/*      $NetBSD: rf_dagdegwr.c,v 1.37 2023/10/15 18:15:19 oster Exp $   */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
*  Software Distribution Coordinator  or  [email protected]
*  School of Computer Science
*  Carnegie Mellon University
*  Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/

/*
* rf_dagdegwr.c
*
* code for creating degraded write DAGs
*
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.37 2023/10/15 18:15:19 oster Exp $");

#include <dev/raidframe/raidframevar.h>

#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_debugMem.h"
#include "rf_general.h"
#include "rf_dagdegwr.h"
#include "rf_map.h"


/******************************************************************************
*
* General comments on DAG creation:
*
* All DAGs in this file use roll-away error recovery.  Each DAG has a single
* commit node, usually called "Cmt."  If an error occurs before the Cmt node
* is reached, the execution engine will halt forward execution and work
* backward through the graph, executing the undo functions.  Assuming that
* each node in the graph prior to the Cmt node are undoable and atomic - or -
* does not make changes to permanent state, the graph will fail atomically.
* If an error occurs after the Cmt node executes, the engine will roll-forward
* through the graph, blindly executing nodes until it reaches the end.
* If a graph reaches the end, it is assumed to have completed successfully.
*
* A graph has only 1 Cmt node.
*
*/


/******************************************************************************
*
* The following wrappers map the standard DAG creation interface to the
* DAG creation routines.  Additionally, these wrappers enable experimentation
* with new DAG structures by providing an extra level of indirection, allowing
* the DAG creation routines to be replaced at this single point.
*/

static
RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
{
       rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
           flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
}

void
rf_CreateDegradedWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
                         RF_DagHeader_t *dag_h, void *bp,
                         RF_RaidAccessFlags_t flags,
                         RF_AllocListElem_t *allocList)
{

       RF_ASSERT(asmap->numDataFailed == 1);
       dag_h->creator = "DegradedWriteDAG";

       /*
        * if the access writes only a portion of the failed unit, and also
        * writes some portion of at least one surviving unit, we create two
        * DAGs, one for the failed component and one for the non-failed
        * component, and do them sequentially.  Note that the fact that we're
        * accessing only a portion of the failed unit indicates that the
        * access either starts or ends in the failed unit, and hence we need
        * create only two dags.  This is inefficient in that the same data or
        * parity can get read and written twice using this structure.  I need
        * to fix this to do the access all at once.
        */
       RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
                   asmap->failedPDAs[0]->numSector !=
                       raidPtr->Layout.sectorsPerStripeUnit));
       rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
           allocList);
}



/******************************************************************************
*
* DAG creation code begins here
*/
#define BUF_ALLOC(num) \
 RF_MallocAndAdd(rf_RaidAddressToByte(raidPtr, num), allocList)



/******************************************************************************
*
* CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
* write, which is as follows
*
*                                        / {Wnq} --\
* hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
*                  \  {Rod} /            \  Wnd ---/
*                                        \ {Wnd} -/
*
* commit nodes: Xor, Wnd
*
* IMPORTANT:
* This DAG generator does not work for double-degraded archs since it does not
* generate Q
*
* This dag is essentially identical to the large-write dag, except that the
* write to the failed data unit is suppressed.
*
* IMPORTANT:  this dag does not work in the case where the access writes only
* a portion of the failed unit, and also writes some portion of at least one
* surviving SU.  this case is handled in CreateDegradedWriteDAG above.
*
* The block & unblock nodes are leftovers from a previous version.  They
* do nothing, but I haven't deleted them because it would be a tremendous
* effort to put them back in.
*
* This dag is used whenever a one of the data units in a write has failed.
* If it is the parity unit that failed, the nonredundant write dag (below)
* is used.
*****************************************************************************/

