/*      $NetBSD: rf_decluster.c,v 1.27 2023/09/25 21:59:38 oster Exp $  */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Mark Holland
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
*  Software Distribution Coordinator  or  [email protected]
*  School of Computer Science
*  Carnegie Mellon University
*  Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/

/*----------------------------------------------------------------------
*
* rf_decluster.c -- code related to the declustered layout
*
* Created 10-21-92 (MCH)
*
* Nov 93:  adding support for distributed sparing.  This code is a little
*          complex:  the basic layout used is as follows:
*          let F = (v-1)/GCD(r,v-1).  The spare space for each set of
*          F consecutive fulltables is grouped together and placed after
*          that set of tables.
*                   +------------------------------+
*                   |        F fulltables          |
*                   |        Spare Space           |
*                   |        F fulltables          |
*                   |        Spare Space           |
*                   |            ...               |
*                   +------------------------------+
*
*--------------------------------------------------------------------*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_decluster.c,v 1.27 2023/09/25 21:59:38 oster Exp $");

#include <dev/raidframe/raidframevar.h>

#include "rf_archs.h"
#include "rf_raid.h"
#include "rf_decluster.h"
#include "rf_debugMem.h"
#include "rf_utils.h"
#include "rf_alloclist.h"
#include "rf_general.h"
#include "rf_kintf.h"
#include "rf_shutdown.h"

#if (RF_INCLUDE_PARITY_DECLUSTERING > 0) || (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0)

/* configuration code */

int
rf_ConfigureDeclustered(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
                       RF_Config_t *cfgPtr)
{
       RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
       int     b, v, k, r, lambda;     /* block design params */
       int     i, j;
       RF_RowCol_t *first_avail_slot;
       RF_StripeCount_t complete_FT_count, numCompleteFullTablesPerDisk;
       RF_DeclusteredConfigInfo_t *info;
       RF_StripeCount_t PUsPerDisk, spareRegionDepthInPUs, numCompleteSpareRegionsPerDisk,
               extraPUsPerDisk;
       RF_StripeCount_t totSparePUsPerDisk;
       RF_SectorNum_t diskOffsetOfLastFullTableInSUs;
       RF_SectorCount_t SpareSpaceInSUs;
       char   *cfgBuf = (char *) (cfgPtr->layoutSpecific);
       RF_StripeNum_t l, SUID;

       SUID = l = 0;
       numCompleteSpareRegionsPerDisk = 0;

       /* 1. create layout specific structure */
       info = RF_MallocAndAdd(sizeof(*info), raidPtr->cleanupList);
       if (info == NULL)
               return (ENOMEM);
       layoutPtr->layoutSpecificInfo = (void *) info;
       info->SpareTable = NULL;

       /* 2. extract parameters from the config structure */
       if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
               (void)memcpy(info->sparemap_fname, cfgBuf, RF_SPAREMAP_NAME_LEN);
       }
       cfgBuf += RF_SPAREMAP_NAME_LEN;

       b = *((int *) cfgBuf);
       cfgBuf += sizeof(int);
       v = *((int *) cfgBuf);
       cfgBuf += sizeof(int);
       k = *((int *) cfgBuf);
       cfgBuf += sizeof(int);
       r = *((int *) cfgBuf);
       cfgBuf += sizeof(int);
       lambda = *((int *) cfgBuf);
       cfgBuf += sizeof(int);
       raidPtr->noRotate = *((int *) cfgBuf);
       cfgBuf += sizeof(int);

       /* the sparemaps are generated assuming that parity is rotated, so we
        * issue a warning if both distributed sparing and no-rotate are on at
        * the same time */
       if ((layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) && raidPtr->noRotate) {
               RF_ERRORMSG("Warning:  distributed sparing specified without parity rotation.\n");
       }
       if (raidPtr->numCol != v) {
               RF_ERRORMSG2("RAID: config error: table element count (%d) not equal to no. of cols (%d)\n", v, raidPtr->numCol);
               return (EINVAL);
       }
       /* 3.  set up the values used in the mapping code */
       info->BlocksPerTable = b;
       info->Lambda = lambda;
       info->NumParityReps = info->groupSize = k;
       info->SUsPerTable = b * (k - 1) * layoutPtr->SUsPerPU;  /* b blks, k-1 SUs each */
       info->SUsPerFullTable = k * info->SUsPerTable;  /* rot k times */
       info->PUsPerBlock = k - 1;
       info->SUsPerBlock = info->PUsPerBlock * layoutPtr->SUsPerPU;
       info->TableDepthInPUs = (b * k) / v;
       info->FullTableDepthInPUs = info->TableDepthInPUs * k;  /* k repetitions */

