/*      $NetBSD: if_smsc.c,v 1.94 2024/02/10 09:21:53 andvar Exp $      */

/*      $OpenBSD: if_smsc.c,v 1.4 2012/09/27 12:38:11 jsg Exp $ */
/*      $FreeBSD: src/sys/dev/usb/net/if_smsc.c,v 1.1 2012/08/15 04:03:55 gonzo Exp $ */
/*-
* Copyright (c) 2012
*      Ben Gray <[email protected]>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*
* SMSC LAN9xxx devices (http://www.smsc.com/)
*
* The LAN9500 & LAN9500A devices are stand-alone USB to Ethernet chips that
* support USB 2.0 and 10/100 Mbps Ethernet.
*
* The LAN951x devices are an integrated USB hub and USB to Ethernet adapter.
* The driver only covers the Ethernet part, the standard USB hub driver
* supports the hub part.
*
* This driver is closely modelled on the Linux driver written and copyrighted
* by SMSC.
*
* H/W TCP & UDP Checksum Offloading
* ---------------------------------
* The chip supports both tx and rx offloading of UDP & TCP checksums, this
* feature can be dynamically enabled/disabled.
*
* RX checksumming is performed across bytes after the IPv4 header to the end of
* the Ethernet frame, this means if the frame is padded with non-zero values
* the H/W checksum will be incorrect, however the rx code compensates for this.
*
* TX checksumming is more complicated, the device requires a special header to
* be prefixed onto the start of the frame which indicates the start and end
* positions of the UDP or TCP frame.  This requires the driver to manually
* go through the packet data and decode the headers prior to sending.
* On Linux they generally provide cues to the location of the csum and the
* area to calculate it over, on FreeBSD we seem to have to do it all ourselves,
* hence this is not as optimal and therefore h/w TX checksum is currently not
* implemented.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_smsc.c,v 1.94 2024/02/10 09:21:53 andvar Exp $");

#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif

#include <sys/param.h>

#include <dev/usb/usbnet.h>
#include <dev/usb/usbhist.h>

#include <dev/usb/if_smscreg.h>

#include "ioconf.h"

struct smsc_softc {
       struct usbnet           smsc_un;

       /*
        * The following stores the settings in the mac control (MAC_CSR)
        * register
        */
       uint32_t                sc_mac_csr;
       uint32_t                sc_rev_id;

       uint32_t                sc_coe_ctrl;
};

#define SMSC_MIN_BUFSZ          2048
#define SMSC_MAX_BUFSZ          18944

/*
* Various supported device vendors/products.
*/
static const struct usb_devno smsc_devs[] = {
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_LAN89530 },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_LAN9530 },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_LAN9730 },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_SMSC9500 },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_SMSC9500A },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_SMSC9500A_ALT },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_SMSC9500A_HAL },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_SMSC9500A_SAL10 },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_SMSC9500_ALT },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_SMSC9500_SAL10 },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_SMSC9505 },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_SMSC9505A },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_SMSC9505A_HAL },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_SMSC9505A_SAL10 },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_SMSC9505_SAL10 },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_SMSC9512_14 },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_SMSC9512_14_ALT },
       { USB_VENDOR_SMSC,      USB_PRODUCT_SMSC_SMSC9512_14_SAL10 }
};

#ifdef USB_DEBUG
#ifndef USMSC_DEBUG
#define usmscdebug 0
#else
static int usmscdebug = 1;

SYSCTL_SETUP(sysctl_hw_smsc_setup, "sysctl hw.usmsc setup")
{
       int err;
       const struct sysctlnode *rnode;
       const struct sysctlnode *cnode;

       err = sysctl_createv(clog, 0, NULL, &rnode,
           CTLFLAG_PERMANENT, CTLTYPE_NODE, "usmsc",
           SYSCTL_DESCR("usmsc global controls"),
           NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);

       if (err)
               goto fail;

       /* control debugging printfs */
       err = sysctl_createv(clog, 0, &rnode, &cnode,
           CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
           "debug", SYSCTL_DESCR("Enable debugging output"),
           NULL, 0, &usmscdebug, sizeof(usmscdebug), CTL_CREATE, CTL_EOL);
       if (err)
               goto fail;

       return;
fail:
       aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
}

#endif /* SMSC_DEBUG */
#endif /* USB_DEBUG */

#define DPRINTF(FMT,A,B,C,D)    USBHIST_LOG(usmscdebug,FMT,A,B,C,D)
#define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(usmscdebug,N,FMT,A,B,C,D)
#define USMSCHIST_FUNC()        USBHIST_FUNC()
#define USMSCHIST_CALLED()      USBHIST_CALLED(usmscdebug)

