/*      $NetBSD: if_se.c,v 1.119 2023/12/20 18:09:19 skrll Exp $        */

/*
* Copyright (c) 1997 Ian W. Dall <[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by Ian W. Dall.
* 4. The name of the author may not be used to endorse or promote products
*    derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Driver for Cabletron EA41x scsi ethernet adaptor.
*
* Written by Ian Dall <[email protected]> Feb 3, 1997
*
* Acknowledgement: Thanks are due to Philip L. Budne <[email protected]>
* who reverse engineered the EA41x. In developing this code,
* Phil's userland daemon "etherd", was referred to extensively in lieu
* of accurate documentation for the device.
*
* This is a weird device! It doesn't conform to the scsi spec in much
* at all. About the only standard command supported is inquiry. Most
* commands are 6 bytes long, but the recv data is only 1 byte.  Data
* must be received by periodically polling the device with the recv
* command.
*
* This driver is also a bit unusual. It must look like a network
* interface and it must also appear to be a scsi device to the scsi
* system. Hence there are cases where there are two entry points. eg
* sedone is to be called from the scsi subsystem and se_ifstart from
* the network interface subsystem.  In addition, to facilitate scsi
* commands issued by userland programs, there are open, close and
* ioctl entry points. This allows a user program to, for example,
* display the ea41x stats and download new code into the adaptor ---
* functions which can't be performed through the ifconfig interface.
* Normal operation does not require any special userland program.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_se.c,v 1.119 2023/12/20 18:09:19 skrll Exp $");

#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_atalk.h"
#endif

#include <sys/param.h>
#include <sys/types.h>

#include <sys/buf.h>
#include <sys/callout.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/disk.h>
#include <sys/disklabel.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <sys/uio.h>
#include <sys/workqueue.h>

#include <dev/scsipi/scsi_ctron_ether.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/scsipi/scsipi_all.h>

#include <net/bpf.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>

#ifdef INET
#include <netinet/if_inarp.h>
#include <netinet/in.h>
#endif

#ifdef NETATALK
#include <netatalk/at.h>
#endif

#define SETIMEOUT       1000
#define SEOUTSTANDING   4
#define SERETRIES       4
#define SE_PREFIX       4
#define ETHER_CRC       4
#define SEMINSIZE       60

/* Make this big enough for an ETHERMTU packet in promiscuous mode. */
#define MAX_SNAP        (ETHERMTU + sizeof(struct ether_header) + \
                        SE_PREFIX + ETHER_CRC)

/* 10 full length packets appears to be the max ever returned. 16k is OK */
#define RBUF_LEN        (16 * 1024)

/* Tuning parameters:
* The EA41x only returns a maximum of 10 packets (regardless of size).
* We will attempt to adapt to polling fast enough to get RDATA_GOAL packets
* per read
*/
#define RDATA_MAX 10
#define RDATA_GOAL 8

/* se_poll and se_poll0 are the normal polling rate and the minimum
* polling rate respectively. se_poll0 should be chosen so that at
* maximum ethernet speed, we will read nearly RDATA_MAX packets. se_poll
* should be chosen for reasonable maximum latency.
* In practice, if we are being saturated with min length packets, we
* can't poll fast enough. Polling with zero delay actually
* worsens performance. se_poll0 is enforced to be always at least 1
*/
#define SE_POLL 40              /* default in milliseconds */
#define SE_POLL0 10             /* default in milliseconds */
int se_poll = 0;                /* Delay in ticks set at attach time */
int se_poll0 = 0;
#ifdef SE_DEBUG
int se_max_received = 0;        /* Instrumentation */
#endif

#define PROTOCMD(p, d) \
       ((d) = (p))

#define PROTOCMD_DECL(name) \
       static const struct scsi_ctron_ether_generic name

#define PROTOCMD_DECL_SPECIAL(name) \
       static const struct __CONCAT(scsi_, name) name

/* Command initializers for commands using scsi_ctron_ether_generic */
PROTOCMD_DECL(ctron_ether_send)  = {CTRON_ETHER_SEND, 0, {0,0}, 0};
PROTOCMD_DECL(ctron_ether_add_proto) = {CTRON_ETHER_ADD_PROTO, 0, {0,0}, 0};
PROTOCMD_DECL(ctron_ether_get_addr) = {CTRON_ETHER_GET_ADDR, 0, {0,0}, 0};
PROTOCMD_DECL(ctron_ether_set_media) = {CTRON_ETHER_SET_MEDIA, 0, {0,0}, 0};
PROTOCMD_DECL(ctron_ether_set_addr) = {CTRON_ETHER_SET_ADDR, 0, {0,0}, 0};
PROTOCMD_DECL(ctron_ether_set_multi) = {CTRON_ETHER_SET_MULTI, 0, {0,0}, 0};
PROTOCMD_DECL(ctron_ether_remove_multi) =
   {CTRON_ETHER_REMOVE_MULTI, 0, {0,0}, 0};