void
rf_CommonCreateSimpleDegradedWriteDAG(RF_Raid_t *raidPtr,
                                     RF_AccessStripeMap_t *asmap,
                                     RF_DagHeader_t *dag_h, void *bp,
                                     RF_RaidAccessFlags_t flags,
                                     RF_AllocListElem_t *allocList,
                                     int nfaults,
                                     void (*redFunc) (RF_DagNode_t *),
                                     int allowBufferRecycle)
{
       int     nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
               rdnodesFaked;
       RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *termNode;
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
       RF_DagNode_t *wnqNode;
#endif
       RF_DagNode_t *wndNodes, *rrdNodes, *xorNode, *commitNode;
       RF_DagNode_t *tmpNode, *tmpwndNode, *tmprrdNode;
       RF_SectorCount_t sectorsPerSU;
       RF_ReconUnitNum_t which_ru;
       char   *xorTargetBuf = NULL;    /* the target buffer for the XOR
                                        * operation */
       char   overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */
       RF_AccessStripeMapHeader_t *new_asm_h[2];
       RF_PhysDiskAddr_t *pda, *parityPDA;
       RF_StripeNum_t parityStripeID;
       RF_PhysDiskAddr_t *failedPDA;
       RF_RaidLayout_t *layoutPtr;

       layoutPtr = &(raidPtr->Layout);
       parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
           &which_ru);
       sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
       /* failedPDA points to the pda within the asm that targets the failed
        * disk */
       failedPDA = asmap->failedPDAs[0];

#if RF_DEBUG_DAG
       if (rf_dagDebug)
               printf("[Creating degraded-write DAG]\n");
#endif

       RF_ASSERT(asmap->numDataFailed == 1);
       dag_h->creator = "SimpleDegradedWriteDAG";

       /*
        * Generate two ASMs identifying the surviving data
        * we need in order to recover the lost data.
        */
       /* overlappingPDAs array must be zero'd */
       memset(overlappingPDAs, 0, RF_MAXCOL);
       rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
           &nXorBufs, NULL, overlappingPDAs, allocList);

       /* create all the nodes at once */
       nWndNodes = asmap->numStripeUnitsAccessed - 1;  /* no access is
                                                        * generated for the
                                                        * failed pda */

       nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
           ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
       /*
        * XXX
        *
        * There's a bug with a complete stripe overwrite- that means 0 reads
        * of old data, and the rest of the DAG generation code doesn't like
        * that. A release is coming, and I don't wanna risk breaking a critical
        * DAG generator, so here's what I'm gonna do- if there's no read nodes,
        * I'm gonna fake there being a read node, and I'm gonna swap in a
        * no-op node in its place (to make all the link-up code happy).
        * This should be fixed at some point.  --jimz
        */
       if (nRrdNodes == 0) {
               nRrdNodes = 1;
               rdnodesFaked = 1;
       } else {
               rdnodesFaked = 0;
       }

       blockNode = rf_AllocDAGNode(raidPtr);
       blockNode->list_next = dag_h->nodes;
       dag_h->nodes = blockNode;

       commitNode = rf_AllocDAGNode(raidPtr);
       commitNode->list_next = dag_h->nodes;
       dag_h->nodes = commitNode;

       unblockNode = rf_AllocDAGNode(raidPtr);
       unblockNode->list_next = dag_h->nodes;
       dag_h->nodes = unblockNode;

       termNode = rf_AllocDAGNode(raidPtr);
       termNode->list_next = dag_h->nodes;
       dag_h->nodes = termNode;

       xorNode = rf_AllocDAGNode(raidPtr);
       xorNode->list_next = dag_h->nodes;
       dag_h->nodes = xorNode;

       wnpNode = rf_AllocDAGNode(raidPtr);
       wnpNode->list_next = dag_h->nodes;
       dag_h->nodes = wnpNode;

       for (i = 0; i < nWndNodes; i++) {
               tmpNode = rf_AllocDAGNode(raidPtr);
               tmpNode->list_next = dag_h->nodes;
               dag_h->nodes = tmpNode;
       }
       wndNodes = dag_h->nodes;

       for (i = 0; i < nRrdNodes; i++) {
               tmpNode = rf_AllocDAGNode(raidPtr);
               tmpNode->list_next = dag_h->nodes;
               dag_h->nodes = tmpNode;
       }
       rrdNodes = dag_h->nodes;

#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
       if (nfaults == 2) {
               wnqNode = rf_AllocDAGNode(raidPtr);
               wnqNode->list_next = dag_h->nodes;
               dag_h->nodes = wnqNode;
       } else {
               wnqNode = NULL;
       }
#endif

       /* this dag can not commit until all rrd and xor Nodes have completed */
       dag_h->numCommitNodes = 1;
       dag_h->numCommits = 0;
       dag_h->numSuccedents = 1;