#define smsc_warn_printf(un, fmt, args...) \
       printf("%s: warning: " fmt, device_xname((un)->un_dev), ##args)

#define smsc_err_printf(un, fmt, args...) \
       printf("%s: error: " fmt, device_xname((un)->un_dev), ##args)

/* Function declarations */
static int       smsc_match(device_t, cfdata_t, void *);
static void      smsc_attach(device_t, device_t, void *);

CFATTACH_DECL_NEW(usmsc, sizeof(struct smsc_softc),
   smsc_match, smsc_attach, usbnet_detach, usbnet_activate);

static int       smsc_chip_init(struct usbnet *);
static int       smsc_setmacaddress(struct usbnet *, const uint8_t *);

static int       smsc_uno_init(struct ifnet *);
static void      smsc_uno_stop(struct ifnet *, int);

static void      smsc_reset(struct smsc_softc *);

static void      smsc_uno_miibus_statchg(struct ifnet *);
static int       smsc_readreg(struct usbnet *, uint32_t, uint32_t *);
static int       smsc_writereg(struct usbnet *, uint32_t, uint32_t);
static int       smsc_wait_for_bits(struct usbnet *, uint32_t, uint32_t);
static int       smsc_uno_miibus_readreg(struct usbnet *, int, int, uint16_t *);
static int       smsc_uno_miibus_writereg(struct usbnet *, int, int, uint16_t);

static int       smsc_uno_ioctl(struct ifnet *, u_long, void *);
static void      smsc_uno_mcast(struct ifnet *);
static unsigned  smsc_uno_tx_prepare(struct usbnet *, struct mbuf *,
                    struct usbnet_chain *);
static void      smsc_uno_rx_loop(struct usbnet *, struct usbnet_chain *,
                    uint32_t);

static const struct usbnet_ops smsc_ops = {
       .uno_stop = smsc_uno_stop,
       .uno_ioctl = smsc_uno_ioctl,
       .uno_mcast = smsc_uno_mcast,
       .uno_read_reg = smsc_uno_miibus_readreg,
       .uno_write_reg = smsc_uno_miibus_writereg,
       .uno_statchg = smsc_uno_miibus_statchg,
       .uno_tx_prepare = smsc_uno_tx_prepare,
       .uno_rx_loop = smsc_uno_rx_loop,
       .uno_init = smsc_uno_init,
};

static int
smsc_readreg(struct usbnet *un, uint32_t off, uint32_t *data)
{
       usb_device_request_t req;
       uint32_t buf;
       usbd_status err;

       if (usbnet_isdying(un))
               return 0;

       req.bmRequestType = UT_READ_VENDOR_DEVICE;
       req.bRequest = SMSC_UR_READ_REG;
       USETW(req.wValue, 0);
       USETW(req.wIndex, off);
       USETW(req.wLength, 4);

       err = usbd_do_request(un->un_udev, &req, &buf);
       if (err != 0)
               smsc_warn_printf(un, "Failed to read register 0x%0x\n", off);

       *data = le32toh(buf);

       return err;
}

static int
smsc_writereg(struct usbnet *un, uint32_t off, uint32_t data)
{
       usb_device_request_t req;
       uint32_t buf;
       usbd_status err;

       if (usbnet_isdying(un))
               return 0;

       buf = htole32(data);

       req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
       req.bRequest = SMSC_UR_WRITE_REG;
       USETW(req.wValue, 0);
       USETW(req.wIndex, off);
       USETW(req.wLength, 4);

       err = usbd_do_request(un->un_udev, &req, &buf);
       if (err != 0)
               smsc_warn_printf(un, "Failed to write register 0x%0x\n", off);

       return err;
}

static int
smsc_wait_for_bits(struct usbnet *un, uint32_t reg, uint32_t bits)
{
       uint32_t val;
       int err, i;

       for (i = 0; i < 100; i++) {
               if (usbnet_isdying(un))
                       return ENXIO;
               if ((err = smsc_readreg(un, reg, &val)) != 0)
                       return err;
               if (!(val & bits))
                       return 0;
               DELAY(5);
       }

