion_multiplier      = 1,
       .motion_divisor         = 1,
       .fast_motion_threshold  = 10,
       .fast_motion_multiplier = 3,
       .fast_motion_divisor    = 2,
       .fast_per_direction     = 0,
       .motion_delay           = 4,

       /*
        * Tapping.  Disabled by default, with a reasonable time set
        * nevertheless so that you can just set the buttons to enable
        * it.
        */
       .tap_limit_msec                 = 100,
       .double_tap_limit_msec          = 200,
       .one_finger_tap_buttons         = 0,
       .two_finger_tap_buttons         = 0,
       .three_finger_tap_buttons       = 0,
       .tap_track_distance_limit       = 200,
};

struct uatp_softc {
       device_t sc_dev;
       struct uhidev *sc_hdev;         /* uhidev(9) parent.  */
       struct usbd_device *sc_udev;    /* USB device.  */
       struct usbd_interface *sc_iface0; /* Geyser 3/4 reset interface.  */
       device_t sc_wsmousedev;         /* Attached wsmouse device.  */
       const struct uatp_parameters *sc_parameters;
       struct uatp_knobs sc_knobs;
       struct sysctllog *sc_log;       /* Log for sysctl knobs.  */
       const struct sysctlnode *sc_node;       /* Our sysctl node.  */
       unsigned int sc_input_size;     /* Input packet size.  */
       uint8_t sc_input[UATP_MAX_INPUT_SIZE];  /* Buffer for a packet.   */
       unsigned int sc_input_index;    /* Current index into sc_input.  */
       int sc_acc[UATP_SENSORS];       /* Accumulated sensor state.  */
       uint8_t sc_base[UATP_SENSORS];  /* Base sample.  */
       uint8_t sc_sample[UATP_SENSORS];/* Current sample.  */
       unsigned int sc_motion_timer;   /* XXX describe; motion_delay  */
       int sc_x_raw;                   /* Raw horiz. mouse position.  */
       int sc_y_raw;                   /* Raw vert. mouse position.  */
       int sc_z_raw;                   /* Raw horiz. scroll position.  */
       int sc_w_raw;                   /* Raw vert. scroll position.  */
       int sc_x_smoothed;              /* Smoothed horiz. mouse position.  */
       int sc_y_smoothed;              /* Smoothed vert. mouse position.  */
       int sc_z_smoothed;              /* Smoothed horiz. scroll position.  */
       int sc_w_smoothed;              /* Smoothed vert. scroll position.  */
       int sc_x_remainder;             /* Remainders from acceleration.  */
       int sc_y_remainder;
       int sc_z_remainder;
       int sc_w_remainder;
       unsigned int sc_track_distance; /* Distance^2 finger has tracked,
                                        * squared to avoid sqrt in kernel.  */
       uint32_t sc_status;             /* Status flags:  */
#define UATP_ENABLED    __BIT(0)        /* . Is the wsmouse enabled?  */
#define UATP_DYING      __BIT(1)        /* . Have we been deactivated?  */
#define UATP_VALID      __BIT(2)        /* . Do we have valid sensor data?  */
       struct usb_task sc_reset_task;  /* Task for resetting device.  */

       callout_t sc_untap_callout;     /* Releases button after tap.  */
       kmutex_t sc_tap_mutex;          /* Protects the following fields.  */
       enum uatp_tap_state sc_tap_state;       /* Current tap state.  */
       unsigned int sc_tapping_fingers;        /* No. fingers tapping.  */
       unsigned int sc_tapped_fingers; /* No. fingers of last tap.  */
       struct timeval sc_tap_timer;    /* Timer for tap state transitions.  */
       uint32_t sc_buttons;            /* Physical buttons pressed.  */
       uint32_t sc_all_buttons;        /* Buttons pressed or tapped.  */

#if UATP_DEBUG
       uint32_t sc_debug_flags;        /* Debugging output enabled.  */
#endif
};

struct uatp_descriptor {
       uint16_t vendor;
       uint16_t product;
       const char *description;
       const struct uatp_parameters *parameters;
};

struct uatp_parameters {
       unsigned int x_ratio;           /* Screen width / trackpad width.  */
       unsigned int x_sensors;         /* Number of horizontal sensors.  */
       unsigned int x_sensors_17;      /* XXX Same, on a 17" laptop.  */
       unsigned int y_ratio;           /* Screen height / trackpad height.  */
       unsigned int y_sensors;         /* Number of vertical sensors.  */
       unsigned int input_size;        /* Size in bytes of input packets.  */

       /* Device-specific initialization routine.  May be null.  */
       void (*initialize)(struct uatp_softc *);

       /* Device-specific finalization routine.  May be null.  */
       void (*finalize)(struct uatp_softc *);

       /* Tests whether this is a base sample.  Second argument is
        * input_size bytes long.  */
       bool (*base_sample)(const struct uatp_softc *, const uint8_t *);

       /* Reads a sensor sample from an input packet.  First argument
        * is UATP_MAX_X_SENSORS bytes long; second, UATP_MAX_Y_SENSORS
        * bytes; third, input_size bytes.  */
       void (*read_sample)(uint8_t *, uint8_t *, const uint8_t *);

       /* Accumulates sensor state in sc->sc_acc.  */
       void (*accumulate)(struct uatp_softc *);

       /* Called on spurious interrupts to reset.  May be null.  */
       void (*reset)(struct uatp_softc *);
};

/* Known device parameters */

static const struct uatp_parameters fountain_parameters = {
       .x_ratio        = 64,   .x_sensors = 16,        .x_sensors_17 = 26,
       .y_ratio        = 43,   .y_sensors = 16,
       .input_size     = 81,
       .initialize     = NULL,
       .finalize       = NULL,
       .base_sample    = base_sample_softc_flag,
       .read_sample    = read_sample_1,
       .accumulate     = accumulate_sample_1,
       .reset          = NULL,
};

static const struct uatp_parameters geyser_1_parameters = {
       .x_ratio        = 64,   .x_sensors = 16,        .x_sensors_17 = 26,
       .y_ratio        = 43,   .y_sensors = 16,
       .input_size     = 81,
       .initialize     = NULL,
       .finalize       = NULL,
       .base_sample    = base_sample_softc_flag,
       .read_sample    = read_sample_1,
       .accumulate     = accumulate_sample_1,
       .reset          = NULL,
};

static const struct uatp_parameters geyser_2_parameters = {
       .x_ratio        = 64,   .x_sensors = 15,        .x_sensors_17 = 20,
       .y_ratio        = 43,   .y_sensors = 9,
       .input_size     = 64,
       .initialize     = NULL,
       .finalize       = NULL,
       .base_sample    = base_sample_softc_flag,
       .read_sample    = read_sample_2,
       .accumulate     = accumulate_sample_1,
       .reset          = NULL,
};

/*
* The Geyser 3 and Geyser 4 share parameters.  They also present
* generic USB HID mice on a different report id, so we have smaller
* packets by one byte (uhidev handles multiplexing report ids) and
* extra initialization work to switch the mode from generic USB HID
* mouse to Apple trackpad.
*/

static const struct uatp_parameters geyser_3_4_parameters = {
       .x_ratio        = 64,   .x_sensors = 20, /* XXX */ .x_sensors_17 = 0,
       .y_ratio        = 64,   .y_sensors = 9,
       .input_size     = 63,   /* 64, minus one for the report id.  */
       .initialize     = geyser34_initialize,
       .finalize       = geyser34_finalize,
       .base_sample    = base_sample_input_flag,
       .read_sample    = read_sample_2,
       .accumulate     = accumulate_sample_2,
       .reset          = geyser34_deferred_reset,
};

/* Known device models */

#define APPLE_TRACKPAD(PRODUCT, DESCRIPTION, PARAMETERS)                \
       {                                                               \
               .vendor = USB_VENDOR_APPLE,                             \
               .product = (PRODUCT),                                   \
               .description = "Apple " DESCRIPTION " trackpad",        \
               .parameters = (& (PARAMETERS)),                         \
       }

#define POWERBOOK_TRACKPAD(PRODUCT, PARAMETERS)                         \
       APPLE_TRACKPAD(PRODUCT, "PowerBook/iBook", PARAMETERS)
#define MACBOOK_TRACKPAD(PRODUCT, PARAMETERS)                           \
       APPLE_TRACKPAD(PRODUCT, "MacBook/MacBook Pro", PARAMETERS)

static const struct uatp_descriptor uatp_descriptors[] =
{
       POWERBOOK_TRACKPAD(0x020e, fountain_parameters),
       POWERBOOK_TRACKPAD(0x020f, fountain_parameters),
       POWERBOOK_TRACKPAD(0x030a, fountain_parameters),

       POWERBOOK_TRACKPAD(0x030b, geyser_1_parameters),

       POWERBOOK_TRACKPAD(0x0214, geyser_2_parameters),
       POWERBOOK_TRACKPAD(0x0215, geyser_2_parameters),
       POWERBOOK_TRACKPAD(0x0216, geyser_2_parameters),

       MACBOOK_TRACKPAD(0x0217, geyser_3_4_parameters), /* 3 */
       MACBOOK_TRACKPAD(0x0218, geyser_3_4_parameters), /* 3 */
       MACBOOK_TRACKPAD(0x0219, geyser_3_4_parameters), /* 3 */

       MACBOOK_TRACKPAD(0x021a, geyser_3_4_parameters), /* 4 */
       MACBOOK_TRACKPAD(0x021b, geyser_3_4_parameters), /* 4 */
       MACBOOK_TRACKPAD(0x021c, geyser_3_4_parameters), /* 4 */

       MACBOOK_TRACKPAD(0x0229, geyser_3_4_parameters), /* 4 */
       MACBOOK_TRACKPAD(0x022a, geyser_3_4_parameters), /* 4 */
       MACBOOK_TRACKPAD(0x022b, geyser_3_4_parameters), /* 4 */
};