       RF_ASSERT(nRrdNodes > 0);
       rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
           NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
       rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
           NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
       rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
           NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
       rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
           NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
       rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
           nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);

       /*
        * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
        * the failed buffer, save a pointer to it so we can use it as the target
        * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
        * a buffer is the same size as the failed buffer, it must also be at the
        * same alignment within the SU.
        */
       i = 0;
       tmprrdNode = rrdNodes;
       if (new_asm_h[0]) {
               for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
                   i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
                   i++, pda = pda->next) {
                       rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
                           rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
                       RF_ASSERT(pda);
                       tmprrdNode->params[0].p = pda;
                       tmprrdNode->params[1].p = pda->bufPtr;
                       tmprrdNode->params[2].v = parityStripeID;
                       tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
                       tmprrdNode = tmprrdNode->list_next;
               }
       }
       /* i now equals the number of stripe units accessed in new_asm_h[0] */
       /* Note that for tmprrdNode, this means a continuation from above, so no need to
          assign it anything.. */
       if (new_asm_h[1]) {
               for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
                   j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
                   j++, pda = pda->next) {
                       rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
                           rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
                       RF_ASSERT(pda);
                       tmprrdNode->params[0].p = pda;
                       tmprrdNode->params[1].p = pda->bufPtr;
                       tmprrdNode->params[2].v = parityStripeID;
                       tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
                       if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
                               xorTargetBuf = pda->bufPtr;
                       tmprrdNode = tmprrdNode->list_next;
               }
       }
       if (rdnodesFaked) {
               /*
                * This is where we'll init that fake noop read node
                * (XXX should the wakeup func be different?)
                */
               /* node that rrdNodes will just be a single node... */
               rf_InitNode(rrdNodes, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
                   NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
       }
       /*
        * Make a PDA for the parity unit.  The parity PDA should start at
        * the same offset into the SU as the failed PDA.
        */
       /* Danner comment: I don't think this copy is really necessary. We are
        * in one of two cases here. (1) The entire failed unit is written.
        * Then asmap->parityInfo will describe the entire parity. (2) We are
        * only writing a subset of the failed unit and nothing else. Then the
        * asmap->parityInfo describes the failed unit and the copy can also
        * be avoided. */

       parityPDA = rf_AllocPhysDiskAddr(raidPtr);
       parityPDA->next = dag_h->pda_cleanup_list;
       dag_h->pda_cleanup_list = parityPDA;
       parityPDA->col = asmap->parityInfo->col;
       parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
           * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
       parityPDA->numSector = failedPDA->numSector;

       if (!xorTargetBuf) {
               xorTargetBuf = rf_AllocBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
       }
       /* init the Wnp node */
       rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
           rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
       wnpNode->params[0].p = parityPDA;
       wnpNode->params[1].p = xorTargetBuf;
       wnpNode->params[2].v = parityStripeID;
       wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);

#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
       /* fill in the Wnq Node */
       if (nfaults == 2) {
               {
                       parityPDA = RF_MallocAndAdd(sizeof(*parityPDA), allocList);
                       parityPDA->col = asmap->qInfo->col;
                       parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
                           * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
                       parityPDA->numSector = failedPDA->numSector;

                       rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
                           rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
                       wnqNode->params[0].p = parityPDA;
                       xorNode->results[1] = BUF_ALLOC(failedPDA->numSector);
                       wnqNode->params[1].p = xorNode->results[1];
                       wnqNode->params[2].v = parityStripeID;
                       wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
               }
       }
#endif
       /* fill in the Wnd nodes */
       tmpwndNode = wndNodes;
       for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
               if (pda == failedPDA) {
                       i--;
                       continue;
               }
               rf_InitNode(tmpwndNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
                   rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
               RF_ASSERT(pda);
               tmpwndNode->params[0].p = pda;
               tmpwndNode->params[1].p = pda->bufPtr;
               tmpwndNode->params[2].v = parityStripeID;
               tmpwndNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
               tmpwndNode = tmpwndNode->list_next;
       }

       /* fill in the results of the xor node */
       xorNode->results[0] = xorTargetBuf;