/* Command initializers for commands using their own structures */
PROTOCMD_DECL_SPECIAL(ctron_ether_recv) = {CTRON_ETHER_RECV};
PROTOCMD_DECL_SPECIAL(ctron_ether_set_mode) =
   {CTRON_ETHER_SET_MODE, 0, {0,0}, 0};

struct se_softc {
       device_t sc_dev;
       struct ethercom sc_ethercom;    /* Ethernet common part */
       struct scsipi_periph *sc_periph;/* contains our targ, lun, etc. */

       struct callout sc_recv_ch;
       struct kmutex sc_iflock;
       struct if_percpuq *sc_ipq;
       struct workqueue *sc_recv_wq, *sc_send_wq;
       struct work sc_recv_work, sc_send_work;
       int sc_recv_work_pending, sc_send_work_pending;

       char *sc_tbuf;
       char *sc_rbuf;
       int protos;
#define PROTO_IP        0x01
#define PROTO_ARP       0x02
#define PROTO_REVARP    0x04
#define PROTO_AT        0x08
#define PROTO_AARP      0x10
       int sc_debug;
       int sc_flags;
       int sc_last_timeout;
       int sc_enabled;
       int sc_attach_state;
};

static int      sematch(device_t, cfdata_t, void *);
static void     seattach(device_t, device_t, void *);
static int      sedetach(device_t, int);

static void     se_ifstart(struct ifnet *);

static void     sedone(struct scsipi_xfer *, int);
static int      se_ioctl(struct ifnet *, u_long, void *);
#if 0
static void     sewatchdog(struct ifnet *);
#endif

#if 0
static inline uint16_t ether_cmp(void *, void *);
#endif
static void     se_recv_callout(void *);
static void     se_recv_worker(struct work *wk, void *cookie);
static void     se_recv(struct se_softc *);
static struct mbuf *se_get(struct se_softc *, char *, int);
static int      se_read(struct se_softc *, char *, int);
#if 0
static void     se_reset(struct se_softc *);
#endif
static int      se_add_proto(struct se_softc *, int);
static int      se_get_addr(struct se_softc *, uint8_t *);
static int      se_set_media(struct se_softc *, int);
static int      se_init(struct se_softc *);
static int      se_set_multi(struct se_softc *, uint8_t *);
static int      se_remove_multi(struct se_softc *, uint8_t *);
#if 0
static int      sc_set_all_multi(struct se_softc *, int);
#endif
static void     se_stop(struct se_softc *);
static inline int se_scsipi_cmd(struct scsipi_periph *periph,
                       struct scsipi_generic *scsipi_cmd,
                       int cmdlen, u_char *data_addr, int datalen,
                       int retries, int timeout, struct buf *bp,
                       int flags);
static void     se_send_worker(struct work *wk, void *cookie);
static int      se_set_mode(struct se_softc *, int, int);

int     se_enable(struct se_softc *);
void    se_disable(struct se_softc *);

CFATTACH_DECL_NEW(se, sizeof(struct se_softc),
   sematch, seattach, sedetach, NULL);

extern struct cfdriver se_cd;

dev_type_open(seopen);
dev_type_close(seclose);
dev_type_ioctl(seioctl);

const struct cdevsw se_cdevsw = {
       .d_open = seopen,
       .d_close = seclose,
       .d_read = noread,
       .d_write = nowrite,
       .d_ioctl = seioctl,
       .d_stop = nostop,
       .d_tty = notty,
       .d_poll = nopoll,
       .d_mmap = nommap,
       .d_kqfilter = nokqfilter,
       .d_discard = nodiscard,
       .d_flag = D_OTHER | D_MPSAFE
};

const struct scsipi_periphsw se_switch = {
       NULL,                   /* Use default error handler */
       NULL,                   /* have no queue */
       NULL,                   /* have no async handler */
       sedone,                 /* deal with send/recv completion */
};

const struct scsipi_inquiry_pattern se_patterns[] = {
       {T_PROCESSOR, T_FIXED,
        "CABLETRN",         "EA412",                 ""},
       {T_PROCESSOR, T_FIXED,
        "Cabletrn",         "EA412",                 ""},
};

#if 0
/*
* Compare two Ether/802 addresses for equality, inlined and
* unrolled for speed.
* Note: use this like memcmp()
*/
static inline uint16_t
ether_cmp(void *one, void *two)
{
       uint16_t *a = (uint16_t *) one;
       uint16_t *b = (uint16_t *) two;
       uint16_t diff;

       diff = (a[0] - b[0]) | (a[1] - b[1]) | (a[2] - b[2]);

       return (diff);
}

#define ETHER_CMP       ether_cmp
#endif

static int
sematch(device_t parent, cfdata_t match, void *aux)
{
       struct scsipibus_attach_args *sa = aux;
       int priority;

       (void)scsipi_inqmatch(&sa->sa_inqbuf,
           se_patterns, sizeof(se_patterns) / sizeof(se_patterns[0]),
           sizeof(se_patterns[0]), &priority);
       return (priority);
}