#undef MACBOOK_TRACKPAD
#undef POWERBOOK_TRACKPAD
#undef APPLE_TRACKPAD

/* Miscellaneous utilities */

static const struct uatp_descriptor *
find_uatp_descriptor(const struct uhidev_attach_arg *uha)
{
       unsigned int i;

       for (i = 0; i < __arraycount(uatp_descriptors); i++)
               if ((uha->uiaa->uiaa_vendor == uatp_descriptors[i].vendor) &&
                   (uha->uiaa->uiaa_product == uatp_descriptors[i].product))
                       return &uatp_descriptors[i];

       return NULL;
}

static device_t
uatp_dev(const struct uatp_softc *sc)
{
       return sc->sc_dev;
}

static uint8_t *
uatp_x_sample(struct uatp_softc *sc)
{
       return &sc->sc_sample[0];
}

static uint8_t *
uatp_y_sample(struct uatp_softc *sc)
{
       return &sc->sc_sample[UATP_MAX_X_SENSORS];
}

static int *
uatp_x_acc(struct uatp_softc *sc)
{
       return &sc->sc_acc[0];
}

static int *
uatp_y_acc(struct uatp_softc *sc)
{
       return &sc->sc_acc[UATP_MAX_X_SENSORS];
}

static void
uatp_clear_position(struct uatp_softc *sc)
{
       memset(sc->sc_acc, 0, sizeof(sc->sc_acc));
       sc->sc_motion_timer = 0;
       sc->sc_x_raw = sc->sc_x_smoothed = -1;
       sc->sc_y_raw = sc->sc_y_smoothed = -1;
       sc->sc_z_raw = sc->sc_z_smoothed = -1;
       sc->sc_w_raw = sc->sc_w_smoothed = -1;
       sc->sc_x_remainder = 0;
       sc->sc_y_remainder = 0;
       sc->sc_z_remainder = 0;
       sc->sc_w_remainder = 0;
       sc->sc_track_distance = 0;
}

static unsigned int
uatp_x_sensors(const struct uatp_softc *sc)
{
       if ((0 < sc->sc_knobs.x_sensors) &&
           (sc->sc_knobs.x_sensors <= UATP_MAX_X_SENSORS))
               return sc->sc_knobs.x_sensors;
       else
               return sc->sc_parameters->x_sensors;
}

static unsigned int
uatp_y_sensors(const struct uatp_softc *sc)
{
       if ((0 < sc->sc_knobs.y_sensors) &&
           (sc->sc_knobs.y_sensors <= UATP_MAX_Y_SENSORS))
               return sc->sc_knobs.y_sensors;
       else
               return sc->sc_parameters->y_sensors;
}

static unsigned int
uatp_x_ratio(const struct uatp_softc *sc)
{
       /* XXX Reject bogus values in sysctl.  */
       if ((0 < sc->sc_knobs.x_ratio) &&
           (sc->sc_knobs.x_ratio <= UATP_MAX_X_RATIO))
               return sc->sc_knobs.x_ratio;
       else
               return sc->sc_parameters->x_ratio;
}

static unsigned int
uatp_y_ratio(const struct uatp_softc *sc)
{
       /* XXX Reject bogus values in sysctl.  */
       if ((0 < sc->sc_knobs.y_ratio) &&
           (sc->sc_knobs.y_ratio <= UATP_MAX_Y_RATIO))
               return sc->sc_knobs.y_ratio;
       else
               return sc->sc_parameters->y_ratio;
}

static unsigned int
uatp_old_raw_weight(const struct uatp_softc *sc)
{
       /* XXX Reject bogus values in sysctl.  */
       if (sc->sc_knobs.old_raw_weight <= UATP_MAX_WEIGHT)
               return sc->sc_knobs.old_raw_weight;
       else
               return 0;
}

static unsigned int
uatp_old_smoothed_weight(const struct uatp_softc *sc)
{
       /* XXX Reject bogus values in sysctl.  */
       if (sc->sc_knobs.old_smoothed_weight <= UATP_MAX_WEIGHT)
               return sc->sc_knobs.old_smoothed_weight;
       else
               return 0;
}

static unsigned int
uatp_new_raw_weight(const struct uatp_softc *sc)
{
       /* XXX Reject bogus values in sysctl.  */
       if ((0 < sc->sc_knobs.new_raw_weight) &&
           (sc->sc_knobs.new_raw_weight <= UATP_MAX_WEIGHT))
               return sc->sc_knobs.new_raw_weight;
       else
               return 1;
}

static int
scale_motion(const struct uatp_softc *sc, int delta, int *remainder,
   const unsigned int *multiplier, const unsigned int *divisor)
{
       int product;

       /* XXX Limit the divisor?  */
       if (((*multiplier) == 0) ||
           ((*multiplier) > UATP_MAX_MOTION_MULTIPLIER) ||
           ((*divisor) == 0))
               DPRINTF(sc, UATP_DEBUG_ACCEL,
                   ("bad knobs; %d (+ %d) --> %d, rem 0\n",
                       delta, *remainder, (delta + (*remainder))));
       else
               DPRINTF(sc, UATP_DEBUG_ACCEL,
                   ("scale %d (+ %d) by %u/%u --> %d, rem %d\n",
                       delta, *remainder,
                       (*multiplier), (*divisor),
                       (((delta + (*remainder)) * ((int) (*multiplier)))
                           / ((int) (*divisor))),
                       (((delta + (*remainder)) * ((int) (*multiplier)))
                           % ((int) (*divisor)))));

       if (sc->sc_knobs.motion_remainder)
               delta += *remainder;
       *remainder = 0;

       if (((*multiplier) == 0) ||
           ((*multiplier) > UATP_MAX_MOTION_MULTIPLIER) ||
           ((*divisor) == 0))
               return delta;

       product = (delta * ((int) (*multiplier)));
       *remainder = (product % ((int) (*divisor)));
       return product / ((int) (*divisor));
}

static int
uatp_scale_motion(const struct uatp_softc *sc, int delta, int *remainder)
{
       return scale_motion(sc, delta, remainder,
           &sc->sc_knobs.motion_multiplier,
           &sc->sc_knobs.motion_divisor);
}

static int
uatp_scale_fast_motion(const struct uatp_softc *sc, int delta, int *remainder)
{
       return scale_motion(sc, delta, remainder,
           &sc->sc_knobs.fast_motion_multiplier,
           &sc->sc_knobs.fast_motion_divisor);
}

/* Driver goop */

CFATTACH_DECL2_NEW(uatp, sizeof(struct uatp_softc), uatp_match, uatp_attach,
   uatp_detach, uatp_activate, NULL, uatp_childdet);

static const struct wsmouse_accessops uatp_accessops = {
       .enable = uatp_enable,
       .disable = uatp_disable,
       .ioctl = uatp_ioctl,
};

static int
uatp_match(device_t parent, cfdata_t match, void *aux)
{
       const struct uhidev_attach_arg *uha = aux;
       void *report_descriptor;
       int report_size, input_size;
       const struct uatp_descriptor *uatp_descriptor;

       aprint_debug("%s: vendor 0x%04x, product 0x%04x\n", __func__,
           (unsigned int)uha->uiaa->uiaa_vendor,
           (unsigned int)uha->uiaa->uiaa_product);
       aprint_debug("%s: class 0x%04x, subclass 0x%04x, proto 0x%04x\n",
           __func__,
           (unsigned int)uha->uiaa->uiaa_class,
           (unsigned int)uha->uiaa->uiaa_subclass,
           (unsigned int)uha->uiaa->uiaa_proto);

       uhidev_get_report_desc(uha->parent, &report_descriptor, &report_size);
       input_size = hid_report_size(report_descriptor, report_size,
           hid_input, uha->reportid);
       aprint_debug("%s: reportid %d, input size %d\n", __func__,
           (int)uha->reportid, input_size);

       /*
        * Keyboards, trackpads, and eject buttons share common vendor
        * and product ids, but not protocols: only the trackpad
        * reports a mouse protocol.
        */
       if (uha->uiaa->uiaa_proto != UIPROTO_MOUSE)
               return UMATCH_NONE;

       /* Check for a known vendor/product id.  */
       uatp_descriptor = find_uatp_descriptor(uha);
       if (uatp_descriptor == NULL) {
               aprint_debug("%s: unknown vendor/product id\n", __func__);
               return UMATCH_NONE;
       }

       /* Check for the expected input size.  */
       if ((input_size < 0) ||
           ((unsigned int)input_size !=
               uatp_descriptor->parameters->input_size)) {
               aprint_debug("%s: expected input size %u\n", __func__,
                   uatp_descriptor->parameters->input_size);
               return UMATCH_NONE;
       }

       return UMATCH_VENDOR_PRODUCT_CONF_IFACE;
}

static void
uatp_attach(device_t parent, device_t self, void *aux)
{
       struct uatp_softc *sc = device_private(self);
       const struct uhidev_attach_arg *uha = aux;
       const struct uatp_descriptor *uatp_descriptor;
       void *report_descriptor;
       int report_size, input_size;
       struct wsmousedev_attach_args a;

       sc->sc_dev = self;
       sc->sc_hdev = uha->parent;
       sc->sc_udev = uha->uiaa->uiaa_device;

       /* Identify ourselves to dmesg.  */
       uatp_descriptor = find_uatp_descriptor(uha);
       KASSERT(uatp_descriptor != NULL);
       aprint_normal(": %s\n", uatp_descriptor->description);
       aprint_naive(": %s\n", uatp_descriptor->description);
       aprint_verbose_dev(self,
           "vendor 0x%04x, product 0x%04x, report id %d\n",
           (unsigned int)uha->uiaa->uiaa_vendor,
           (unsigned int)uha->uiaa->uiaa_product,
           uha->reportid);

       uhidev_get_report_desc(uha->parent, &report_descriptor, &report_size);
       input_size = hid_report_size(report_descriptor, report_size, hid_input,
           uha->reportid);
       KASSERT(0 < input_size);
       sc->sc_input_size = input_size;

