/*      $NetBSD: rf_raid1.c,v 1.39 2021/07/23 22:34:12 oster Exp $      */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: William V. Courtright II
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
*  Software Distribution Coordinator  or  [email protected]
*  School of Computer Science
*  Carnegie Mellon University
*  Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/

/*****************************************************************************
*
* rf_raid1.c -- implements RAID Level 1
*
*****************************************************************************/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.39 2021/07/23 22:34:12 oster Exp $");

#include "rf_raid.h"
#include "rf_raid1.h"
#include "rf_dag.h"
#include "rf_dagffrd.h"
#include "rf_dagffwr.h"
#include "rf_dagdegrd.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_diskqueue.h"
#include "rf_general.h"
#include "rf_utils.h"
#include "rf_parityscan.h"
#include "rf_mcpair.h"
#include "rf_layout.h"
#include "rf_map.h"
#include "rf_engine.h"
#include "rf_reconbuffer.h"

typedef struct RF_Raid1ConfigInfo_s {
       RF_RowCol_t **stripeIdentifier;
}       RF_Raid1ConfigInfo_t;
/* start of day code specific to RAID level 1 */
int
rf_ConfigureRAID1(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
                 RF_Config_t *cfgPtr)
{
       RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
       RF_Raid1ConfigInfo_t *info;
       RF_RowCol_t i;

       /* Sanity check the number of columns... */
       if (raidPtr->numCol < 2 || raidPtr->numCol % 2 != 0) {
               return (EINVAL);
       }

       /* create a RAID level 1 configuration structure */
       info = RF_MallocAndAdd(sizeof(*info), raidPtr->cleanupList);
       if (info == NULL)
               return (ENOMEM);
       layoutPtr->layoutSpecificInfo = (void *) info;

       /* ... and fill it in. */
       info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
       if (info->stripeIdentifier == NULL)
               return (ENOMEM);
       for (i = 0; i < (raidPtr->numCol / 2); i++) {
               info->stripeIdentifier[i][0] = (2 * i);
               info->stripeIdentifier[i][1] = (2 * i) + 1;
       }

       /* this implementation of RAID level 1 uses one row of numCol disks
        * and allows multiple (numCol / 2) stripes per row.  A stripe
        * consists of a single data unit and a single parity (mirror) unit.
        * stripe id = raidAddr / stripeUnitSize */
       raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
       layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
       layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
       layoutPtr->numDataCol = 1;
       layoutPtr->numParityCol = 1;
       return (0);
}


/* returns the physical disk location of the primary copy in the mirror pair */
void
rf_MapSectorRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
                 RF_RowCol_t *col, RF_SectorNum_t *diskSector,
                 int remap)
{
       RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
       RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);

       *col = 2 * mirrorPair;
       *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
}


/* Map Parity
*
* returns the physical disk location of the secondary copy in the mirror
* pair
*/
void
rf_MapParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
                 RF_RowCol_t *col, RF_SectorNum_t *diskSector,
                 int remap)
{
       RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
       RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);

       *col = (2 * mirrorPair) + 1;

       *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
}


/* IdentifyStripeRAID1
*
* returns a list of disks for a given redundancy group
*/
void
rf_IdentifyStripeRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t addr,
                      RF_RowCol_t **diskids)
{
       RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
       RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
       RF_ASSERT(stripeID >= 0);
       RF_ASSERT(addr >= 0);
       *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
       RF_ASSERT(*diskids);
}


/* MapSIDToPSIDRAID1
*
* maps a logical stripe to a stripe in the redundant array
*/
void
rf_MapSIDToPSIDRAID1(RF_RaidLayout_t *layoutPtr,
                    RF_StripeNum_t stripeID,
                    RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru)
{
       *which_ru = 0;
       *psID = stripeID;
}



/******************************************************************************
* select a graph to perform a single-stripe access
*
* Parameters:  raidPtr    - description of the physical array
*              type       - type of operation (read or write) requested
*              asmap      - logical & physical addresses for this access
*              createFunc - name of function to use to create the graph
*****************************************************************************/

void
rf_RAID1DagSelect(RF_Raid_t *raidPtr, RF_IoType_t type,
                 RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc)
{
       RF_RowCol_t fcol, oc __unused;
       RF_PhysDiskAddr_t *failedPDA;
       int     prior_recon;
       RF_RowStatus_t rstat;
       RF_SectorNum_t oo __unused;