       /* used only in distributed sparing case */
       info->FullTablesPerSpareRegion = (v - 1) / rf_gcd(r, v - 1);    /* (v-1)/gcd fulltables */
       info->TablesPerSpareRegion = k * info->FullTablesPerSpareRegion;
       info->SpareSpaceDepthPerRegionInSUs = (r * info->TablesPerSpareRegion / (v - 1)) * layoutPtr->SUsPerPU;

       /* check to make sure the block design is sufficiently small */
       if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) {
               if (info->FullTableDepthInPUs * layoutPtr->SUsPerPU + info->SpareSpaceDepthPerRegionInSUs > layoutPtr->stripeUnitsPerDisk) {
                       RF_ERRORMSG3("RAID: config error: Full Table depth (%d) + Spare Space (%d) larger than disk size (%d) (BD too big)\n",
                           (int) info->FullTableDepthInPUs,
                           (int) info->SpareSpaceDepthPerRegionInSUs,
                           (int) layoutPtr->stripeUnitsPerDisk);
                       return (EINVAL);
               }
       } else {
               if (info->TableDepthInPUs * layoutPtr->SUsPerPU > layoutPtr->stripeUnitsPerDisk) {
                       RF_ERRORMSG2("RAID: config error: Table depth (%d) larger than disk size (%d) (BD too big)\n",
                           (int) (info->TableDepthInPUs * layoutPtr->SUsPerPU), \
                           (int) layoutPtr->stripeUnitsPerDisk);
                       return (EINVAL);
               }
       }


       /* compute the size of each disk, and the number of tables in the last
        * fulltable (which need not be complete) */
       if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {

               PUsPerDisk = layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU;
               spareRegionDepthInPUs = (info->TablesPerSpareRegion * info->TableDepthInPUs +
                   (info->TablesPerSpareRegion * info->TableDepthInPUs) / (v - 1));
               info->SpareRegionDepthInSUs = spareRegionDepthInPUs * layoutPtr->SUsPerPU;

               numCompleteSpareRegionsPerDisk = PUsPerDisk / spareRegionDepthInPUs;
               info->NumCompleteSRs = numCompleteSpareRegionsPerDisk;
               extraPUsPerDisk = PUsPerDisk % spareRegionDepthInPUs;

               /* assume conservatively that we need the full amount of spare
                * space in one region in order to provide spares for the
                * partial spare region at the end of the array.  We set "i"
                * to the number of tables in the partial spare region.  This
                * may actually include some fulltables. */
               extraPUsPerDisk -= (info->SpareSpaceDepthPerRegionInSUs / layoutPtr->SUsPerPU);
               if (extraPUsPerDisk <= 0)
                       i = 0;
               else
                       i = extraPUsPerDisk / info->TableDepthInPUs;

               complete_FT_count = (numCompleteSpareRegionsPerDisk * (info->TablesPerSpareRegion / k) + i / k);
               info->FullTableLimitSUID = complete_FT_count * info->SUsPerFullTable;
               info->ExtraTablesPerDisk = i % k;

               /* note that in the last spare region, the spare space is
                * complete even though data/parity space is not */
               totSparePUsPerDisk = (numCompleteSpareRegionsPerDisk + 1) * (info->SpareSpaceDepthPerRegionInSUs / layoutPtr->SUsPerPU);
               info->TotSparePUsPerDisk = totSparePUsPerDisk;

               layoutPtr->stripeUnitsPerDisk =
                   ((complete_FT_count) * info->FullTableDepthInPUs +  /* data & parity space */
                   info->ExtraTablesPerDisk * info->TableDepthInPUs +
                   totSparePUsPerDisk  /* spare space */
                   ) * layoutPtr->SUsPerPU;
               layoutPtr->dataStripeUnitsPerDisk =
                   (complete_FT_count * info->FullTableDepthInPUs + info->ExtraTablesPerDisk * info->TableDepthInPUs)
                   * layoutPtr->SUsPerPU * (k - 1) / k;