       return 1;
}

static int
smsc_uno_miibus_readreg(struct usbnet *un, int phy, int reg, uint16_t *val)
{
       uint32_t addr;
       uint32_t data = 0;

       if (un->un_phyno != phy) {
               *val = 0;
               return EINVAL;
       }

       if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
               smsc_warn_printf(un, "MII is busy\n");
               *val = 0;
               return ETIMEDOUT;
       }

       addr = (phy << 11) | (reg << 6) | SMSC_MII_READ;
       smsc_writereg(un, SMSC_MII_ADDR, addr);

       if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
               smsc_warn_printf(un, "MII read timeout\n");
               *val = 0;
               return ETIMEDOUT;
       }

       smsc_readreg(un, SMSC_MII_DATA, &data);

       *val = data & 0xffff;
       return 0;
}

static int
smsc_uno_miibus_writereg(struct usbnet *un, int phy, int reg, uint16_t val)
{
       uint32_t addr;

       if (un->un_phyno != phy)
               return EINVAL;

       if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
               smsc_warn_printf(un, "MII is busy\n");
               return ETIMEDOUT;
       }

       smsc_writereg(un, SMSC_MII_DATA, val);

       addr = (phy << 11) | (reg << 6) | SMSC_MII_WRITE;
       smsc_writereg(un, SMSC_MII_ADDR, addr);

       if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
               smsc_warn_printf(un, "MII write timeout\n");
               return ETIMEDOUT;
       }

       return 0;
}

static void
smsc_uno_miibus_statchg(struct ifnet *ifp)
{
       USMSCHIST_FUNC(); USMSCHIST_CALLED();
       struct usbnet * const un = ifp->if_softc;

       if (usbnet_isdying(un))
               return;

       struct smsc_softc * const sc = usbnet_softc(un);
       struct mii_data * const mii = usbnet_mii(un);
       uint32_t flow;
       uint32_t afc_cfg;

       if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
           (IFM_ACTIVE | IFM_AVALID)) {
               switch (IFM_SUBTYPE(mii->mii_media_active)) {
                       case IFM_10_T:
                       case IFM_100_TX:
                               usbnet_set_link(un, true);
                               break;
                       case IFM_1000_T:
                               /* Gigabit ethernet not supported by chipset */
                               break;
                       default:
                               break;
               }
       }

       /* Lost link, do nothing. */
       if (!usbnet_havelink(un))
               return;

       int err = smsc_readreg(un, SMSC_AFC_CFG, &afc_cfg);
       if (err) {
               smsc_warn_printf(un, "failed to read initial AFC_CFG, "
                   "error %d\n", err);
               return;
       }

       /* Enable/disable full duplex operation and TX/RX pause */
       if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
               DPRINTF("full duplex operation", 0, 0, 0, 0);
               sc->sc_mac_csr &= ~SMSC_MAC_CSR_RCVOWN;
               sc->sc_mac_csr |= SMSC_MAC_CSR_FDPX;

               if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
                       flow = 0xffff0002;
               else
                       flow = 0;

               if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
                       afc_cfg |= 0xf;
               else
                       afc_cfg &= ~0xf;
       } else {
               DPRINTF("half duplex operation", 0, 0, 0, 0);
               sc->sc_mac_csr &= ~SMSC_MAC_CSR_FDPX;
               sc->sc_mac_csr |= SMSC_MAC_CSR_RCVOWN;

               flow = 0;
               afc_cfg |= 0xf;
       }

       err = smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
       err += smsc_writereg(un, SMSC_FLOW, flow);
       err += smsc_writereg(un, SMSC_AFC_CFG, afc_cfg);

       if (err)
               smsc_warn_printf(un, "media change failed, error %d\n", err);
}

static inline uint32_t
smsc_hash(uint8_t addr[ETHER_ADDR_LEN])
{

       return (ether_crc32_be(addr, ETHER_ADDR_LEN) >> 26) & 0x3f;
}

static void
smsc_uno_mcast(struct ifnet *ifp)
{
       USMSCHIST_FUNC(); USMSCHIST_CALLED();
       struct usbnet * const un = ifp->if_softc;
       struct smsc_softc * const sc = usbnet_softc(un);
       struct ethercom *ec = usbnet_ec(un);
       struct ether_multi *enm;
       struct ether_multistep step;
       uint32_t hashtbl[2] = { 0, 0 };
       uint32_t hash;