       /* Initialize model-specific parameters.  */
       sc->sc_parameters = uatp_descriptor->parameters;
       KASSERT((int)sc->sc_parameters->input_size == input_size);
       KASSERT(sc->sc_parameters->x_sensors <= UATP_MAX_X_SENSORS);
       KASSERT(sc->sc_parameters->x_ratio <= UATP_MAX_X_RATIO);
       KASSERT(sc->sc_parameters->y_sensors <= UATP_MAX_Y_SENSORS);
       KASSERT(sc->sc_parameters->y_ratio <= UATP_MAX_Y_RATIO);
       aprint_verbose_dev(self,
           "%u x sensors, scaled by %u for %u points on screen\n",
           sc->sc_parameters->x_sensors, sc->sc_parameters->x_ratio,
           sc->sc_parameters->x_sensors * sc->sc_parameters->x_ratio);
       aprint_verbose_dev(self,
           "%u y sensors, scaled by %u for %u points on screen\n",
           sc->sc_parameters->y_sensors, sc->sc_parameters->y_ratio,
           sc->sc_parameters->y_sensors * sc->sc_parameters->y_ratio);
       if (sc->sc_parameters->initialize)
               sc->sc_parameters->initialize(sc);

       /* Register with pmf.  Nothing special for suspend/resume.  */
       if (!pmf_device_register(self, NULL, NULL))
               aprint_error_dev(self, "couldn't establish power handler\n");

       /* Initialize knobs and create sysctl subtree to tweak them.  */
       sc->sc_knobs = default_knobs;
       uatp_setup_sysctl(sc);

       /* Initialize tapping.  */
       tap_initialize(sc);

       /* Attach wsmouse.  */
       a.accessops = &uatp_accessops;
       a.accesscookie = sc;
       sc->sc_wsmousedev = config_found(self, &a, wsmousedevprint, CFARGS_NONE);
}

/* Sysctl setup */

static void
uatp_setup_sysctl(struct uatp_softc *sc)
{
       int error;

       error = sysctl_createv(&sc->sc_log, 0, NULL, &sc->sc_node, 0,
           CTLTYPE_NODE, device_xname(uatp_dev(sc)),
           SYSCTL_DESCR("uatp configuration knobs"),
           NULL, 0, NULL, 0,
           CTL_HW, CTL_CREATE, CTL_EOL);
       if (error != 0) {
               aprint_error_dev(uatp_dev(sc),
                   "unable to set up sysctl tree hw.%s: %d\n",
                   device_xname(uatp_dev(sc)), error);
               goto err;
       }

#if UATP_DEBUG
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_debug_flags, "debug",
               "uatp(4) debug flags"))
               goto err;
#endif

       /*
        * Button emulation.
        */
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.two_finger_buttons,
               "two_finger_buttons",
               "buttons to emulate with two fingers on trackpad"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.three_finger_buttons,
               "three_finger_buttons",
               "buttons to emulate with three fingers on trackpad"))
               goto err;

#if 0
       /*
        * Edge scrolling.
        */
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.top_edge, "top_edge",
               "width of top edge for edge scrolling"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.bottom_edge,
               "bottom_edge", "width of bottom edge for edge scrolling"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.left_edge, "left_edge",
               "width of left edge for edge scrolling"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.right_edge, "right_edge",
               "width of right edge for edge scrolling"))
               goto err;
#endif

       /*
        * Multifinger tracking.
        */
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.multifinger_track,
               "multifinger_track",
               "0 to ignore multiple fingers, 1 to reset, 2 to scroll"))
               goto err;

       /*
        * Sensor parameters.
        */
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.x_sensors, "x_sensors",
               "number of x sensors"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.x_ratio, "x_ratio",
               "screen width to trackpad width ratio"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.y_sensors, "y_sensors",
               "number of y sensors"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.y_ratio, "y_ratio",
               "screen height to trackpad height ratio"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.sensor_threshold,
               "sensor_threshold", "sensor threshold"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.sensor_normalizer,
               "sensor_normalizer", "sensor normalizer"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.palm_width,
               "palm_width", "lower bound on width/height of palm"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.old_raw_weight,
               "old_raw_weight", "weight of old raw position"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.old_smoothed_weight,
               "old_smoothed_weight", "weight of old smoothed position"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.new_raw_weight,
               "new_raw_weight", "weight of new raw position"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_remainder,
               "motion_remainder", "remember motion division remainder"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_threshold,
               "motion_threshold", "threshold before finger moves cursor"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_multiplier,
               "motion_multiplier", "numerator of motion scale"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_divisor,
               "motion_divisor", "divisor of motion scale"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_threshold,
               "fast_motion_threshold", "threshold before fast motion"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_multiplier,
               "fast_motion_multiplier", "numerator of fast motion scale"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_divisor,
               "fast_motion_divisor", "divisor of fast motion scale"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_per_direction,
               "fast_per_direction", "don't frobnitz the veeblefitzer!"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_delay,
               "motion_delay", "number of packets before motion kicks in"))
               goto err;

       /*
        * Tapping.
        */
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.tap_limit_msec,
               "tap_limit_msec", "milliseconds before a touch is not a tap"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.double_tap_limit_msec,
               "double_tap_limit_msec",
               "milliseconds before a second tap keeps the button down"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.one_finger_tap_buttons,
               "one_finger_tap_buttons", "buttons for one-finger taps"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.two_finger_tap_buttons,
               "two_finger_tap_buttons", "buttons for two-finger taps"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.three_finger_tap_buttons,
               "three_finger_tap_buttons", "buttons for three-finger taps"))
               goto err;
       if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.tap_track_distance_limit,
               "tap_track_distance_limit",
               "maximum distance^2 of tracking during tap"))
               goto err;

       return;

err:
       sysctl_teardown(&sc->sc_log);
       sc->sc_node = NULL;
}

static bool
uatp_setup_sysctl_knob(struct uatp_softc *sc, int *ptr, const char *name,
   const char *description)
{
       int error;

       error = sysctl_createv(&sc->sc_log, 0, NULL, NULL, CTLFLAG_READWRITE,
           CTLTYPE_INT, name, SYSCTL_DESCR(description),
           NULL, 0, ptr, 0,
           CTL_HW, sc->sc_node->sysctl_num, CTL_CREATE, CTL_EOL);
       if (error != 0) {
               aprint_error_dev(uatp_dev(sc),
                   "unable to setup sysctl node hw.%s.%s: %d\n",
                   device_xname(uatp_dev(sc)), name, error);
               return false;
       }

       return true;
}

/* More driver goop */

static void
uatp_childdet(device_t self, device_t child)
{
       struct uatp_softc *sc = device_private(self);

       DPRINTF(sc, UATP_DEBUG_MISC, ("detaching child %s\n",
           device_xname(child)));

       /* Our only child is the wsmouse device.  */
       if (child == sc->sc_wsmousedev)
               sc->sc_wsmousedev = NULL;
}

static int
uatp_detach(device_t self, int flags)
{
       struct uatp_softc *sc = device_private(self);
       int error;

       DPRINTF(sc, UATP_DEBUG_MISC, ("detaching with flags %d\n", flags));

       error = config_detach_children(self, flags);
       if (error)
               return error;

       KASSERT((sc->sc_status & UATP_ENABLED) == 0);

       if (sc->sc_parameters->finalize)
               sc->sc_parameters->finalize(sc);

       pmf_device_deregister(self);

       sysctl_teardown(&sc->sc_log);
       sc->sc_node = NULL;

       tap_finalize(sc);

       return 0;
}

static int
uatp_activate(device_t self, enum devact act)
{
       struct uatp_softc *sc = device_private(self);

       DPRINTF(sc, UATP_DEBUG_MISC, ("act %d\n", (int)act));

       if (act != DVACT_DEACTIVATE)
               return EOPNOTSUPP;

       sc->sc_status |= UATP_DYING;

       return 0;
}

/* wsmouse routines */

static int
uatp_enable(void *v)
{
       struct uatp_softc *sc = v;

       DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("enabling wsmouse\n"));

       /* Refuse to enable if we've been deactivated.  */
       if (sc->sc_status & UATP_DYING) {
               DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("busy dying\n"));
               return EIO;
       }

       /* Refuse to enable if we already are enabled.  */
       if (sc->sc_status & UATP_ENABLED) {
               DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("already enabled\n"));
               return EBUSY;
       }

       sc->sc_status |= UATP_ENABLED;
       sc->sc_status &=~ UATP_VALID;
       sc->sc_input_index = 0;
       tap_enable(sc);
       uatp_clear_position(sc);

       DPRINTF(sc, UATP_DEBUG_MISC, ("uhidev_open(%p)\n", sc->sc_hdev));
       return uhidev_open(sc->sc_hdev, &uatp_intr, sc);
}

static void
uatp_disable(void *v)
{
       struct uatp_softc *sc = v;

       DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("disabling wsmouse\n"));

       if (!(sc->sc_status & UATP_ENABLED)) {
               DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("not enabled\n"));
               return;
       }

       tap_disable(sc);
       sc->sc_status &=~ UATP_ENABLED;

       DPRINTF(sc, UATP_DEBUG_MISC, ("uhidev_close(%p)\n", sc->sc_hdev));
       uhidev_close(sc->sc_hdev);
}

static int
uatp_ioctl(void *v, unsigned long cmd, void *data, int flag, struct lwp *p)
{

       DPRINTF((struct uatp_softc*)v, UATP_DEBUG_IOCTL,
           ("cmd %lx, data %p, flag %x, lwp %p\n", cmd, data, flag, p));

       /* XXX Implement any relevant wsmouse(4) ioctls.  */
       return EPASSTHROUGH;
}

/*
* The Geyser 3 and 4 models talk the generic USB HID mouse protocol by
* default.  This mode switch makes them give raw sensor data instead
* so that we can implement tapping, two-finger scrolling, &c.
*/

#define GEYSER34_RAW_MODE               0x04
#define GEYSER34_MODE_REPORT_ID         0
#define GEYSER34_MODE_INTERFACE         0
#define GEYSER34_MODE_PACKET_SIZE       8

static void
geyser34_enable_raw_mode(struct uatp_softc *sc)
{
       uint8_t report[GEYSER34_MODE_PACKET_SIZE];
       usbd_status status;

       DPRINTF(sc, UATP_DEBUG_RESET, ("get feature report\n"));
       status = usbd_get_report(sc->sc_iface0, UHID_FEATURE_REPORT,
           GEYSER34_MODE_REPORT_ID, report, sizeof(report));
       if (status != USBD_NORMAL_COMPLETION) {
               aprint_error_dev(uatp_dev(sc),
                   "error reading feature report: %s\n", usbd_errstr(status));
               return;
       }