       RF_ASSERT(RF_IO_IS_R_OR_W(type));

       if (asmap->numDataFailed + asmap->numParityFailed > 1) {
#if RF_DEBUG_DAG
               if (rf_dagDebug)
                       RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
#endif
               *createFunc = NULL;
               return;
       }
       if (asmap->numDataFailed + asmap->numParityFailed) {
               /*
                * We've got a fault. Re-map to spare space, iff applicable.
                * Shouldn't the arch-independent code do this for us?
                * Anyway, it turns out if we don't do this here, then when
                * we're reconstructing, writes go only to the surviving
                * original disk, and aren't reflected on the reconstructed
                * spare. Oops. --jimz
                */
               failedPDA = asmap->failedPDAs[0];
               fcol = failedPDA->col;
               rstat = raidPtr->status;
               prior_recon = (rstat == rf_rs_reconfigured) || (
                   (rstat == rf_rs_reconstructing) ?
                   rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
                   );
               if (prior_recon) {
                       oc = fcol;
                       oo = failedPDA->startSector;
                       /*
                        * If we did distributed sparing, we'd monkey with that here.
                        * But we don't, so we'll
                        */
                       failedPDA->col = raidPtr->Disks[fcol].spareCol;
                       /*
                        * Redirect other components, iff necessary. This looks
                        * pretty suspicious to me, but it's what the raid5
                        * DAG select does.
                        */
                       if (asmap->parityInfo->next) {
                               if (failedPDA == asmap->parityInfo) {
                                       failedPDA->next->col = failedPDA->col;
                               } else {
                                       if (failedPDA == asmap->parityInfo->next) {
                                               asmap->parityInfo->col = failedPDA->col;
                                       }
                               }
                       }
#if RF_DEBUG_DAG > 0 || RF_DEBUG_MAP > 0
                       if (rf_dagDebug || rf_mapDebug) {
                               printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
                                      raidPtr->raidid, type, oc,
                                      (long) oo,
                                      failedPDA->col,
                                      (long) failedPDA->startSector);
                       }
#endif
                       asmap->numDataFailed = asmap->numParityFailed = 0;
               }
       }
       if (type == RF_IO_TYPE_READ) {
               if (asmap->numDataFailed == 0)
                       *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
               else
                       *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
       } else {
               *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
       }
}

int
rf_VerifyParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
                    RF_PhysDiskAddr_t *parityPDA, int correct_it,
                    RF_RaidAccessFlags_t flags)
{
       int     nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
       RF_DagNode_t *blockNode, *wrBlock;
       RF_DagHeader_t *rd_dag_h, *wr_dag_h;
       RF_AccessStripeMapHeader_t *asm_h;
       RF_AllocListElem_t *allocList;
#if RF_ACC_TRACE > 0
       RF_AccTraceEntry_t tracerec;
#endif
       RF_ReconUnitNum_t which_ru;
       RF_RaidLayout_t *layoutPtr;
       RF_AccessStripeMap_t *aasm;
       RF_SectorCount_t nsector;
       RF_RaidAddr_t startAddr;
       char   *bf, *buf1, *buf2;
       RF_PhysDiskAddr_t *pda;
       RF_StripeNum_t psID;
       RF_MCPair_t *mcpair;

       layoutPtr = &raidPtr->Layout;
       startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
       nsector = parityPDA->numSector;
       nbytes = rf_RaidAddressToByte(raidPtr, nsector);
       psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);

       asm_h = NULL;
       rd_dag_h = wr_dag_h = NULL;
       mcpair = NULL;

       ret = RF_PARITY_COULD_NOT_VERIFY;

       rf_MakeAllocList(allocList);
       if (allocList == NULL)
               return (RF_PARITY_COULD_NOT_VERIFY);
       mcpair = rf_AllocMCPair(raidPtr);
       if (mcpair == NULL)
               goto done;
       RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
       stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
       bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
       bf = RF_MallocAndAdd(bcount, allocList);
       if (bf == NULL)
               goto done;
#if RF_DEBUG_VERIFYPARITY
       if (rf_verifyParityDebug) {
               printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
                      raidPtr->raidid, (long) bf, bcount, (long) bf,
                      (long) bf + bcount);
       }
#endif
       /*
        * Generate a DAG which will read the entire stripe- then we can
        * just compare data chunks versus "parity" chunks.
        */

       rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, bf,
           rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
           RF_IO_NORMAL_PRIORITY);
       if (rd_dag_h == NULL)
               goto done;
       blockNode = rd_dag_h->succedents[0];

