/* $NetBSD: zs_ioasic.c,v 1.46 2022/07/20 14:19:38 thorpej Exp $ */

/*-
* Copyright (c) 1996, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Gordon W. Ross, Ken Hornstein, and by Jason R. Thorpe of the
* Numerical Aerospace Simulation Facility, NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Zilog Z8530 Dual UART driver (machine-dependent part).  This driver
* handles Z8530 chips attached to the DECstation/Alpha IOASIC.  Modified
* for NetBSD/alpha by Ken Hornstein and Jason R. Thorpe.  NetBSD/pmax
* adaption by Mattias Drochner.  Merge work by Tohru Nishimura.
*
* Runs two serial lines per chip using slave drivers.
* Plain tty/async lines use the zstty slave.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: zs_ioasic.c,v 1.46 2022/07/20 14:19:38 thorpej Exp $");

#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "zskbd.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/syslog.h>
#include <sys/intr.h>

#include <machine/autoconf.h>
#include <machine/z8530var.h>

#include <dev/cons.h>
#include <dev/ic/z8530reg.h>

#include <dev/tc/tcvar.h>
#include <dev/tc/ioasicreg.h>
#include <dev/tc/ioasicvar.h>

#include <dev/tc/zs_ioasicvar.h>

#if defined(__alpha__)
#include <machine/rpb.h>
#endif
#if defined(pmax)
#include <pmax/pmax/pmaxtype.h>
#endif

/*
* Helpers for console support.
*/
static void     zs_ioasic_cninit(tc_addr_t, tc_offset_t, int);
static int      zs_ioasic_cngetc(dev_t);
static void     zs_ioasic_cnputc(dev_t, int);
static void     zs_ioasic_cnpollc(dev_t, int);

struct consdev zs_ioasic_cons = {
       NULL, NULL, zs_ioasic_cngetc, zs_ioasic_cnputc,
       zs_ioasic_cnpollc, NULL, NULL, NULL, NODEV, CN_NORMAL,
};

static tc_offset_t zs_ioasic_console_offset;
static int zs_ioasic_console_channel;
static int zs_ioasic_console;
static struct zs_chanstate zs_ioasic_conschanstate_store;

static int      zs_ioasic_isconsole(tc_offset_t, int);
static void     zs_putc(struct zs_chanstate *, int);

/*
* Some warts needed by z8530tty.c
*/
int zs_def_cflag = (TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8;

/*
* ZS chips are fed a 7.372 MHz clock.
*/
#define PCLK    (9600 * 768)    /* PCLK pin input clock rate */

/* The layout of this is hardware-dependent (padding, order). */
struct zshan {
#if defined(__alpha__)
       volatile u_int  zc_csr;         /* ctrl,status, and indirect access */
       u_int           zc_pad0;
       volatile u_int  zc_data;        /* data */
       u_int           sc_pad1;
#endif
#if defined(pmax)
       volatile uint16_t zc_csr;       /* ctrl,status, and indirect access */
       unsigned : 16;
       volatile uint16_t zc_data;      /* data */
       unsigned : 16;
#endif
};

struct zsdevice {
       /* Yes, they are backwards. */
       struct  zshan zs_chan_b;
       struct  zshan zs_chan_a;
};

static const u_char zs_ioasic_init_reg[16] = {
       0,      /* 0: CMD (reset, etc.) */
       0,      /* 1: No interrupts yet. */
       0xf0,   /* 2: IVECT */
       ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
       ZSWR4_CLK_X16 | ZSWR4_ONESB,
       ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
       0,      /* 6: TXSYNC/SYNCLO */
       0,      /* 7: RXSYNC/SYNCHI */
       0,      /* 8: alias for data port */
       ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
       0,      /*10: Misc. TX/RX control bits */
       ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
       22,     /*12: BAUDLO (default=9600) */
       0,      /*13: BAUDHI (default=9600) */
       ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
       ZSWR15_BREAK_IE,
};

static struct zshan *
zs_ioasic_get_chan_addr(tc_addr_t zsaddr, int channel)
{
       struct zsdevice *addr;
       struct zshan *zc;