       if (usbnet_isdying(un))
               return;

       if (usbnet_ispromisc(un)) {
               ETHER_LOCK(ec);
allmulti:
               ec->ec_flags |= ETHER_F_ALLMULTI;
               ETHER_UNLOCK(ec);
               DPRINTF("receive all multicast enabled", 0, 0, 0, 0);
               sc->sc_mac_csr |= SMSC_MAC_CSR_MCPAS;
               sc->sc_mac_csr &= ~SMSC_MAC_CSR_HPFILT;
               smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
               return;
       } else {
               sc->sc_mac_csr |= SMSC_MAC_CSR_HPFILT;
               sc->sc_mac_csr &= ~(SMSC_MAC_CSR_PRMS | SMSC_MAC_CSR_MCPAS);
       }

       ETHER_LOCK(ec);
       ETHER_FIRST_MULTI(step, ec, enm);
       while (enm != NULL) {
               if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
                       goto allmulti;
               }

               hash = smsc_hash(enm->enm_addrlo);
               hashtbl[hash >> 5] |= 1 << (hash & 0x1F);
               ETHER_NEXT_MULTI(step, enm);
       }
       ec->ec_flags &= ~ETHER_F_ALLMULTI;
       ETHER_UNLOCK(ec);

       /* Debug */
       if (sc->sc_mac_csr & SMSC_MAC_CSR_HPFILT) {
               DPRINTF("receive select group of macs", 0, 0, 0, 0);
       } else {
               DPRINTF("receive own packets only", 0, 0, 0, 0);
       }

       /* Write the hash table and mac control registers */

       //XXX should we be doing this?
       smsc_writereg(un, SMSC_HASHH, hashtbl[1]);
       smsc_writereg(un, SMSC_HASHL, hashtbl[0]);
       smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
}

static int
smsc_setoe_locked(struct usbnet *un)
{
       struct smsc_softc * const sc = usbnet_softc(un);
       struct ifnet * const ifp = usbnet_ifp(un);
       uint32_t val;
       int err;

       KASSERT(IFNET_LOCKED(ifp));

       err = smsc_readreg(un, SMSC_COE_CTRL, &val);
       if (err != 0) {
               smsc_warn_printf(un, "failed to read SMSC_COE_CTRL (err=%d)\n",
                   err);
               return err;
       }

       /* Enable/disable the Rx checksum */
       if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
               val |= (SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);
       else
               val &= ~(SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);

       /* Enable/disable the Tx checksum (currently not supported) */
       if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
               val |= SMSC_COE_CTRL_TX_EN;
       else
               val &= ~SMSC_COE_CTRL_TX_EN;

       sc->sc_coe_ctrl = val;

       err = smsc_writereg(un, SMSC_COE_CTRL, val);
       if (err != 0) {
               smsc_warn_printf(un, "failed to write SMSC_COE_CTRL (err=%d)\n",
                   err);
               return err;
       }

       return 0;
}

static int
smsc_setmacaddress(struct usbnet *un, const uint8_t *addr)
{
       USMSCHIST_FUNC(); USMSCHIST_CALLED();
       int err;
       uint32_t val;

       DPRINTF("setting mac address to %02jx:%02jx:%02jx:...", addr[0],
           addr[1], addr[2], 0);

       DPRINTF("... %02jx:%02jx:%02jx", addr[3], addr[4], addr[5], 0);

       val = ((uint32_t)addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8)
           | addr[0];
       if ((err = smsc_writereg(un, SMSC_MAC_ADDRL, val)) != 0)
               goto done;

       val = (addr[5] << 8) | addr[4];
       err = smsc_writereg(un, SMSC_MAC_ADDRH, val);

done:
       return err;
}

static void
smsc_reset(struct smsc_softc *sc)
{
       struct usbnet * const un = &sc->smsc_un;

       if (usbnet_isdying(un))
               return;

       /* Wait a little while for the chip to get its brains in order. */
       DELAY(1000);

       /* Reinitialize controller to achieve full reset. */
       smsc_chip_init(un);
}

static int
smsc_uno_init(struct ifnet *ifp)
{
       struct usbnet * const un = ifp->if_softc;
       struct smsc_softc * const sc = usbnet_softc(un);