       /* fill in the params of the xor node */

       paramNum = 0;
       if (rdnodesFaked == 0) {
               tmprrdNode = rrdNodes;
               for (i = 0; i < nRrdNodes; i++) {
                       /* all the Rrd nodes need to be xored together */
                       xorNode->params[paramNum++] = tmprrdNode->params[0];
                       xorNode->params[paramNum++] = tmprrdNode->params[1];
                       tmprrdNode = tmprrdNode->list_next;
               }
       }
       tmpwndNode = wndNodes;
       for (i = 0; i < nWndNodes; i++) {
               /* any Wnd nodes that overlap the failed access need to be
                * xored in */
               if (overlappingPDAs[i]) {
                       pda = rf_AllocPhysDiskAddr(raidPtr);
                       memcpy((char *) pda, (char *) tmpwndNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
                       /* add it into the pda_cleanup_list *after* the copy, TYVM */
                       pda->next = dag_h->pda_cleanup_list;
                       dag_h->pda_cleanup_list = pda;
                       rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
                       xorNode->params[paramNum++].p = pda;
                       xorNode->params[paramNum++].p = pda->bufPtr;
               }
               tmpwndNode = tmpwndNode->list_next;
       }

       /*
        * Install the failed PDA into the xor param list so that the
        * new data gets xor'd in.
        */
       xorNode->params[paramNum++].p = failedPDA;
       xorNode->params[paramNum++].p = failedPDA->bufPtr;

       /*
        * The last 2 params to the recovery xor node are always the failed
        * PDA and the raidPtr. install the failedPDA even though we have just
        * done so above. This allows us to use the same XOR function for both
        * degraded reads and degraded writes.
        */
       xorNode->params[paramNum++].p = failedPDA;
       xorNode->params[paramNum++].p = raidPtr;
       RF_ASSERT(paramNum == 2 * nXorBufs + 2);

       /*
        * Code to link nodes begins here
        */

       /* link header to block node */
       RF_ASSERT(blockNode->numAntecedents == 0);
       dag_h->succedents[0] = blockNode;

       /* link block node to rd nodes */
       RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
       tmprrdNode = rrdNodes;
       for (i = 0; i < nRrdNodes; i++) {
               RF_ASSERT(tmprrdNode->numAntecedents == 1);
               blockNode->succedents[i] = tmprrdNode;
               tmprrdNode->antecedents[0] = blockNode;
               tmprrdNode->antType[0] = rf_control;
               tmprrdNode = tmprrdNode->list_next;
       }

       /* link read nodes to xor node */
       RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
       tmprrdNode = rrdNodes;
       for (i = 0; i < nRrdNodes; i++) {
               RF_ASSERT(tmprrdNode->numSuccedents == 1);
               tmprrdNode->succedents[0] = xorNode;
               xorNode->antecedents[i] = tmprrdNode;
               xorNode->antType[i] = rf_trueData;
               tmprrdNode = tmprrdNode->list_next;
       }

       /* link xor node to commit node */
       RF_ASSERT(xorNode->numSuccedents == 1);
       RF_ASSERT(commitNode->numAntecedents == 1);
       xorNode->succedents[0] = commitNode;
       commitNode->antecedents[0] = xorNode;
       commitNode->antType[0] = rf_control;

       /* link commit node to wnd nodes */
       RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
       tmpwndNode = wndNodes;
       for (i = 0; i < nWndNodes; i++) {
               RF_ASSERT(tmpwndNode->numAntecedents == 1);
               commitNode->succedents[i] = tmpwndNode;
               tmpwndNode->antecedents[0] = commitNode;
               tmpwndNode->antType[0] = rf_control;
               tmpwndNode = tmpwndNode->list_next;
       }

       /* link the commit node to wnp, wnq nodes */
       RF_ASSERT(wnpNode->numAntecedents == 1);
       commitNode->succedents[nWndNodes] = wnpNode;
       wnpNode->antecedents[0] = commitNode;
       wnpNode->antType[0] = rf_control;
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
       if (nfaults == 2) {
               RF_ASSERT(wnqNode->numAntecedents == 1);
               commitNode->succedents[nWndNodes + 1] = wnqNode;
               wnqNode->antecedents[0] = commitNode;
               wnqNode->antType[0] = rf_control;
       }
#endif
       /* link write new data nodes to unblock node */
       RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
       tmpwndNode = wndNodes;
       for (i = 0; i < nWndNodes; i++) {
               RF_ASSERT(tmpwndNode->numSuccedents == 1);
               tmpwndNode->succedents[0] = unblockNode;
               unblockNode->antecedents[i] = tmpwndNode;
               unblockNode->antType[i] = rf_control;
               tmpwndNode = tmpwndNode->list_next;
       }