#if UATP_DEBUG
       if (sc->sc_debug_flags & UATP_DEBUG_RESET) {
               unsigned int i;
               DPRINTF(sc, UATP_DEBUG_RESET, ("old feature report:"));
               for (i = 0; i < GEYSER34_MODE_PACKET_SIZE; i++)
                       printf(" %02x", (unsigned int)report[i]);
               printf("\n");
               /* Doing this twice is harmless here and lets this be
                * one ifdef.  */
               report[0] = GEYSER34_RAW_MODE;
               DPRINTF(sc, UATP_DEBUG_RESET, ("new feature report:"));
               for (i = 0; i < GEYSER34_MODE_PACKET_SIZE; i++)
                       printf(" %02x", (unsigned int)report[i]);
               printf("\n");
       }
#endif

       report[0] = GEYSER34_RAW_MODE;

       DPRINTF(sc, UATP_DEBUG_RESET, ("set feature report\n"));
       status = usbd_set_report(sc->sc_iface0, UHID_FEATURE_REPORT,
           GEYSER34_MODE_REPORT_ID, report, sizeof(report));
       if (status != USBD_NORMAL_COMPLETION) {
               aprint_error_dev(uatp_dev(sc),
                   "error writing feature report: %s\n", usbd_errstr(status));
               return;
       }
}

/*
* The Geyser 3 and 4 need to be reset periodically after we detect a
* continual flow of spurious interrupts.  We use a USB task for this.
*/

static void
geyser34_initialize(struct uatp_softc *sc)
{
       usbd_status err __diagused;

       DPRINTF(sc, UATP_DEBUG_MISC, ("initializing\n"));
       err = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface0);
       KASSERT(err == 0);      /* always an interface 0 if attached */
       geyser34_enable_raw_mode(sc);
       usb_init_task(&sc->sc_reset_task, &geyser34_reset_task, sc, 0);
}

static void
geyser34_finalize(struct uatp_softc *sc)
{

       DPRINTF(sc, UATP_DEBUG_MISC, ("finalizing\n"));
       usb_rem_task_wait(sc->sc_udev, &sc->sc_reset_task, USB_TASKQ_DRIVER,
           NULL);
}

static void
geyser34_deferred_reset(struct uatp_softc *sc)
{

       DPRINTF(sc, UATP_DEBUG_RESET, ("deferring reset\n"));
       usb_add_task(sc->sc_udev, &sc->sc_reset_task, USB_TASKQ_DRIVER);
}

static void
geyser34_reset_task(void *arg)
{
       struct uatp_softc *sc = arg;

       DPRINTF(sc, UATP_DEBUG_RESET, ("resetting\n"));

       /* Reset by putting it into raw mode.  Not sure why.  */
       geyser34_enable_raw_mode(sc);
}

/* Interrupt handler */

static void
uatp_intr(void *cookie, void *ibuf, unsigned int len)
{
       struct uatp_softc *sc = cookie;
       uint8_t *input;
       int dx, dy, dz, dw;
       uint32_t buttons;

       DPRINTF(sc, UATP_DEBUG_INTR, ("softc %p, ibuf %p, len %u\n",
           sc, ibuf, len));

       /*
        * Some devices break packets up into chunks, so we accumulate
        * input up to the expected packet length, or if it would
        * overflow, discard the whole packet and start over.
        */
       if (sc->sc_input_size < len) {
               aprint_error_dev(uatp_dev(sc),
                   "discarding %u-byte input packet\n", len);
               sc->sc_input_index = 0;
               return;
       } else if (sc->sc_input_size < (sc->sc_input_index + len)) {
               aprint_error_dev(uatp_dev(sc), "discarding %u-byte input\n",
                   (sc->sc_input_index + len));
               sc->sc_input_index = 0;
               return;
       } else if (sc->sc_input_size == 81 && len == 17 &&
           sc->sc_input_index != 64) {
               /*
                * Quirk of Fountain and Geyser 1 devices: a 17-byte
                * packet seems to mean the last one, but sometimes we
                * get desynchronized, so drop this one and start over
                * if we see a 17-byte packet that's not at the end.
                */
               aprint_error_dev(uatp_dev(sc),
                   "discarding 17-byte nonterminal input at %u\n",
                   sc->sc_input_index);
               sc->sc_input_index = 0;
               return;
       }

#if UATP_DEBUG
       if (sc->sc_debug_flags & UATP_DEBUG_INTR) {
               unsigned int i;
               uint8_t *bytes = ibuf;
               DPRINTF(sc, UATP_DEBUG_INTR, ("raw"));
               for (i = 0; i < len; i++)
                       printf(" %02x", (unsigned int)bytes[i]);
               printf("\n");
       }
#endif

       memcpy(&sc->sc_input[sc->sc_input_index], ibuf, len);
       sc->sc_input_index += len;
       if (sc->sc_input_index != sc->sc_input_size) {
               /* Wait until packet is complete.  */
               DPRINTF(sc, UATP_DEBUG_INTR, ("partial packet: %u bytes\n",
                   len));
               return;
       }

       /* Clear the buffer and process the now complete packet.  */
       sc->sc_input_index = 0;
       input = sc->sc_input;

       /* The last byte's first bit is set iff the button is pressed.
        * XXX Left button should have a name.  */
       buttons = ((input[sc->sc_input_size - 1] & UATP_STATUS_BUTTON)
           ? 1 : 0);

       /* Read the sample.  */
       memset(uatp_x_sample(sc), 0, UATP_MAX_X_SENSORS);
       memset(uatp_y_sample(sc), 0, UATP_MAX_Y_SENSORS);
       sc->sc_parameters->read_sample(uatp_x_sample(sc), uatp_y_sample(sc),
           input);

#if UATP_DEBUG
       if (sc->sc_debug_flags & UATP_DEBUG_INTR) {
               unsigned int i;
               DPRINTF(sc, UATP_DEBUG_INTR, ("x sensors"));
               for (i = 0; i < uatp_x_sensors(sc); i++)
                       printf(" %02x", (unsigned int)uatp_x_sample(sc)[i]);
               printf("\n");
               DPRINTF(sc, UATP_DEBUG_INTR, ("y sensors"));
               for (i = 0; i < uatp_y_sensors(sc); i++)
                       printf(" %02x", (unsigned int)uatp_y_sample(sc)[i]);
               printf("\n");
       } else if ((sc->sc_debug_flags & UATP_DEBUG_STATUS) &&
               (input[sc->sc_input_size - 1] &~
                   (UATP_STATUS_BUTTON | UATP_STATUS_BASE |
                       UATP_STATUS_POST_RESET)))
               DPRINTF(sc, UATP_DEBUG_STATUS, ("status byte: %02x\n",
                   input[sc->sc_input_size - 1]));
#endif

       /*
        * If this is a base sample, initialize the state to interpret
        * subsequent samples relative to it, and stop here.
        */
       if (sc->sc_parameters->base_sample(sc, input)) {
               DPRINTF(sc, UATP_DEBUG_PARSE,
                   ("base sample, buttons %"PRIx32"\n", buttons));
               /* XXX Should the valid bit ever be reset?  */
               sc->sc_status |= UATP_VALID;
               uatp_clear_position(sc);
               memcpy(sc->sc_base, sc->sc_sample, sizeof(sc->sc_base));
               /* XXX Perform 17" size detection like Linux?  */
               return;
       }

       /* If not, accumulate the change in the sensors.  */
       sc->sc_parameters->accumulate(sc);

#if UATP_DEBUG
       if (sc->sc_debug_flags & UATP_DEBUG_ACCUMULATE) {
               unsigned int i;
               DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("accumulated x state:"));
               for (i = 0; i < uatp_x_sensors(sc); i++)
                       printf(" %02x", (unsigned int)uatp_x_acc(sc)[i]);
               printf("\n");
               DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("accumulated y state:"));
               for (i = 0; i < uatp_y_sensors(sc); i++)
                       printf(" %02x", (unsigned int)uatp_y_acc(sc)[i]);
               printf("\n");
       }
#endif

       /* Compute the change in coordinates and buttons.  */
       dx = dy = dz = dw = 0;
       if ((!interpret_input(sc, &dx, &dy, &dz, &dw, &buttons)) &&
           /* If there's no input because we're releasing a button,
            * then it's not spurious.  XXX Mutex?  */
           (sc->sc_buttons == 0)) {
               DPRINTF(sc, UATP_DEBUG_SPURINTR, ("spurious interrupt\n"));
               if (sc->sc_parameters->reset)
                       sc->sc_parameters->reset(sc);
               return;
       }

       /* Report to wsmouse.  */
       DPRINTF(sc, UATP_DEBUG_INTR,
           ("buttons %"PRIx32", dx %d, dy %d, dz %d, dw %d\n",
               buttons, dx, dy, dz, dw));
       mutex_enter(&sc->sc_tap_mutex);
       uatp_input(sc, buttons, dx, dy, dz, dw);
       mutex_exit(&sc->sc_tap_mutex);
}

/*
* Different ways to discern the base sample initializing the state.
* `base_sample_softc_flag' uses a state flag stored in the softc;
* `base_sample_input_flag' checks a flag at the end of the input
* packet.
*/

static bool
base_sample_softc_flag(const struct uatp_softc *sc, const uint8_t *input)
{
       return !(sc->sc_status & UATP_VALID);
}

static bool
base_sample_input_flag(const struct uatp_softc *sc, const uint8_t *input)
{
       /* XXX Should we also check the valid flag?  */
       return !!(input[sc->sc_input_size - 1] & UATP_STATUS_BASE);
}

