/*      $NetBSD: rf_parityloggingdags.c,v 1.23 2019/10/10 03:43:59 christos Exp $       */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: William V. Courtright II
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
*  Software Distribution Coordinator  or  [email protected]
*  School of Computer Science
*  Carnegie Mellon University
*  Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/

/*
 DAGs specific to parity logging are created here
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_parityloggingdags.c,v 1.23 2019/10/10 03:43:59 christos Exp $");

#ifdef _KERNEL_OPT
#include "opt_raid_diagnostic.h"
#endif

#include "rf_archs.h"

#if RF_INCLUDE_PARITYLOGGING > 0

#include <dev/raidframe/raidframevar.h>

#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_debugMem.h"
#include "rf_paritylog.h"
#include "rf_general.h"

#include "rf_parityloggingdags.h"

/******************************************************************************
*
* creates a DAG to perform a large-write operation:
*
*         / Rod \     / Wnd \
* H -- NIL- Rod - NIL - Wnd ------ NIL - T
*         \ Rod /     \ Xor - Lpo /
*
* The writes are not done until the reads complete because if they were done in
* parallel, a failure on one of the reads could leave the parity in an inconsistent
* state, so that the retry with a new DAG would produce erroneous parity.
*
* Note:  this DAG has the nasty property that none of the buffers allocated for reading
*        old data can be freed until the XOR node fires.  Need to fix this.
*
* The last two arguments are the number of faults tolerated, and function for the
* redundancy calculation. The undo for the redundancy calc is assumed to be null
*
*****************************************************************************/

void
rf_CommonCreateParityLoggingLargeWriteDAG(
   RF_Raid_t * raidPtr,
   RF_AccessStripeMap_t * asmap,
   RF_DagHeader_t * dag_h,
   void *bp,
   RF_RaidAccessFlags_t flags,
   RF_AllocListElem_t * allocList,
   int nfaults,
   void (*redFunc) (RF_DagNode_t *))
{
       RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
              *lpoNode, *blockNode, *unblockNode, *termNode;
       int     nWndNodes, nRodNodes, i;
       RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
       RF_AccessStripeMapHeader_t *new_asm_h[2];
       int     nodeNum, asmNum;
       RF_ReconUnitNum_t which_ru;
       char   *sosBuffer, *eosBuffer;
       RF_PhysDiskAddr_t *pda;
       RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);

       if (rf_dagDebug)
               printf("[Creating parity-logging large-write DAG]\n");
       RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
       dag_h->creator = "ParityLoggingLargeWriteDAG";

       /* alloc the Wnd nodes, the xor node, and the Lpo node */
       nWndNodes = asmap->numStripeUnitsAccessed;
       nodes = RF_MallocAndAdd((nWndNodes + 6) * sizeof(*nodes), allocList);
       i = 0;
       wndNodes = &nodes[i];
       i += nWndNodes;
       xorNode = &nodes[i];
       i += 1;
       lpoNode = &nodes[i];
       i += 1;
       blockNode = &nodes[i];
       i += 1;
       syncNode = &nodes[i];
       i += 1;
       unblockNode = &nodes[i];
       i += 1;
       termNode = &nodes[i];
       i += 1;

       dag_h->numCommitNodes = nWndNodes + 1;
       dag_h->numCommits = 0;
       dag_h->numSuccedents = 1;

       rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
       if (nRodNodes > 0)
               rodNodes = RF_MallocAndAdd(nRodNodes * sizeof(*rodNodes),
                     allocList);

       /* begin node initialization */
       rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
       rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
       rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
       rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);

       /* initialize the Rod nodes */
       for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
               if (new_asm_h[asmNum]) {
                       pda = new_asm_h[asmNum]->stripeMap->physInfo;
                       while (pda) {
                               rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
                               rodNodes[nodeNum].params[0].p = pda;
                               rodNodes[nodeNum].params[1].p = pda->bufPtr;
                               rodNodes[nodeNum].params[2].v = parityStripeID;
                               rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
                               nodeNum++;
                               pda = pda->next;
                       }
               }
       }
       RF_ASSERT(nodeNum == nRodNodes);

       /* initialize the wnd nodes */
       pda = asmap->physInfo;
       for (i = 0; i < nWndNodes; i++) {
               rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
               RF_ASSERT(pda != NULL);
               wndNodes[i].params[0].p = pda;
               wndNodes[i].params[1].p = pda->bufPtr;
               wndNodes[i].params[2].v = parityStripeID;
               wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
               pda = pda->next;
       }