       /* Reset the ethernet interface. */
       smsc_reset(sc);

       /* TCP/UDP checksum offload engines. */
       smsc_setoe_locked(un);

       return 0;
}

static void
smsc_uno_stop(struct ifnet *ifp, int disable)
{
       struct usbnet * const un = ifp->if_softc;
       struct smsc_softc * const sc = usbnet_softc(un);

       // XXXNH didn't do this before
       smsc_reset(sc);
}

static int
smsc_chip_init(struct usbnet *un)
{
       struct smsc_softc * const sc = usbnet_softc(un);
       uint32_t reg_val;
       int burst_cap;
       int err;

       /* Enter H/W config mode */
       smsc_writereg(un, SMSC_HW_CFG, SMSC_HW_CFG_LRST);

       if ((err = smsc_wait_for_bits(un, SMSC_HW_CFG,
           SMSC_HW_CFG_LRST)) != 0) {
               smsc_warn_printf(un, "timed-out waiting for reset to "
                   "complete\n");
               goto init_failed;
       }

       /* Reset the PHY */
       smsc_writereg(un, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST);

       if ((err = smsc_wait_for_bits(un, SMSC_PM_CTRL,
           SMSC_PM_CTRL_PHY_RST)) != 0) {
               smsc_warn_printf(un, "timed-out waiting for phy reset to "
                   "complete\n");
               goto init_failed;
       }
       usbd_delay_ms(un->un_udev, 40);

       /* Set the mac address */
       struct ifnet * const ifp = usbnet_ifp(un);
       const char *eaddr = CLLADDR(ifp->if_sadl);
       if ((err = smsc_setmacaddress(un, eaddr)) != 0) {
               smsc_warn_printf(un, "failed to set the MAC address\n");
               goto init_failed;
       }

       /*
        * Don't know what the HW_CFG_BIR bit is, but following the reset
        * sequence as used in the Linux driver.
        */
       if ((err = smsc_readreg(un, SMSC_HW_CFG, &reg_val)) != 0) {
               smsc_warn_printf(un, "failed to read HW_CFG: %d\n", err);
               goto init_failed;
       }
       reg_val |= SMSC_HW_CFG_BIR;
       smsc_writereg(un, SMSC_HW_CFG, reg_val);

       /*
        * There is a so called 'turbo mode' that the linux driver supports, it
        * seems to allow you to jam multiple frames per Rx transaction.
        * By default this driver supports that and therefore allows multiple
        * frames per USB transfer.
        *
        * The xfer buffer size needs to reflect this as well, therefore based
        * on the calculations in the Linux driver the RX bufsize is set to
        * 18944,
        *     bufsz = (16 * 1024 + 5 * 512)
        *
        * Burst capability is the number of URBs that can be in a burst of
        * data/ethernet frames.
        */

       if (un->un_udev->ud_speed == USB_SPEED_HIGH)
               burst_cap = 37;
       else
               burst_cap = 128;

       smsc_writereg(un, SMSC_BURST_CAP, burst_cap);

       /* Set the default bulk in delay (magic value from Linux driver) */
       smsc_writereg(un, SMSC_BULK_IN_DLY, 0x00002000);

       /*
        * Initialise the RX interface
        */
       if ((err = smsc_readreg(un, SMSC_HW_CFG, &reg_val)) < 0) {
               smsc_warn_printf(un, "failed to read HW_CFG: (err = %d)\n",
                   err);
               goto init_failed;
       }

       /*
        * The following settings are used for 'turbo mode', a.k.a multiple
        * frames per Rx transaction (again info taken form Linux driver).
        */
       reg_val |= (SMSC_HW_CFG_MEF | SMSC_HW_CFG_BCE);

       /*
        * set Rx data offset to ETHER_ALIGN which will make the IP header
        * align on a word boundary.
        */
       reg_val |= ETHER_ALIGN << SMSC_HW_CFG_RXDOFF_SHIFT;

       smsc_writereg(un, SMSC_HW_CFG, reg_val);

       /* Clear the status register ? */
       smsc_writereg(un, SMSC_INTR_STATUS, 0xffffffff);