/*
* Pick apart the horizontal sensors from the vertical sensors.
* Different models interleave them in different orders.
*/

static void
read_sample_1(uint8_t *x, uint8_t *y, const uint8_t *input)
{
       unsigned int i;

       for (i = 0; i < 8; i++) {
               x[i] = input[5 * i + 2];
               x[i + 8] = input[5 * i + 4];
               x[i + 16] = input[5 * i + 42];
               if (i < 2)
                       x[i + 24] = input[5 * i + 44];

               y[i] = input[5 * i + 1];
               y[i + 8] = input[5 * i + 3];
       }
}

static void
read_sample_2(uint8_t *x, uint8_t *y, const uint8_t *input)
{
       unsigned int i, j;

       for (i = 0, j = 19; i < 20; i += 2, j += 3) {
               x[i] = input[j];
               x[i + 1] = input[j + 1];
       }

       for (i = 0, j = 1; i < 9; i += 2, j += 3) {
               y[i] = input[j];
               y[i + 1] = input[j + 1];
       }
}

static void
accumulate_sample_1(struct uatp_softc *sc)
{
       unsigned int i;

       for (i = 0; i < UATP_SENSORS; i++) {
               sc->sc_acc[i] += (int8_t)(sc->sc_sample[i] - sc->sc_base[i]);
               if (sc->sc_acc[i] < 0) {
                       sc->sc_acc[i] = 0;
               } else if (UATP_MAX_ACC < sc->sc_acc[i]) {
                       DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
                           ("overflow %d\n", sc->sc_acc[i]));
                       sc->sc_acc[i] = UATP_MAX_ACC;
               }
       }

       memcpy(sc->sc_base, sc->sc_sample, sizeof(sc->sc_base));
}

static void
accumulate_sample_2(struct uatp_softc *sc)
{
       unsigned int i;

       for (i = 0; i < UATP_SENSORS; i++) {
               sc->sc_acc[i] = (int8_t)(sc->sc_sample[i] - sc->sc_base[i]);
               if (sc->sc_acc[i] < -0x80) {
                       DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
                           ("underflow %u - %u = %d\n",
                               (unsigned int)sc->sc_sample[i],
                               (unsigned int)sc->sc_base[i],
                               sc->sc_acc[i]));
                       sc->sc_acc[i] += 0x100;
               }
               if (0x7f < sc->sc_acc[i]) {
                       DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
                           ("overflow %u - %u = %d\n",
                               (unsigned int)sc->sc_sample[i],
                               (unsigned int)sc->sc_base[i],
                               sc->sc_acc[i]));
                       sc->sc_acc[i] -= 0x100;
               }
               if (sc->sc_acc[i] < 0)
                       sc->sc_acc[i] = 0;
       }
}

/*
* Report input to wsmouse, if there is anything interesting to report.
* We must take into consideration the current tap-and-drag button
* state.
*/

static void
uatp_input(struct uatp_softc *sc, uint32_t buttons,
   int dx, int dy, int dz, int dw)
{
       uint32_t all_buttons;

       KASSERT(mutex_owned(&sc->sc_tap_mutex));
       all_buttons = buttons | uatp_tapped_buttons(sc);

       if ((sc->sc_wsmousedev != NULL) &&
           ((dx != 0) || (dy != 0) || (dz != 0) || (dw != 0) ||
               (all_buttons != sc->sc_all_buttons))) {
               int s = spltty();
               DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("wsmouse input:"
                   " buttons %"PRIx32", dx %d, dy %d, dz %d, dw %d\n",
                   all_buttons, dx, -dy, dz, -dw));
               wsmouse_input(sc->sc_wsmousedev, all_buttons, dx, -dy, dz, -dw,
                   WSMOUSE_INPUT_DELTA);
               splx(s);
       }
       sc->sc_buttons = buttons;
       sc->sc_all_buttons = all_buttons;
}

/*
* Interpret the current tap state to decide whether the tap buttons
* are currently pressed.
*/

static uint32_t
uatp_tapped_buttons(struct uatp_softc *sc)
{
       KASSERT(mutex_owned(&sc->sc_tap_mutex));
       switch (sc->sc_tap_state) {
       case TAP_STATE_INITIAL:
       case TAP_STATE_TAPPING:
               return 0;

       case TAP_STATE_TAPPED:
       case TAP_STATE_DOUBLE_TAPPING:
       case TAP_STATE_DRAGGING_DOWN:
       case TAP_STATE_DRAGGING_UP:
       case TAP_STATE_TAPPING_IN_DRAG:
               CHECK((0 < sc->sc_tapped_fingers), return 0);
               switch (sc->sc_tapped_fingers) {
               case 1: return sc->sc_knobs.one_finger_tap_buttons;
               case 2: return sc->sc_knobs.two_finger_tap_buttons;
               case 3:
               default: return sc->sc_knobs.three_finger_tap_buttons;
               }

       default:
               aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
                   __func__, sc->sc_tap_state);
               return 0;
       }
}

/*
* Interpret the current input state to find a difference in all the
* relevant coordinates and buttons to pass on to wsmouse, and update
* any internal driver state necessary to interpret subsequent input
* relative to this one.
*/

static bool
interpret_input(struct uatp_softc *sc, int *dx, int *dy, int *dz, int *dw,
   uint32_t *buttons)
{
       unsigned int x_pressure, x_raw, x_fingers;
       unsigned int y_pressure, y_raw, y_fingers;
       unsigned int fingers;

       x_pressure = interpret_dimension(sc, uatp_x_acc(sc),
           uatp_x_sensors(sc), uatp_x_ratio(sc), &x_raw, &x_fingers);
       y_pressure = interpret_dimension(sc, uatp_y_acc(sc),
           uatp_y_sensors(sc), uatp_y_ratio(sc), &y_raw, &y_fingers);

       DPRINTF(sc, UATP_DEBUG_PARSE,
           ("x %u @ %u, %uf; y %u @ %u, %uf; buttons %"PRIx32"\n",
               x_pressure, x_raw, x_fingers,
               y_pressure, y_raw, y_fingers,
               *buttons));

       if ((x_pressure == 0) && (y_pressure == 0)) {
               bool ok;
               /* No fingers: clear position and maybe report a tap.  */
               DPRINTF(sc, UATP_DEBUG_INTR,
                   ("no position detected; clearing position\n"));
               if (*buttons == 0) {
                       ok = tap_released(sc);
               } else {
                       tap_reset(sc);
                       /* Button pressed: interrupt is not spurious.  */
                       ok = true;
               }
               /*
                * Don't clear the position until after tap_released,
                * which needs to know the track distance.
                */
               uatp_clear_position(sc);
               return ok;
       } else if ((x_pressure == 0) || (y_pressure == 0)) {
               /* XXX What to do here?  */
               DPRINTF(sc, UATP_DEBUG_INTR,
                   ("pressure in only one dimension; ignoring\n"));
               return true;
       } else if ((x_pressure == 1) && (y_pressure == 1)) {
               fingers = uimax(x_fingers, y_fingers);
               CHECK((0 < fingers), return false);
               if (*buttons == 0)
                       tap_touched(sc, fingers);
               else if (fingers == 1)
                       tap_reset(sc);
               else            /* Multiple fingers, button pressed.  */
                       *buttons = emulated_buttons(sc, fingers);
               update_position(sc, fingers, x_raw, y_raw, dx, dy, dz, dw);
               return true;
       } else {
               /* Palm detected in either or both of the dimensions.  */
               DPRINTF(sc, UATP_DEBUG_INTR, ("palm detected; ignoring\n"));
               return true;
       }
}

/*
* Interpret the accumulated sensor state along one dimension to find
* the number, mean position, and pressure of fingers.  Returns 0 to
* indicate no pressure, returns 1 and sets *position and *fingers to
* indicate fingers, and returns 2 to indicate palm.
*
* XXX Give symbolic names to the return values.
*/

static unsigned int
interpret_dimension(struct uatp_softc *sc, const int *acc,
   unsigned int n_sensors, unsigned int ratio,
   unsigned int *position, unsigned int *fingers)
{
       unsigned int i, v, n_fingers, sum;
       unsigned int total[UATP_MAX_SENSORS];
       unsigned int weighted[UATP_MAX_SENSORS];
       unsigned int sensor_threshold = sc->sc_knobs.sensor_threshold;
       unsigned int sensor_normalizer = sc->sc_knobs.sensor_normalizer;
       unsigned int width = 0; /* GCC is not smart enough.  */
       unsigned int palm_width = sc->sc_knobs.palm_width;
       enum { none, nondecreasing, decreasing } state = none;

       if (sensor_threshold < sensor_normalizer)
               sensor_normalizer = sensor_threshold;
       if (palm_width == 0)    /* Effectively disable palm detection.  */
               palm_width = UATP_MAX_POSITION;

#define CHECK_(condition) CHECK(condition, return 0)

       /*
        * Arithmetic bounds:
        * . n_sensors is at most UATP_MAX_SENSORS,
        * . n_fingers is at most UATP_MAX_SENSORS,
        * . i is at most UATP_MAX_SENSORS,
        * . sc->sc_acc[i] is at most UATP_MAX_ACC,
        * . i * sc->sc_acc[i] is at most UATP_MAX_SENSORS * UATP_MAX_ACC,
        * . each total[j] is at most UATP_MAX_SENSORS * UATP_MAX_ACC,
        * . each weighted[j] is at most UATP_MAX_SENSORS^2 * UATP_MAX_ACC,
        * . ratio is at most UATP_MAX_RATIO,
        * . each weighted[j] * ratio is at most
        *     UATP_MAX_SENSORS^2 * UATP_MAX_ACC * UATP_MAX_RATIO,
        *   which is #x5fa0000 with the current values of the constants,
        *   and
        * . the sum of the positions is at most
        *     UATP_MAX_SENSORS * UATP_MAX_POSITION,
        *   which is #x60000 with the current values of the constants.
        * Hence all of the arithmetic here fits in int (and thus also
        * unsigned int).  If you change the constants, though, you
        * must update the analysis.
        */
       __CTASSERT(0x5fa0000 == (UATP_MAX_SENSORS * UATP_MAX_SENSORS *
               UATP_MAX_ACC * UATP_MAX_RATIO));
       __CTASSERT(0x60000 == (UATP_MAX_SENSORS * UATP_MAX_POSITION));
       CHECK_(n_sensors <= UATP_MAX_SENSORS);
       CHECK_(ratio <= UATP_MAX_RATIO);

       /*
        * Detect each finger by looking for a consecutive sequence of
        * increasing and then decreasing pressures above the sensor
        * threshold.  Compute the finger's position as the weighted
        * average of positions, weighted by the pressure at that
        * position.  Finally, return the average finger position.
        */

       n_fingers = 0;
       memset(weighted, 0, sizeof(weighted));
       memset(total, 0, sizeof(total));

       for (i = 0; i < n_sensors; i++) {
               CHECK_(0 <= acc[i]);
               v = acc[i];