/*
* The routine called by the low level scsi routine when it discovers
* a device suitable for this driver.
*/
static void
seattach(device_t parent, device_t self, void *aux)
{
       struct se_softc *sc = device_private(self);
       struct scsipibus_attach_args *sa = aux;
       struct scsipi_periph *periph = sa->sa_periph;
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       uint8_t myaddr[ETHER_ADDR_LEN];
       char wqname[MAXCOMLEN];
       int rv;

       sc->sc_dev = self;

       printf("\n");
       SC_DEBUG(periph, SCSIPI_DB2, ("seattach: "));

       sc->sc_attach_state = 0;
       callout_init(&sc->sc_recv_ch, CALLOUT_MPSAFE);
       callout_setfunc(&sc->sc_recv_ch, se_recv_callout, (void *)sc);
       mutex_init(&sc->sc_iflock, MUTEX_DEFAULT, IPL_SOFTNET);

       /*
        * Store information needed to contact our base driver
        */
       sc->sc_periph = periph;
       periph->periph_dev = sc->sc_dev;
       periph->periph_switch = &se_switch;

       se_poll = (SE_POLL * hz) / 1000;
       se_poll = se_poll? se_poll: 1;
       se_poll0 = (SE_POLL0 * hz) / 1000;
       se_poll0 = se_poll0? se_poll0: 1;

       /*
        * Initialize and attach send and receive buffers
        */
       sc->sc_tbuf = malloc(ETHERMTU + sizeof(struct ether_header),
                            M_DEVBUF, M_WAITOK);
       sc->sc_rbuf = malloc(RBUF_LEN, M_DEVBUF, M_WAITOK);

       /* Initialize ifnet structure. */
       strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
       ifp->if_softc = sc;
       ifp->if_start = se_ifstart;
       ifp->if_ioctl = se_ioctl;
       ifp->if_watchdog = NULL;
       ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
       ifp->if_extflags = IFEF_MPSAFE;
       IFQ_SET_READY(&ifp->if_snd);

       se_get_addr(sc, myaddr);
       sc->sc_attach_state = 1;

       /* Attach the interface. */
       if_initialize(ifp);

       snprintf(wqname, sizeof(wqname), "%sRx", device_xname(sc->sc_dev));
       rv = workqueue_create(&sc->sc_recv_wq, wqname, se_recv_worker, sc,
           PRI_SOFTNET, IPL_NET, WQ_MPSAFE);
       if (rv != 0) {
               aprint_error_dev(sc->sc_dev,
                   "unable to create recv Rx workqueue\n");
               sedetach(sc->sc_dev, 0);
               return; /* Error */
       }
       sc->sc_recv_work_pending = false;
       sc->sc_attach_state = 2;

       snprintf(wqname, sizeof(wqname), "%sTx", device_xname(sc->sc_dev));
       rv = workqueue_create(&sc->sc_send_wq, wqname, se_send_worker, ifp,
           PRI_SOFTNET, IPL_NET, WQ_MPSAFE);
       if (rv != 0) {
               aprint_error_dev(sc->sc_dev,
                   "unable to create send Tx workqueue\n");
               sedetach(sc->sc_dev, 0);
               return; /* Error */
       }
       sc->sc_send_work_pending = false;
       sc->sc_attach_state = 3;

       sc->sc_ipq = if_percpuq_create(&sc->sc_ethercom.ec_if);
       ether_ifattach(ifp, myaddr);
       if_register(ifp);
       sc->sc_attach_state = 4;
}

static int
sedetach(device_t self, int flags)
{
       struct se_softc *sc = device_private(self);
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;

       switch(sc->sc_attach_state) {
       case 4:
               se_stop(sc);
               mutex_enter(&sc->sc_iflock);
               ifp->if_flags &= ~IFF_RUNNING;
               se_disable(sc);
               ether_ifdetach(ifp);
               if_detach(ifp);
               mutex_exit(&sc->sc_iflock);
               if_percpuq_destroy(sc->sc_ipq);
               /*FALLTHROUGH*/
       case 3:
               workqueue_destroy(sc->sc_send_wq);
               /*FALLTHROUGH*/
       case 2:
               workqueue_destroy(sc->sc_recv_wq);
               /*FALLTHROUGH*/
       case 1:
               free(sc->sc_rbuf, M_DEVBUF);
               free(sc->sc_tbuf, M_DEVBUF);
               callout_destroy(&sc->sc_recv_ch);
               mutex_destroy(&sc->sc_iflock);
               break;
       default:
               aprint_error_dev(sc->sc_dev, "detach failed (state %d)\n",
                   sc->sc_attach_state);
               return 1;
               break;
       }
       return 0;
}

/*
* Send a command to the device
*/
static inline int
se_scsipi_cmd(struct scsipi_periph *periph, struct scsipi_generic *cmd,
   int cmdlen, u_char *data_addr, int datalen, int retries, int timeout,
   struct buf *bp, int flags)
{
       int error;

       error = scsipi_command(periph, cmd, cmdlen, data_addr,
           datalen, retries, timeout, bp, flags);
       return (error);
}