       /*
        * Map the access to physical disk addresses (PDAs)- this will
        * get us both a list of data addresses, and "parity" addresses
        * (which are really mirror copies).
        */
       asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
           bf, RF_DONT_REMAP);
       aasm = asm_h->stripeMap;

       buf1 = bf;
       /*
        * Loop through the data blocks, setting up read nodes for each.
        */
       for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
               RF_ASSERT(pda);

               rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);

               RF_ASSERT(pda->numSector != 0);
               if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
                       /* cannot verify parity with dead disk */
                       goto done;
               }
               pda->bufPtr = buf1;
               blockNode->succedents[i]->params[0].p = pda;
               blockNode->succedents[i]->params[1].p = buf1;
               blockNode->succedents[i]->params[2].v = psID;
               blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
               buf1 += nbytes;
       }
       RF_ASSERT(pda == NULL);
       /*
        * keep i, buf1 running
        *
        * Loop through parity blocks, setting up read nodes for each.
        */
       for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
               RF_ASSERT(pda);
               rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
               RF_ASSERT(pda->numSector != 0);
               if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
                       /* cannot verify parity with dead disk */
                       goto done;
               }
               pda->bufPtr = buf1;
               blockNode->succedents[i]->params[0].p = pda;
               blockNode->succedents[i]->params[1].p = buf1;
               blockNode->succedents[i]->params[2].v = psID;
               blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
               buf1 += nbytes;
       }
       RF_ASSERT(pda == NULL);

#if RF_ACC_TRACE > 0
       memset(&tracerec, 0, sizeof(tracerec));
       rd_dag_h->tracerec = &tracerec;
#endif
#if 0
       if (rf_verifyParityDebug > 1) {
               printf("raid%d: RAID1 parity verify read dag:\n",
                      raidPtr->raidid);
               rf_PrintDAGList(rd_dag_h);
       }
#endif
       RF_LOCK_MCPAIR(mcpair);
       mcpair->flag = 0;
       RF_UNLOCK_MCPAIR(mcpair);

       rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
           (void *) mcpair);

       RF_LOCK_MCPAIR(mcpair);
       while (mcpair->flag == 0) {
               RF_WAIT_MCPAIR(mcpair);
       }
       RF_UNLOCK_MCPAIR(mcpair);

       if (rd_dag_h->status != rf_enable) {
               RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
               ret = RF_PARITY_COULD_NOT_VERIFY;
               goto done;
       }
       /*
        * buf1 is the beginning of the data blocks chunk
        * buf2 is the beginning of the parity blocks chunk
        */
       buf1 = bf;
       buf2 = bf + (nbytes * layoutPtr->numDataCol);
       ret = RF_PARITY_OKAY;
       /*
        * bbufs is "bad bufs"- an array whose entries are the data
        * column numbers where we had miscompares. (That is, column 0
        * and column 1 of the array are mirror copies, and are considered
        * "data column 0" for this purpose).
        */
       bbufs = RF_MallocAndAdd(layoutPtr->numParityCol * sizeof(*bbufs),
           allocList);
       nbad = 0;
       /*
        * Check data vs "parity" (mirror copy).
        */
       for (i = 0; i < layoutPtr->numDataCol; i++) {
#if RF_DEBUG_VERIFYPARITY
               if (rf_verifyParityDebug) {
                       printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
                              raidPtr->raidid, nbytes, i, (long) buf1,
                              (long) buf2, (long) bf);
               }
#endif
               ret = memcmp(buf1, buf2, nbytes);
               if (ret) {
#if RF_DEBUG_VERIFYPARITY
                       if (rf_verifyParityDebug > 1) {
                               for (j = 0; j < nbytes; j++) {
                                       if (buf1[j] != buf2[j])
                                               break;
                               }
                               printf("psid=%ld j=%d\n", (long) psID, j);
                               printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
                                   buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
                               printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
                                   buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
                       }
                       if (rf_verifyParityDebug) {
                               printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
                       }
#endif
                       /*
                        * Parity is bad. Keep track of which columns were bad.
                        */
                       if (bbufs)
                               bbufs[nbad] = i;
                       nbad++;
                       ret = RF_PARITY_BAD;
               }
               buf1 += nbytes;
               buf2 += nbytes;
       }

       if ((ret != RF_PARITY_OKAY) && correct_it) {
               ret = RF_PARITY_COULD_NOT_CORRECT;
#if RF_DEBUG_VERIFYPARITY
               if (rf_verifyParityDebug) {
                       printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
               }
#endif
               if (bbufs == NULL)
                       goto done;
               /*
                * Make a DAG with one write node for each bad unit. We'll simply
                * write the contents of the data unit onto the parity unit for
                * correction. (It's possible that the mirror copy was the correct
                * copy, and that we're spooging good data by writing bad over it,
                * but there's no way we can know that.
                */
               wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, bf,
                   rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
                   RF_IO_NORMAL_PRIORITY);
               if (wr_dag_h == NULL)
                       goto done;
               wrBlock = wr_dag_h->succedents[0];
               /*
                * Fill in a write node for each bad compare.
                */
               for (i = 0; i < nbad; i++) {
                       j = i + layoutPtr->numDataCol;
                       pda = blockNode->succedents[j]->params[0].p;
                       pda->bufPtr = blockNode->succedents[i]->params[1].p;
                       wrBlock->succedents[i]->params[0].p = pda;
                       wrBlock->succedents[i]->params[1].p = pda->bufPtr;
                       wrBlock->succedents[i]->params[2].v = psID;
                       wrBlock->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
               }
#if RF_ACC_TRACE > 0
               memset(&tracerec, 0, sizeof(tracerec));
               wr_dag_h->tracerec = &tracerec;
#endif
#if 0
               if (rf_verifyParityDebug > 1) {
                       printf("Parity verify write dag:\n");
                       rf_PrintDAGList(wr_dag_h);
               }
#endif
               RF_LOCK_MCPAIR(mcpair);
               mcpair->flag = 0;
               RF_UNLOCK_MCPAIR(mcpair);

               /* fire off the write DAG */
               rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
                   (void *) mcpair);

               RF_LOCK_MCPAIR(mcpair);
               while (!mcpair->flag) {
                       RF_WAIT_MCPAIR(mcpair);
               }
               RF_UNLOCK_MCPAIR(mcpair);
               if (wr_dag_h->status != rf_enable) {
                       RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
                       goto done;
               }
               ret = RF_PARITY_CORRECTED;
       }
done:
       /*
        * All done. We might've gotten here without doing part of the function,
        * so cleanup what we have to and return our running status.
        */
       if (asm_h)
               rf_FreeAccessStripeMap(raidPtr, asm_h);
       if (rd_dag_h)
               rf_FreeDAG(rd_dag_h);
       if (wr_dag_h)
               rf_FreeDAG(wr_dag_h);
       if (mcpair)
               rf_FreeMCPair(raidPtr, mcpair);
       rf_FreeAllocList(allocList);
#if RF_DEBUG_VERIFYPARITY
       if (rf_verifyParityDebug) {
               printf("raid%d: RAID1 parity verify, returning %d\n",
                      raidPtr->raidid, ret);
       }
#endif
       return (ret);
}

/* rbuf          - the recon buffer to submit
* keep_it       - whether we can keep this buffer or we have to return it
* use_committed - whether to use a committed or an available recon buffer
*/

int
rf_SubmitReconBufferRAID1(RF_ReconBuffer_t *rbuf, int keep_it,
                         int use_committed)
{
       RF_ReconParityStripeStatus_t *pssPtr;
       RF_ReconCtrl_t *reconCtrlPtr;
       int     retcode;
       RF_CallbackValueDesc_t *cb, *p;
       RF_ReconBuffer_t *t;
       RF_Raid_t *raidPtr;
       void *ta;

       retcode = 0;

       raidPtr = rbuf->raidPtr;
       reconCtrlPtr = raidPtr->reconControl;

       RF_ASSERT(rbuf);
       RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);