       /* link write new parity node to unblock node */
       RF_ASSERT(wnpNode->numSuccedents == 1);
       wnpNode->succedents[0] = unblockNode;
       unblockNode->antecedents[nWndNodes] = wnpNode;
       unblockNode->antType[nWndNodes] = rf_control;

#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
       /* link write new q node to unblock node */
       if (nfaults == 2) {
               RF_ASSERT(wnqNode->numSuccedents == 1);
               wnqNode->succedents[0] = unblockNode;
               unblockNode->antecedents[nWndNodes + 1] = wnqNode;
               unblockNode->antType[nWndNodes + 1] = rf_control;
       }
#endif
       /* link unblock node to term node */
       RF_ASSERT(unblockNode->numSuccedents == 1);
       RF_ASSERT(termNode->numAntecedents == 1);
       RF_ASSERT(termNode->numSuccedents == 0);
       unblockNode->succedents[0] = termNode;
       termNode->antecedents[0] = unblockNode;
       termNode->antType[0] = rf_control;
}
#define CONS_PDA(if,start,num) \
 pda_p->col = asmap->if->col; \
 pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
 pda_p->numSector = num; \
 pda_p->next = NULL; \
 pda_p->bufPtr = BUF_ALLOC(num)
#if (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
void
rf_WriteGenerateFailedAccessASMs(
   RF_Raid_t * raidPtr,
   RF_AccessStripeMap_t * asmap,
   RF_PhysDiskAddr_t ** pdap,
   int *nNodep,
   RF_PhysDiskAddr_t ** pqpdap,
   int *nPQNodep,
   RF_AllocListElem_t * allocList)
{
       RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
       int     PDAPerDisk, i;
       RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
       int     numDataCol = layoutPtr->numDataCol;
       int     state;
       unsigned napdas;
       RF_SectorNum_t fone_start, ftwo_start = 0;
       RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
       RF_PhysDiskAddr_t *pda_p;
       RF_RaidAddr_t sosAddr;

       /* determine how many pda's we will have to generate per unaccess
        * stripe. If there is only one failed data unit, it is one; if two,
        * possibly two, depending whether they overlap. */

       fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);

       if (asmap->numDataFailed == 1) {
               PDAPerDisk = 1;
               state = 1;
               *pqpdap = RF_MallocAndAdd(2 * sizeof(**pqpdap), allocList);
               pda_p = *pqpdap;
               /* build p */
               CONS_PDA(parityInfo, fone_start, fone->numSector);
               pda_p->type = RF_PDA_TYPE_PARITY;
               pda_p++;
               /* build q */
               CONS_PDA(qInfo, fone_start, fone->numSector);
               pda_p->type = RF_PDA_TYPE_Q;
       } else {
               ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
               if (fone->numSector + ftwo->numSector > secPerSU) {
                       PDAPerDisk = 1;
                       state = 2;
                       *pqpdap = RF_MallocAndAdd(2 * sizeof(**pqpdap),
                           allocList);
                       pda_p = *pqpdap;
                       CONS_PDA(parityInfo, 0, secPerSU);
                       pda_p->type = RF_PDA_TYPE_PARITY;
                       pda_p++;
                       CONS_PDA(qInfo, 0, secPerSU);
                       pda_p->type = RF_PDA_TYPE_Q;
               } else {
                       PDAPerDisk = 2;
                       state = 3;
                       /* four of them, fone, then ftwo */
                       *pqpdap = RF_MallocAndAdd(4 * sizeof(*pqpdap),
                           allocList);
                       pda_p = *pqpdap;
                       CONS_PDA(parityInfo, fone_start, fone->numSector);
                       pda_p->type = RF_PDA_TYPE_PARITY;
                       pda_p++;
                       CONS_PDA(qInfo, fone_start, fone->numSector);
                       pda_p->type = RF_PDA_TYPE_Q;
                       pda_p++;
                       CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
                       pda_p->type = RF_PDA_TYPE_PARITY;
                       pda_p++;
                       CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
                       pda_p->type = RF_PDA_TYPE_Q;
               }
       }
       /* figure out number of nonaccessed pda */
       napdas = PDAPerDisk * (numDataCol - 2);
       *nPQNodep = PDAPerDisk;