               /* Ignore values outside a sensible interval.  */
               if (v <= sensor_threshold) {
                       state = none;
                       continue;
               } else if (UATP_MAX_ACC < v) {
                       aprint_verbose_dev(uatp_dev(sc),
                           "ignoring large accumulated sensor state: %u\n",
                           v);
                       continue;
               }

               switch (state) {
               case none:
                       n_fingers += 1;
                       CHECK_(n_fingers <= n_sensors);
                       state = nondecreasing;
                       width = 1;
                       break;

               case nondecreasing:
               case decreasing:
                       CHECK_(0 < i);
                       CHECK_(0 <= acc[i - 1]);
                       width += 1;
                       if (palm_width <= (width * ratio)) {
                               DPRINTF(sc, UATP_DEBUG_PALM,
                                   ("palm detected\n"));
                               return 2;
                       } else if ((state == nondecreasing) &&
                           ((unsigned int)acc[i - 1] > v)) {
                               state = decreasing;
                       } else if ((state == decreasing) &&
                           ((unsigned int)acc[i - 1] < v)) {
                               n_fingers += 1;
                               CHECK_(n_fingers <= n_sensors);
                               state = nondecreasing;
                               width = 1;
                       }
                       break;

               default:
                       aprint_error_dev(uatp_dev(sc),
                           "bad finger detection state: %d", state);
                       return 0;
               }

               v -= sensor_normalizer;
               total[n_fingers - 1] += v;
               weighted[n_fingers - 1] += (i * v);
               CHECK_(total[n_fingers - 1] <=
                   (UATP_MAX_SENSORS * UATP_MAX_ACC));
               CHECK_(weighted[n_fingers - 1] <=
                   (UATP_MAX_SENSORS * UATP_MAX_SENSORS * UATP_MAX_ACC));
       }

       if (n_fingers == 0)
               return 0;

       sum = 0;
       for (i = 0; i < n_fingers; i++) {
               DPRINTF(sc, UATP_DEBUG_PARSE,
                   ("finger at %u\n", ((weighted[i] * ratio) / total[i])));
               sum += ((weighted[i] * ratio) / total[i]);
               CHECK_(sum <= UATP_MAX_SENSORS * UATP_MAX_POSITION);
       }

       *fingers = n_fingers;
       *position = (sum / n_fingers);
       return 1;

#undef CHECK_
}

/* Tapping */

/*
* There is a very hairy state machine for detecting taps.  At every
* touch, we record the maximum number of fingers touched, and don't
* reset it to zero until the finger is released.
*
* INITIAL STATE
* (no tapping fingers; no tapped fingers)
* - On touch, go to TAPPING STATE.
* - On any other input, remain in INITIAL STATE.
*
* TAPPING STATE: Finger touched; might be tap.
* (tapping fingers; no tapped fingers)
* - On release within the tap limit, go to TAPPED STATE.
* - On release after the tap limit, go to INITIAL STATE.
* - On any other input, remain in TAPPING STATE.
*
* TAPPED STATE: Finger recently tapped, and might double-tap.
* (no tapping fingers; tapped fingers)
* - On touch within the double-tap limit, go to DOUBLE-TAPPING STATE.
* - On touch after the double-tap limit, go to TAPPING STATE.
* - On no event after the double-tap limit, go to INITIAL STATE.
* - On any other input, remain in TAPPED STATE.
*
* DOUBLE-TAPPING STATE: Finger touched soon after tap; might be double-tap.
* (tapping fingers; tapped fingers)
* - On release within the tap limit, release button and go to TAPPED STATE.
* - On release after the tap limit, go to DRAGGING UP STATE.
* - On touch after the tap limit, go to DRAGGING DOWN STATE.
* - On any other input, remain in DOUBLE-TAPPING STATE.
*
* DRAGGING DOWN STATE: Finger has double-tapped and is dragging, not tapping.
* (no tapping fingers; tapped fingers)
* - On release, go to DRAGGING UP STATE.
* - On any other input, remain in DRAGGING DOWN STATE.
*
* DRAGGING UP STATE: Finger has double-tapped and is up.
* (no tapping fingers; tapped fingers)
* - On touch, go to TAPPING IN DRAG STATE.
* - On any other input, remain in DRAGGING UP STATE.
*
* TAPPING IN DRAG STATE: Tap-dancing while cross-dressed.
* (tapping fingers; tapped fingers)
* - On release within the tap limit, go to TAPPED STATE.
* - On release after the tap limit, go to DRAGGING UP STATE.
* - On any other input, remain in TAPPING IN DRAG STATE.
*
* Warning:  The graph of states is split into two components, those
* with tapped fingers and those without.  The only path from any state
* without tapped fingers to a state with tapped fingers must pass
* through TAPPED STATE.  Also, the only transitions into TAPPED STATE
* must be from states with tapping fingers, which become the tapped
* fingers.  If you edit the state machine, you must either preserve
* these properties, or globally transform the state machine to avoid
* the bad consequences of violating these properties.
*/

static void
uatp_tap_limit(const struct uatp_softc *sc, struct timeval *limit)
{
       unsigned int msec = sc->sc_knobs.tap_limit_msec;
       limit->tv_sec = 0;
       limit->tv_usec = ((msec < 1000) ? (1000 * msec) : 100000);
}

#if UATP_DEBUG

#  define TAP_DEBUG_PRE(sc)     tap_debug((sc), __func__, "")
#  define TAP_DEBUG_POST(sc)    tap_debug((sc), __func__, " ->")

static void
tap_debug(struct uatp_softc *sc, const char *caller, const char *prefix)
{
       char buffer[128];
       const char *state;

       KASSERT(mutex_owned(&sc->sc_tap_mutex));
       switch (sc->sc_tap_state) {
       case TAP_STATE_INITIAL:         state = "initial";              break;
       case TAP_STATE_TAPPING:         state = "tapping";              break;
       case TAP_STATE_TAPPED:          state = "tapped";               break;
       case TAP_STATE_DOUBLE_TAPPING:  state = "double-tapping";       break;
       case TAP_STATE_DRAGGING_DOWN:   state = "dragging-down";        break;
       case TAP_STATE_DRAGGING_UP:     state = "dragging-up";          break;
       case TAP_STATE_TAPPING_IN_DRAG: state = "tapping-in-drag";      break;
       default:
               snprintf(buffer, sizeof(buffer), "unknown (%d)",
                   sc->sc_tap_state);
               state = buffer;
               break;
       }

       DPRINTF(sc, UATP_DEBUG_TAP,
           ("%s:%s state %s, %u tapping, %u tapped\n",
               caller, prefix, state,
               sc->sc_tapping_fingers, sc->sc_tapped_fingers));
}

#else   /* !UATP_DEBUG */

#  define TAP_DEBUG_PRE(sc)     do {} while (0)
#  define TAP_DEBUG_POST(sc)    do {} while (0)

#endif

static void
tap_initialize(struct uatp_softc *sc)
{
       callout_init(&sc->sc_untap_callout, 0);
       callout_setfunc(&sc->sc_untap_callout, untap_callout, sc);
       mutex_init(&sc->sc_tap_mutex, MUTEX_DEFAULT, IPL_SOFTUSB);
}

static void
tap_finalize(struct uatp_softc *sc)
{
       /* XXX Can the callout still be scheduled here?  */
       callout_destroy(&sc->sc_untap_callout);
       mutex_destroy(&sc->sc_tap_mutex);
}

static void
tap_enable(struct uatp_softc *sc)
{
       mutex_enter(&sc->sc_tap_mutex);
       tap_transition_initial(sc);
       sc->sc_buttons = 0;     /* XXX Not the right place?  */
       sc->sc_all_buttons = 0;
       mutex_exit(&sc->sc_tap_mutex);
}

static void
tap_disable(struct uatp_softc *sc)
{
       /* Reset tapping, and wait for any callouts to complete.  */
       tap_reset_wait(sc);
}

/*
* Reset tap state.  If the untap callout has just fired, it may signal
* a harmless button release event before this returns.
*/

static void
tap_reset(struct uatp_softc *sc)
{

       callout_stop(&sc->sc_untap_callout);
       mutex_enter(&sc->sc_tap_mutex);
       tap_transition_initial(sc);
       mutex_exit(&sc->sc_tap_mutex);
}

/* Reset, but don't return until the callout is done running.  */

static void
tap_reset_wait(struct uatp_softc *sc)
{

       callout_halt(&sc->sc_untap_callout, NULL);
       mutex_enter(&sc->sc_tap_mutex);
       tap_transition_initial(sc);
       mutex_exit(&sc->sc_tap_mutex);
}

static const struct timeval zero_timeval;

static void
tap_transition(struct uatp_softc *sc, enum uatp_tap_state tap_state,
   const struct timeval *start_time,
   unsigned int tapping_fingers, unsigned int tapped_fingers)
{
       KASSERT(mutex_owned(&sc->sc_tap_mutex));
       sc->sc_tap_state = tap_state;
       sc->sc_tap_timer = *start_time;
       sc->sc_tapping_fingers = tapping_fingers;
       sc->sc_tapped_fingers = tapped_fingers;
}

static void
tap_transition_initial(struct uatp_softc *sc)
{
       /*
        * No checks.  This state is always kosher, and sometimes a
        * fallback in case of failure.
        */
       tap_transition(sc, TAP_STATE_INITIAL, &zero_timeval, 0, 0);
}