#if RF_DEBUG_RECON
       if (rf_reconbufferDebug) {
               printf("raid%d: RAID1 reconbuffer submission c%d psid %ld ru%d (failed offset %ld)\n",
                      raidPtr->raidid, rbuf->col,
                      (long) rbuf->parityStripeID, rbuf->which_ru,
                      (long) rbuf->failedDiskSectorOffset);
       }
#endif
       if (rf_reconDebug) {
               unsigned char *b = rbuf->buffer;
               printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
                   (long) rbuf->parityStripeID, (long) rbuf->buffer);
               printf("RAID1 psid %ld   %02x %02x %02x %02x %02x\n",
                   (long)rbuf->parityStripeID, b[0], b[1], b[2], b[3], b[4]);
       }
       RF_LOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);

       rf_lock_mutex2(reconCtrlPtr->rb_mutex);
       while(reconCtrlPtr->rb_lock) {
               rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
       }
       reconCtrlPtr->rb_lock = 1;
       rf_unlock_mutex2(reconCtrlPtr->rb_mutex);

       pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
           rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, NULL);
       RF_ASSERT(pssPtr);      /* if it didn't exist, we wouldn't have gotten
                                * an rbuf for it */

       /*
        * Since this is simple mirroring, the first submission for a stripe is also
        * treated as the last.
        */

       t = NULL;
       if (keep_it) {
#if RF_DEBUG_RECON
               if (rf_reconbufferDebug) {
                       printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
                              raidPtr->raidid);
               }
#endif
               t = rbuf;
       } else {
               if (use_committed) {
#if RF_DEBUG_RECON
                       if (rf_reconbufferDebug) {
                               printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
                       }
#endif
                       t = reconCtrlPtr->committedRbufs;
                       RF_ASSERT(t);
                       reconCtrlPtr->committedRbufs = t->next;
                       t->next = NULL;
               } else
                       if (reconCtrlPtr->floatingRbufs) {
#if RF_DEBUG_RECON
                               if (rf_reconbufferDebug) {
                                       printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
                               }
#endif
                               t = reconCtrlPtr->floatingRbufs;
                               reconCtrlPtr->floatingRbufs = t->next;
                               t->next = NULL;
                       }
       }
       if (t == NULL) {
#if RF_DEBUG_RECON
               if (rf_reconbufferDebug) {
                       printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
               }
#endif
               RF_ASSERT((keep_it == 0) && (use_committed == 0));
               raidPtr->procsInBufWait++;
               if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
                   && (raidPtr->numFullReconBuffers == 0)) {
                       /* ruh-ro */
                       RF_ERRORMSG("Buffer wait deadlock\n");
                       rf_PrintPSStatusTable(raidPtr);
                       RF_PANIC();
               }
               pssPtr->flags |= RF_PSS_BUFFERWAIT;
               cb = rf_AllocCallbackValueDesc(raidPtr);
               cb->col = rbuf->col;
               cb->v = rbuf->parityStripeID;
               cb->next = NULL;
               if (reconCtrlPtr->bufferWaitList == NULL) {
                       /* we are the wait list- lucky us */
                       reconCtrlPtr->bufferWaitList = cb;
               } else {
                       /* append to wait list */
                       for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
                       p->next = cb;
               }
               retcode = 1;
               goto out;
       }
       if (t != rbuf) {
               t->col = reconCtrlPtr->fcol;
               t->parityStripeID = rbuf->parityStripeID;
               t->which_ru = rbuf->which_ru;
               t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
               t->spCol = rbuf->spCol;
               t->spOffset = rbuf->spOffset;
               /* Swap buffers. DANCE! */
               ta = t->buffer;
               t->buffer = rbuf->buffer;
               rbuf->buffer = ta;
       }
       /*
        * Use the rbuf we've been given as the target.
        */
       RF_ASSERT(pssPtr->rbuf == NULL);
       pssPtr->rbuf = t;

       t->count = 1;
       /*
        * Below, we use 1 for numDataCol (which is equal to the count in the
        * previous line), so we'll always be done.
        */
       rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);

out:
       RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
       rf_lock_mutex2(reconCtrlPtr->rb_mutex);
       reconCtrlPtr->rb_lock = 0;
       rf_broadcast_cond2(reconCtrlPtr->rb_cv);
       rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
#if RF_DEBUG_RECON
       if (rf_reconbufferDebug) {
               printf("raid%d: RAID1 rbuf submission: returning %d\n",
                      raidPtr->raidid, retcode);
       }
#endif
       return (retcode);
}

RF_HeadSepLimit_t
rf_GetDefaultHeadSepLimitRAID1(RF_Raid_t *raidPtr)
{
       return (10);
}