/*      $NetBSD: rf_dagffrd.c,v 1.22 2021/07/23 00:54:45 oster Exp $    */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
*  Software Distribution Coordinator  or  [email protected]
*  School of Computer Science
*  Carnegie Mellon University
*  Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/

/*
* rf_dagffrd.c
*
* code for creating fault-free read DAGs
*
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_dagffrd.c,v 1.22 2021/07/23 00:54:45 oster Exp $");

#include <dev/raidframe/raidframevar.h>

#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_debugMem.h"
#include "rf_general.h"
#include "rf_dagffrd.h"

/******************************************************************************
*
* General comments on DAG creation:
*
* All DAGs in this file use roll-away error recovery.  Each DAG has a single
* commit node, usually called "Cmt."  If an error occurs before the Cmt node
* is reached, the execution engine will halt forward execution and work
* backward through the graph, executing the undo functions.  Assuming that
* each node in the graph prior to the Cmt node are undoable and atomic - or -
* does not make changes to permanent state, the graph will fail atomically.
* If an error occurs after the Cmt node executes, the engine will roll-forward
* through the graph, blindly executing nodes until it reaches the end.
* If a graph reaches the end, it is assumed to have completed successfully.
*
* A graph has only 1 Cmt node.
*
*/


/******************************************************************************
*
* The following wrappers map the standard DAG creation interface to the
* DAG creation routines.  Additionally, these wrappers enable experimentation
* with new DAG structures by providing an extra level of indirection, allowing
* the DAG creation routines to be replaced at this single point.
*/

void
rf_CreateFaultFreeReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
                         RF_DagHeader_t *dag_h, void *bp,
                         RF_RaidAccessFlags_t flags,
                         RF_AllocListElem_t *allocList)
{
       rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
           RF_IO_TYPE_READ);
}


/******************************************************************************
*
* DAG creation code begins here
*/

/******************************************************************************
*
* creates a DAG to perform a nonredundant read or write of data within one
* stripe.
* For reads, this DAG is as follows:
*
*                   /---- read ----\
*    Header -- Block ---- read ---- Commit -- Terminate
*                   \---- read ----/
*
* For writes, this DAG is as follows:
*
*                    /---- write ----\
*    Header -- Commit ---- write ---- Block -- Terminate
*                    \---- write ----/
*
* There is one disk node per stripe unit accessed, and all disk nodes are in
* parallel.
*
* Tricky point here:  The first disk node (read or write) is created
* normally.  Subsequent disk nodes are created by copying the first one,
* and modifying a few params.  The "succedents" and "antecedents" fields are
* _not_ re-created in each node, but rather left pointing to the same array
* that was malloc'd when the first node was created.  Thus, it's essential
* that when this DAG is freed, the succedents and antecedents fields be freed
* in ONLY ONE of the read nodes.  This does not apply to the "params" field
* because it is recreated for each READ node.
*
* Note that normal-priority accesses do not need to be tagged with their
* parity stripe ID, because they will never be promoted.  Hence, I've
* commented-out the code to do this, and marked it with UNNEEDED.
*
*****************************************************************************/

void
rf_CreateNonredundantDAG(RF_Raid_t *raidPtr,
   RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp,
   RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList,
   RF_IoType_t type)
{
       RF_DagNode_t *diskNodes, *blockNode, *commitNode, *termNode;
       RF_DagNode_t *tmpNode, *tmpdiskNode;
       RF_PhysDiskAddr_t *pda = asmap->physInfo;
       void     (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
       int     i, n;
       const char   *name;

       n = asmap->numStripeUnitsAccessed;
       dag_h->creator = "NonredundantDAG";

       doFunc = rf_NullNodeFunc;
       undoFunc = rf_NullNodeUndoFunc;
       name = NULL;

       RF_ASSERT(RF_IO_IS_R_OR_W(type));
       switch (type) {
       case RF_IO_TYPE_READ:
               doFunc = rf_DiskReadFunc;
               undoFunc = rf_DiskReadUndoFunc;
               name = "R  ";
#if RF_DEBUG_DAG
               if (rf_dagDebug)
                       printf("[Creating non-redundant read DAG]\n");
#endif
               break;
       case RF_IO_TYPE_WRITE:
               doFunc = rf_DiskWriteFunc;
               undoFunc = rf_DiskWriteUndoFunc;
               name = "W  ";
#if RF_DEBUG_DAG
               if (rf_dagDebug)
                       printf("[Creating non-redundant write DAG]\n");
#endif
               break;
       default:
               RF_PANIC();
       }

       /*
        * For reads, the dag can not commit until the block node is reached.
        * for writes, the dag commits immediately.
        */
       dag_h->numCommitNodes = 1;
       dag_h->numCommits = 0;
       dag_h->numSuccedents = 1;