/*
* Start routine for calling from network sub system
*/
static void
se_ifstart(struct ifnet *ifp)
{
       struct se_softc *sc = ifp->if_softc;

       mutex_enter(&sc->sc_iflock);
       if (!sc->sc_send_work_pending)  {
               sc->sc_send_work_pending = true;
               workqueue_enqueue(sc->sc_send_wq, &sc->sc_send_work, NULL);
       }
       /* else: nothing to do - work is already queued */
       mutex_exit(&sc->sc_iflock);
}

/*
* Invoke the transmit workqueue and transmission on the interface.
*/
static void
se_send_worker(struct work *wk, void *cookie)
{
       struct ifnet *ifp = cookie;
       struct se_softc *sc = ifp->if_softc;
       struct scsi_ctron_ether_generic send_cmd;
       struct mbuf *m, *m0;
       int len, error;
       u_char *cp;

       mutex_enter(&sc->sc_iflock);
       sc->sc_send_work_pending = false;
       mutex_exit(&sc->sc_iflock);

       KASSERT(if_is_mpsafe(ifp));

       /* Don't transmit if interface is busy or not running */
       if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
               return;

       while (1) {
               IFQ_DEQUEUE(&ifp->if_snd, m0);
               if (m0 == 0)
                       break;

               /* If BPF is listening on this interface, let it see the
                * packet before we commit it to the wire.
                */
               bpf_mtap(ifp, m0, BPF_D_OUT);

               /* We need to use m->m_pkthdr.len, so require the header */
               if ((m0->m_flags & M_PKTHDR) == 0)
                       panic("ctscstart: no header mbuf");
               len = m0->m_pkthdr.len;

               /* Mark the interface busy. */
               ifp->if_flags |= IFF_OACTIVE;

               /* Chain; copy into linear buffer allocated at attach time. */
               cp = sc->sc_tbuf;
               for (m = m0; m != NULL; ) {
                       memcpy(cp, mtod(m, u_char *), m->m_len);
                       cp += m->m_len;
                       m = m0 = m_free(m);
               }
               if (len < SEMINSIZE) {
#ifdef SEDEBUG
                       if (sc->sc_debug)
                               printf("se: packet size %d (%zu) < %d\n", len,
                                   cp - (u_char *)sc->sc_tbuf, SEMINSIZE);
#endif
                       memset(cp, 0, SEMINSIZE - len);
                       len = SEMINSIZE;
               }

               /* Fill out SCSI command. */
               PROTOCMD(ctron_ether_send, send_cmd);
               _lto2b(len, send_cmd.length);

               /* Send command to device. */
               error = se_scsipi_cmd(sc->sc_periph,
                   (void *)&send_cmd, sizeof(send_cmd),
                   sc->sc_tbuf, len, SERETRIES,
                   SETIMEOUT, NULL, XS_CTL_NOSLEEP | XS_CTL_DATA_OUT);
               if (error) {
                       aprint_error_dev(sc->sc_dev,
                           "not queued, error %d\n", error);
                       if_statinc(ifp, if_oerrors);
                       ifp->if_flags &= ~IFF_OACTIVE;
               } else
                       if_statinc(ifp, if_opackets);
       }
}


/*
* Called from the scsibus layer via our scsi device switch.
*/
static void
sedone(struct scsipi_xfer *xs, int error)
{
       struct se_softc *sc = device_private(xs->xs_periph->periph_dev);
       struct scsipi_generic *cmd = xs->cmd;
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;

       if (IS_SEND(cmd)) {
               ifp->if_flags &= ~IFF_OACTIVE;
       } else if (IS_RECV(cmd)) {
               /* RECV complete */
               /* pass data up. reschedule a recv */
               /* scsipi_free_xs will call start. Harmless. */
               if (error) {
                       /* Reschedule after a delay */
                       callout_schedule(&sc->sc_recv_ch, se_poll);
               } else {
                       int n, ntimeo;
                       n = se_read(sc, xs->data, xs->datalen - xs->resid);
#ifdef SE_DEBUG
                       if (n > se_max_received)
                               se_max_received = n;
#endif
                       if (n == 0)
                               ntimeo = se_poll;
                       else if (n >= RDATA_MAX)
                               ntimeo = se_poll0;
                       else {
                               ntimeo = sc->sc_last_timeout;
                               ntimeo = (ntimeo * RDATA_GOAL)/n;
                               ntimeo = (ntimeo < se_poll0?
                                         se_poll0: ntimeo);
                               ntimeo = (ntimeo > se_poll?
                                         se_poll: ntimeo);
                       }
                       sc->sc_last_timeout = ntimeo;
                       callout_schedule(&sc->sc_recv_ch, ntimeo);
               }
       }
}