#if defined(__alpha__)
       addr = (struct zsdevice *)TC_DENSE_TO_SPARSE(zsaddr);
#endif
#if defined(pmax)
       addr = (struct zsdevice *)MIPS_PHYS_TO_KSEG1(zsaddr);
#endif

       if (channel == 0)
               zc = &addr->zs_chan_a;
       else
               zc = &addr->zs_chan_b;

       return (zc);
}


/****************************************************************
* Autoconfig
****************************************************************/

/* Definition of the driver for autoconfig. */
static int      zs_ioasic_match(device_t, cfdata_t, void *);
static void     zs_ioasic_attach(device_t, device_t, void *);
static int      zs_ioasic_print(void *, const char *name);
static int      zs_ioasic_submatch(device_t, cfdata_t,
                                  const int *, void *);

CFATTACH_DECL_NEW(zsc_ioasic, sizeof(struct zsc_softc),
   zs_ioasic_match, zs_ioasic_attach, NULL, NULL);

/* Interrupt handlers. */
static int      zs_ioasic_hardintr(void *);
static void     zs_ioasic_softintr(void *);

/*
* Is the zs chip present?
*/
static int
zs_ioasic_match(device_t parent, cfdata_t cf, void *aux)
{
       struct ioasicdev_attach_args *d = aux;
       tc_addr_t zs_addr;

       /*
        * Make sure that we're looking for the right kind of device.
        */
       if (strncmp(d->iada_modname, "z8530   ", TC_ROM_LLEN) != 0 &&
           strncmp(d->iada_modname, "scc", TC_ROM_LLEN) != 0)
               return (0);

       /*
        * Find out the device address, and check it for validity.
        */
       zs_addr = TC_DENSE_TO_SPARSE((tc_addr_t)d->iada_addr);
       if (tc_badaddr(zs_addr))
               return (0);

       return (1);
}

/*
* Attach a found zs.
*/
static void
zs_ioasic_attach(device_t parent, device_t self, void *aux)
{
       struct zsc_softc *zs = device_private(self);
       struct zsc_attach_args zs_args;
       struct zs_chanstate *cs;
       struct ioasicdev_attach_args *d = aux;
       struct zshan *zc;
       int s, channel;
       u_long zflg;
       int locs[ZSCCF_NLOCS];

       zs->zsc_dev = self;
       aprint_normal("\n");

       /*
        * Initialize software state for each channel.
        */
       for (channel = 0; channel < 2; channel++) {
               zs_args.channel = channel;
               zs_args.hwflags = 0;

               if (zs_ioasic_isconsole(d->iada_offset, channel)) {
                       cs = &zs_ioasic_conschanstate_store;
                       zs_args.hwflags |= ZS_HWFLAG_CONSOLE;
               } else {
                       cs = malloc(sizeof(struct zs_chanstate),
                               M_DEVBUF, M_WAITOK | M_ZERO);
                       zs_lock_init(cs);
                       zc = zs_ioasic_get_chan_addr(d->iada_addr, channel);
                       cs->cs_reg_csr = (volatile void *)&zc->zc_csr;

                       memcpy(cs->cs_creg, zs_ioasic_init_reg, 16);
                       memcpy(cs->cs_preg, zs_ioasic_init_reg, 16);

                       cs->cs_defcflag = zs_def_cflag;
                       cs->cs_defspeed = 9600;         /* XXX */
                       (void)zs_set_modes(cs, cs->cs_defcflag);
               }

               zs->zsc_cs[channel] = cs;
               zs->zsc_addroffset = d->iada_offset; /* cookie only */
               cs->cs_channel = channel;
               cs->cs_ops = &zsops_null;
               cs->cs_brg_clk = PCLK / 16;

               /*
                * DCD and CTS interrupts are only meaningful on
                * SCC 0/B, and RTS and DTR only on B of SCC 0 & 1.
                *
                * XXX This is sorta gross.
                */
               if (d->iada_offset == 0x00100000 && channel == 1) {
                       cs->cs_creg[15] |= ZSWR15_DCD_IE;
                       cs->cs_preg[15] |= ZSWR15_DCD_IE;
                       zflg = ZIP_FLAGS_DCDCTS;
               } else
                       zflg = 0;
               if (channel == 1)
                       zflg |= ZIP_FLAGS_DTRRTS;
               cs->cs_private = (void *)zflg;