       /*
        * Node count:
        * 1 block node
        * n data reads (or writes)
        * 1 commit node
        * 1 terminator node
        */
       RF_ASSERT(n > 0);

       for (i = 0; i < n; i++) {
               tmpNode = rf_AllocDAGNode(raidPtr);
               tmpNode->list_next = dag_h->nodes;
               dag_h->nodes = tmpNode;
       }
       diskNodes = dag_h->nodes;

       blockNode = rf_AllocDAGNode(raidPtr);
       blockNode->list_next = dag_h->nodes;
       dag_h->nodes = blockNode;

       commitNode = rf_AllocDAGNode(raidPtr);
       commitNode->list_next = dag_h->nodes;
       dag_h->nodes = commitNode;

       termNode = rf_AllocDAGNode(raidPtr);
       termNode->list_next = dag_h->nodes;
       dag_h->nodes = termNode;

       /* initialize nodes */
       switch (type) {
       case RF_IO_TYPE_READ:
               rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
                   NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
               rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
                   NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
               rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
                   NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
               break;
       case RF_IO_TYPE_WRITE:
               rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
                   NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
               rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
                   NULL, n, 1, 0, 0, dag_h, "Cmt", allocList);
               rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
                   NULL, 0, n, 0, 0, dag_h, "Trm", allocList);
               break;
       default:
               RF_PANIC();
       }

       tmpdiskNode = diskNodes;
       for (i = 0; i < n; i++) {
               RF_ASSERT(pda != NULL);
               rf_InitNode(tmpdiskNode, rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc,
                   1, 1, 4, 0, dag_h, name, allocList);
               tmpdiskNode->params[0].p = pda;
               tmpdiskNode->params[1].p = pda->bufPtr;
               /* parity stripe id is not necessary */
               tmpdiskNode->params[2].v = 0;
               tmpdiskNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
               pda = pda->next;
               tmpdiskNode = tmpdiskNode->list_next;
       }

       /*
        * Connect nodes.
        */

       /* connect hdr to block node */
       RF_ASSERT(blockNode->numAntecedents == 0);
       dag_h->succedents[0] = blockNode;

       if (type == RF_IO_TYPE_READ) {
               /* connecting a nonredundant read DAG */
               RF_ASSERT(blockNode->numSuccedents == n);
               RF_ASSERT(commitNode->numAntecedents == n);
               tmpdiskNode = diskNodes;
               for (i = 0; i < n; i++) {
                       /* connect block node to each read node */
                       RF_ASSERT(tmpdiskNode->numAntecedents == 1);
                       blockNode->succedents[i] = tmpdiskNode;
                       tmpdiskNode->antecedents[0] = blockNode;
                       tmpdiskNode->antType[0] = rf_control;

                       /* connect each read node to the commit node */
                       RF_ASSERT(tmpdiskNode->numSuccedents == 1);
                       tmpdiskNode->succedents[0] = commitNode;
                       commitNode->antecedents[i] = tmpdiskNode;
                       commitNode->antType[i] = rf_control;
                       tmpdiskNode = tmpdiskNode->list_next;
               }
               /* connect the commit node to the term node */
               RF_ASSERT(commitNode->numSuccedents == 1);
               RF_ASSERT(termNode->numAntecedents == 1);
               RF_ASSERT(termNode->numSuccedents == 0);
               commitNode->succedents[0] = termNode;
               termNode->antecedents[0] = commitNode;
               termNode->antType[0] = rf_control;
       } else {
               /* connecting a nonredundant write DAG */
               /* connect the block node to the commit node */
               RF_ASSERT(blockNode->numSuccedents == 1);
               RF_ASSERT(commitNode->numAntecedents == 1);
               blockNode->succedents[0] = commitNode;
               commitNode->antecedents[0] = blockNode;
               commitNode->antType[0] = rf_control;

               RF_ASSERT(commitNode->numSuccedents == n);
               RF_ASSERT(termNode->numAntecedents == n);
               RF_ASSERT(termNode->numSuccedents == 0);
               tmpdiskNode = diskNodes;
               for (i = 0; i < n; i++) {
                       /* connect the commit node to each write node */
                       RF_ASSERT(tmpdiskNode->numAntecedents == 1);
                       commitNode->succedents[i] = tmpdiskNode;
                       tmpdiskNode->antecedents[0] = commitNode;
                       tmpdiskNode->antType[0] = rf_control;

                       /* connect each write node to the term node */
                       RF_ASSERT(tmpdiskNode->numSuccedents == 1);
                       tmpdiskNode->succedents[0] = termNode;
                       termNode->antecedents[i] = tmpdiskNode;
                       termNode->antType[i] = rf_control;
                       tmpdiskNode = tmpdiskNode->list_next;
               }
       }
}
/******************************************************************************
* Create a fault-free read DAG for RAID level 1
*
* Hdr -> Nil -> Rmir -> Cmt -> Trm
*
* The "Rmir" node schedules a read from the disk in the mirror pair with the
* shortest disk queue.  the proper queue is selected at Rmir execution.  this
* deferred mapping is unlike other archs in RAIDframe which generally fix
* mapping at DAG creation time.
*
* Parameters:  raidPtr   - description of the physical array
*              asmap     - logical & physical addresses for this access
*              bp        - buffer ptr (for holding read data)
*              flags     - general flags (e.g. disk locking)
*              allocList - list of memory allocated in DAG creation
*****************************************************************************/