       /* Read and display the revision register */
       if ((err = smsc_readreg(un, SMSC_ID_REV, &sc->sc_rev_id)) < 0) {
               smsc_warn_printf(un, "failed to read ID_REV (err = %d)\n", err);
               goto init_failed;
       }

       /* GPIO/LED setup */
       reg_val = SMSC_LED_GPIO_CFG_SPD_LED | SMSC_LED_GPIO_CFG_LNK_LED |
           SMSC_LED_GPIO_CFG_FDX_LED;
       smsc_writereg(un, SMSC_LED_GPIO_CFG, reg_val);

       /*
        * Initialise the TX interface
        */
       smsc_writereg(un, SMSC_FLOW, 0);

       smsc_writereg(un, SMSC_AFC_CFG, AFC_CFG_DEFAULT);

       /* Read the current MAC configuration */
       if ((err = smsc_readreg(un, SMSC_MAC_CSR, &sc->sc_mac_csr)) < 0) {
               smsc_warn_printf(un, "failed to read MAC_CSR (err=%d)\n", err);
               goto init_failed;
       }

       /* disable pad stripping, collides with checksum offload */
       sc->sc_mac_csr &= ~SMSC_MAC_CSR_PADSTR;

       /* Vlan */
       smsc_writereg(un, SMSC_VLAN1, (uint32_t)ETHERTYPE_VLAN);

       /*
        * Start TX
        */
       sc->sc_mac_csr |= SMSC_MAC_CSR_TXEN;
       smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
       smsc_writereg(un, SMSC_TX_CFG, SMSC_TX_CFG_ON);

       /*
        * Start RX
        */
       sc->sc_mac_csr |= SMSC_MAC_CSR_RXEN;
       smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);

       return 0;

init_failed:
       smsc_err_printf(un, "smsc_chip_init failed (err=%d)\n", err);
       return err;
}

static int
smsc_uno_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
       struct usbnet * const un = ifp->if_softc;

       switch (cmd) {
       case SIOCSIFCAP:
               smsc_setoe_locked(un);
               break;
       default:
               break;
       }

       return 0;
}

static int
smsc_match(device_t parent, cfdata_t match, void *aux)
{
       struct usb_attach_arg *uaa = aux;

       return (usb_lookup(smsc_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
           UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}

static void
smsc_attach(device_t parent, device_t self, void *aux)
{
       USBNET_MII_DECL_DEFAULT(unm);
       struct smsc_softc * const sc = device_private(self);
       struct usbnet * const un = &sc->smsc_un;
       struct usb_attach_arg *uaa = aux;
       struct usbd_device *dev = uaa->uaa_device;
       usb_interface_descriptor_t *id;
       usb_endpoint_descriptor_t *ed;
       char *devinfop;
       unsigned bufsz;
       int err, i;
       uint32_t mac_h, mac_l;

       KASSERT((void *)sc == un);

       aprint_naive("\n");
       aprint_normal("\n");

       un->un_dev = self;
       un->un_udev = dev;
       un->un_sc = sc;
       un->un_ops = &smsc_ops;
       un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
       un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
       un->un_rx_list_cnt = SMSC_RX_LIST_CNT;
       un->un_tx_list_cnt = SMSC_TX_LIST_CNT;

       devinfop = usbd_devinfo_alloc(un->un_udev, 0);
       aprint_normal_dev(self, "%s\n", devinfop);
       usbd_devinfo_free(devinfop);

       err = usbd_set_config_no(dev, SMSC_CONFIG_INDEX, 1);
       if (err) {
               aprint_error_dev(self, "failed to set configuration"
                   ", err=%s\n", usbd_errstr(err));
               return;
       }

       /* Setup the endpoints for the SMSC LAN95xx device(s) */
       err = usbd_device2interface_handle(dev, SMSC_IFACE_IDX, &un->un_iface);
       if (err) {
               aprint_error_dev(self, "getting interface handle failed\n");
               return;
       }

       id = usbd_get_interface_descriptor(un->un_iface);

       if (dev->ud_speed >= USB_SPEED_HIGH) {
               bufsz = SMSC_MAX_BUFSZ;
       } else {
               bufsz = SMSC_MIN_BUFSZ;
       }
       un->un_rx_bufsz = bufsz;
       un->un_tx_bufsz = bufsz;