               /*
                * Clear the master interrupt enable.
                * The INTENA is common to both channels,
                * so just do it on the A channel.
                */
               if (channel == 0) {
                       zs_write_reg(cs, 9, 0);
               }

               /*
                * Set up the flow/modem control channel pointer to
                * deal with the weird wiring on the TC Alpha and
                * DECstation.
                */
               if (channel == 1)
                       cs->cs_ctl_chan = zs->zsc_cs[0];
               else
                       cs->cs_ctl_chan = NULL;

               locs[ZSCCF_CHANNEL] = channel;

               /*
                * Look for a child driver for this channel.
                * The child attach will setup the hardware.
                */
               if (config_found(self, (void *)&zs_args, zs_ioasic_print,
                                CFARGS(.submatch = zs_ioasic_submatch,
                                       .locators = locs)) == NULL) {
                       /* No sub-driver.  Just reset it. */
                       uint8_t reset = (channel == 0) ?
                           ZSWR9_A_RESET : ZSWR9_B_RESET;
                       s = splhigh();
                       zs_write_reg(cs, 9, reset);
                       splx(s);
               }
       }

       /*
        * Set up the ioasic interrupt handler.
        */
       ioasic_intr_establish(parent, d->iada_cookie, TC_IPL_TTY,
           zs_ioasic_hardintr, zs);
       zs->zsc_sih = softint_establish(SOFTINT_SERIAL,
           zs_ioasic_softintr, zs);
       if (zs->zsc_sih == NULL)
               panic("%s: unable to register softintr", __func__);

       /*
        * Set the master interrupt enable and interrupt vector.  The
        * Sun does this only on one channel.  The old Alpha SCC driver
        * did it on both.  We'll do it on both.
        */
       s = splhigh();
       /* interrupt vector */
       zs_write_reg(zs->zsc_cs[0], 2, zs_ioasic_init_reg[2]);
       zs_write_reg(zs->zsc_cs[1], 2, zs_ioasic_init_reg[2]);

       /* master interrupt control (enable) */
       zs_write_reg(zs->zsc_cs[0], 9, zs_ioasic_init_reg[9]);
       zs_write_reg(zs->zsc_cs[1], 9, zs_ioasic_init_reg[9]);
#if defined(__alpha__)
       /* ioasic interrupt enable */
       *(volatile u_int *)(ioasic_base + IOASIC_IMSK) |=
                   IOASIC_INTR_SCC_1 | IOASIC_INTR_SCC_0;
       tc_mb();
#endif
       splx(s);
}

static int
zs_ioasic_print(void *aux, const char *name)
{
       struct zsc_attach_args *args = aux;

       if (name != NULL)
               aprint_normal("%s:", name);

       if (args->channel != -1)
               aprint_normal(" channel %d", args->channel);

       return (UNCONF);
}

static int
zs_ioasic_submatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
{
       struct zsc_softc *zs = device_private(parent);
       struct zsc_attach_args *pa = aux;
       const char *defname = "";

       if (cf->cf_loc[ZSCCF_CHANNEL] != ZSCCF_CHANNEL_DEFAULT &&
           cf->cf_loc[ZSCCF_CHANNEL] != locs[ZSCCF_CHANNEL])
               return (0);

       if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT) {
               if (pa->channel == 0) {
#if defined(pmax)
                       if (systype == DS_MAXINE)
                               return (0);
#endif
                       if (zs->zsc_addroffset == 0x100000)
                               defname = "vsms";
                       else
                               defname = "lkkbd";
               }
               else if (zs->zsc_addroffset == 0x100000)
                       defname = "zstty";
#if defined(pmax)
               else if (systype == DS_MAXINE)
                       return (0);
#endif
#if defined(__alpha__)
               else if (cputype == ST_DEC_3000_300)
                       return (0);
#endif
               else
                       defname = "zstty"; /* 3min/3max+, DEC3000/500 */

               if (strcmp(cf->cf_name, defname))
                       return (0);
       }
       return (config_match(parent, cf, aux));
}