       *nNodep = napdas;
       if (napdas == 0)
               return;         /* short circuit */

       /* allocate up our list of pda's */

       pda_p = RF_MallocAndAdd(napdas * sizeof(*pda_p), allocList);
       *pdap = pda_p;

       /* linkem together */
       for (i = 0; i < (napdas - 1); i++)
               pda_p[i].next = pda_p + (i + 1);

       sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
       for (i = 0; i < numDataCol; i++) {
               if ((pda_p - (*pdap)) == napdas)
                       continue;
               pda_p->type = RF_PDA_TYPE_DATA;
               pda_p->raidAddress = sosAddr + (i * secPerSU);
               (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
               /* skip over dead disks */
               if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
                       continue;
               switch (state) {
               case 1: /* fone */
                       pda_p->numSector = fone->numSector;
                       pda_p->raidAddress += fone_start;
                       pda_p->startSector += fone_start;
                       pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
                       break;
               case 2: /* full stripe */
                       pda_p->numSector = secPerSU;
                       pda_p->bufPtr = BUF_ALLOC(secPerSU);
                       break;
               case 3: /* two slabs */
                       pda_p->numSector = fone->numSector;
                       pda_p->raidAddress += fone_start;
                       pda_p->startSector += fone_start;
                       pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
                       pda_p++;
                       pda_p->type = RF_PDA_TYPE_DATA;
                       pda_p->raidAddress = sosAddr + (i * secPerSU);
                       (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
                       pda_p->numSector = ftwo->numSector;
                       pda_p->raidAddress += ftwo_start;
                       pda_p->startSector += ftwo_start;
                       pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
                       break;
               default:
                       RF_PANIC();
               }
               pda_p++;
       }

       RF_ASSERT(pda_p - *pdap == napdas);
       return;
}
#define DISK_NODE_PDA(node)  ((node)->params[0].p)

#define DISK_NODE_PARAMS(_node_,_p_) \
 (_node_).params[0].p = _p_ ; \
 (_node_).params[1].p = (_p_)->bufPtr; \
 (_node_).params[2].v = parityStripeID; \
 (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)

void
rf_DoubleDegSmallWrite(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
                      RF_DagHeader_t *dag_h, void *bp,
                      RF_RaidAccessFlags_t flags,
                      RF_AllocListElem_t *allocList,
                      const char *redundantReadNodeName,
                      const char *redundantWriteNodeName,
                      const char *recoveryNodeName,
                      void (*recovFunc) (RF_DagNode_t *))
{
       RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
       RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
              *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
       RF_PhysDiskAddr_t *pda, *pqPDAs;
       RF_PhysDiskAddr_t *npdas;
       int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
       RF_ReconUnitNum_t which_ru;
       int     nPQNodes;
       RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);

       /* simple small write case - First part looks like a reconstruct-read
        * of the failed data units. Then a write of all data units not
        * failed. */


       /* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
        * /  -------PQ----- /   \   \ Wud   Wp  WQ          \    |   /
        * --Unblock- | T
        *
        * Rrd = read recovery data  (potentially none) Wud = write user data
        * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
        * (could be two)
        *
        */

       rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);

       RF_ASSERT(asmap->numDataFailed == 1);

       nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
       nReadNodes = nRrdNodes + 2 * nPQNodes;
       nWriteNodes = nWudNodes + 2 * nPQNodes;
       nNodes = 4 + nReadNodes + nWriteNodes;

       nodes = RF_MallocAndAdd(nNodes * sizeof(*nodes), allocList);
       blockNode = nodes;
       unblockNode = blockNode + 1;
       termNode = unblockNode + 1;
       recoveryNode = termNode + 1;
       rrdNodes = recoveryNode + 1;
       rpNodes = rrdNodes + nRrdNodes;
       rqNodes = rpNodes + nPQNodes;
       wudNodes = rqNodes + nPQNodes;
       wpNodes = wudNodes + nWudNodes;
       wqNodes = wpNodes + nPQNodes;

       dag_h->creator = "PQ_DDSimpleSmallWrite";
       dag_h->numSuccedents = 1;
       dag_h->succedents[0] = blockNode;
       rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
       termNode->antecedents[0] = unblockNode;
       termNode->antType[0] = rf_control;