/* Touch transitions */

static void
tap_transition_tapping(struct uatp_softc *sc, const struct timeval *start_time,
   unsigned int fingers)
{
       CHECK((sc->sc_tapping_fingers <= fingers),
           do { tap_transition_initial(sc); return; } while (0));
       tap_transition(sc, TAP_STATE_TAPPING, start_time, fingers, 0);
}

static void
tap_transition_double_tapping(struct uatp_softc *sc,
   const struct timeval *start_time, unsigned int fingers)
{
       CHECK((sc->sc_tapping_fingers <= fingers),
           do { tap_transition_initial(sc); return; } while (0));
       CHECK((0 < sc->sc_tapped_fingers),
           do { tap_transition_initial(sc); return; } while (0));
       tap_transition(sc, TAP_STATE_DOUBLE_TAPPING, start_time, fingers,
           sc->sc_tapped_fingers);
}

static void
tap_transition_dragging_down(struct uatp_softc *sc)
{
       CHECK((0 < sc->sc_tapped_fingers),
           do { tap_transition_initial(sc); return; } while (0));
       tap_transition(sc, TAP_STATE_DRAGGING_DOWN, &zero_timeval, 0,
           sc->sc_tapped_fingers);
}

static void
tap_transition_tapping_in_drag(struct uatp_softc *sc,
   const struct timeval *start_time, unsigned int fingers)
{
       CHECK((sc->sc_tapping_fingers <= fingers),
           do { tap_transition_initial(sc); return; } while (0));
       CHECK((0 < sc->sc_tapped_fingers),
           do { tap_transition_initial(sc); return; } while (0));
       tap_transition(sc, TAP_STATE_TAPPING_IN_DRAG, start_time, fingers,
           sc->sc_tapped_fingers);
}

/* Release transitions */

static void
tap_transition_tapped(struct uatp_softc *sc, const struct timeval *start_time)
{
       /*
        * The fingers that were tapping -- of which there must have
        * been at least one -- are now the fingers that have tapped,
        * and there are no longer fingers tapping.
        */
       CHECK((0 < sc->sc_tapping_fingers),
           do { tap_transition_initial(sc); return; } while (0));
       tap_transition(sc, TAP_STATE_TAPPED, start_time, 0,
           sc->sc_tapping_fingers);
       schedule_untap(sc);
}

static void
tap_transition_dragging_up(struct uatp_softc *sc)
{
       CHECK((0 < sc->sc_tapped_fingers),
           do { tap_transition_initial(sc); return; } while (0));
       tap_transition(sc, TAP_STATE_DRAGGING_UP, &zero_timeval, 0,
           sc->sc_tapped_fingers);
}

static void
tap_touched(struct uatp_softc *sc, unsigned int fingers)
{
       struct timeval now, diff, limit;

       CHECK((0 < fingers), return);
       callout_stop(&sc->sc_untap_callout);
       mutex_enter(&sc->sc_tap_mutex);
       TAP_DEBUG_PRE(sc);
       /*
        * Guarantee that the number of tapping fingers never decreases
        * except when it is reset to zero on release.
        */
       if (fingers < sc->sc_tapping_fingers)
               fingers = sc->sc_tapping_fingers;
       switch (sc->sc_tap_state) {
       case TAP_STATE_INITIAL:
               getmicrouptime(&now);
               tap_transition_tapping(sc, &now, fingers);
               break;

       case TAP_STATE_TAPPING:
               /*
                * Number of fingers may have increased, so transition
                * even though we're already in TAPPING.
                */
               tap_transition_tapping(sc, &sc->sc_tap_timer, fingers);
               break;

       case TAP_STATE_TAPPED:
               getmicrouptime(&now);
               /*
                * If the double-tap time limit has passed, it's the
                * callout's responsibility to handle that event, so we
                * assume the limit has not passed yet.
                */
               tap_transition_double_tapping(sc, &now, fingers);
               break;

       case TAP_STATE_DOUBLE_TAPPING:
               getmicrouptime(&now);
               timersub(&now, &sc->sc_tap_timer, &diff);
               uatp_tap_limit(sc, &limit);
               if (timercmp(&diff, &limit, >) ||
                   (sc->sc_track_distance >
                       sc->sc_knobs.tap_track_distance_limit))
                       tap_transition_dragging_down(sc);
               break;

       case TAP_STATE_DRAGGING_DOWN:
               break;

       case TAP_STATE_DRAGGING_UP:
               getmicrouptime(&now);
               tap_transition_tapping_in_drag(sc, &now, fingers);
               break;

       case TAP_STATE_TAPPING_IN_DRAG:
               /*
                * Number of fingers may have increased, so transition
                * even though we're already in TAPPING IN DRAG.
                */
               tap_transition_tapping_in_drag(sc, &sc->sc_tap_timer, fingers);
               break;

       default:
               aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
                   __func__, sc->sc_tap_state);
               tap_transition_initial(sc);
               break;
       }
       TAP_DEBUG_POST(sc);
       mutex_exit(&sc->sc_tap_mutex);
}

static bool
tap_released(struct uatp_softc *sc)
{
       struct timeval now, diff, limit;
       void (*non_tapped_transition)(struct uatp_softc *);
       bool ok, temporary_release;

       mutex_enter(&sc->sc_tap_mutex);
       TAP_DEBUG_PRE(sc);
       switch (sc->sc_tap_state) {
       case TAP_STATE_INITIAL:
       case TAP_STATE_TAPPED:
       case TAP_STATE_DRAGGING_UP:
               /* Spurious interrupt: fingers are already off.  */
               ok = false;
               break;

       case TAP_STATE_TAPPING:
               temporary_release = false;
               non_tapped_transition = &tap_transition_initial;
               goto maybe_tap;

       case TAP_STATE_DOUBLE_TAPPING:
               temporary_release = true;
               non_tapped_transition = &tap_transition_dragging_up;
               goto maybe_tap;

       case TAP_STATE_TAPPING_IN_DRAG:
               temporary_release = false;
               non_tapped_transition = &tap_transition_dragging_up;
               goto maybe_tap;

       maybe_tap:
               getmicrouptime(&now);
               timersub(&now, &sc->sc_tap_timer, &diff);
               uatp_tap_limit(sc, &limit);
               if (timercmp(&diff, &limit, <=) &&
                   (sc->sc_track_distance <=
                       sc->sc_knobs.tap_track_distance_limit)) {
                       if (temporary_release) {
                               /*
                                * XXX Kludge: Temporarily transition
                                * to a tap state that uatp_input will
                                * interpret as `no buttons tapped',
                                * saving the tapping fingers.  There
                                * should instead be a separate routine
                                * uatp_input_untapped.
                                */
                               unsigned int fingers = sc->sc_tapping_fingers;
                               tap_transition_initial(sc);
                               uatp_input(sc, 0, 0, 0, 0, 0);
                               sc->sc_tapping_fingers = fingers;
                       }
                       tap_transition_tapped(sc, &now);
               } else {
                       (*non_tapped_transition)(sc);
               }
               ok = true;
               break;

       case TAP_STATE_DRAGGING_DOWN:
               tap_transition_dragging_up(sc);
               ok = true;
               break;

       default:
               aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
                   __func__, sc->sc_tap_state);
               tap_transition_initial(sc);
               ok = false;
               break;
       }
       TAP_DEBUG_POST(sc);
       mutex_exit(&sc->sc_tap_mutex);
       return ok;
}

/* Untapping: Releasing the button after a tap */

static void
schedule_untap(struct uatp_softc *sc)
{
       unsigned int ms = sc->sc_knobs.double_tap_limit_msec;
       if (ms <= 1000)
               callout_schedule(&sc->sc_untap_callout, mstohz(ms));
       else                    /* XXX Reject bogus values in sysctl.  */
               aprint_error_dev(uatp_dev(sc),
                   "double-tap delay too long: %ums\n", ms);
}

static void
untap_callout(void *arg)
{
       struct uatp_softc *sc = arg;

       mutex_enter(&sc->sc_tap_mutex);
       TAP_DEBUG_PRE(sc);
       switch (sc->sc_tap_state) {
       case TAP_STATE_TAPPED:
               tap_transition_initial(sc);
               /*
                * XXX Kludge: Call uatp_input after the state transition
                * to make sure that it will actually release the button.
                */
               uatp_input(sc, 0, 0, 0, 0, 0);

       case TAP_STATE_INITIAL:
       case TAP_STATE_TAPPING:
       case TAP_STATE_DOUBLE_TAPPING:
       case TAP_STATE_DRAGGING_UP:
       case TAP_STATE_DRAGGING_DOWN:
       case TAP_STATE_TAPPING_IN_DRAG:
               /*
                * Somebody else got in and changed the state before we
                * untapped.  Let them take over; do nothing here.
                */
               break;

       default:
               aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
                   __func__, sc->sc_tap_state);
               tap_transition_initial(sc);
               /* XXX Just in case...?  */
               uatp_input(sc, 0, 0, 0, 0, 0);
               break;
       }
       TAP_DEBUG_POST(sc);
       mutex_exit(&sc->sc_tap_mutex);
}

/*
* Emulate different buttons if the user holds down n fingers while
* pressing the physical button.  (This is unrelated to tapping.)
*/

static uint32_t
emulated_buttons(struct uatp_softc *sc, unsigned int fingers)
{
       CHECK((1 < fingers), return 0);

       switch (fingers) {
       case 2:
               DPRINTF(sc, UATP_DEBUG_EMUL_BUTTON,
                   ("2-finger emulated button: %"PRIx32"\n",
                       sc->sc_knobs.two_finger_buttons));
               return sc->sc_knobs.two_finger_buttons;

       case 3:
       default:
               DPRINTF(sc, UATP_DEBUG_EMUL_BUTTON,
                   ("3-finger emulated button: %"PRIx32"\n",
                       sc->sc_knobs.three_finger_buttons));
               return sc->sc_knobs.three_finger_buttons;
       }
}

/*
* Update the position known to the driver based on the position and
* number of fingers.  dx, dy, dz, and dw are expected to hold zero;
* update_position may store nonzero changes in position in them.
*/

static void
update_position(struct uatp_softc *sc, unsigned int fingers,
   unsigned int x_raw, unsigned int y_raw,
   int *dx, int *dy, int *dz, int *dw)
{
       CHECK((0 < fingers), return);

       if ((fingers == 1) || (sc->sc_knobs.multifinger_track == 1))
               move_mouse(sc, x_raw, y_raw, dx, dy);
       else if (sc->sc_knobs.multifinger_track == 2)
               scroll_wheel(sc, x_raw, y_raw, dz, dw);
}