/*
* Setup a receive command by queuing the work.
* Usually called from a callout, but also from se_init().
*/
static void
se_recv_callout(void *v)
{
       /* do a recv command */
       struct se_softc *sc = (struct se_softc *) v;

       if (sc->sc_enabled == 0)
               return;

       mutex_enter(&sc->sc_iflock);
       if (sc->sc_recv_work_pending == true) {
               callout_schedule(&sc->sc_recv_ch, se_poll);
               mutex_exit(&sc->sc_iflock);
               return;
       }

       sc->sc_recv_work_pending = true;
       workqueue_enqueue(sc->sc_recv_wq, &sc->sc_recv_work, NULL);
       mutex_exit(&sc->sc_iflock);
}

/*
* Invoke the receive workqueue
*/
static void
se_recv_worker(struct work *wk, void *cookie)
{
       struct se_softc *sc = (struct se_softc *) cookie;

       mutex_enter(&sc->sc_iflock);
       sc->sc_recv_work_pending = false;
       mutex_exit(&sc->sc_iflock);
       se_recv(sc);

}

/*
* Do the actual work of receiving data.
*/
static void
se_recv(struct se_softc *sc)
{
       struct scsi_ctron_ether_recv recv_cmd;
       int error;

       /* do a recv command */
       PROTOCMD(ctron_ether_recv, recv_cmd);

       error = se_scsipi_cmd(sc->sc_periph,
           (void *)&recv_cmd, sizeof(recv_cmd),
           sc->sc_rbuf, RBUF_LEN, SERETRIES, SETIMEOUT, NULL,
           XS_CTL_NOSLEEP | XS_CTL_DATA_IN);
       if (error)
               callout_schedule(&sc->sc_recv_ch, se_poll);
}

/*
* We copy the data into mbufs.  When full cluster sized units are present
* we copy into clusters.
*/
static struct mbuf *
se_get(struct se_softc *sc, char *data, int totlen)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       struct mbuf *m, *m0, *newm;
       int len;

       MGETHDR(m0, M_DONTWAIT, MT_DATA);
       if (m0 == 0)
               return (0);
       m_set_rcvif(m0, ifp);
       m0->m_pkthdr.len = totlen;
       len = MHLEN;
       m = m0;

       while (totlen > 0) {
               if (totlen >= MINCLSIZE) {
                       MCLGET(m, M_DONTWAIT);
                       if ((m->m_flags & M_EXT) == 0)
                               goto bad;
                       len = MCLBYTES;
               }

               if (m == m0) {
                       char *newdata = (char *)
                           ALIGN(m->m_data + sizeof(struct ether_header)) -
                           sizeof(struct ether_header);
                       len -= newdata - m->m_data;
                       m->m_data = newdata;
               }

               m->m_len = len = uimin(totlen, len);
               memcpy(mtod(m, void *), data, len);
               data += len;

               totlen -= len;
               if (totlen > 0) {
                       MGET(newm, M_DONTWAIT, MT_DATA);
                       if (newm == 0)
                               goto bad;
                       len = MLEN;
                       m = m->m_next = newm;
               }
       }

       return (m0);

bad:
       m_freem(m0);
       return (0);
}

/*
* Pass packets to higher levels.
*/
static int
se_read(struct se_softc *sc, char *data, int datalen)
{
       struct mbuf *m;
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       int n;

       n = 0;
       while (datalen >= 2) {
               int len = _2btol(data);
               data += 2;
               datalen -= 2;

               if (len == 0)
                       break;
#ifdef SEDEBUG
               if (sc->sc_debug) {
                       printf("se_read: datalen = %d, packetlen = %d, proto = 0x%04x\n", datalen, len,
                        ntohs(((struct ether_header *)data)->ether_type));
               }
#endif
               if (len <= sizeof(struct ether_header) ||
                   len > MAX_SNAP) {
#ifdef SEDEBUG
                       printf("%s: invalid packet size %d; dropping\n",
                              device_xname(sc->sc_dev), len);
#endif
                       if_statinc(ifp, if_ierrors);
                       goto next_packet;
               }

               /* Don't need crc. Must keep ether header for BPF */
               m = se_get(sc, data, len - ETHER_CRC);
               if (m == 0) {
#ifdef SEDEBUG
                       if (sc->sc_debug)
                               printf("se_read: se_get returned null\n");
#endif
                       if_statinc(ifp, if_ierrors);
                       goto next_packet;
               }
               if ((ifp->if_flags & IFF_PROMISC) != 0) {
                       m_adj(m, SE_PREFIX);
               }

               /* Pass the packet up. */
               if_percpuq_enqueue(sc->sc_ipq, m);

       next_packet:
               data += len;
               datalen -= len;
               n++;
       }
       return (n);
}

#if 0
static void
sewatchdog(struct ifnet *ifp)
{
       struct se_softc *sc = ifp->if_softc;

       log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
       if_statinc(ifp, if_oerrors);

       se_reset(sc);
}

static void
se_reset(struct se_softc *sc)
{
#if 0
       /* Maybe we don't *really* want to reset the entire bus
        * because the ctron isn't working. We would like to send a
        * "BUS DEVICE RESET" message, but don't think the ctron
        * understands it.
        */
       se_scsipi_cmd(sc->sc_periph, 0, 0, 0, 0, SERETRIES, 2000, NULL,
           XS_CTL_RESET);
#endif
       se_init(sc);
}
#endif

static int
se_add_proto(struct se_softc *sc, int proto)
{
       int error;
       struct scsi_ctron_ether_generic add_proto_cmd;
       uint8_t data[2];
       _lto2b(proto, data);
#ifdef SEDEBUG
       if (sc->sc_debug)
               printf("se: adding proto 0x%02x%02x\n", data[0], data[1]);
#endif