       } else {
               /* non-dist spare case:  force each disk to contain an
                * integral number of tables */
               layoutPtr->stripeUnitsPerDisk /= (info->TableDepthInPUs * layoutPtr->SUsPerPU);
               layoutPtr->stripeUnitsPerDisk *= (info->TableDepthInPUs * layoutPtr->SUsPerPU);

               /* compute the number of tables in the last fulltable, which
                * need not be complete */
               complete_FT_count =
                   ((layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU) / info->FullTableDepthInPUs);

               info->FullTableLimitSUID = complete_FT_count * info->SUsPerFullTable;
               info->ExtraTablesPerDisk =
                   ((layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU) / info->TableDepthInPUs) % k;
       }

       raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit;

       /* find the disk offset of the stripe unit where the last fulltable
        * starts */
       numCompleteFullTablesPerDisk = complete_FT_count;
       diskOffsetOfLastFullTableInSUs = numCompleteFullTablesPerDisk * info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
       if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
               SpareSpaceInSUs = numCompleteSpareRegionsPerDisk * info->SpareSpaceDepthPerRegionInSUs;
               diskOffsetOfLastFullTableInSUs += SpareSpaceInSUs;
               info->DiskOffsetOfLastSpareSpaceChunkInSUs =
                   diskOffsetOfLastFullTableInSUs + info->ExtraTablesPerDisk * info->TableDepthInPUs * layoutPtr->SUsPerPU;
       }
       info->DiskOffsetOfLastFullTableInSUs = diskOffsetOfLastFullTableInSUs;
       info->numCompleteFullTablesPerDisk = numCompleteFullTablesPerDisk;

       /* 4.  create and initialize the lookup tables */
       info->LayoutTable = rf_make_2d_array(b, k, raidPtr->cleanupList);
       if (info->LayoutTable == NULL)
               return (ENOMEM);
       info->OffsetTable = rf_make_2d_array(b, k, raidPtr->cleanupList);
       if (info->OffsetTable == NULL)
               return (ENOMEM);
       info->BlockTable = rf_make_2d_array(info->TableDepthInPUs * layoutPtr->SUsPerPU, raidPtr->numCol, raidPtr->cleanupList);
       if (info->BlockTable == NULL)
               return (ENOMEM);

       first_avail_slot = rf_make_1d_array(v, NULL);
       if (first_avail_slot == NULL)
               return (ENOMEM);

       for (i = 0; i < b; i++)
               for (j = 0; j < k; j++)
                       info->LayoutTable[i][j] = *cfgBuf++;

       /* initialize offset table */
       for (i = 0; i < b; i++)
               for (j = 0; j < k; j++) {
                       info->OffsetTable[i][j] = first_avail_slot[info->LayoutTable[i][j]];
                       first_avail_slot[info->LayoutTable[i][j]]++;
               }

       /* initialize block table */
       for (SUID = l = 0; l < layoutPtr->SUsPerPU; l++) {
               for (i = 0; i < b; i++) {
                       for (j = 0; j < k; j++) {
                               info->BlockTable[(info->OffsetTable[i][j] * layoutPtr->SUsPerPU) + l]
                                   [info->LayoutTable[i][j]] = SUID;
                       }
                       SUID++;
               }
       }

       rf_free_1d_array(first_avail_slot, v);

       /* 5.  set up the remaining redundant-but-useful parameters */

       raidPtr->totalSectors = (k * complete_FT_count + info->ExtraTablesPerDisk) *
           info->SUsPerTable * layoutPtr->sectorsPerStripeUnit;
       layoutPtr->numStripe = (raidPtr->totalSectors / layoutPtr->sectorsPerStripeUnit) / (k - 1);

       /* strange evaluation order below to try and minimize overflow
        * problems */

       layoutPtr->dataSectorsPerStripe = (k - 1) * layoutPtr->sectorsPerStripeUnit;
       layoutPtr->numDataCol = k - 1;
       layoutPtr->numParityCol = 1;

       return (0);
}
/* declustering with distributed sparing */
static void rf_ShutdownDeclusteredDS(RF_ThreadArg_t);
static void
rf_ShutdownDeclusteredDS(RF_ThreadArg_t arg)
{
       RF_DeclusteredConfigInfo_t *info;
       RF_Raid_t *raidPtr;