/*
* Hardware interrupt handler.
*/
static int
zs_ioasic_hardintr(void *arg)
{
       struct zsc_softc *zsc = arg;

       /*
        * Call the upper-level MI hardware interrupt handler.
        */
       zsc_intr_hard(zsc);

       /*
        * Check to see if we need to schedule any software-level
        * processing interrupts.
        */
       if (zsc->zsc_cs[0]->cs_softreq | zsc->zsc_cs[1]->cs_softreq)
               softint_schedule(zsc->zsc_sih);

       return (1);
}

/*
* Software-level interrupt (character processing, lower priority).
*/
static void
zs_ioasic_softintr(void *arg)
{
       struct zsc_softc *zsc = arg;
       int s;

       s = spltty();
       (void)zsc_intr_soft(zsc);
       splx(s);
}

/*
* MD functions for setting the baud rate and control modes.
*/
int
zs_set_speed(struct zs_chanstate *cs, int bps /*bits per second*/)
{
       int tconst, real_bps;

       if (bps == 0)
               return (0);

#ifdef DIAGNOSTIC
       if (cs->cs_brg_clk == 0)
               panic("zs_set_speed");
#endif

       tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
       if (tconst < 0)
               return (EINVAL);

       /* Convert back to make sure we can do it. */
       real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);

       /* XXX - Allow some tolerance here? */
       if (real_bps != bps)
               return (EINVAL);

       cs->cs_preg[12] = tconst;
       cs->cs_preg[13] = tconst >> 8;

       /* Caller will stuff the pending registers. */
       return (0);
}

int
zs_set_modes(struct zs_chanstate *cs, int cflag)
{
       u_long privflags = (u_long)cs->cs_private;
       int s;

       /*
        * Output hardware flow control on the chip is horrendous:
        * if carrier detect drops, the receiver is disabled, and if
        * CTS drops, the transmitter is stopped IN MID CHARACTER!
        * Therefore, NEVER set the HFC bit, and instead use the
        * status interrupt to detect CTS changes.
        */
       s = splzs();
       if ((cflag & (CLOCAL | MDMBUF)) != 0)
               cs->cs_rr0_dcd = 0;
       else
               cs->cs_rr0_dcd = ZSRR0_DCD;
       if ((cflag & CRTSCTS) != 0) {
               cs->cs_wr5_dtr = ZSWR5_DTR;
               cs->cs_wr5_rts = ZSWR5_RTS;
               cs->cs_rr0_cts = ZSRR0_CTS;
       } else if ((cflag & CDTRCTS) != 0) {
               cs->cs_wr5_dtr = 0;
               cs->cs_wr5_rts = ZSWR5_DTR;
               cs->cs_rr0_cts = ZSRR0_CTS;
       } else if ((cflag & MDMBUF) != 0) {
               cs->cs_wr5_dtr = 0;
               cs->cs_wr5_rts = ZSWR5_DTR;
               cs->cs_rr0_cts = ZSRR0_DCD;
       } else {
               cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
               cs->cs_wr5_rts = 0;
               cs->cs_rr0_cts = 0;
       }

       if ((privflags & ZIP_FLAGS_DCDCTS) == 0) {
               cs->cs_rr0_dcd &= ~(ZSRR0_CTS|ZSRR0_DCD);
               cs->cs_rr0_cts &= ~(ZSRR0_CTS|ZSRR0_DCD);
       }
       if ((privflags & ZIP_FLAGS_DTRRTS) == 0) {
               cs->cs_wr5_dtr &= ~(ZSWR5_RTS|ZSWR5_DTR);
               cs->cs_wr5_rts &= ~(ZSWR5_RTS|ZSWR5_DTR);
       }
       splx(s);