       PROTOCMD(ctron_ether_add_proto, add_proto_cmd);
       _lto2b(sizeof(data), add_proto_cmd.length);
       error = se_scsipi_cmd(sc->sc_periph,
           (void *)&add_proto_cmd, sizeof(add_proto_cmd),
           data, sizeof(data), SERETRIES, SETIMEOUT, NULL,
           XS_CTL_DATA_OUT);
       return (error);
}

static int
se_get_addr(struct se_softc *sc, uint8_t *myaddr)
{
       int error;
       struct scsi_ctron_ether_generic get_addr_cmd;

       PROTOCMD(ctron_ether_get_addr, get_addr_cmd);
       _lto2b(ETHER_ADDR_LEN, get_addr_cmd.length);
       error = se_scsipi_cmd(sc->sc_periph,
           (void *)&get_addr_cmd, sizeof(get_addr_cmd),
           myaddr, ETHER_ADDR_LEN, SERETRIES, SETIMEOUT, NULL,
           XS_CTL_DATA_IN);
       printf("%s: ethernet address %s\n", device_xname(sc->sc_dev),
           ether_sprintf(myaddr));
       return (error);
}


static int
se_set_media(struct se_softc *sc, int type)
{
       int error;
       struct scsi_ctron_ether_generic set_media_cmd;

       PROTOCMD(ctron_ether_set_media, set_media_cmd);
       set_media_cmd.byte3 = type;
       error = se_scsipi_cmd(sc->sc_periph,
           (void *)&set_media_cmd, sizeof(set_media_cmd),
           0, 0, SERETRIES, SETIMEOUT, NULL, 0);
       return (error);
}

static int
se_set_mode(struct se_softc *sc, int len, int mode)
{
       int error;
       struct scsi_ctron_ether_set_mode set_mode_cmd;

       PROTOCMD(ctron_ether_set_mode, set_mode_cmd);
       set_mode_cmd.mode = mode;
       _lto2b(len, set_mode_cmd.length);
       error = se_scsipi_cmd(sc->sc_periph,
           (void *)&set_mode_cmd, sizeof(set_mode_cmd),
           0, 0, SERETRIES, SETIMEOUT, NULL, 0);
       return (error);
}


static int
se_init(struct se_softc *sc)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       struct scsi_ctron_ether_generic set_addr_cmd;
       uint8_t enaddr[ETHER_ADDR_LEN];
       int error;

       if (ifp->if_flags & IFF_PROMISC) {
               error = se_set_mode(sc, MAX_SNAP, 1);
       }
       else
               error = se_set_mode(sc, ETHERMTU + sizeof(struct ether_header),
                   0);
       if (error != 0)
               return (error);

       PROTOCMD(ctron_ether_set_addr, set_addr_cmd);
       _lto2b(ETHER_ADDR_LEN, set_addr_cmd.length);
       memcpy(enaddr, CLLADDR(ifp->if_sadl), sizeof(enaddr));
       error = se_scsipi_cmd(sc->sc_periph,
           (void *)&set_addr_cmd, sizeof(set_addr_cmd),
           enaddr, ETHER_ADDR_LEN, SERETRIES, SETIMEOUT, NULL,
           XS_CTL_DATA_OUT);
       if (error != 0)
               return (error);

       if ((sc->protos & PROTO_IP) &&
           (error = se_add_proto(sc, ETHERTYPE_IP)) != 0)
               return (error);
       if ((sc->protos & PROTO_ARP) &&
           (error = se_add_proto(sc, ETHERTYPE_ARP)) != 0)
               return (error);
       if ((sc->protos & PROTO_REVARP) &&
           (error = se_add_proto(sc, ETHERTYPE_REVARP)) != 0)
               return (error);
#ifdef NETATALK
       if ((sc->protos & PROTO_AT) &&
           (error = se_add_proto(sc, ETHERTYPE_ATALK)) != 0)
               return (error);
       if ((sc->protos & PROTO_AARP) &&
           (error = se_add_proto(sc, ETHERTYPE_AARP)) != 0)
               return (error);
#endif

       if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == IFF_UP) {
               ifp->if_flags |= IFF_RUNNING;
               mutex_enter(&sc->sc_iflock);
               if (!sc->sc_recv_work_pending)  {
                       sc->sc_recv_work_pending = true;
                       workqueue_enqueue(sc->sc_recv_wq, &sc->sc_recv_work,
                           NULL);
               }
               mutex_exit(&sc->sc_iflock);
               ifp->if_flags &= ~IFF_OACTIVE;
               mutex_enter(&sc->sc_iflock);
               if (!sc->sc_send_work_pending)  {
                       sc->sc_send_work_pending = true;
                       workqueue_enqueue(sc->sc_send_wq, &sc->sc_send_work,
                           NULL);
               }
               mutex_exit(&sc->sc_iflock);
       }
       return (error);
}

static int
se_set_multi(struct se_softc *sc, uint8_t *addr)
{
       struct scsi_ctron_ether_generic set_multi_cmd;
       int error;

       if (sc->sc_debug)
               printf("%s: set_set_multi: %s\n", device_xname(sc->sc_dev),
                   ether_sprintf(addr));