       raidPtr = (RF_Raid_t *) arg;
       info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
       if (info->SpareTable)
               rf_FreeSpareTable(raidPtr);
}

int
rf_ConfigureDeclusteredDS(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
                         RF_Config_t *cfgPtr)
{
       int     rc;

       rc = rf_ConfigureDeclustered(listp, raidPtr, cfgPtr);
       if (rc)
               return (rc);
       rf_ShutdownCreate(listp, rf_ShutdownDeclusteredDS, raidPtr);

       return (0);
}

void
rf_MapSectorDeclustered(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
                       RF_RowCol_t *col,
                       RF_SectorNum_t *diskSector, int remap)
{
       RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
       RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
       RF_StripeNum_t SUID = raidSector / layoutPtr->sectorsPerStripeUnit;
       RF_StripeNum_t FullTableID, FullTableOffset, TableID, TableOffset;
       RF_StripeNum_t BlockID, BlockOffset, RepIndex;
       RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable;
       RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
       RF_StripeNum_t base_suid = 0, outSU, SpareRegion = 0, SpareSpace = 0;

       rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid);

       FullTableID = SUID / sus_per_fulltable; /* fulltable ID within array
                                                * (across rows) */

       if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
               SpareRegion = FullTableID / info->FullTablesPerSpareRegion;
               SpareSpace = SpareRegion * info->SpareSpaceDepthPerRegionInSUs;
       }
       FullTableOffset = SUID % sus_per_fulltable;
       TableID = FullTableOffset / info->SUsPerTable;
       TableOffset = FullTableOffset - TableID * info->SUsPerTable;
       BlockID = TableOffset / info->PUsPerBlock;
       BlockOffset = TableOffset - BlockID * info->PUsPerBlock;
       BlockID %= info->BlocksPerTable;
       RepIndex = info->PUsPerBlock - TableID;
       if (!raidPtr->noRotate)
               BlockOffset += ((BlockOffset >= RepIndex) ? 1 : 0);
       *col = info->LayoutTable[BlockID][BlockOffset];

       /* remap to distributed spare space if indicated */
       if (remap) {
               RF_ASSERT(raidPtr->Disks[*col].status == rf_ds_reconstructing || raidPtr->Disks[*col].status == rf_ds_dist_spared);
               rf_remap_to_spare_space(layoutPtr, info, FullTableID, TableID, BlockID, (base_suid) ? 1 : 0, SpareRegion, col, &outSU);
       } else {

               outSU = base_suid;
               outSU += FullTableID * fulltable_depth; /* offs to strt of FT */
               outSU += SpareSpace;    /* skip rsvd spare space */
               outSU += TableID * info->TableDepthInPUs * layoutPtr->SUsPerPU; /* offs to strt of tble */
               outSU += info->OffsetTable[BlockID][BlockOffset] * layoutPtr->SUsPerPU; /* offs to the PU */
       }
       outSU += TableOffset / (info->BlocksPerTable * info->PUsPerBlock);      /* offs to the SU within
                                                                                * a PU */

       /* convert SUs to sectors, and, if not aligned to SU boundary, add in
        * offset to sector.  */
       *diskSector = outSU * layoutPtr->sectorsPerStripeUnit + (raidSector % layoutPtr->sectorsPerStripeUnit);

       RF_ASSERT(*col != -1);
}


/* prototyping this inexplicably causes the compile of the layout table (rf_layout.c) to fail */
void
rf_MapParityDeclustered(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
                       RF_RowCol_t *col,
                       RF_SectorNum_t *diskSector, int remap)
{
       RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
       RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
       RF_StripeNum_t SUID = raidSector / layoutPtr->sectorsPerStripeUnit;
       RF_StripeNum_t FullTableID, FullTableOffset, TableID, TableOffset;
       RF_StripeNum_t BlockID, RepIndex;
       RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable;
       RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
       RF_StripeNum_t base_suid = 0, outSU, SpareRegion = 0, SpareSpace = 0;

       rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid);

       /* compute row & (possibly) spare space exactly as before */
       FullTableID = SUID / sus_per_fulltable;

       if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) {
               SpareRegion = FullTableID / info->FullTablesPerSpareRegion;
               SpareSpace = SpareRegion * info->SpareSpaceDepthPerRegionInSUs;
       }
       /* compute BlockID and RepIndex exactly as before */
       FullTableOffset = SUID % sus_per_fulltable;
       TableID = FullTableOffset / info->SUsPerTable;
       TableOffset = FullTableOffset - TableID * info->SUsPerTable;
       /* TableOffset     = FullTableOffset % info->SUsPerTable; */
       /* BlockID         = (TableOffset / info->PUsPerBlock) %
        * info->BlocksPerTable; */
       BlockID = TableOffset / info->PUsPerBlock;
       BlockID %= info->BlocksPerTable;

       /* the parity block is in the position indicated by RepIndex */
       RepIndex = (raidPtr->noRotate) ? info->PUsPerBlock : info->PUsPerBlock - TableID;
       *col = info->LayoutTable[BlockID][RepIndex];

       if (remap) {
               RF_ASSERT(raidPtr->Disks[*col].status == rf_ds_reconstructing || raidPtr->Disks[*col].status == rf_ds_dist_spared);
               rf_remap_to_spare_space(layoutPtr, info, FullTableID, TableID, BlockID, (base_suid) ? 1 : 0, SpareRegion, col, &outSU);
       } else {

               /* compute sector as before, except use RepIndex instead of
                * BlockOffset */
               outSU = base_suid;
               outSU += FullTableID * fulltable_depth;
               outSU += SpareSpace;    /* skip rsvd spare space */
               outSU += TableID * info->TableDepthInPUs * layoutPtr->SUsPerPU;
               outSU += info->OffsetTable[BlockID][RepIndex] * layoutPtr->SUsPerPU;
       }

       outSU += TableOffset / (info->BlocksPerTable * info->PUsPerBlock);
       *diskSector = outSU * layoutPtr->sectorsPerStripeUnit + (raidSector % layoutPtr->sectorsPerStripeUnit);

       RF_ASSERT(*col != -1);
}
/* returns an array of ints identifying the disks that comprise the stripe containing the indicated address.
* the caller must _never_ attempt to modify this array.
*/
void
rf_IdentifyStripeDeclustered(RF_Raid_t *raidPtr, RF_RaidAddr_t addr,
                            RF_RowCol_t **diskids)
{
       RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
       RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
       RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable;
       RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
       RF_StripeNum_t base_suid = 0;
       RF_StripeNum_t SUID = rf_RaidAddressToStripeUnitID(layoutPtr, addr);
       RF_StripeNum_t stripeID;
       int     tableOffset;

       rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid);
       stripeID = rf_StripeUnitIDToStripeID(layoutPtr, SUID);  /* find stripe offset
                                                                * into array */
       tableOffset = (stripeID % info->BlocksPerTable);        /* find offset into
                                                                * block design table */
       *diskids = info->LayoutTable[tableOffset];
}
/* This returns the default head-separation limit, which is measured
* in "required units for reconstruction".  Each time a disk fetches
* a unit, it bumps a counter.  The head-sep code prohibits any disk
* from getting more than headSepLimit counter values ahead of any
* other.
*
* We assume here that the number of floating recon buffers is already
* set.  There are r stripes to be reconstructed in each table, and so
* if we have a total of B buffers, we can have at most B/r tables
* under recon at any one time.  In each table, lambda units are required
* from each disk, so given B buffers, the head sep limit has to be
* (lambda*B)/r units.  We subtract one to avoid weird boundary cases.
*
* for example, suppose were given 50 buffers, r=19, and lambda=4 as in
* the 20.5 design.  There are 19 stripes/table to be reconstructed, so
* we can have 50/19 tables concurrently under reconstruction, which means
* we can allow the fastest disk to get 50/19 tables ahead of the slower
* disk.  There are lambda "required units" for each disk, so the fastest
* disk can get 4*50/19 = 10 counter values ahead of the slowest.
*
* If numBufsToAccumulate is not 1, we need to limit the head sep further
* because multiple bufs will be required for each stripe under recon.
*/
RF_HeadSepLimit_t
rf_GetDefaultHeadSepLimitDeclustered(RF_Raid_t *raidPtr)
{
       RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;