       /* Caller will stuff the pending registers. */
       return (0);
}

/*
* Functions to read and write individual registers in a channel.
* The ZS chip requires a 1.6 uSec. recovery time between accesses,
* and the Alpha TC hardware does NOT take care of this for you.
* The delay is now handled inside the chip access functions.
* These could be inlines, but with the delay, speed is moot.
*/
#if defined(pmax)
#undef  DELAY
#define DELAY(x)
#endif

u_int
zs_read_reg(struct zs_chanstate *cs, u_int reg)
{
       volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;
       unsigned val;

       zc->zc_csr = reg << 8;
       tc_wmb();
       DELAY(5);
       val = (zc->zc_csr >> 8) & 0xff;
       /* tc_mb(); */
       DELAY(5);
       return (val);
}

void
zs_write_reg(struct zs_chanstate *cs, u_int reg, u_int val)
{
       volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;

       zc->zc_csr = reg << 8;
       tc_wmb();
       DELAY(5);
       zc->zc_csr = val << 8;
       tc_wmb();
       DELAY(5);
}

u_int
zs_read_csr(struct zs_chanstate *cs)
{
       volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;
       unsigned val;

       val = (zc->zc_csr >> 8) & 0xff;
       /* tc_mb(); */
       DELAY(5);
       return (val);
}

void
zs_write_csr(struct zs_chanstate *cs, u_int val)
{
       volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;

       zc->zc_csr = val << 8;
       tc_wmb();
       DELAY(5);
}

u_int
zs_read_data(struct zs_chanstate *cs)
{
       volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;
       unsigned val;

       val = (zc->zc_data) >> 8 & 0xff;
       /* tc_mb(); */
       DELAY(5);
       return (val);
}

void
zs_write_data(struct zs_chanstate *cs, u_int val)
{
       volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;

       zc->zc_data = val << 8;
       tc_wmb();
       DELAY(5);
}

/****************************************************************
* Console support functions
****************************************************************/

/*
* Handle user request to enter kernel debugger.
*/
void
zs_abort(struct zs_chanstate *cs)
{
       u_int rr0;

       /* Wait for end of break. */
       /* XXX - Limit the wait? */
       do {
               rr0 = zs_read_csr(cs);
       } while (rr0 & ZSRR0_BREAK);

#if defined(KGDB)
       zskgdb(cs);
#elif defined(DDB)
       Debugger();
#else
       printf("zs_abort: ignoring break on console\n");
#endif
}

/*
* Polled input char.
*/
int
zs_getc(struct zs_chanstate *cs)
{
       int s, c;
       u_int rr0;

       s = splhigh();
       /* Wait for a character to arrive. */
       do {
               rr0 = zs_read_csr(cs);
       } while ((rr0 & ZSRR0_RX_READY) == 0);

       c = zs_read_data(cs);
       splx(s);

       /*
        * This is used by the kd driver to read scan codes,
        * so don't translate '\r' ==> '\n' here...
        */
       return (c);
}

/*
* Polled output char.
*/
static void
zs_putc(struct zs_chanstate *cs, int c)
{
       int s;
       u_int rr0;

       s = splhigh();
       /* Wait for transmitter to become ready. */
       do {
               rr0 = zs_read_csr(cs);
       } while ((rr0 & ZSRR0_TX_READY) == 0);

       zs_write_data(cs, c);

       /* Wait for the character to be transmitted. */
       do {
               rr0 = zs_read_csr(cs);
       } while ((rr0 & ZSRR0_TX_READY) == 0);
       splx(s);
}

/*****************************************************************/

/*
* zs_ioasic_cninit --
*      Initialize the serial channel for either a keyboard or
*      a serial console.
*/
static void
zs_ioasic_cninit(tc_addr_t ioasic_addr, tc_offset_t zs_offset, int channel)
{
       struct zs_chanstate *cs;
       tc_addr_t zs_addr;
       struct zshan *zc;
       u_long zflg;

       /*
        * Initialize the console finder helpers.
        */
       zs_ioasic_console_offset = zs_offset;
       zs_ioasic_console_channel = channel;
       zs_ioasic_console = 1;