       PROTOCMD(ctron_ether_set_multi, set_multi_cmd);
       _lto2b(ETHER_ADDR_LEN, set_multi_cmd.length);
       error = se_scsipi_cmd(sc->sc_periph,
           (void *)&set_multi_cmd, sizeof(set_multi_cmd),
           addr, ETHER_ADDR_LEN, SERETRIES, SETIMEOUT, NULL, XS_CTL_DATA_OUT);
       return (error);
}

static int
se_remove_multi(struct se_softc *sc, uint8_t *addr)
{
       struct scsi_ctron_ether_generic remove_multi_cmd;
       int error;

       if (sc->sc_debug)
               printf("%s: se_remove_multi: %s\n", device_xname(sc->sc_dev),
                   ether_sprintf(addr));

       PROTOCMD(ctron_ether_remove_multi, remove_multi_cmd);
       _lto2b(ETHER_ADDR_LEN, remove_multi_cmd.length);
       error = se_scsipi_cmd(sc->sc_periph,
           (void *)&remove_multi_cmd, sizeof(remove_multi_cmd),
           addr, ETHER_ADDR_LEN, SERETRIES, SETIMEOUT, NULL, XS_CTL_DATA_OUT);
       return (error);
}

#if 0   /* not used  --thorpej */
static int
sc_set_all_multi(struct se_softc *sc, int set)
{
       int error = 0;
       uint8_t *addr;
       struct ethercom *ec = &sc->sc_ethercom;
       struct ether_multi *enm;
       struct ether_multistep step;

       ETHER_LOCK(ec);
       ETHER_FIRST_MULTI(step, ec, enm);
       while (enm != NULL) {
               if (ETHER_CMP(enm->enm_addrlo, enm->enm_addrhi)) {
                       /*
                        * We must listen to a range of multicast addresses.
                        * For now, just accept all multicasts, rather than
                        * trying to set only those filter bits needed to match
                        * the range.  (At this time, the only use of address
                        * ranges is for IP multicast routing, for which the
                        * range is big enough to require all bits set.)
                        */
                       /* We have no way of adding a range to this device.
                        * stepping through all addresses in the range is
                        * typically not possible. The only real alternative
                        * is to go into promicuous mode and filter by hand.
                        */
                       ETHER_UNLOCK(ec);
                       return (ENODEV);

               }

               addr = enm->enm_addrlo;
               if ((error = set ? se_set_multi(sc, addr) :
                   se_remove_multi(sc, addr)) != 0)
                       return (error);
               ETHER_NEXT_MULTI(step, enm);
       }
       ETHER_UNLOCK(ec);

       return (error);
}
#endif /* not used */

static void
se_stop(struct se_softc *sc)
{

       /* Don't schedule any reads */
       callout_halt(&sc->sc_recv_ch, &sc->sc_iflock);

       /* Wait for the workqueues to finish */
       mutex_enter(&sc->sc_iflock);
       workqueue_wait(sc->sc_recv_wq, &sc->sc_recv_work);
       workqueue_wait(sc->sc_send_wq, &sc->sc_send_work);
       mutex_exit(&sc->sc_iflock);

       /* Abort any scsi cmds in progress */
       mutex_enter(chan_mtx(sc->sc_periph->periph_channel));
       scsipi_kill_pending(sc->sc_periph);
       mutex_exit(chan_mtx(sc->sc_periph->periph_channel));
}


/*
* Process an ioctl request.
*/
static int
se_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
       struct se_softc *sc = ifp->if_softc;
       struct ifaddr *ifa = (struct ifaddr *)data;
       struct ifreq *ifr = (struct ifreq *)data;
       struct sockaddr *sa;
       int error = 0;


       switch (cmd) {

       case SIOCINITIFADDR:
               mutex_enter(&sc->sc_iflock);
               if ((error = se_enable(sc)) != 0)
                       break;
               ifp->if_flags |= IFF_UP;
               mutex_exit(&sc->sc_iflock);

               if ((error = se_set_media(sc, CMEDIA_AUTOSENSE)) != 0)
                       break;

               switch (ifa->ifa_addr->sa_family) {
#ifdef INET
               case AF_INET:
                       sc->protos |= (PROTO_IP | PROTO_ARP | PROTO_REVARP);
                       if ((error = se_init(sc)) != 0)
                               break;
                       arp_ifinit(ifp, ifa);
                       break;
#endif
#ifdef NETATALK
               case AF_APPLETALK:
                       sc->protos |= (PROTO_AT | PROTO_AARP);
                       if ((error = se_init(sc)) != 0)
                               break;
                       break;
#endif
               default:
                       error = se_init(sc);
                       break;
               }
               break;