       return (info->Lambda * raidPtr->numFloatingReconBufs / info->TableDepthInPUs / rf_numBufsToAccumulate);
}
/* returns the default number of recon buffers to use.  The value
* is somewhat arbitrary...it's intended to be large enough to allow
* for a reasonably large head-sep limit, but small enough that you
* don't use up all your system memory with buffers.
*/
int
rf_GetDefaultNumFloatingReconBuffersDeclustered(RF_Raid_t * raidPtr)
{
       return (100 * rf_numBufsToAccumulate);
}
/* sectors in the last fulltable of the array need to be handled
* specially since this fulltable can be incomplete.  this function
* changes the values of certain params to handle this.
*
* the idea here is that MapSector et. al. figure out which disk the
* addressed unit lives on by computing the modulos of the unit number
* with the number of units per fulltable, table, etc.  In the last
* fulltable, there are fewer units per fulltable, so we need to adjust
* the number of user data units per fulltable to reflect this.
*
* so, we (1) convert the fulltable size and depth parameters to
* the size of the partial fulltable at the end, (2) compute the
* disk sector offset where this fulltable starts, and (3) convert
* the users stripe unit number from an offset into the array to
* an offset into the last fulltable.
*/
void
rf_decluster_adjust_params(RF_RaidLayout_t *layoutPtr,
                          RF_StripeNum_t *SUID,
                          RF_StripeCount_t *sus_per_fulltable,
                          RF_StripeCount_t *fulltable_depth,
                          RF_StripeNum_t *base_suid)
{
       RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;

       if (*SUID >= info->FullTableLimitSUID) {
               /* new full table size is size of last full table on disk */
               *sus_per_fulltable = info->ExtraTablesPerDisk * info->SUsPerTable;

               /* new full table depth is corresponding depth */
               *fulltable_depth = info->ExtraTablesPerDisk * info->TableDepthInPUs * layoutPtr->SUsPerPU;

               /* set up the new base offset */
               *base_suid = info->DiskOffsetOfLastFullTableInSUs;

               /* convert users array address to an offset into the last
                * fulltable */
               *SUID -= info->FullTableLimitSUID;
       }
}
/*
* map a stripe ID to a parity stripe ID.
* See comment above RaidAddressToParityStripeID in layout.c.
*/
void
rf_MapSIDToPSIDDeclustered(RF_RaidLayout_t *layoutPtr,
                          RF_StripeNum_t stripeID,
                          RF_StripeNum_t *psID,
                          RF_ReconUnitNum_t *which_ru)
{
       RF_DeclusteredConfigInfo_t *info;

       info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;

       *psID = (stripeID / (layoutPtr->SUsPerPU * info->BlocksPerTable))
           * info->BlocksPerTable + (stripeID % info->BlocksPerTable);
       *which_ru = (stripeID % (info->BlocksPerTable * layoutPtr->SUsPerPU))
           / info->BlocksPerTable;
       RF_ASSERT((*which_ru) < layoutPtr->SUsPerPU / layoutPtr->SUsPerRU);
}
/*
* Called from MapSector and MapParity to retarget an access at the spare unit.
* Modifies the "col" and "outSU" parameters only.
*/
void
rf_remap_to_spare_space(RF_RaidLayout_t *layoutPtr,
                       RF_DeclusteredConfigInfo_t *info,
                       RF_StripeNum_t FullTableID,
                       RF_StripeNum_t TableID,
                       RF_SectorNum_t BlockID,
                       RF_StripeNum_t base_suid,
                       RF_StripeNum_t SpareRegion,
                       RF_RowCol_t *outCol,
                       RF_StripeNum_t *outSU)
{
       RF_StripeNum_t ftID, spareTableStartSU, TableInSpareRegion, lastSROffset,
               which_ft;

       /*
        * note that FullTableID and hence SpareRegion may have gotten
        * tweaked by rf_decluster_adjust_params. We detect this by
        * noticing that base_suid is not 0.
        */
       if (base_suid == 0) {
               ftID = FullTableID;
       } else {
               /*
                * There may be > 1.0 full tables in the last (i.e. partial)
                * spare region.  find out which of these we're in.
                */
               lastSROffset = info->NumCompleteSRs * info->SpareRegionDepthInSUs;
               which_ft = (info->DiskOffsetOfLastFullTableInSUs - lastSROffset) / (info->FullTableDepthInPUs * layoutPtr->SUsPerPU);

               /* compute the actual full table ID */
               ftID = info->DiskOffsetOfLastFullTableInSUs / (info->FullTableDepthInPUs * layoutPtr->SUsPerPU) + which_ft;
               SpareRegion = info->NumCompleteSRs;
       }
       TableInSpareRegion = (ftID * info->NumParityReps + TableID) % info->TablesPerSpareRegion;