       /* initialize the redundancy node */
       rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
       xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
       for (i = 0; i < nWndNodes; i++) {
               xorNode->params[2 * i + 0] = wndNodes[i].params[0];     /* pda */
               xorNode->params[2 * i + 1] = wndNodes[i].params[1];     /* buf ptr */
       }
       for (i = 0; i < nRodNodes; i++) {
               xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];       /* pda */
               xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];       /* buf ptr */
       }
       xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;       /* xor node needs to get
                                                                        * at RAID information */

       /* look for an Rod node that reads a complete SU.  If none, alloc a
        * buffer to receive the parity info. Note that we can't use a new
        * data buffer because it will not have gotten written when the xor
        * occurs. */
       for (i = 0; i < nRodNodes; i++)
               if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
                       break;
       if (i == nRodNodes) {
               xorNode->results[0] = RF_MallocAndAdd(rf_RaidAddressToByte(
                   raidPtr, raidPtr->Layout.sectorsPerStripeUnit), allocList);
       } else {
               xorNode->results[0] = rodNodes[i].params[1].p;
       }

       /* initialize the Lpo node */
       rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);

       lpoNode->params[0].p = asmap->parityInfo;
       lpoNode->params[1].p = xorNode->results[0];
       RF_ASSERT(asmap->parityInfo->next == NULL);     /* parityInfo must
                                                        * describe entire
                                                        * parity unit */

       /* connect nodes to form graph */

       /* connect dag header to block node */
       RF_ASSERT(dag_h->numSuccedents == 1);
       RF_ASSERT(blockNode->numAntecedents == 0);
       dag_h->succedents[0] = blockNode;

       /* connect the block node to the Rod nodes */
       RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
       for (i = 0; i < nRodNodes; i++) {
               RF_ASSERT(rodNodes[i].numAntecedents == 1);
               blockNode->succedents[i] = &rodNodes[i];
               rodNodes[i].antecedents[0] = blockNode;
               rodNodes[i].antType[0] = rf_control;
       }

       /* connect the block node to the sync node */
       /* necessary if nRodNodes == 0 */
       RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
       blockNode->succedents[nRodNodes] = syncNode;
       syncNode->antecedents[0] = blockNode;
       syncNode->antType[0] = rf_control;

       /* connect the Rod nodes to the syncNode */
       for (i = 0; i < nRodNodes; i++) {
               rodNodes[i].succedents[0] = syncNode;
               syncNode->antecedents[1 + i] = &rodNodes[i];
               syncNode->antType[1 + i] = rf_control;
       }

       /* connect the sync node to the xor node */
       RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
       RF_ASSERT(xorNode->numAntecedents == 1);
       syncNode->succedents[0] = xorNode;
       xorNode->antecedents[0] = syncNode;
       xorNode->antType[0] = rf_trueData;      /* carry forward from sync */

       /* connect the sync node to the Wnd nodes */
       for (i = 0; i < nWndNodes; i++) {
               RF_ASSERT(wndNodes->numAntecedents == 1);
               syncNode->succedents[1 + i] = &wndNodes[i];
               wndNodes[i].antecedents[0] = syncNode;
               wndNodes[i].antType[0] = rf_control;
       }

       /* connect the xor node to the Lpo node */
       RF_ASSERT(xorNode->numSuccedents == 1);
       RF_ASSERT(lpoNode->numAntecedents == 1);
       xorNode->succedents[0] = lpoNode;
       lpoNode->antecedents[0] = xorNode;
       lpoNode->antType[0] = rf_trueData;

       /* connect the Wnd nodes to the unblock node */
       RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
       for (i = 0; i < nWndNodes; i++) {
               RF_ASSERT(wndNodes->numSuccedents == 1);
               wndNodes[i].succedents[0] = unblockNode;
               unblockNode->antecedents[i] = &wndNodes[i];
               unblockNode->antType[i] = rf_control;
       }

       /* connect the Lpo node to the unblock node */
       RF_ASSERT(lpoNode->numSuccedents == 1);
       lpoNode->succedents[0] = unblockNode;
       unblockNode->antecedents[nWndNodes] = lpoNode;
       unblockNode->antType[nWndNodes] = rf_control;

       /* connect unblock node to terminator */
       RF_ASSERT(unblockNode->numSuccedents == 1);
       RF_ASSERT(termNode->numAntecedents == 1);
       RF_ASSERT(termNode->numSuccedents == 0);
       unblockNode->succedents[0] = termNode;
       termNode->antecedents[0] = unblockNode;
       termNode->antType[0] = rf_control;
}