       case SIOCSIFFLAGS:
               if ((error = ifioctl_common(ifp, cmd, data)) != 0)
                       break;
               /* XXX re-use ether_ioctl() */
               switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
               case IFF_RUNNING:
                       /*
                        * If interface is marked down and it is running, then
                        * stop it.
                        */
                       se_stop(sc);
                       mutex_enter(&sc->sc_iflock);
                       ifp->if_flags &= ~IFF_RUNNING;
                       se_disable(sc);
                       mutex_exit(&sc->sc_iflock);
                       break;
               case IFF_UP:
                       /*
                        * If interface is marked up and it is stopped, then
                        * start it.
                        */
                       mutex_enter(&sc->sc_iflock);
                       error = se_enable(sc);
                       mutex_exit(&sc->sc_iflock);
                       if (error)
                               break;
                       error = se_init(sc);
                       break;
               default:
                       /*
                        * Reset the interface to pick up changes in any other
                        * flags that affect hardware registers.
                        */
                       if (sc->sc_enabled)
                               error = se_init(sc);
                       break;
               }
#ifdef SEDEBUG
               if (ifp->if_flags & IFF_DEBUG)
                       sc->sc_debug = 1;
               else
                       sc->sc_debug = 0;
#endif
               break;

       case SIOCADDMULTI:
       case SIOCDELMULTI:
               mutex_enter(&sc->sc_iflock);
               sa = sockaddr_dup(ifreq_getaddr(cmd, ifr), M_WAITOK);
               mutex_exit(&sc->sc_iflock);
               if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
                       if (ifp->if_flags & IFF_RUNNING) {
                               error = (cmd == SIOCADDMULTI) ?
                                  se_set_multi(sc, sa->sa_data) :
                                  se_remove_multi(sc, sa->sa_data);
                       } else
                               error = 0;
               }
               mutex_enter(&sc->sc_iflock);
               sockaddr_free(sa);
               mutex_exit(&sc->sc_iflock);
               break;

       default:

               error = ether_ioctl(ifp, cmd, data);
               break;
       }

       return (error);
}

/*
* Enable the network interface.
*/
int
se_enable(struct se_softc *sc)
{
       struct scsipi_periph *periph = sc->sc_periph;
       struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter;
       int error = 0;

       if (sc->sc_enabled == 0) {
               if ((error = scsipi_adapter_addref(adapt)) == 0)
                       sc->sc_enabled = 1;
               else
                       aprint_error_dev(sc->sc_dev, "device enable failed\n");
       }
       return (error);
}

/*
* Disable the network interface.
*/
void
se_disable(struct se_softc *sc)
{
       struct scsipi_periph *periph = sc->sc_periph;
       struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter;

       if (sc->sc_enabled != 0) {
               scsipi_adapter_delref(adapt);
               sc->sc_enabled = 0;
       }
}

#define SEUNIT(z)       (minor(z))
/*
* open the device.
*/
int
seopen(dev_t dev, int flag, int fmt, struct lwp *l)
{
       int unit, error;
       struct se_softc *sc;
       struct scsipi_periph *periph;
       struct scsipi_adapter *adapt;

       unit = SEUNIT(dev);
       sc = device_lookup_private(&se_cd, unit);
       if (sc == NULL)
               return (ENXIO);

       periph = sc->sc_periph;
       adapt = periph->periph_channel->chan_adapter;

       if ((error = scsipi_adapter_addref(adapt)) != 0)
               return (error);

       SC_DEBUG(periph, SCSIPI_DB1,
           ("scopen: dev=0x%"PRIx64" (unit %d (of %d))\n", dev, unit,
           se_cd.cd_ndevs));

       periph->periph_flags |= PERIPH_OPEN;

       SC_DEBUG(periph, SCSIPI_DB3, ("open complete\n"));
       return (0);
}

/*
* close the device.. only called if we are the LAST
* occurrence of an open device
*/
int
seclose(dev_t dev, int flag, int fmt, struct lwp *l)
{
       struct se_softc *sc = device_lookup_private(&se_cd, SEUNIT(dev));
       struct scsipi_periph *periph = sc->sc_periph;
       struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter;

       SC_DEBUG(sc->sc_periph, SCSIPI_DB1, ("closing\n"));

       scsipi_wait_drain(periph);

       scsipi_adapter_delref(adapt);
       periph->periph_flags &= ~PERIPH_OPEN;

       return (0);
}

/*
* Perform special action on behalf of the user
* Only does generic scsi ioctls.
*/
int
seioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l)
{
       struct se_softc *sc = device_lookup_private(&se_cd, SEUNIT(dev));

       return (scsipi_do_ioctl(sc->sc_periph, dev, cmd, addr, flag, l));
}