/*
* XXX Scrolling needs to use a totally different motion model.
*/

static void
move_mouse(struct uatp_softc *sc, unsigned int x_raw, unsigned int y_raw,
   int *dx, int *dy)
{
       move(sc, "mouse", x_raw, y_raw, &sc->sc_x_raw, &sc->sc_y_raw,
           &sc->sc_x_smoothed, &sc->sc_y_smoothed,
           &sc->sc_x_remainder, &sc->sc_y_remainder,
           dx, dy);
}

static void
scroll_wheel(struct uatp_softc *sc, unsigned int x_raw, unsigned int y_raw,
   int *dz, int *dw)
{
       move(sc, "scroll", x_raw, y_raw, &sc->sc_z_raw, &sc->sc_w_raw,
           &sc->sc_z_smoothed, &sc->sc_w_smoothed,
           &sc->sc_z_remainder, &sc->sc_w_remainder,
           dz, dw);
}

static void
move(struct uatp_softc *sc, const char *ctx, unsigned int a, unsigned int b,
   int *a_raw, int *b_raw,
   int *a_smoothed, int *b_smoothed,
   unsigned int *a_remainder, unsigned int *b_remainder,
   int *da, int *db)
{
#define CHECK_(condition) CHECK(condition, return)

       int old_a_raw = *a_raw, old_a_smoothed = *a_smoothed;
       int old_b_raw = *b_raw, old_b_smoothed = *b_smoothed;
       unsigned int a_dist, b_dist, dist_squared;
       bool a_fast, b_fast;

       /*
        * Make sure the quadratics in motion_below_threshold and
        * tracking distance don't overflow int arithmetic.
        */
       __CTASSERT(0x12000000 == (2 * UATP_MAX_POSITION * UATP_MAX_POSITION));

       CHECK_(a <= UATP_MAX_POSITION);
       CHECK_(b <= UATP_MAX_POSITION);
       *a_raw = a;
       *b_raw = b;
       if ((old_a_raw < 0) || (old_b_raw < 0)) {
               DPRINTF(sc, UATP_DEBUG_MOVE,
                   ("initialize %s position (%d, %d) -> (%d, %d)\n", ctx,
                       old_a_raw, old_b_raw, a, b));
               return;
       }

       if ((old_a_smoothed < 0) || (old_b_smoothed < 0)) {
               /* XXX Does this make sense?  */
               old_a_smoothed = old_a_raw;
               old_b_smoothed = old_b_raw;
       }

       CHECK_(0 <= old_a_raw);
       CHECK_(0 <= old_b_raw);
       CHECK_(old_a_raw <= UATP_MAX_POSITION);
       CHECK_(old_b_raw <= UATP_MAX_POSITION);
       CHECK_(0 <= old_a_smoothed);
       CHECK_(0 <= old_b_smoothed);
       CHECK_(old_a_smoothed <= UATP_MAX_POSITION);
       CHECK_(old_b_smoothed <= UATP_MAX_POSITION);
       CHECK_(0 <= *a_raw);
       CHECK_(0 <= *b_raw);
       CHECK_(*a_raw <= UATP_MAX_POSITION);
       CHECK_(*b_raw <= UATP_MAX_POSITION);
       *a_smoothed = smooth(sc, old_a_raw, old_a_smoothed, *a_raw);
       *b_smoothed = smooth(sc, old_b_raw, old_b_smoothed, *b_raw);
       CHECK_(0 <= *a_smoothed);
       CHECK_(0 <= *b_smoothed);
       CHECK_(*a_smoothed <= UATP_MAX_POSITION);
       CHECK_(*b_smoothed <= UATP_MAX_POSITION);

       if (sc->sc_motion_timer < sc->sc_knobs.motion_delay) {
               DPRINTF(sc, UATP_DEBUG_MOVE, ("delay motion %u\n",
                       sc->sc_motion_timer));
               sc->sc_motion_timer += 1;
               return;
       }

       /* XXX Use raw distances or smoothed distances?  Acceleration?  */
       if (*a_smoothed < old_a_smoothed)
               a_dist = old_a_smoothed - *a_smoothed;
       else
               a_dist = *a_smoothed - old_a_smoothed;

       if (*b_smoothed < old_b_smoothed)
               b_dist = old_b_smoothed - *b_smoothed;
       else
               b_dist = *b_smoothed - old_b_smoothed;

       dist_squared = (a_dist * a_dist) + (b_dist * b_dist);
       if (dist_squared < ((2 * UATP_MAX_POSITION * UATP_MAX_POSITION)
               - sc->sc_track_distance))
               sc->sc_track_distance += dist_squared;
       else
               sc->sc_track_distance = (2 * UATP_MAX_POSITION *
                   UATP_MAX_POSITION);
       DPRINTF(sc, UATP_DEBUG_TRACK_DIST, ("finger has tracked %u units^2\n",
               sc->sc_track_distance));

       /*
        * The checks above guarantee that the differences here are at
        * most UATP_MAX_POSITION in magnitude, since both minuend and
        * subtrahend are nonnegative and at most UATP_MAX_POSITION.
        */
       if (motion_below_threshold(sc, sc->sc_knobs.motion_threshold,
               (int)(*a_smoothed - old_a_smoothed),
               (int)(*b_smoothed - old_b_smoothed))) {
               DPRINTF(sc, UATP_DEBUG_MOVE,
                   ("%s motion too small: (%d, %d) -> (%d, %d)\n", ctx,
                       old_a_smoothed, old_b_smoothed,
                       *a_smoothed, *b_smoothed));
               return;
       }
       if (sc->sc_knobs.fast_per_direction == 0) {
               a_fast = b_fast = !motion_below_threshold(sc,
                   sc->sc_knobs.fast_motion_threshold,
                   (int)(*a_smoothed - old_a_smoothed),
                   (int)(*b_smoothed - old_b_smoothed));
       } else {
               a_fast = !motion_below_threshold(sc,
                   sc->sc_knobs.fast_motion_threshold,
                   (int)(*a_smoothed - old_a_smoothed),
                   0);
               b_fast = !motion_below_threshold(sc,
                   sc->sc_knobs.fast_motion_threshold,
                   0,
                   (int)(*b_smoothed - old_b_smoothed));
       }
       *da = accelerate(sc, old_a_raw, *a_raw, old_a_smoothed, *a_smoothed,
           a_fast, a_remainder);
       *db = accelerate(sc, old_b_raw, *b_raw, old_b_smoothed, *b_smoothed,
           b_fast, b_remainder);
       DPRINTF(sc, UATP_DEBUG_MOVE,
           ("update %s position (%d, %d) -> (%d, %d), move by (%d, %d)\n",
               ctx, old_a_smoothed, old_b_smoothed, *a_smoothed, *b_smoothed,
               *da, *db));

#undef CHECK_
}

static int
smooth(struct uatp_softc *sc, unsigned int old_raw, unsigned int old_smoothed,
   unsigned int raw)
{
#define CHECK_(condition) CHECK(condition, return old_raw)

       /*
        * Arithmetic bounds:
        * . the weights are at most UATP_MAX_WEIGHT;
        * . the positions are at most UATP_MAX_POSITION; and so
        * . the numerator of the average is at most
        *     3 * UATP_MAX_WEIGHT * UATP_MAX_POSITION,
        *   which is #x477000, fitting comfortably in an int.
        */
       __CTASSERT(0x477000 == (3 * UATP_MAX_WEIGHT * UATP_MAX_POSITION));
       unsigned int old_raw_weight = uatp_old_raw_weight(sc);
       unsigned int old_smoothed_weight = uatp_old_smoothed_weight(sc);
       unsigned int new_raw_weight = uatp_new_raw_weight(sc);
       CHECK_(old_raw_weight <= UATP_MAX_WEIGHT);
       CHECK_(old_smoothed_weight <= UATP_MAX_WEIGHT);
       CHECK_(new_raw_weight <= UATP_MAX_WEIGHT);
       CHECK_(old_raw <= UATP_MAX_POSITION);
       CHECK_(old_smoothed <= UATP_MAX_POSITION);
       CHECK_(raw <= UATP_MAX_POSITION);
       return (((old_raw_weight * old_raw) +
               (old_smoothed_weight * old_smoothed) +
               (new_raw_weight * raw))
           / (old_raw_weight + old_smoothed_weight + new_raw_weight));

#undef CHECK_
}

static bool
motion_below_threshold(struct uatp_softc *sc, unsigned int threshold,
   int x, int y)
{
       unsigned int x_squared, y_squared;

       /* Caller guarantees the multiplication will not overflow.  */
       KASSERT(-UATP_MAX_POSITION <= x);
       KASSERT(-UATP_MAX_POSITION <= y);
       KASSERT(x <= UATP_MAX_POSITION);
       KASSERT(y <= UATP_MAX_POSITION);
       __CTASSERT(0x12000000 == (2 * UATP_MAX_POSITION * UATP_MAX_POSITION));

       x_squared = (x * x);
       y_squared = (y * y);

       return (x_squared + y_squared) < threshold;
}

static int
accelerate(struct uatp_softc *sc, unsigned int old_raw, unsigned int raw,
   unsigned int old_smoothed, unsigned int smoothed, bool fast,
   int *remainder)
{
#define CHECK_(condition) CHECK(condition, return 0)

       /* Guarantee that the scaling won't overflow.  */
       __CTASSERT(0x30000 ==
           (UATP_MAX_POSITION * UATP_MAX_MOTION_MULTIPLIER));

       CHECK_(old_raw <= UATP_MAX_POSITION);
       CHECK_(raw <= UATP_MAX_POSITION);
       CHECK_(old_smoothed <= UATP_MAX_POSITION);
       CHECK_(smoothed <= UATP_MAX_POSITION);

       return (fast ? uatp_scale_fast_motion : uatp_scale_motion)
           (sc, (((int) smoothed) - ((int) old_smoothed)), remainder);

#undef CHECK_
}

MODULE(MODULE_CLASS_DRIVER, uatp, NULL);

#ifdef _MODULE
#include "ioconf.c"
#endif

static int
uatp_modcmd(modcmd_t cmd, void *aux)
{
       int error = 0;

       switch (cmd) {
       case MODULE_CMD_INIT:
#ifdef _MODULE
               error = config_init_component(cfdriver_ioconf_uatp,
                   cfattach_ioconf_uatp, cfdata_ioconf_uatp);
#endif
               return error;
       case MODULE_CMD_FINI:
#ifdef _MODULE
               error = config_fini_component(cfdriver_ioconf_uatp,
                   cfattach_ioconf_uatp, cfdata_ioconf_uatp);
#endif
               return error;
       default:
               return ENOTTY;
       }
}