       /*
        * Pointer to channel state.
        */
       cs = &zs_ioasic_conschanstate_store;

       /*
        * Compute the physical address of the chip, "map" it via
        * K0SEG, and then get the address of the actual channel.
        */
#if defined(__alpha__)
       zs_addr = ALPHA_PHYS_TO_K0SEG(ioasic_addr + zs_offset);
#endif
#if defined(pmax)
       zs_addr = MIPS_PHYS_TO_KSEG1(ioasic_addr + zs_offset);
#endif
       zc = zs_ioasic_get_chan_addr(zs_addr, channel);

       /* Setup temporary chanstate. */
       cs->cs_reg_csr = (volatile void *)&zc->zc_csr;

       cs->cs_channel = channel;
       cs->cs_ops = &zsops_null;
       cs->cs_brg_clk = PCLK / 16;

       /* Initialize the pending registers. */
       memcpy(cs->cs_preg, zs_ioasic_init_reg, 16);
       /* cs->cs_preg[5] |= (ZSWR5_DTR | ZSWR5_RTS); */

       /*
        * DCD and CTS interrupts are only meaningful on
        * SCC 0/B, and RTS and DTR only on B of SCC 0 & 1.
        *
        * XXX This is sorta gross.
        */
       if (zs_offset == 0x00100000 && channel == 1)
               zflg = ZIP_FLAGS_DCDCTS;
       else
               zflg = 0;
       if (channel == 1)
               zflg |= ZIP_FLAGS_DTRRTS;
       cs->cs_private = (void *)zflg;

       /* Clear the master interrupt enable. */
       zs_write_reg(cs, 9, 0);

       /* Reset the whole SCC chip. */
       zs_write_reg(cs, 9, ZSWR9_HARD_RESET);

       /* Copy "pending" to "current" and H/W. */
       zs_loadchannelregs(cs);
}

/*
* zs_ioasic_cnattach --
*      Initialize and attach a serial console.
*/
void
zs_ioasic_cnattach(tc_addr_t ioasic_addr, tc_offset_t zs_offset, int channel)
{
       struct zs_chanstate *cs = &zs_ioasic_conschanstate_store;
       extern const struct cdevsw zstty_cdevsw;

       zs_ioasic_cninit(ioasic_addr, zs_offset, channel);
       zs_lock_init(cs);
       cs->cs_defspeed = 9600;
       cs->cs_defcflag = (TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8;

       /* Point the console at the SCC. */
       cn_tab = &zs_ioasic_cons;
       cn_tab->cn_pri = CN_REMOTE;
       cn_tab->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw),
                                (zs_offset == 0x100000) ? 0 : 1);
}

/*
* zs_ioasic_lk201_cnattach --
*      Initialize and attach a keyboard.
*/
int
zs_ioasic_lk201_cnattach(tc_addr_t ioasic_addr, tc_offset_t zs_offset,
   int channel)
{
#if (NZSKBD > 0)
       struct zs_chanstate *cs = &zs_ioasic_conschanstate_store;

       zs_ioasic_cninit(ioasic_addr, zs_offset, channel);
       zs_lock_init(cs);
       cs->cs_defspeed = 4800;
       cs->cs_defcflag = (TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8;
       return (zskbd_cnattach(cs));
#else
       return (ENXIO);
#endif
}

static int
zs_ioasic_isconsole(tc_offset_t offset, int channel)
{

       if (zs_ioasic_console &&
           offset == zs_ioasic_console_offset &&
           channel == zs_ioasic_console_channel)
               return (1);

       return (0);
}

/*
* Polled console input putchar.
*/
static int
zs_ioasic_cngetc(dev_t dev)
{

       return (zs_getc(&zs_ioasic_conschanstate_store));
}

/*
* Polled console output putchar.
*/
static void
zs_ioasic_cnputc(dev_t dev, int c)
{

       zs_putc(&zs_ioasic_conschanstate_store, c);
}

/*
* Set polling/no polling on console.
*/
static void
zs_ioasic_cnpollc(dev_t dev, int onoff)
{

       /* XXX ??? */
}