static void
CreateMirrorReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
   RF_DagHeader_t *dag_h, void *bp,
   RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList,
   void (*readfunc) (RF_DagNode_t * node))
{
       RF_DagNode_t *readNodes, *blockNode, *commitNode, *termNode;
       RF_DagNode_t *tmpNode, *tmpreadNode;
       RF_PhysDiskAddr_t *data_pda = asmap->physInfo;
       RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo;
       int     i, n;

       n = asmap->numStripeUnitsAccessed;
       dag_h->creator = "RaidOneReadDAG";
#if RF_DEBUG_DAG
       if (rf_dagDebug) {
               printf("[Creating RAID level 1 read DAG]\n");
       }
#endif
       /*
        * This dag can not commit until the commit node is reached
        * errors prior to the commit point imply the dag has failed.
        */
       dag_h->numCommitNodes = 1;
       dag_h->numCommits = 0;
       dag_h->numSuccedents = 1;

       /*
        * Node count:
        * n data reads
        * 1 block node
        * 1 commit node
        * 1 terminator node
        */
       RF_ASSERT(n > 0);

       for (i = 0; i < n; i++) {
               tmpNode = rf_AllocDAGNode(raidPtr);
               tmpNode->list_next = dag_h->nodes;
               dag_h->nodes = tmpNode;
       }
       readNodes = dag_h->nodes;

       blockNode = rf_AllocDAGNode(raidPtr);
       blockNode->list_next = dag_h->nodes;
       dag_h->nodes = blockNode;

       commitNode = rf_AllocDAGNode(raidPtr);
       commitNode->list_next = dag_h->nodes;
       dag_h->nodes = commitNode;

       termNode = rf_AllocDAGNode(raidPtr);
       termNode->list_next = dag_h->nodes;
       dag_h->nodes = termNode;

       /* initialize nodes */
       rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
           rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
       rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
           rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
       rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
           rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);

       tmpreadNode = readNodes;
       for (i = 0; i < n; i++) {
               RF_ASSERT(data_pda != NULL);
               RF_ASSERT(parity_pda != NULL);
               rf_InitNode(tmpreadNode, rf_wait, RF_FALSE, readfunc,
                   rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h,
                   "Rmir", allocList);
               tmpreadNode->params[0].p = data_pda;
               tmpreadNode->params[1].p = data_pda->bufPtr;
               /* parity stripe id is not necessary */
               tmpreadNode->params[2].p = 0;
               tmpreadNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
               tmpreadNode->params[4].p = parity_pda;
               data_pda = data_pda->next;
               parity_pda = parity_pda->next;
               tmpreadNode = tmpreadNode->list_next;
       }

       /*
        * Connect nodes
        */

       /* connect hdr to block node */
       RF_ASSERT(blockNode->numAntecedents == 0);
       dag_h->succedents[0] = blockNode;

       /* connect block node to read nodes */
       RF_ASSERT(blockNode->numSuccedents == n);
       tmpreadNode = readNodes;
       for (i = 0; i < n; i++) {
               RF_ASSERT(tmpreadNode->numAntecedents == 1);
               blockNode->succedents[i] = tmpreadNode;
               tmpreadNode->antecedents[0] = blockNode;
               tmpreadNode->antType[0] = rf_control;
               tmpreadNode = tmpreadNode->list_next;
       }

       /* connect read nodes to commit node */
       RF_ASSERT(commitNode->numAntecedents == n);
       tmpreadNode = readNodes;
       for (i = 0; i < n; i++) {
               RF_ASSERT(tmpreadNode->numSuccedents == 1);
               tmpreadNode->succedents[0] = commitNode;
               commitNode->antecedents[i] = tmpreadNode;
               commitNode->antType[i] = rf_control;
               tmpreadNode = tmpreadNode->list_next;
       }

       /* connect commit node to term node */
       RF_ASSERT(commitNode->numSuccedents == 1);
       RF_ASSERT(termNode->numAntecedents == 1);
       RF_ASSERT(termNode->numSuccedents == 0);
       commitNode->succedents[0] = termNode;
       termNode->antecedents[0] = commitNode;
       termNode->antType[0] = rf_control;
}

void
rf_CreateMirrorIdleReadDAG(
   RF_Raid_t * raidPtr,
   RF_AccessStripeMap_t * asmap,
   RF_DagHeader_t * dag_h,
   void *bp,
   RF_RaidAccessFlags_t flags,
   RF_AllocListElem_t * allocList)
{
       CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
           rf_DiskReadMirrorIdleFunc);
}

#if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0)

void
rf_CreateMirrorPartitionReadDAG(RF_Raid_t *raidPtr,
                               RF_AccessStripeMap_t *asmap,
                               RF_DagHeader_t *dag_h, void *bp,
                               RF_RaidAccessFlags_t flags,
                               RF_AllocListElem_t *allocList)
{
       CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
           rf_DiskReadMirrorPartitionFunc);
}
#endif