       /* Find endpoints. */
       for (i = 0; i < id->bNumEndpoints; i++) {
               ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
               if (!ed) {
                       aprint_error_dev(self, "couldn't get ep %d\n", i);
                       return;
               }
               if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
                   UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
                       un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
               } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
                          UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
                       un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
#if 0 /* not used yet */
               } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
                          UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
                       un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
#endif
               }
       }

       usbnet_attach(un);

#ifdef notyet
       /*
        * We can do TCPv4, and UDPv4 checksums in hardware.
        */
       struct ifnet *ifp = usbnet_ifp(un);

       ifp->if_capabilities |=
           /*IFCAP_CSUM_TCPv4_Tx |*/ IFCAP_CSUM_TCPv4_Rx |
           /*IFCAP_CSUM_UDPv4_Tx |*/ IFCAP_CSUM_UDPv4_Rx;
#endif
       struct ethercom *ec = usbnet_ec(un);
       ec->ec_capabilities = ETHERCAP_VLAN_MTU;

       /* Setup some of the basics */
       un->un_phyno = 1;

       /*
        * Attempt to get the mac address, if an EEPROM is not attached this
        * will just return FF:FF:FF:FF:FF:FF, so in such cases we invent a MAC
        * address based on urandom.
        */
       memset(un->un_eaddr, 0xff, ETHER_ADDR_LEN);

       prop_dictionary_t dict = device_properties(self);
       prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");

       if (eaprop != NULL) {
               KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
               KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
               memcpy(un->un_eaddr, prop_data_value(eaprop),
                   ETHER_ADDR_LEN);
       } else {
               /* Check if there is already a MAC address in the register */
               if ((smsc_readreg(un, SMSC_MAC_ADDRL, &mac_l) == 0) &&
                   (smsc_readreg(un, SMSC_MAC_ADDRH, &mac_h) == 0)) {
                       un->un_eaddr[5] = (uint8_t)((mac_h >> 8) & 0xff);
                       un->un_eaddr[4] = (uint8_t)((mac_h) & 0xff);
                       un->un_eaddr[3] = (uint8_t)((mac_l >> 24) & 0xff);
                       un->un_eaddr[2] = (uint8_t)((mac_l >> 16) & 0xff);
                       un->un_eaddr[1] = (uint8_t)((mac_l >> 8) & 0xff);
                       un->un_eaddr[0] = (uint8_t)((mac_l) & 0xff);
               }
       }

       usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
           0, &unm);
}

static void
smsc_uno_rx_loop(struct usbnet *un, struct usbnet_chain *c, uint32_t total_len)
{
       USMSCHIST_FUNC(); USMSCHIST_CALLED();
       struct smsc_softc * const sc = usbnet_softc(un);
       struct ifnet *ifp = usbnet_ifp(un);
       uint8_t *buf = c->unc_buf;
       int count;

       count = 0;
       DPRINTF("total_len %jd/%#jx", total_len, total_len, 0, 0);
       while (total_len != 0) {
               uint32_t rxhdr;
               if (total_len < sizeof(rxhdr)) {
                       DPRINTF("total_len %jd < sizeof(rxhdr) %jd",
                           total_len, sizeof(rxhdr), 0, 0);
                       if_statinc(ifp, if_ierrors);
                       return;
               }

               memcpy(&rxhdr, buf, sizeof(rxhdr));
               rxhdr = le32toh(rxhdr);
               buf += sizeof(rxhdr);
               total_len -= sizeof(rxhdr);

               if (rxhdr & SMSC_RX_STAT_COLLISION)
                       if_statinc(ifp, if_collisions);

               if (rxhdr & (SMSC_RX_STAT_ERROR
                          | SMSC_RX_STAT_LENGTH_ERROR
                          | SMSC_RX_STAT_MII_ERROR)) {
                       DPRINTF("rx error (hdr 0x%08jx)", rxhdr, 0, 0, 0);
                       if_statinc(ifp, if_ierrors);
                       return;
               }

               uint16_t pktlen = (uint16_t)SMSC_RX_STAT_FRM_LENGTH(rxhdr);
               DPRINTF("total_len %jd pktlen %jd rxhdr 0x%08jx", total_len,
                   pktlen, rxhdr, 0);

               if (pktlen < ETHER_HDR_LEN) {
                       DPRINTF("pktlen %jd < ETHER_HDR_LEN %jd", pktlen,
                           ETHER_HDR_LEN, 0, 0);
                       if_statinc(ifp, if_ierrors);
                       return;
               }