/******************************************************************************
*
* creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
*
*                                     Header
*                                       |
*                                     Block
*                                 / |  ... \   \
*                                /  |       \   \
*                             Rod  Rod      Rod  Rop
*                             | \ /| \    / |  \/ |
*                             |    |        |  /\ |
*                             Wnd  Wnd      Wnd   X
*                              |    \       /     |
*                              |     \     /      |
*                               \     \   /      Lpo
*                                \     \ /       /
*                                 +-> Unblock <-+
*                                       |
*                                       T
*
*
* R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
* When the access spans a stripe unit boundary and is less than one SU in size, there will
* be two Rop -- X -- Wnp branches.  I call this the "double-XOR" case.
* The second output from each Rod node goes to the X node.  In the double-XOR
* case, there are exactly 2 Rod nodes, and each sends one output to one X node.
* There is one Rod -- Wnd -- T branch for each stripe unit being updated.
*
* The block and unblock nodes are unused.  See comment above CreateFaultFreeReadDAG.
*
* Note:  this DAG ignores all the optimizations related to making the RMWs atomic.
*        it also has the nasty property that none of the buffers allocated for reading
*        old data & parity can be freed until the XOR node fires.  Need to fix this.
*
* A null qfuncs indicates single fault tolerant
*****************************************************************************/

void
rf_CommonCreateParityLoggingSmallWriteDAG(
   RF_Raid_t * raidPtr,
   RF_AccessStripeMap_t * asmap,
   RF_DagHeader_t * dag_h,
   void *bp,
   RF_RaidAccessFlags_t flags,
   RF_AllocListElem_t * allocList,
   const RF_RedFuncs_t * pfuncs,
   const RF_RedFuncs_t * qfuncs)
{
       RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
       RF_DagNode_t *readDataNodes, *readParityNodes;
       RF_DagNode_t *writeDataNodes, *lpuNodes;
       RF_DagNode_t *termNode;
       RF_PhysDiskAddr_t *pda = asmap->physInfo;
       int     numDataNodes = asmap->numStripeUnitsAccessed;
       int     numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
       int     i, j, nNodes, totalNumNodes;
       RF_ReconUnitNum_t which_ru;
       void    (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
       const char   *name;
       RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
       long    nfaults __unused = qfuncs ? 2 : 1;

       if (rf_dagDebug)
               printf("[Creating parity-logging small-write DAG]\n");
       RF_ASSERT(numDataNodes > 0);
       RF_ASSERT(nfaults == 1);
       dag_h->creator = "ParityLoggingSmallWriteDAG";

       /* DAG creation occurs in three steps: 1. count the number of nodes in
        * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
        * nodes */

       /* Step 1. compute number of nodes in the graph */

       /* number of nodes: a read and write for each data unit a redundancy
        * computation node for each parity node a read and Lpu for each
        * parity unit a block and unblock node (2) a terminator node if
        * atomic RMW an unlock node for each data unit, redundancy unit */
       totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;

       nNodes = numDataNodes + numParityNodes;

       dag_h->numCommitNodes = numDataNodes + numParityNodes;
       dag_h->numCommits = 0;
       dag_h->numSuccedents = 1;

       /* Step 2. create the nodes */
       nodes = RF_MallocAndAdd(totalNumNodes * sizeof(*nodes), allocList);
       i = 0;
       blockNode = &nodes[i];
       i += 1;
       unblockNode = &nodes[i];
       i += 1;
       readDataNodes = &nodes[i];
       i += numDataNodes;
       readParityNodes = &nodes[i];
       i += numParityNodes;
       writeDataNodes = &nodes[i];
       i += numDataNodes;
       lpuNodes = &nodes[i];
       i += numParityNodes;
       xorNodes = &nodes[i];
       i += numParityNodes;
       termNode = &nodes[i];
       i += 1;

       RF_ASSERT(i == totalNumNodes);

       /* Step 3. initialize the nodes */
       /* initialize block node (Nil) */
       rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);

       /* initialize unblock node (Nil) */
       rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);

       /* initialize terminatory node (Trm) */
       rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);

       /* initialize nodes which read old data (Rod) */
       for (i = 0; i < numDataNodes; i++) {
               rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
               RF_ASSERT(pda != NULL);
               readDataNodes[i].params[0].p = pda;     /* physical disk addr
                                                        * desc */
               readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);    /* buffer to hold old data */
               readDataNodes[i].params[2].v = parityStripeID;
               readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
               pda = pda->next;
               readDataNodes[i].propList[0] = NULL;
               readDataNodes[i].propList[1] = NULL;
       }

       /* initialize nodes which read old parity (Rop) */
       pda = asmap->parityInfo;
       i = 0;
       for (i = 0; i < numParityNodes; i++) {
               RF_ASSERT(pda != NULL);
               rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
               readParityNodes[i].params[0].p = pda;
               readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);  /* buffer to hold old parity */
               readParityNodes[i].params[2].v = parityStripeID;
               readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
               readParityNodes[i].propList[0] = NULL;
               pda = pda->next;
       }

       /* initialize nodes which write new data (Wnd) */
       pda = asmap->physInfo;
       for (i = 0; i < numDataNodes; i++) {
               RF_ASSERT(pda != NULL);
               rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
               writeDataNodes[i].params[0].p = pda;    /* physical disk addr
                                                        * desc */
               writeDataNodes[i].params[1].p = pda->bufPtr;    /* buffer holding new
                                                                * data to be written */
               writeDataNodes[i].params[2].v = parityStripeID;
               writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);

               pda = pda->next;
       }


       /* initialize nodes which compute new parity */
       /* we use the simple XOR func in the double-XOR case, and when we're
        * accessing only a portion of one stripe unit. the distinction
        * between the two is that the regular XOR func assumes that the
        * targbuf is a full SU in size, and examines the pda associated with
        * the buffer to decide where within the buffer to XOR the data,
        * whereas the simple XOR func just XORs the data into the start of
        * the buffer. */
       if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
               func = pfuncs->simple;
               undoFunc = rf_NullNodeUndoFunc;
               name = pfuncs->SimpleName;
       } else {
               func = pfuncs->regular;
               undoFunc = rf_NullNodeUndoFunc;
               name = pfuncs->RegularName;
       }
       /* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
        * nodes, and raidPtr  */
       if (numParityNodes == 2) {      /* double-xor case */
               for (i = 0; i < numParityNodes; i++) {
                       rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList);     /* no wakeup func for
                                                                                                                                        * xor */
                       xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
                       xorNodes[i].params[0] = readDataNodes[i].params[0];
                       xorNodes[i].params[1] = readDataNodes[i].params[1];
                       xorNodes[i].params[2] = readParityNodes[i].params[0];
                       xorNodes[i].params[3] = readParityNodes[i].params[1];
                       xorNodes[i].params[4] = writeDataNodes[i].params[0];
                       xorNodes[i].params[5] = writeDataNodes[i].params[1];
                       xorNodes[i].params[6].p = raidPtr;
                       xorNodes[i].results[0] = readParityNodes[i].params[1].p;        /* use old parity buf as
                                                                                        * target buf */
               }
       } else {
               /* there is only one xor node in this case */
               rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
               xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
               for (i = 0; i < numDataNodes + 1; i++) {
                       /* set up params related to Rod and Rop nodes */
                       xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];     /* pda */
                       xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];     /* buffer pointer */
               }
               for (i = 0; i < numDataNodes; i++) {
                       /* set up params related to Wnd and Wnp nodes */
                       xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];       /* pda */
                       xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];       /* buffer pointer */
               }
               xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;  /* xor node needs to get
                                                                                        * at RAID information */
               xorNodes[0].results[0] = readParityNodes[0].params[1].p;
       }

       /* initialize the log node(s) */
       pda = asmap->parityInfo;
       for (i = 0; i < numParityNodes; i++) {
               RF_ASSERT(pda);
               rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
               lpuNodes[i].params[0].p = pda;  /* PhysDiskAddr of parity */
               lpuNodes[i].params[1].p = xorNodes[i].results[0];       /* buffer pointer to
                                                                        * parity */
               pda = pda->next;
       }


       /* Step 4. connect the nodes */

       /* connect header to block node */
       RF_ASSERT(dag_h->numSuccedents == 1);
       RF_ASSERT(blockNode->numAntecedents == 0);
       dag_h->succedents[0] = blockNode;

       /* connect block node to read old data nodes */
       RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
       for (i = 0; i < numDataNodes; i++) {
               blockNode->succedents[i] = &readDataNodes[i];
               RF_ASSERT(readDataNodes[i].numAntecedents == 1);
               readDataNodes[i].antecedents[0] = blockNode;
               readDataNodes[i].antType[0] = rf_control;
       }

       /* connect block node to read old parity nodes */
       for (i = 0; i < numParityNodes; i++) {
               blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
               RF_ASSERT(readParityNodes[i].numAntecedents == 1);
               readParityNodes[i].antecedents[0] = blockNode;
               readParityNodes[i].antType[0] = rf_control;
       }

       /* connect read old data nodes to write new data nodes */
       for (i = 0; i < numDataNodes; i++) {
               RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
               for (j = 0; j < numDataNodes; j++) {
                       RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
                       readDataNodes[i].succedents[j] = &writeDataNodes[j];
                       writeDataNodes[j].antecedents[i] = &readDataNodes[i];
                       if (i == j)
                               writeDataNodes[j].antType[i] = rf_antiData;
                       else
                               writeDataNodes[j].antType[i] = rf_control;
               }
       }

       /* connect read old data nodes to xor nodes */
       for (i = 0; i < numDataNodes; i++)
               for (j = 0; j < numParityNodes; j++) {
                       RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
                       readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
                       xorNodes[j].antecedents[i] = &readDataNodes[i];
                       xorNodes[j].antType[i] = rf_trueData;
               }

       /* connect read old parity nodes to write new data nodes */
       for (i = 0; i < numParityNodes; i++) {
               RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
               for (j = 0; j < numDataNodes; j++) {
                       readParityNodes[i].succedents[j] = &writeDataNodes[j];
                       writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
                       writeDataNodes[j].antType[numDataNodes + i] = rf_control;
               }
       }

       /* connect read old parity nodes to xor nodes */
       for (i = 0; i < numParityNodes; i++)
               for (j = 0; j < numParityNodes; j++) {
                       readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
                       xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
                       xorNodes[j].antType[numDataNodes + i] = rf_trueData;
               }

       /* connect xor nodes to write new parity nodes */
       for (i = 0; i < numParityNodes; i++) {
               RF_ASSERT(xorNodes[i].numSuccedents == 1);
               RF_ASSERT(lpuNodes[i].numAntecedents == 1);
               xorNodes[i].succedents[0] = &lpuNodes[i];
               lpuNodes[i].antecedents[0] = &xorNodes[i];
               lpuNodes[i].antType[0] = rf_trueData;
       }

       for (i = 0; i < numDataNodes; i++) {
               /* connect write new data nodes to unblock node */
               RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
               RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
               writeDataNodes[i].succedents[0] = unblockNode;
               unblockNode->antecedents[i] = &writeDataNodes[i];
               unblockNode->antType[i] = rf_control;
       }

       /* connect write new parity nodes to unblock node */
       for (i = 0; i < numParityNodes; i++) {
               RF_ASSERT(lpuNodes[i].numSuccedents == 1);
               lpuNodes[i].succedents[0] = unblockNode;
               unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
               unblockNode->antType[numDataNodes + i] = rf_control;
       }

       /* connect unblock node to terminator */
       RF_ASSERT(unblockNode->numSuccedents == 1);
       RF_ASSERT(termNode->numAntecedents == 1);
       RF_ASSERT(termNode->numSuccedents == 0);
       unblockNode->succedents[0] = termNode;
       termNode->antecedents[0] = unblockNode;
       termNode->antType[0] = rf_control;
}


void
rf_CreateParityLoggingSmallWriteDAG(
   RF_Raid_t * raidPtr,
   RF_AccessStripeMap_t * asmap,
   RF_DagHeader_t * dag_h,
   void *bp,
   RF_RaidAccessFlags_t flags,
   RF_AllocListElem_t * allocList,
   const RF_RedFuncs_t * pfuncs,
   const RF_RedFuncs_t * qfuncs)
{
       dag_h->creator = "ParityLoggingSmallWriteDAG";
       rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
}


void
rf_CreateParityLoggingLargeWriteDAG(
   RF_Raid_t * raidPtr,
   RF_AccessStripeMap_t * asmap,
   RF_DagHeader_t * dag_h,
   void *bp,
   RF_RaidAccessFlags_t flags,
   RF_AllocListElem_t * allocList,
   int nfaults,
   void (*redFunc) (RF_DagNode_t *))
{
       dag_h->creator = "ParityLoggingSmallWriteDAG";
       rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
}
#endif                          /* RF_INCLUDE_PARITYLOGGING > 0 */