       *outCol = info->SpareTable[TableInSpareRegion][BlockID].spareDisk;
       RF_ASSERT(*outCol != -1);

       spareTableStartSU = (SpareRegion == info->NumCompleteSRs) ?
           info->DiskOffsetOfLastFullTableInSUs + info->ExtraTablesPerDisk * info->TableDepthInPUs * layoutPtr->SUsPerPU :
           (SpareRegion + 1) * info->SpareRegionDepthInSUs - info->SpareSpaceDepthPerRegionInSUs;
       *outSU = spareTableStartSU + info->SpareTable[TableInSpareRegion][BlockID].spareBlockOffsetInSUs;
       if (*outSU >= layoutPtr->stripeUnitsPerDisk) {
               printf("rf_remap_to_spare_space: invalid remapped disk SU offset %ld\n", (long) *outSU);
       }
}

#endif /* (RF_INCLUDE_PARITY_DECLUSTERING > 0)  || (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0) */

#if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
int
rf_InstallSpareTable(RF_Raid_t *raidPtr, RF_RowCol_t fcol)
{
       RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
       RF_SparetWait_t *req;
       int     retcode;

       req = RF_Malloc(sizeof(*req));
       req->C = raidPtr->numCol;
       req->G = raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol;
       req->fcol = fcol;
       req->SUsPerPU = raidPtr->Layout.SUsPerPU;
       req->TablesPerSpareRegion = info->TablesPerSpareRegion;
       req->BlocksPerTable = info->BlocksPerTable;
       req->TableDepthInPUs = info->TableDepthInPUs;
       req->SpareSpaceDepthPerRegionInSUs = info->SpareSpaceDepthPerRegionInSUs;

       retcode = rf_GetSpareTableFromDaemon(req);
       RF_ASSERT(!retcode);    /* XXX -- fix this to recover gracefully --
                                * XXX */
       return (retcode);
}
#endif
#if (RF_INCLUDE_PARITY_DECLUSTERING > 0) || (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0)
/*
* Invoked via ioctl to install a spare table in the kernel.
*/
int
rf_SetSpareTable(RF_Raid_t *raidPtr, void *data)
{
       RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
       RF_SpareTableEntry_t **ptrs;
       int     i, retcode;

       /* what we need to copyin is a 2-d array, so first copyin the user
        * pointers to the rows in the table */
       size_t ptrslen = info->TablesPerSpareRegion * sizeof(*ptrs);
       ptrs = RF_Malloc(ptrslen);
       retcode = copyin(data, ptrs, ptrslen);

       if (retcode)
               return (retcode);

       /* now allocate kernel space for the row pointers */
       info->SpareTable = RF_Malloc(info->TablesPerSpareRegion *
           sizeof(*info->SpareTable));

       /* now allocate kernel space for each row in the table, and copy it in
        * from user space */
       size_t len = info->BlocksPerTable * sizeof(**info->SpareTable);
       for (i = 0; i < info->TablesPerSpareRegion; i++) {
               info->SpareTable[i] = RF_Malloc(len);
               retcode = copyin(ptrs[i], info->SpareTable[i], len);
               if (retcode) {
                       info->SpareTable = NULL;        /* blow off the memory
                                                        * we've allocated */
                       return (retcode);
               }
       }

       /* free up the temporary array we used */
       RF_Free(ptrs, ptrslen);

       return (0);
}

RF_ReconUnitCount_t
rf_GetNumSpareRUsDeclustered(RF_Raid_t *raidPtr)
{
       RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;

       return (((RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo)->TotSparePUsPerDisk);
}
#endif /* (RF_INCLUDE_PARITY_DECLUSTERING > 0)  || (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0) */

void
rf_FreeSpareTable(RF_Raid_t *raidPtr)
{
       long    i;
       RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
       RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
       RF_SpareTableEntry_t **table = info->SpareTable;

       for (i = 0; i < info->TablesPerSpareRegion; i++) {
               RF_Free(table[i], info->BlocksPerTable * sizeof(RF_SpareTableEntry_t));
       }
       RF_Free(table, info->TablesPerSpareRegion * sizeof(RF_SpareTableEntry_t *));
       info->SpareTable = NULL;
}