               pktlen += ETHER_ALIGN;

               if (pktlen > MCLBYTES) {
                       DPRINTF("pktlen %jd > MCLBYTES %jd", pktlen, MCLBYTES, 0,
                           0);
                       if_statinc(ifp, if_ierrors);
                       return;
               }

               if (pktlen > total_len) {
                       DPRINTF("pktlen %jd > total_len %jd", pktlen, total_len,
                           0, 0);
                       if_statinc(ifp, if_ierrors);
                       return;
               }

               uint8_t *pktbuf = buf + ETHER_ALIGN;
               size_t buflen = pktlen - ETHER_ALIGN;
               int mbuf_flags = M_HASFCS;
               int csum_flags = 0;
               uint16_t csum_data = 0;

               KASSERT(pktlen < MCLBYTES);

               /* Check if RX TCP/UDP checksumming is being offloaded */
               if (sc->sc_coe_ctrl & SMSC_COE_CTRL_RX_EN) {
                       DPRINTF("RX checksum offload checking", 0, 0, 0, 0);
                       struct ether_header *eh = (struct ether_header *)pktbuf;
                       const size_t cssz = sizeof(csum_data);

                       /* Remove the extra 2 bytes of the csum */
                       buflen -= cssz;

                       /*
                        * The checksum appears to be simplistically calculated
                        * over the udp/tcp header and data up to the end of the
                        * eth frame.  Which means if the eth frame is padded
                        * the csum calculation is incorrectly performed over
                        * the padding bytes as well. Therefore to be safe we
                        * ignore the H/W csum on frames less than or equal to
                        * 64 bytes.
                        *
                        * Ignore H/W csum for non-IPv4 packets.
                        */
                       DPRINTF("Ethertype %02jx pktlen %02jx",
                           be16toh(eh->ether_type), pktlen, 0, 0);
                       if (be16toh(eh->ether_type) == ETHERTYPE_IP &&
                           pktlen > ETHER_MIN_LEN) {

                               csum_flags |=
                                   (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);

                               /*
                                * Copy the TCP/UDP checksum from the last 2
                                * bytes of the transfer and put in the
                                * csum_data field.
                                */
                               memcpy(&csum_data, buf + pktlen - cssz, cssz);

                               /*
                                * The data is copied in network order, but the
                                * csum algorithm in the kernel expects it to be
                                * in host network order.
                                */
                               csum_data = ntohs(csum_data);
                               DPRINTF("RX checksum offloaded (0x%04jx)",
                                   csum_data, 0, 0, 0);
                       }
               }

               /* round up to next longword */
               pktlen = (pktlen + 3) & ~0x3;

               /* total_len does not include the padding */
               if (pktlen > total_len)
                       pktlen = total_len;

               buf += pktlen;
               total_len -= pktlen;

               /* push the packet up */
               usbnet_enqueue(un, pktbuf, buflen, csum_flags, csum_data,
                   mbuf_flags);

               count++;
       }

       if (count != 0)
               rnd_add_uint32(usbnet_rndsrc(un), count);
}

static unsigned
smsc_uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
{
       uint32_t txhdr;
       uint32_t frm_len = 0;

       const size_t hdrsz = sizeof(txhdr) * 2;

       if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - hdrsz)
               return 0;

       /*
        * Each frame is prefixed with two 32-bit values describing the
        * length of the packet and buffer.
        */
       txhdr = SMSC_TX_CTRL_0_BUF_SIZE(m->m_pkthdr.len) |
           SMSC_TX_CTRL_0_FIRST_SEG | SMSC_TX_CTRL_0_LAST_SEG;
       txhdr = htole32(txhdr);
       memcpy(c->unc_buf, &txhdr, sizeof(txhdr));

       txhdr = SMSC_TX_CTRL_1_PKT_LENGTH(m->m_pkthdr.len);
       txhdr = htole32(txhdr);
       memcpy(c->unc_buf + sizeof(txhdr), &txhdr, sizeof(txhdr));

       frm_len += hdrsz;

       /* Next copy in the actual packet */
       m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + frm_len);
       frm_len += m->m_pkthdr.len;

       return frm_len;
}

#ifdef _MODULE
#include "ioconf.c"
#endif

USBNET_MODULE(smsc)