/*      $NetBSD: rf_layout.h,v 1.18 2018/06/09 21:18:41 oster Exp $     */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Mark Holland
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
*  Software Distribution Coordinator  or  [email protected]
*  School of Computer Science
*  Carnegie Mellon University
*  Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/

/* rf_layout.h -- header file defining layout data structures
*/

#ifndef _RF__RF_LAYOUT_H_
#define _RF__RF_LAYOUT_H_

#include <dev/raidframe/raidframevar.h>
#include "rf_archs.h"
#include "rf_alloclist.h"

/* enables remapping to spare location under dist sparing */
#define RF_REMAP       1
#define RF_DONT_REMAP  0

/*
* Flags values for RF_AccessStripeMapFlags_t
*/
#define RF_NO_STRIPE_LOCKS   0x0001     /* suppress stripe locks */
#define RF_DISTRIBUTE_SPARE  0x0002     /* distribute spare space in archs
                                        * that support it */
#define RF_BD_DECLUSTERED    0x0004     /* declustering uses block designs */

/*************************************************************************
*
* this structure forms the layout component of the main Raid
* structure.  It describes everything needed to define and perform
* the mapping of logical RAID addresses <-> physical disk addresses.
*
*************************************************************************/
struct RF_RaidLayout_s {
       /* configuration parameters */
       RF_SectorCount_t sectorsPerStripeUnit;  /* number of sectors in one
                                                * stripe unit */
       RF_StripeCount_t SUsPerPU;      /* stripe units per parity unit */
       RF_StripeCount_t SUsPerRU;      /* stripe units per reconstruction
                                        * unit */

       /* redundant-but-useful info computed from the above, used in all
        * layouts */
       RF_StripeCount_t numStripe;     /* total number of stripes in the
                                        * array */
       RF_SectorCount_t dataSectorsPerStripe;
       RF_StripeCount_t dataStripeUnitsPerDisk;
       RF_StripeCount_t numDataCol;    /* number of SUs of data per stripe
                                        * (name here is a la RAID4) */
       RF_StripeCount_t numParityCol;  /* number of SUs of parity per stripe.
                                        * Always 1 for now */
       RF_StripeCount_t numParityLogCol;       /* number of SUs of parity log
                                                * per stripe.  Always 1 for
                                                * now */
       RF_StripeCount_t stripeUnitsPerDisk;

       const RF_LayoutSW_t *map;       /* ptr to struct holding mapping fns and
                                        * information */
       void   *layoutSpecificInfo;     /* ptr to a structure holding
                                        * layout-specific params */
};
/*****************************************************************************************
*
* The mapping code returns a pointer to a list of AccessStripeMap structures, which
* describes all the mapping information about an access.  The list contains one
* AccessStripeMap structure per stripe touched by the access.  Each element in the list
* contains a stripe identifier and a pointer to a list of PhysDiskAddr structures.  Each
* element in this latter list describes the physical location of a stripe unit accessed
* within the corresponding stripe.
*
****************************************************************************************/

#define RF_PDA_TYPE_DATA   0
#define RF_PDA_TYPE_PARITY 1
#define RF_PDA_TYPE_Q      2

struct RF_PhysDiskAddr_s {
       RF_RowCol_t col;        /* disk identifier */
       RF_SectorNum_t startSector;     /* sector offset into the disk */
       RF_SectorCount_t numSector;     /* number of sectors accessed */
       int     type;           /* used by higher levels: currently, data,
                                * parity, or q */
       void *bufPtr;           /* pointer to buffer supplying/receiving data */
       RF_RaidAddr_t raidAddress;      /* raid address corresponding to this
                                        * physical disk address */
       RF_PhysDiskAddr_t *next;
};
#define RF_MAX_FAILED_PDA RF_MAXCOL

struct RF_AccessStripeMap_s {
       RF_StripeNum_t stripeID;/* the stripe index */
       RF_RaidAddr_t raidAddress;      /* the starting raid address within
                                        * this stripe */
       RF_RaidAddr_t endRaidAddress;   /* raid address one sector past the
                                        * end of the access */
       RF_SectorCount_t totalSectorsAccessed;  /* total num sectors
                                                * identified in physInfo list */
       RF_StripeCount_t numStripeUnitsAccessed;        /* total num elements in
                                                        * physInfo list */
       int     numDataFailed;  /* number of failed data disks accessed */
       int     numParityFailed;/* number of failed parity disks accessed (0
                                * or 1) */
       int     numQFailed;     /* number of failed Q units accessed (0 or 1) */
       RF_AccessStripeMapFlags_t flags;        /* various flags */
       int     numFailedPDAs;  /* number of failed phys addrs */
       RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA];       /* array of failed phys
                                                                * addrs */
       RF_PhysDiskAddr_t *physInfo;    /* a list of PhysDiskAddr structs */
       RF_PhysDiskAddr_t *parityInfo;  /* list of physical addrs for the
                                        * parity (P of P + Q ) */
       RF_PhysDiskAddr_t *qInfo;       /* list of physical addrs for the Q of
                                        * P + Q */
       RF_LockReqDesc_t lockReqDesc;   /* used for stripe locking */
       RF_AccessStripeMap_t *next;
};
/* flag values */
#define RF_ASM_REDIR_LARGE_WRITE   0x00000001   /* allows large-write creation
                                                * code to redirect failed
                                                * accs */
#define RF_ASM_BAILOUT_DAG_USED    0x00000002   /* allows us to detect
                                                * recursive calls to the
                                                * bailout write dag */
#define RF_ASM_FLAGS_LOCK_TRIED    0x00000004   /* we've acquired the lock on
                                                * the first parity range in
                                                * this parity stripe */
#define RF_ASM_FLAGS_LOCK_TRIED2   0x00000008   /* we've acquired the lock on
                                                * the 2nd   parity range in
                                                * this parity stripe */
#define RF_ASM_FLAGS_FORCE_TRIED   0x00000010   /* we've done the force-recon
                                                * call on this parity stripe */
#define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020   /* we blocked recon => we must
                                                * unblock it later */

struct RF_AccessStripeMapHeader_s {
       RF_StripeCount_t numStripes;    /* total number of stripes touched by
                                        * this acc */
       RF_AccessStripeMap_t *stripeMap;        /* pointer to the actual map.
                                                * Also used for making lists */
       RF_AccessStripeMapHeader_t *next;
};

/* A structure to be used in a linked list to keep track of function pointers. */
typedef struct RF_VoidFunctionPointerListElem_s RF_VoidFunctionPointerListElem_t;
struct RF_VoidFunctionPointerListElem_s {
       RF_VoidFuncPtr fn;
       RF_VoidFunctionPointerListElem_t *next;
};

/* We need something to just be a linked list of anonymous pointers
  to stuff */
typedef struct RF_VoidPointerListElem_s RF_VoidPointerListElem_t;
struct RF_VoidPointerListElem_s {
       void *p;
       RF_VoidPointerListElem_t *next;
};

/* A structure to be used in a linked list to keep track of ASM Headers */
typedef struct RF_ASMHeaderListElem_s RF_ASMHeaderListElem_t;
struct RF_ASMHeaderListElem_s {
       RF_AccessStripeMapHeader_t *asmh;
       RF_ASMHeaderListElem_t *next;
};

/* A structure to keep track of all the data structures associated with
a failed stripe.  Used for constructing the appropriate DAGs in
rf_SelectAlgorithm() in rf_aselect.c */
typedef struct RF_FailedStripe_s RF_FailedStripe_t;
struct RF_FailedStripe_s {
       RF_VoidFunctionPointerListElem_t *vfple;   /* linked list of pointers to DAG creation
                                                     functions for stripes */
       RF_VoidFunctionPointerListElem_t *bvfple;  /* linked list of pointers to DAG creation
                                                     functions for blocks */
       RF_ASMHeaderListElem_t *asmh_u;            /* Access Stripe Map Headers for regular
                                                     stripes */
       RF_ASMHeaderListElem_t *asmh_b;            /* Access Stripe Map Headers used for the
                                                     block functions */
       RF_FailedStripe_t *next;
};



/*****************************************************************************************
*
* various routines mapping addresses in the RAID address space.  These work across
* all layouts.  DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE.
*
****************************************************************************************/

/* return the identifier of the stripe containing the given address */
#define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \
 ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol )

/* return the raid address of the start of the indicates stripe ID */
#define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \
 ( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol )

/* return the identifier of the stripe containing the given stripe unit id */
#define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \
 ( (_addr_) / (_layoutPtr_)->numDataCol )

/* return the identifier of the stripe unit containing the given address */
#define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \
 ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) )

/* return the RAID address of next stripe boundary beyond the given address */
#define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \
 ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe )

/* return the RAID address of the start of the stripe containing the given address */
#define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \
 ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe )

/* return the RAID address of next stripe unit boundary beyond the given address */
#define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \
 ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit )

/* return the RAID address of the start of the stripe unit containing RAID address _addr_ */
#define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \
 ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit )

/* returns the offset into the stripe.  used by RaidAddressStripeAligned */
#define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \
 ( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) )

/* returns the offset into the stripe unit.  */
#define rf_StripeUnitOffset(_layoutPtr_, _addr_) \
 ( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) )

/* returns nonzero if the given RAID address is stripe-aligned */
#define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \
 ( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 )

/* returns nonzero if the given address is stripe-unit aligned */
#define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \
 ( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 )

/* convert an address expressed in RAID blocks to/from an addr expressed in bytes */
#define rf_RaidAddressToByte(_raidPtr_, _addr_) \
 ( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) )

#define rf_ByteToRaidAddress(_raidPtr_, _addr_) \
 ( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) )

/* convert a raid address to/from a parity stripe ID.  Conversion to raid address is easy,
* since we're asking for the address of the first sector in the parity stripe.  Conversion to a
* parity stripe ID is more complex, since stripes are not contiguously allocated in
* parity stripes.
*/
#define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \
 rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) )

#define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \
 ( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit )

const RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig);
int
rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
   RF_Config_t * cfgPtr);
RF_StripeNum_t
rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr,
   RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru);

#endif                          /* !_RF__RF_LAYOUT_H_ */