       /* init the block and unblock nodes */
       /* The block node has all the read nodes as successors */
       rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
       for (i = 0; i < nReadNodes; i++)
               blockNode->succedents[i] = rrdNodes + i;

       /* The unblock node has all the writes as successors */
       rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
       for (i = 0; i < nWriteNodes; i++) {
               unblockNode->antecedents[i] = wudNodes + i;
               unblockNode->antType[i] = rf_control;
       }
       unblockNode->succedents[0] = termNode;

#define INIT_READ_NODE(node,name) \
 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
 (node)->succedents[0] = recoveryNode; \
 (node)->antecedents[0] = blockNode; \
 (node)->antType[0] = rf_control;

       /* build the read nodes */
       pda = npdas;
       for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
               INIT_READ_NODE(rrdNodes + i, "rrd");
               DISK_NODE_PARAMS(rrdNodes[i], pda);
       }

       /* read redundancy pdas */
       pda = pqPDAs;
       INIT_READ_NODE(rpNodes, "Rp");
       RF_ASSERT(pda);
       DISK_NODE_PARAMS(rpNodes[0], pda);
       pda++;
       INIT_READ_NODE(rqNodes, redundantReadNodeName);
       RF_ASSERT(pda);
       DISK_NODE_PARAMS(rqNodes[0], pda);
       if (nPQNodes == 2) {
               pda++;
               INIT_READ_NODE(rpNodes + 1, "Rp");
               RF_ASSERT(pda);
               DISK_NODE_PARAMS(rpNodes[1], pda);
               pda++;
               INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
               RF_ASSERT(pda);
               DISK_NODE_PARAMS(rqNodes[1], pda);
       }
       /* the recovery node has all reads as precedessors and all writes as
        * successors. It generates a result for every write P or write Q
        * node. As parameters, it takes a pda per read and a pda per stripe
        * of user data written. It also takes as the last params the raidPtr
        * and asm. For results, it takes PDA for P & Q. */


       rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
           nWriteNodes,        /* succesors */
           nReadNodes,         /* preds */
           nReadNodes + nWudNodes + 3, /* params */
           2 * nPQNodes,       /* results */
           dag_h, recoveryNodeName, allocList);



       for (i = 0; i < nReadNodes; i++) {
               recoveryNode->antecedents[i] = rrdNodes + i;
               recoveryNode->antType[i] = rf_control;
               recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
       }
       for (i = 0; i < nWudNodes; i++) {
               recoveryNode->succedents[i] = wudNodes + i;
       }
       recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
       recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
       recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;

       for (; i < nWriteNodes; i++)
               recoveryNode->succedents[i] = wudNodes + i;

       pda = pqPDAs;
       recoveryNode->results[0] = pda;
       pda++;
       recoveryNode->results[1] = pda;
       if (nPQNodes == 2) {
               pda++;
               recoveryNode->results[2] = pda;
               pda++;
               recoveryNode->results[3] = pda;
       }
       /* fill writes */
#define INIT_WRITE_NODE(node,name) \
 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
   (node)->succedents[0] = unblockNode; \
   (node)->antecedents[0] = recoveryNode; \
   (node)->antType[0] = rf_control;

       pda = asmap->physInfo;
       for (i = 0; i < nWudNodes; i++) {
               INIT_WRITE_NODE(wudNodes + i, "Wd");
               DISK_NODE_PARAMS(wudNodes[i], pda);
               recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
               pda = pda->next;
       }
       /* write redundancy pdas */
       pda = pqPDAs;
       INIT_WRITE_NODE(wpNodes, "Wp");
       RF_ASSERT(pda);
       DISK_NODE_PARAMS(wpNodes[0], pda);
       pda++;
       INIT_WRITE_NODE(wqNodes, "Wq");
       RF_ASSERT(pda);
       DISK_NODE_PARAMS(wqNodes[0], pda);
       if (nPQNodes == 2) {
               pda++;
               INIT_WRITE_NODE(wpNodes + 1, "Wp");
               RF_ASSERT(pda);
               DISK_NODE_PARAMS(wpNodes[1], pda);
               pda++;
               INIT_WRITE_NODE(wqNodes + 1, "Wq");
               RF_ASSERT(pda);
               DISK_NODE_PARAMS(wqNodes[1], pda);
       }
}
#endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */