/* $NetBSD: qat.c,v 1.8 2022/05/22 11:39:27 riastradh Exp $ */
/*
* Copyright (c) 2019 Internet Initiative Japan, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright(c) 2007-2019 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: qat.c,v 1.8 2022/05/22 11:39:27 riastradh Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/module.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/bitops.h>
#include <sys/atomic.h>
#include <sys/mbuf.h>
#include <sys/cprng.h>
#include <sys/cpu.h>
#include <sys/interrupt.h>
#include <sys/md5.h>
#include <sys/sha1.h>
#include <sys/sha2.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/cryptosoft.h>
#include <opencrypto/xform.h>
/* XXX same as sys/arch/x86/x86/via_padlock.c */
#include <opencrypto/cryptosoft_xform.c>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include "qatreg.h"
#include "qatvar.h"
#include "qat_aevar.h"
extern struct qat_hw qat_hw_c2xxx;
extern struct qat_hw qat_hw_c3xxx;
extern struct qat_hw qat_hw_c62x;
extern struct qat_hw qat_hw_d15xx;
static const struct qat_product {
pci_vendor_id_t qatp_vendor;
pci_product_id_t qatp_product;
const char *qatp_name;
enum qat_chip_type qatp_chip;
const struct qat_hw *qatp_hw;
} qat_products[] = {
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_IQIA_PHYS,
"Intel C2000 QuickAssist Physical Function",
QAT_CHIP_C2XXX, &qat_hw_c2xxx },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C3K_QAT,
"Intel C3000 QuickAssist Physical Function",
QAT_CHIP_C3XXX, &qat_hw_c3xxx },
#ifdef notyet
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C3K_QAT_VF,
"Intel C3000 QuickAssist Virtual Function",
QAT_CHIP_C3XXX_IOV, &qat_hw_c3xxxvf },
#endif
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C620_QAT,
"Intel C620/Xeon D-2100 QuickAssist Physical Function",
QAT_CHIP_C62X, &qat_hw_c62x },
#ifdef notyet
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C620_QAT_VF,
"Intel C620/Xeon D-2100 QuickAssist Virtual Function",
QAT_CHIP_C62X_IOV, &qat_hw_c62xvf },
#endif
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_XEOND_QAT,
"Intel Xeon D-1500 QuickAssist Physical Function",
QAT_CHIP_D15XX, &qat_hw_d15xx },
#ifdef notyet
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_XEOND_QAT_VF,
"Intel Xeon D-1500 QuickAssist Virtual Function",
QAT_CHIP_D15XX_IOV, &qat_hw_d15xxvf },
#endif
{ 0, 0, NULL, 0, NULL },
};
/* md5 16 bytes - Initialiser state can be found in RFC 1321*/
static const uint8_t md5_initial_state[QAT_HASH_MD5_STATE_SIZE] = {
0x01, 0x23, 0x45, 0x67,
0x89, 0xab, 0xcd, 0xef,
0xfe, 0xdc, 0xba, 0x98,
0x76, 0x54, 0x32, 0x10,
};
/* SHA1 - 20 bytes - Initialiser state can be found in FIPS stds 180-2 */
static const uint8_t sha1_initial_state[QAT_HASH_SHA1_STATE_SIZE] = {
0x67, 0x45, 0x23, 0x01,
0xef, 0xcd, 0xab, 0x89,
0x98, 0xba, 0xdc, 0xfe,
0x10, 0x32, 0x54, 0x76,
0xc3, 0xd2, 0xe1, 0xf0
};
/* SHA 256 - 32 bytes - Initialiser state can be found in FIPS stds 180-2 */
static const uint8_t sha256_initial_state[QAT_HASH_SHA256_STATE_SIZE] = {
0x6a, 0x09, 0xe6, 0x67,
0xbb, 0x67, 0xae, 0x85,
0x3c, 0x6e, 0xf3, 0x72,
0xa5, 0x4f, 0xf5, 0x3a,
0x51, 0x0e, 0x52, 0x7f,
0x9b, 0x05, 0x68, 0x8c,
0x1f, 0x83, 0xd9, 0xab,
0x5b, 0xe0, 0xcd, 0x19
};
/* SHA 384 - 64 bytes - Initialiser state can be found in FIPS stds 180-2 */
static const uint8_t sha384_initial_state[QAT_HASH_SHA384_STATE_SIZE] = {
0xcb, 0xbb, 0x9d, 0x5d, 0xc1, 0x05, 0x9e, 0xd8,
0x62, 0x9a, 0x29, 0x2a, 0x36, 0x7c, 0xd5, 0x07,
0x91, 0x59, 0x01, 0x5a, 0x30, 0x70, 0xdd, 0x17,
0x15, 0x2f, 0xec, 0xd8, 0xf7, 0x0e, 0x59, 0x39,
0x67, 0x33, 0x26, 0x67, 0xff, 0xc0, 0x0b, 0x31,
0x8e, 0xb4, 0x4a, 0x87, 0x68, 0x58, 0x15, 0x11,
0xdb, 0x0c, 0x2e, 0x0d, 0x64, 0xf9, 0x8f, 0xa7,
0x47, 0xb5, 0x48, 0x1d, 0xbe, 0xfa, 0x4f, 0xa4
};
/* SHA 512 - 64 bytes - Initialiser state can be found in FIPS stds 180-2 */
static const uint8_t sha512_initial_state[QAT_HASH_SHA512_STATE_SIZE] = {
0x6a, 0x09, 0xe6, 0x67, 0xf3, 0xbc, 0xc9, 0x08,
0xbb, 0x67, 0xae, 0x85, 0x84, 0xca, 0xa7, 0x3b,
0x3c, 0x6e, 0xf3, 0x72, 0xfe, 0x94, 0xf8, 0x2b,
0xa5, 0x4f, 0xf5, 0x3a, 0x5f, 0x1d, 0x36, 0xf1,
0x51, 0x0e, 0x52, 0x7f, 0xad, 0xe6, 0x82, 0xd1,
0x9b, 0x05, 0x68, 0x8c, 0x2b, 0x3e, 0x6c, 0x1f,
0x1f, 0x83, 0xd9, 0xab, 0xfb, 0x41, 0xbd, 0x6b,
0x5b, 0xe0, 0xcd, 0x19, 0x13, 0x7e, 0x21, 0x79
};
/* Hash Algorithm specific structure */
static const struct qat_sym_hash_alg_info md5_info = {
QAT_HASH_MD5_DIGEST_SIZE,
QAT_HASH_MD5_BLOCK_SIZE,
md5_initial_state,
QAT_HASH_MD5_STATE_SIZE,
&swcr_auth_hash_hmac_md5_96,
offsetof(MD5_CTX, state),
4,
};
static const struct qat_sym_hash_alg_info sha1_info = {
QAT_HASH_SHA1_DIGEST_SIZE,
QAT_HASH_SHA1_BLOCK_SIZE,
sha1_initial_state,
QAT_HASH_SHA1_STATE_SIZE,
&swcr_auth_hash_hmac_sha1_96,
offsetof(SHA1_CTX, state),
4,
};
static const struct qat_sym_hash_alg_info sha256_info = {
QAT_HASH_SHA256_DIGEST_SIZE,
QAT_HASH_SHA256_BLOCK_SIZE,
sha256_initial_state,
QAT_HASH_SHA256_STATE_SIZE,
&swcr_auth_hash_hmac_sha2_256,
offsetof(SHA256_CTX, state),
4,
};
static const struct qat_sym_hash_alg_info sha384_info = {
QAT_HASH_SHA384_DIGEST_SIZE,
QAT_HASH_SHA384_BLOCK_SIZE,
sha384_initial_state,
QAT_HASH_SHA384_STATE_SIZE,
&swcr_auth_hash_hmac_sha2_384,
offsetof(SHA384_CTX, state),
8,
};
static const struct qat_sym_hash_alg_info sha512_info = {
QAT_HASH_SHA512_DIGEST_SIZE,
QAT_HASH_SHA512_BLOCK_SIZE,
sha512_initial_state,
QAT_HASH_SHA512_STATE_SIZE,
&swcr_auth_hash_hmac_sha2_512,
offsetof(SHA512_CTX, state),
8,
};
static const struct qat_sym_hash_alg_info aes_gcm_info = {
QAT_HASH_AES_GCM_DIGEST_SIZE,
QAT_HASH_AES_GCM_BLOCK_SIZE,
NULL, 0,
NULL, 0, 0, /* XXX */
};
/* Hash QAT specific structures */
static const struct qat_sym_hash_qat_info md5_config = {
HW_AUTH_ALGO_MD5,
QAT_HASH_MD5_BLOCK_SIZE,
HW_MD5_STATE1_SZ,
HW_MD5_STATE2_SZ
};
static const struct qat_sym_hash_qat_info sha1_config = {
HW_AUTH_ALGO_SHA1,
QAT_HASH_SHA1_BLOCK_SIZE,
HW_SHA1_STATE1_SZ,
HW_SHA1_STATE2_SZ
};
static const struct qat_sym_hash_qat_info sha256_config = {
HW_AUTH_ALGO_SHA256,
QAT_HASH_SHA256_BLOCK_SIZE,
HW_SHA256_STATE1_SZ,
HW_SHA256_STATE2_SZ
};
static const struct qat_sym_hash_qat_info sha384_config = {
HW_AUTH_ALGO_SHA384,
QAT_HASH_SHA384_BLOCK_SIZE,
HW_SHA384_STATE1_SZ,
HW_SHA384_STATE2_SZ
};
static const struct qat_sym_hash_qat_info sha512_config = {
HW_AUTH_ALGO_SHA512,
QAT_HASH_SHA512_BLOCK_SIZE,
HW_SHA512_STATE1_SZ,
HW_SHA512_STATE2_SZ
};
static const struct qat_sym_hash_qat_info aes_gcm_config = {
HW_AUTH_ALGO_GALOIS_128,
0,
HW_GALOIS_128_STATE1_SZ,
HW_GALOIS_H_SZ +
HW_GALOIS_LEN_A_SZ +
HW_GALOIS_E_CTR0_SZ
};
static const struct qat_sym_hash_def qat_sym_hash_defs[] = {
[QAT_SYM_HASH_MD5] = { &md5_info, &md5_config },
[QAT_SYM_HASH_SHA1] = { &sha1_info, &sha1_config },
[QAT_SYM_HASH_SHA256] = { &sha256_info, &sha256_config },
[QAT_SYM_HASH_SHA384] = { &sha384_info, &sha384_config },
[QAT_SYM_HASH_SHA512] = { &sha512_info, &sha512_config },
[QAT_SYM_HASH_AES_GCM] = { &aes_gcm_info, &aes_gcm_config },
};
const struct qat_product *
qat_lookup(const struct pci_attach_args *);
int qat_match(struct device *, struct cfdata *, void *);
void qat_attach(struct device *, struct device *, void *);
void qat_init(struct device *);
int qat_start(struct device *);
int qat_detach(struct device *, int);
int qat_alloc_msix_intr(struct qat_softc *,
struct pci_attach_args *);
void * qat_establish_msix_intr(struct qat_softc *, pci_intr_handle_t,
int (*)(void *), void *, const char *, int);
int qat_setup_msix_intr(struct qat_softc *);
int qat_etr_init(struct qat_softc *);
int qat_etr_bank_init(struct qat_softc *, int);
int qat_etr_ap_bank_init(struct qat_softc *);
void qat_etr_ap_bank_set_ring_mask(uint32_t *, uint32_t, int);
void qat_etr_ap_bank_set_ring_dest(struct qat_softc *, uint32_t *,
uint32_t, int);
void qat_etr_ap_bank_setup_ring(struct qat_softc *,
struct qat_ring *);
int qat_etr_verify_ring_size(uint32_t, uint32_t);
int qat_etr_ring_intr(struct qat_softc *, struct qat_bank *,
struct qat_ring *);
int qat_etr_bank_intr(void *);
void qat_arb_update(struct qat_softc *, struct qat_bank *);
struct qat_sym_cookie *
qat_crypto_alloc_sym_cookie(struct qat_crypto_bank *);
void qat_crypto_free_sym_cookie(struct qat_crypto_bank *,
struct qat_sym_cookie *);
int qat_crypto_load_buf(struct qat_softc *, struct cryptop *,
struct qat_sym_cookie *, struct qat_crypto_desc const *,
uint8_t *, int, bus_addr_t *);
int qat_crypto_load_iv(struct qat_sym_cookie *, struct cryptop *,
struct cryptodesc *, struct qat_crypto_desc const *);
int qat_crypto_process(void *, struct cryptop *, int);
int qat_crypto_setup_ring(struct qat_softc *,
struct qat_crypto_bank *);
int qat_crypto_new_session(void *, uint32_t *, struct cryptoini *);
void qat_crypto_free_session0(struct qat_crypto *,
struct qat_session *);
void qat_crypto_check_free_session(struct qat_crypto *,
struct qat_session *);
void qat_crypto_free_session(void *, uint64_t);
int qat_crypto_bank_init(struct qat_softc *,
struct qat_crypto_bank *);
int qat_crypto_init(struct qat_softc *);
int qat_crypto_start(struct qat_softc *);
int qat_crypto_sym_rxintr(struct qat_softc *, void *, void *);
CFATTACH_DECL_NEW(qat, sizeof(struct qat_softc),
qat_match, qat_attach, qat_detach, NULL);
struct qat_softc *gsc = NULL;
#ifdef QAT_DUMP
int qat_dump = QAT_DUMP;
#endif
const struct qat_product *
qat_lookup(const struct pci_attach_args *pa)
{
const struct qat_product *qatp;
for (qatp = qat_products; qatp->qatp_name != NULL; qatp++) {
if (PCI_VENDOR(pa->pa_id) == qatp->qatp_vendor &&
PCI_PRODUCT(pa->pa_id) == qatp->qatp_product)
return qatp;
}
return NULL;
}
int
qat_match(struct device *parent, struct cfdata *cf, void *aux)
{
struct pci_attach_args *pa = aux;
if (qat_lookup(pa) != NULL)
return 1;
return 0;
}
void
qat_attach(struct device *parent, struct device *self, void *aux)
{
struct qat_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
const struct qat_product *qatp;
char cap[256];
pcireg_t cmd, memtype, msixoff, fusectl;
bus_size_t msixtbl_offset;
int i, bar, msixtbl_bar;
sc->sc_dev = self;
sc->sc_pc = pc;
sc->sc_pcitag = pa->pa_tag;
gsc = sc; /* for debug */
qatp = qat_lookup(pa);
KASSERT(qatp != NULL);
if (pci_dma64_available(pa))
sc->sc_dmat = pa->pa_dmat64;
else
sc->sc_dmat = pa->pa_dmat;
aprint_naive(": Crypto processor\n");
sc->sc_rev = PCI_REVISION(pa->pa_class);
aprint_normal(": %s (rev. 0x%02x)\n", qatp->qatp_name, sc->sc_rev);
memcpy(&sc->sc_hw, qatp->qatp_hw, sizeof(struct qat_hw));
/* Determine active accelerators and engines */
sc->sc_accel_mask = sc->sc_hw.qhw_get_accel_mask(sc);
sc->sc_ae_mask = sc->sc_hw.qhw_get_ae_mask(sc);
sc->sc_accel_num = 0;
for (i = 0; i < sc->sc_hw.qhw_num_accel; i++) {
if (sc->sc_accel_mask & (1 << i))
sc->sc_accel_num++;
}
sc->sc_ae_num = 0;
for (i = 0; i < sc->sc_hw.qhw_num_engines; i++) {
if (sc->sc_ae_mask & (1 << i)) {
sc->sc_ae_num++;
}
}
if (!sc->sc_accel_mask || (sc->sc_ae_mask & 0x01) == 0) {
aprint_error_dev(sc->sc_dev, "couldn't find acceleration");
goto fail;
}
KASSERT(sc->sc_accel_num <= MAX_NUM_ACCEL);
KASSERT(sc->sc_ae_num <= MAX_NUM_AE);
/* Determine SKU and capabilities */
sc->sc_sku = sc->sc_hw.qhw_get_sku(sc);
sc->sc_accel_cap = sc->sc_hw.qhw_get_accel_cap(sc);
sc->sc_fw_uof_name = sc->sc_hw.qhw_get_fw_uof_name(sc);
aprint_normal_dev(sc->sc_dev,
"sku %d accel %d accel_mask 0x%x ae %d ae_mask 0x%x\n",
sc->sc_sku, sc->sc_accel_num, sc->sc_accel_mask,
sc->sc_ae_num, sc->sc_ae_mask);
snprintb(cap, sizeof(cap), QAT_ACCEL_CAP_BITS, sc->sc_accel_cap);
aprint_normal_dev(sc->sc_dev, "accel capabilities %s\n", cap);
/* Map BARs */
msixtbl_bar = 0;
msixtbl_offset = 0;
if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff, NULL)) {
pcireg_t msixtbl;
msixtbl = pci_conf_read(pc, pa->pa_tag,
msixoff + PCI_MSIX_TBLOFFSET);
msixtbl_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
msixtbl_bar = PCI_MAPREG_START +
((msixtbl & PCI_MSIX_TBLBIR_MASK) << 2);
}
i = 0;
if (sc->sc_hw.qhw_sram_bar_id != NO_PCI_REG) {
KASSERT(sc->sc_hw.qhw_sram_bar_id == 0);
fusectl = pci_conf_read(sc->sc_pc, sc->sc_pcitag, FUSECTL_REG);
/* Skip SRAM BAR */
i = (fusectl & FUSECTL_MASK) ? 1 : 0;
}
for (bar = PCI_MAPREG_START; bar <= PCI_MAPREG_END; bar += 4) {
bus_size_t size;
bus_addr_t addr;
if (pci_mapreg_probe(pc, pa->pa_tag, bar, &memtype) == 0)
continue;
if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM)
continue;
/* MSI-X table will be mapped by pci_msix_alloc_map */
if (bar == msixtbl_bar)
size = msixtbl_offset;
else
size = 0;
if (pci_mapreg_submap(pa, bar, memtype, 0, size, 0,
&sc->sc_csrt[i], &sc->sc_csrh[i], &addr, &sc->sc_csrs[i])) {
aprint_error_dev(sc->sc_dev,
"couldn't map bar 0x%02x\n", bar);
goto fail;
}
aprint_verbose_dev(sc->sc_dev,
"region #%d bar 0x%02x size 0x%x at 0x%llx"
" mapped to %p\n", i, bar,
(int)sc->sc_csrs[i], (unsigned long long)addr,
bus_space_vaddr(sc->sc_csrt[i], sc->sc_csrh[i]));
i++;
if (PCI_MAPREG_MEM_TYPE(memtype) == PCI_MAPREG_MEM_TYPE_64BIT)
bar += 4;
}
/* XXX Enable advanced error reporting */
/* Enable bus mastering */
cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
cmd |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
if (qat_alloc_msix_intr(sc, pa))
goto fail;
config_mountroot(self, qat_init);
fail:
/* XXX */
return;
}
void
qat_init(struct device *self)
{
int error;
struct qat_softc *sc = device_private(self);
aprint_verbose_dev(sc->sc_dev, "Initializing ETR\n");
error = qat_etr_init(sc);
if (error) {
aprint_error_dev(sc->sc_dev,
"Could not initialize ETR: %d\n", error);
return;
}
aprint_verbose_dev(sc->sc_dev, "Initializing admin comms\n");
if (sc->sc_hw.qhw_init_admin_comms != NULL &&
(error = sc->sc_hw.qhw_init_admin_comms(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"Could not initialize admin comms: %d\n", error);
return;
}
aprint_verbose_dev(sc->sc_dev, "Initializing hw arbiter\n");
if (sc->sc_hw.qhw_init_arb != NULL &&
(error = sc->sc_hw.qhw_init_arb(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"Could not initialize hw arbiter: %d\n", error);
return;
}
aprint_verbose_dev(sc->sc_dev, "Initializing acceleration engine\n");
error = qat_ae_init(sc);
if (error) {
aprint_error_dev(sc->sc_dev,
"Could not initialize Acceleration Engine: %d\n", error);
return;
}
aprint_verbose_dev(sc->sc_dev, "Loading acceleration engine firmware\n");
error = qat_aefw_load(sc);
if (error) {
aprint_error_dev(sc->sc_dev,
"Could not load firmware: %d\n", error);
return;
}
aprint_verbose_dev(sc->sc_dev, "Establishing interrupts\n");
error = qat_setup_msix_intr(sc);
if (error) {
aprint_error_dev(sc->sc_dev,
"Could not setup interrupts: %d\n", error);
return;
}
sc->sc_hw.qhw_enable_intr(sc);
error = qat_crypto_init(sc);
if (error) {
aprint_error_dev(sc->sc_dev,
"Could not initialize service: %d\n", error);
return;
}
aprint_verbose_dev(sc->sc_dev, "Enabling error correction\n");
if (sc->sc_hw.qhw_enable_error_correction != NULL)
sc->sc_hw.qhw_enable_error_correction(sc);
aprint_verbose_dev(sc->sc_dev, "Initializing watchdog timer\n");
if (sc->sc_hw.qhw_set_ssm_wdtimer != NULL &&
(error = sc->sc_hw.qhw_set_ssm_wdtimer(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"Could not initialize watchdog timer: %d\n", error);
return;
}
error = qat_start(self);
if (error) {
aprint_error_dev(sc->sc_dev,
"Could not start: %d\n", error);
return;
}
}
int
qat_start(struct device *self)
{
struct qat_softc *sc = device_private(self);
int error;
error = qat_ae_start(sc);
if (error)
return error;
if (sc->sc_hw.qhw_send_admin_init != NULL &&
(error = sc->sc_hw.qhw_send_admin_init(sc)) != 0) {
return error;
}
error = qat_crypto_start(sc);
if (error)
return error;
return 0;
}
int
qat_detach(struct device *self, int flags)
{
return 0;
}
void *
qat_alloc_mem(size_t size)
{
size_t *sptr;
sptr = kmem_zalloc(size + sizeof(size), KM_SLEEP);
*sptr = size;
return ++sptr;
}
void
qat_free_mem(void *ptr)
{
size_t *sptr = ptr, size;
size = *(--sptr);
kmem_free(sptr, size + sizeof(size));
}
void
qat_free_dmamem(struct qat_softc *sc, struct qat_dmamem *qdm)
{
bus_dmamap_unload(sc->sc_dmat, qdm->qdm_dma_map);
bus_dmamap_destroy(sc->sc_dmat, qdm->qdm_dma_map);
bus_dmamem_unmap(sc->sc_dmat, qdm->qdm_dma_vaddr, qdm->qdm_dma_size);
bus_dmamem_free(sc->sc_dmat, &qdm->qdm_dma_seg, 1);
explicit_memset(qdm, 0, sizeof(*qdm));
}
int
qat_alloc_dmamem(struct qat_softc *sc, struct qat_dmamem *qdm,
bus_size_t size, bus_size_t alignment)
{
int error = 0, nseg;
error = bus_dmamem_alloc(sc->sc_dmat, size, alignment,
0, &qdm->qdm_dma_seg, 1, &nseg, BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev,
"couldn't allocate dmamem, error = %d\n", error);
goto fail_0;
}
KASSERT(nseg == 1);
error = bus_dmamem_map(sc->sc_dmat, &qdm->qdm_dma_seg,
nseg, size, &qdm->qdm_dma_vaddr,
BUS_DMA_COHERENT | BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev,
"couldn't map dmamem, error = %d\n", error);
goto fail_1;
}
qdm->qdm_dma_size = size;
error = bus_dmamap_create(sc->sc_dmat, size, nseg, size,
0, BUS_DMA_NOWAIT, &qdm->qdm_dma_map);
if (error) {
aprint_error_dev(sc->sc_dev,
"couldn't create dmamem map, error = %d\n", error);
goto fail_2;
}
error = bus_dmamap_load(sc->sc_dmat, qdm->qdm_dma_map,
qdm->qdm_dma_vaddr, size, NULL, BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev,
"couldn't load dmamem map, error = %d\n", error);
goto fail_3;
}
return 0;
fail_3:
bus_dmamap_destroy(sc->sc_dmat, qdm->qdm_dma_map);
qdm->qdm_dma_map = NULL;
fail_2:
bus_dmamem_unmap(sc->sc_dmat, qdm->qdm_dma_vaddr, size);
qdm->qdm_dma_vaddr = NULL;
qdm->qdm_dma_size = 0;
fail_1:
bus_dmamem_free(sc->sc_dmat, &qdm->qdm_dma_seg, 1);
fail_0:
return error;
}
int
qat_alloc_msix_intr(struct qat_softc *sc, struct pci_attach_args *pa)
{
u_int *ih_map, vec;
int error, count, ihi;
count = sc->sc_hw.qhw_num_banks + 1;
ih_map = qat_alloc_mem(sizeof(*ih_map) * count);
ihi = 0;
for (vec = 0; vec < sc->sc_hw.qhw_num_banks; vec++)
ih_map[ihi++] = vec;
vec += sc->sc_hw.qhw_msix_ae_vec_gap;
ih_map[ihi++] = vec;
error = pci_msix_alloc_map(pa, &sc->sc_ih, ih_map, count);
qat_free_mem(ih_map);
if (error) {
aprint_error_dev(sc->sc_dev, "couldn't allocate msix %d: %d\n",
count, error);
}
return error;
}
void *
qat_establish_msix_intr(struct qat_softc *sc, pci_intr_handle_t ih,
int (*func)(void *), void *arg,
const char *name, int index)
{
kcpuset_t *affinity;
int error;
char buf[PCI_INTRSTR_LEN];
char intrxname[INTRDEVNAMEBUF];
const char *intrstr;
void *cookie;
snprintf(intrxname, sizeof(intrxname), "%s%s%d",
device_xname(sc->sc_dev), name, index);
intrstr = pci_intr_string(sc->sc_pc, ih, buf, sizeof(buf));
pci_intr_setattr(sc->sc_pc, &ih, PCI_INTR_MPSAFE, true);
cookie = pci_intr_establish_xname(sc->sc_pc, ih,
IPL_NET, func, arg, intrxname);
aprint_normal_dev(sc->sc_dev, "%s%d interrupting at %s\n",
name, index, intrstr);
kcpuset_create(&affinity, true);
kcpuset_set(affinity, index % ncpu);
error = interrupt_distribute(cookie, affinity, NULL);
if (error) {
aprint_error_dev(sc->sc_dev,
"couldn't distribute interrupt: %s%d\n", name, index);
}
kcpuset_destroy(affinity);
return cookie;
}
int
qat_setup_msix_intr(struct qat_softc *sc)
{
int i;
pci_intr_handle_t ih;
for (i = 0; i < sc->sc_hw.qhw_num_banks; i++) {
struct qat_bank *qb = &sc->sc_etr_banks[i];
ih = sc->sc_ih[i];
qb->qb_ih_cookie = qat_establish_msix_intr(sc, ih,
qat_etr_bank_intr, qb, "bank", i);
if (qb->qb_ih_cookie == NULL)
return ENOMEM;
}
sc->sc_ae_ih_cookie = qat_establish_msix_intr(sc, sc->sc_ih[i],
qat_ae_cluster_intr, sc, "aeclust", 0);
if (sc->sc_ae_ih_cookie == NULL)
return ENOMEM;
return 0;
}
int
qat_etr_init(struct qat_softc *sc)
{
int i;
int error = 0;
sc->sc_etr_banks = qat_alloc_mem(
sizeof(struct qat_bank) * sc->sc_hw.qhw_num_banks);
for (i = 0; i < sc->sc_hw.qhw_num_banks; i++) {
error = qat_etr_bank_init(sc, i);
if (error) {
goto fail;
}
}
if (sc->sc_hw.qhw_num_ap_banks) {
sc->sc_etr_ap_banks = qat_alloc_mem(
sizeof(struct qat_ap_bank) * sc->sc_hw.qhw_num_ap_banks);
error = qat_etr_ap_bank_init(sc);
if (error) {
goto fail;
}
}
return 0;
fail:
if (sc->sc_etr_banks != NULL) {
qat_free_mem(sc->sc_etr_banks);
sc->sc_etr_banks = NULL;
}
if (sc->sc_etr_ap_banks != NULL) {
qat_free_mem(sc->sc_etr_ap_banks);
sc->sc_etr_ap_banks = NULL;
}
return error;
}
int
qat_etr_bank_init(struct qat_softc *sc, int bank)
{
struct qat_bank *qb = &sc->sc_etr_banks[bank];
int i, tx_rx_gap = sc->sc_hw.qhw_tx_rx_gap;
KASSERT(bank < sc->sc_hw.qhw_num_banks);
mutex_init(&qb->qb_bank_mtx, MUTEX_DEFAULT, IPL_NET);
qb->qb_sc = sc;
qb->qb_bank = bank;
qb->qb_coalescing_time = COALESCING_TIME_INTERVAL_DEFAULT;
QAT_EVCNT_ATTACH(sc, &qb->qb_ev_rxintr, EVCNT_TYPE_INTR,
qb->qb_ev_rxintr_name, "bank%d rxintr", bank);
/* Clean CSRs for all rings within the bank */
for (i = 0; i < sc->sc_hw.qhw_num_rings_per_bank; i++) {
struct qat_ring *qr = &qb->qb_et_rings[i];
qat_etr_bank_ring_write_4(sc, bank, i,
ETR_RING_CONFIG, 0);
qat_etr_bank_ring_base_write_8(sc, bank, i, 0);
if (sc->sc_hw.qhw_tx_rings_mask & (1 << i)) {
qr->qr_inflight = qat_alloc_mem(sizeof(uint32_t));
} else if (sc->sc_hw.qhw_tx_rings_mask &
(1 << (i - tx_rx_gap))) {
/* Share inflight counter with rx and tx */
qr->qr_inflight =
qb->qb_et_rings[i - tx_rx_gap].qr_inflight;
}
}
if (sc->sc_hw.qhw_init_etr_intr != NULL) {
sc->sc_hw.qhw_init_etr_intr(sc, bank);
} else {
/* common code in qat 1.7 */
qat_etr_bank_write_4(sc, bank, ETR_INT_REG,
ETR_INT_REG_CLEAR_MASK);
for (i = 0; i < sc->sc_hw.qhw_num_rings_per_bank /
ETR_RINGS_PER_INT_SRCSEL; i++) {
qat_etr_bank_write_4(sc, bank, ETR_INT_SRCSEL +
(i * ETR_INT_SRCSEL_NEXT_OFFSET),
ETR_INT_SRCSEL_MASK);
}
}
return 0;
}
int
qat_etr_ap_bank_init(struct qat_softc *sc)
{
int ap_bank;
for (ap_bank = 0; ap_bank < sc->sc_hw.qhw_num_ap_banks; ap_bank++) {
struct qat_ap_bank *qab = &sc->sc_etr_ap_banks[ap_bank];
qat_etr_ap_bank_write_4(sc, ap_bank, ETR_AP_NF_MASK,
ETR_AP_NF_MASK_INIT);
qat_etr_ap_bank_write_4(sc, ap_bank, ETR_AP_NF_DEST, 0);
qat_etr_ap_bank_write_4(sc, ap_bank, ETR_AP_NE_MASK,
ETR_AP_NE_MASK_INIT);
qat_etr_ap_bank_write_4(sc, ap_bank, ETR_AP_NE_DEST, 0);
memset(qab, 0, sizeof(*qab));
}
return 0;
}
void
qat_etr_ap_bank_set_ring_mask(uint32_t *ap_mask, uint32_t ring, int set_mask)
{
if (set_mask)
*ap_mask |= (1 << ETR_RING_NUMBER_IN_AP_BANK(ring));
else
*ap_mask &= ~(1 << ETR_RING_NUMBER_IN_AP_BANK(ring));
}
void
qat_etr_ap_bank_set_ring_dest(struct qat_softc *sc, uint32_t *ap_dest,
uint32_t ring, int set_dest)
{
uint32_t ae_mask;
uint8_t mailbox, ae, nae;
uint8_t *dest = (uint8_t *)ap_dest;
mailbox = ETR_RING_AP_MAILBOX_NUMBER(ring);
nae = 0;
ae_mask = sc->sc_ae_mask;
for (ae = 0; ae < sc->sc_hw.qhw_num_engines; ae++) {
if ((ae_mask & (1 << ae)) == 0)
continue;
if (set_dest) {
dest[nae] = __SHIFTIN(ae, ETR_AP_DEST_AE) |
__SHIFTIN(mailbox, ETR_AP_DEST_MAILBOX) |
ETR_AP_DEST_ENABLE;
} else {
dest[nae] = 0;
}
nae++;
if (nae == ETR_MAX_AE_PER_MAILBOX)
break;
}
}
void
qat_etr_ap_bank_setup_ring(struct qat_softc *sc, struct qat_ring *qr)
{
struct qat_ap_bank *qab;
int ap_bank;
if (sc->sc_hw.qhw_num_ap_banks == 0)
return;
ap_bank = ETR_RING_AP_BANK_NUMBER(qr->qr_ring);
KASSERT(ap_bank < sc->sc_hw.qhw_num_ap_banks);
qab = &sc->sc_etr_ap_banks[ap_bank];
if (qr->qr_cb == NULL) {
qat_etr_ap_bank_set_ring_mask(&qab->qab_ne_mask, qr->qr_ring, 1);
if (!qab->qab_ne_dest) {
qat_etr_ap_bank_set_ring_dest(sc, &qab->qab_ne_dest,
qr->qr_ring, 1);
qat_etr_ap_bank_write_4(sc, ap_bank, ETR_AP_NE_DEST,
qab->qab_ne_dest);
}
} else {
qat_etr_ap_bank_set_ring_mask(&qab->qab_nf_mask, qr->qr_ring, 1);
if (!qab->qab_nf_dest) {
qat_etr_ap_bank_set_ring_dest(sc, &qab->qab_nf_dest,
qr->qr_ring, 1);
qat_etr_ap_bank_write_4(sc, ap_bank, ETR_AP_NF_DEST,
qab->qab_nf_dest);
}
}
}
int
qat_etr_verify_ring_size(uint32_t msg_size, uint32_t num_msgs)
{
int i = QAT_MIN_RING_SIZE;
for (; i <= QAT_MAX_RING_SIZE; i++)
if ((msg_size * num_msgs) == QAT_SIZE_TO_RING_SIZE_IN_BYTES(i))
return i;
return QAT_DEFAULT_RING_SIZE;
}
int
qat_etr_setup_ring(struct qat_softc *sc, int bank, uint32_t ring,
uint32_t num_msgs, uint32_t msg_size, qat_cb_t cb, void *cb_arg,
const char *name, struct qat_ring **rqr)
{
struct qat_bank *qb;
struct qat_ring *qr = NULL;
int error;
uint32_t ring_size_bytes, ring_config;
uint64_t ring_base;
uint32_t wm_nf = ETR_RING_CONFIG_NEAR_WM_512;
uint32_t wm_ne = ETR_RING_CONFIG_NEAR_WM_0;
KASSERT(bank < sc->sc_hw.qhw_num_banks);
/* Allocate a ring from specified bank */
qb = &sc->sc_etr_banks[bank];
if (ring >= sc->sc_hw.qhw_num_rings_per_bank)
return EINVAL;
if (qb->qb_allocated_rings & (1 << ring))
return ENOENT;
qr = &qb->qb_et_rings[ring];
qb->qb_allocated_rings |= 1 << ring;
/* Initialize allocated ring */
qr->qr_ring = ring;
qr->qr_bank = bank;
qr->qr_name = name;
qr->qr_ring_id = qr->qr_bank * sc->sc_hw.qhw_num_rings_per_bank + ring;
qr->qr_ring_mask = (1 << ring);
qr->qr_cb = cb;
qr->qr_cb_arg = cb_arg;
QAT_EVCNT_ATTACH(sc, &qr->qr_ev_rxintr, EVCNT_TYPE_INTR,
qr->qr_ev_rxintr_name, "bank%d ring%d rxintr", bank, ring);
QAT_EVCNT_ATTACH(sc, &qr->qr_ev_rxmsg, EVCNT_TYPE_MISC,
qr->qr_ev_rxmsg_name, "bank%d ring%d rxmsg", bank, ring);
QAT_EVCNT_ATTACH(sc, &qr->qr_ev_txmsg, EVCNT_TYPE_MISC,
qr->qr_ev_txmsg_name, "bank%d ring%d txmsg", bank, ring);
QAT_EVCNT_ATTACH(sc, &qr->qr_ev_txfull, EVCNT_TYPE_MISC,
qr->qr_ev_txfull_name, "bank%d ring%d txfull", bank, ring);
/* Setup the shadow variables */
qr->qr_head = 0;
qr->qr_tail = 0;
qr->qr_msg_size = QAT_BYTES_TO_MSG_SIZE(msg_size);
qr->qr_ring_size = qat_etr_verify_ring_size(msg_size, num_msgs);
/*
* To make sure that ring is aligned to ring size allocate
* at least 4k and then tell the user it is smaller.
*/
ring_size_bytes = QAT_SIZE_TO_RING_SIZE_IN_BYTES(qr->qr_ring_size);
ring_size_bytes = QAT_RING_SIZE_BYTES_MIN(ring_size_bytes);
error = qat_alloc_dmamem(sc, &qr->qr_dma,
ring_size_bytes, ring_size_bytes);
if (error)
return error;
KASSERT(qr->qr_dma.qdm_dma_map->dm_nsegs == 1);
qr->qr_ring_vaddr = qr->qr_dma.qdm_dma_vaddr;
qr->qr_ring_paddr = qr->qr_dma.qdm_dma_map->dm_segs[0].ds_addr;
aprint_verbose_dev(sc->sc_dev,
"allocate ring %d of bank %d for %s "
"size %d %d at vaddr %p paddr 0x%llx\n",
ring, bank, name, ring_size_bytes,
(int)qr->qr_dma.qdm_dma_map->dm_segs[0].ds_len,
qr->qr_ring_vaddr,
(unsigned long long)qr->qr_ring_paddr);
memset(qr->qr_ring_vaddr, QAT_RING_PATTERN,
qr->qr_dma.qdm_dma_map->dm_segs[0].ds_len);
bus_dmamap_sync(sc->sc_dmat, qr->qr_dma.qdm_dma_map, 0,
qr->qr_dma.qdm_dma_map->dm_mapsize,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
if (((uintptr_t)qr->qr_ring_paddr & (ring_size_bytes - 1)) != 0) {
aprint_error_dev(sc->sc_dev, "ring address not aligned\n");
return EFAULT;
}
if (cb == NULL) {
ring_config = ETR_RING_CONFIG_BUILD(qr->qr_ring_size);
} else {
ring_config =
ETR_RING_CONFIG_BUILD_RESP(qr->qr_ring_size, wm_nf, wm_ne);
}
qat_etr_bank_ring_write_4(sc, bank, ring, ETR_RING_CONFIG, ring_config);
ring_base = ETR_RING_BASE_BUILD(qr->qr_ring_paddr, qr->qr_ring_size);
qat_etr_bank_ring_base_write_8(sc, bank, ring, ring_base);
if (sc->sc_hw.qhw_init_arb != NULL)
qat_arb_update(sc, qb);
mutex_init(&qr->qr_ring_mtx, MUTEX_DEFAULT, IPL_NET);
qat_etr_ap_bank_setup_ring(sc, qr);
if (cb != NULL) {
uint32_t intr_mask;
qb->qb_intr_mask |= qr->qr_ring_mask;
intr_mask = qb->qb_intr_mask;
aprint_verbose_dev(sc->sc_dev,
"update intr mask for bank %d "
"(coalescing time %dns): 0x%08x\n",
bank, qb->qb_coalescing_time, intr_mask);
qat_etr_bank_write_4(sc, bank, ETR_INT_COL_EN,
intr_mask);
qat_etr_bank_write_4(sc, bank, ETR_INT_COL_CTL,
ETR_INT_COL_CTL_ENABLE | qb->qb_coalescing_time);
}
*rqr = qr;
return 0;
}
static inline u_int
qat_modulo(u_int data, u_int shift)
{
u_int div = data >> shift;
u_int mult = div << shift;
return data - mult;
}
int
qat_etr_put_msg(struct qat_softc *sc, struct qat_ring *qr, uint32_t *msg)
{
uint32_t inflight;
uint32_t *addr;
mutex_spin_enter(&qr->qr_ring_mtx);
inflight = atomic_inc_32_nv(qr->qr_inflight);
if (inflight > QAT_MAX_INFLIGHTS(qr->qr_ring_size, qr->qr_msg_size)) {
atomic_dec_32(qr->qr_inflight);
QAT_EVCNT_INCR(&qr->qr_ev_txfull);
mutex_spin_exit(&qr->qr_ring_mtx);
return EBUSY;
}
QAT_EVCNT_INCR(&qr->qr_ev_txmsg);
addr = (uint32_t *)((uintptr_t)qr->qr_ring_vaddr + qr->qr_tail);
memcpy(addr, msg, QAT_MSG_SIZE_TO_BYTES(qr->qr_msg_size));
#ifdef QAT_DUMP
qat_dump_raw(QAT_DUMP_RING_MSG, "put_msg", addr,
QAT_MSG_SIZE_TO_BYTES(qr->qr_msg_size));
#endif
bus_dmamap_sync(sc->sc_dmat, qr->qr_dma.qdm_dma_map, qr->qr_tail,
QAT_MSG_SIZE_TO_BYTES(qr->qr_msg_size),
BUS_DMASYNC_PREWRITE);
qr->qr_tail = qat_modulo(qr->qr_tail +
QAT_MSG_SIZE_TO_BYTES(qr->qr_msg_size),
QAT_RING_SIZE_MODULO(qr->qr_ring_size));
qat_etr_bank_ring_write_4(sc, qr->qr_bank, qr->qr_ring,
ETR_RING_TAIL_OFFSET, qr->qr_tail);
mutex_spin_exit(&qr->qr_ring_mtx);
return 0;
}
int
qat_etr_ring_intr(struct qat_softc *sc, struct qat_bank *qb,
struct qat_ring *qr)
{
int handled = 0;
uint32_t *msg;
uint32_t nmsg = 0;
mutex_spin_enter(&qr->qr_ring_mtx);
QAT_EVCNT_INCR(&qr->qr_ev_rxintr);
msg = (uint32_t *)((uintptr_t)qr->qr_ring_vaddr + qr->qr_head);
bus_dmamap_sync(sc->sc_dmat, qr->qr_dma.qdm_dma_map, qr->qr_head,
QAT_MSG_SIZE_TO_BYTES(qr->qr_msg_size),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (*msg != ETR_RING_EMPTY_ENTRY_SIG) {
atomic_dec_32(qr->qr_inflight);
QAT_EVCNT_INCR(&qr->qr_ev_rxmsg);
if (qr->qr_cb != NULL) {
mutex_spin_exit(&qr->qr_ring_mtx);
handled |= qr->qr_cb(sc, qr->qr_cb_arg, msg);
mutex_spin_enter(&qr->qr_ring_mtx);
}
*msg = ETR_RING_EMPTY_ENTRY_SIG;
bus_dmamap_sync(sc->sc_dmat, qr->qr_dma.qdm_dma_map, qr->qr_head,
QAT_MSG_SIZE_TO_BYTES(qr->qr_msg_size),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
qr->qr_head = qat_modulo(qr->qr_head +
QAT_MSG_SIZE_TO_BYTES(qr->qr_msg_size),
QAT_RING_SIZE_MODULO(qr->qr_ring_size));
nmsg++;
msg = (uint32_t *)((uintptr_t)qr->qr_ring_vaddr + qr->qr_head);
bus_dmamap_sync(sc->sc_dmat, qr->qr_dma.qdm_dma_map, qr->qr_head,
QAT_MSG_SIZE_TO_BYTES(qr->qr_msg_size),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
}
if (nmsg > 0) {
qat_etr_bank_ring_write_4(sc, qr->qr_bank, qr->qr_ring,
ETR_RING_HEAD_OFFSET, qr->qr_head);
}
mutex_spin_exit(&qr->qr_ring_mtx);
return handled;
}
int
qat_etr_bank_intr(void *arg)
{
struct qat_bank *qb = arg;
struct qat_softc *sc = qb->qb_sc;
uint32_t estat;
int i, handled = 0;
mutex_spin_enter(&qb->qb_bank_mtx);
QAT_EVCNT_INCR(&qb->qb_ev_rxintr);
qat_etr_bank_write_4(sc, qb->qb_bank, ETR_INT_COL_CTL, 0);
/* Now handle all the responses */
estat = ~qat_etr_bank_read_4(sc, qb->qb_bank, ETR_E_STAT);
estat &= qb->qb_intr_mask;
qat_etr_bank_write_4(sc, qb->qb_bank, ETR_INT_COL_CTL,
ETR_INT_COL_CTL_ENABLE | qb->qb_coalescing_time);
mutex_spin_exit(&qb->qb_bank_mtx);
while ((i = ffs32(estat)) != 0) {
struct qat_ring *qr = &qb->qb_et_rings[--i];
estat &= ~(1 << i);
handled |= qat_etr_ring_intr(sc, qb, qr);
}
return handled;
}
void
qat_arb_update(struct qat_softc *sc, struct qat_bank *qb)
{
qat_arb_ringsrvarben_write_4(sc, qb->qb_bank,
qb->qb_allocated_rings & 0xff);
}
struct qat_sym_cookie *
qat_crypto_alloc_sym_cookie(struct qat_crypto_bank *qcb)
{
struct qat_sym_cookie *qsc;
mutex_spin_enter(&qcb->qcb_bank_mtx);
if (qcb->qcb_symck_free_count == 0) {
QAT_EVCNT_INCR(&qcb->qcb_ev_no_symck);
mutex_spin_exit(&qcb->qcb_bank_mtx);
return NULL;
}
qsc = qcb->qcb_symck_free[--qcb->qcb_symck_free_count];
mutex_spin_exit(&qcb->qcb_bank_mtx);
return qsc;
}
void
qat_crypto_free_sym_cookie(struct qat_crypto_bank *qcb, struct qat_sym_cookie *qsc)
{
mutex_spin_enter(&qcb->qcb_bank_mtx);
qcb->qcb_symck_free[qcb->qcb_symck_free_count++] = qsc;
mutex_spin_exit(&qcb->qcb_bank_mtx);
}
void
qat_memcpy_htobe64(void *dst, const void *src, size_t len)
{
uint64_t *dst0 = dst;
const uint64_t *src0 = src;
size_t i;
KASSERT(len % sizeof(*dst0) == 0);
for (i = 0; i < len / sizeof(*dst0); i++)
*(dst0 + i) = htobe64(*(src0 + i));
}
void
qat_memcpy_htobe32(void *dst, const void *src, size_t len)
{
uint32_t *dst0 = dst;
const uint32_t *src0 = src;
size_t i;
KASSERT(len % sizeof(*dst0) == 0);
for (i = 0; i < len / sizeof(*dst0); i++)
*(dst0 + i) = htobe32(*(src0 + i));
}
void
qat_memcpy_htobe(void *dst, const void *src, size_t len, uint32_t wordbyte)
{
switch (wordbyte) {
case 4:
qat_memcpy_htobe32(dst, src, len);
break;
case 8:
qat_memcpy_htobe64(dst, src, len);
break;
default:
KASSERT(0);
}
}
void
qat_crypto_hmac_precompute(struct qat_crypto_desc *desc, struct cryptoini *cria,
struct qat_sym_hash_def const *hash_def, uint8_t *state1, uint8_t *state2)
{
int i, state_swap;
struct swcr_auth_hash const *sah = hash_def->qshd_alg->qshai_sah;
uint32_t blklen = hash_def->qshd_alg->qshai_block_len;
uint32_t state_offset = hash_def->qshd_alg->qshai_state_offset;
uint32_t state_size = hash_def->qshd_alg->qshai_state_size;
uint32_t state_word = hash_def->qshd_alg->qshai_state_word;
uint32_t keylen = cria->cri_klen / 8;
uint32_t padlen = blklen - keylen;
uint8_t *ipad = desc->qcd_hash_state_prefix_buf;
uint8_t *opad = desc->qcd_hash_state_prefix_buf +
sizeof(desc->qcd_hash_state_prefix_buf) / 2;
/* XXX
* For "stack protector not protecting local variables" error,
* use constant variable.
* Currently, the max length is sizeof(aesxcbc_ctx) used by
* swcr_auth_hash_aes_xcbc_mac
*/
uint8_t ctx[sizeof(aesxcbc_ctx)];
memcpy(ipad, cria->cri_key, keylen);
memcpy(opad, cria->cri_key, keylen);
if (padlen > 0) {
memset(ipad + keylen, 0, padlen);
memset(opad + keylen, 0, padlen);
}
for (i = 0; i < blklen; i++) {
ipad[i] ^= 0x36;
opad[i] ^= 0x5c;
}
/* ipad */
sah->Init(ctx);
/* Check the endian of kernel built-in hash state */
state_swap = memcmp(hash_def->qshd_alg->qshai_init_state,
((uint8_t *)ctx) + state_offset, state_word);
sah->Update(ctx, ipad, blklen);
if (state_swap == 0) {
memcpy(state1, ((uint8_t *)ctx) + state_offset, state_size);
} else {
qat_memcpy_htobe(state1, ((uint8_t *)ctx) + state_offset,
state_size, state_word);
}
/* opad */
sah->Init(ctx);
sah->Update(ctx, opad, blklen);
if (state_swap == 0) {
memcpy(state2, ((uint8_t *)ctx) + state_offset, state_size);
} else {
qat_memcpy_htobe(state2, ((uint8_t *)ctx) + state_offset,
state_size, state_word);
}
}
uint16_t
qat_crypto_load_cipher_cryptoini(
struct qat_crypto_desc *desc, struct cryptoini *crie)
{
enum hw_cipher_algo algo = HW_CIPHER_ALGO_NULL;
enum hw_cipher_mode mode = HW_CIPHER_CBC_MODE;
enum hw_cipher_convert key_convert = HW_CIPHER_NO_CONVERT;
switch (crie->cri_alg) {
case CRYPTO_DES_CBC:
algo = HW_CIPHER_ALGO_DES;
desc->qcd_cipher_blk_sz = HW_DES_BLK_SZ;
break;
case CRYPTO_3DES_CBC:
algo = HW_CIPHER_ALGO_3DES;
desc->qcd_cipher_blk_sz = HW_3DES_BLK_SZ;
break;
case CRYPTO_AES_CBC:
switch (crie->cri_klen / 8) {
case HW_AES_128_KEY_SZ:
algo = HW_CIPHER_ALGO_AES128;
break;
case HW_AES_192_KEY_SZ:
algo = HW_CIPHER_ALGO_AES192;
break;
case HW_AES_256_KEY_SZ:
algo = HW_CIPHER_ALGO_AES256;
break;
default:
KASSERT(0);
break;
}
desc->qcd_cipher_blk_sz = HW_AES_BLK_SZ;
/*
* AES decrypt key needs to be reversed.
* Instead of reversing the key at session registration,
* it is instead reversed on-the-fly by setting the KEY_CONVERT
* bit here
*/
if (desc->qcd_cipher_dir == HW_CIPHER_DECRYPT)
key_convert = HW_CIPHER_KEY_CONVERT;
break;
default:
KASSERT(0);
break;
}
return HW_CIPHER_CONFIG_BUILD(mode, algo, key_convert,
desc->qcd_cipher_dir);
}
uint16_t
qat_crypto_load_auth_cryptoini(
struct qat_crypto_desc *desc, struct cryptoini *cria,
struct qat_sym_hash_def const **hash_def)
{
const struct swcr_auth_hash *sah;
enum qat_sym_hash_algorithm algo = 0;
switch (cria->cri_alg) {
case CRYPTO_MD5_HMAC_96:
algo = QAT_SYM_HASH_MD5;
break;
case CRYPTO_SHA1_HMAC_96:
algo = QAT_SYM_HASH_SHA1;
break;
case CRYPTO_SHA2_256_HMAC:
algo = QAT_SYM_HASH_SHA256;
break;
case CRYPTO_SHA2_384_HMAC:
algo = QAT_SYM_HASH_SHA384;
break;
case CRYPTO_SHA2_512_HMAC:
algo = QAT_SYM_HASH_SHA512;
break;
default:
KASSERT(0);
break;
}
*hash_def = &qat_sym_hash_defs[algo];
sah = (*hash_def)->qshd_alg->qshai_sah;
KASSERT(sah != NULL);
desc->qcd_auth_sz = sah->auth_hash->authsize;
return HW_AUTH_CONFIG_BUILD(HW_AUTH_MODE1,
(*hash_def)->qshd_qat->qshqi_algo_enc,
(*hash_def)->qshd_alg->qshai_digest_len);
}
int
qat_crypto_load_buf(struct qat_softc *sc, struct cryptop *crp,
struct qat_sym_cookie *qsc, struct qat_crypto_desc const *desc,
uint8_t *icv_buf, int icv_offset, bus_addr_t *icv_paddr)
{
int error, i, nsegs;
if (crp->crp_flags & CRYPTO_F_IMBUF) {
struct mbuf *m = (struct mbuf *)crp->crp_buf;
if (icv_offset >= 0) {
if (m_length(m) == icv_offset) {
m_copyback(m, icv_offset, desc->qcd_auth_sz,
icv_buf);
if (m_length(m) == icv_offset)
return ENOBUFS;
} else {
struct mbuf *m0;
m0 = m_pulldown(m, icv_offset,
desc->qcd_auth_sz, NULL);
if (m0 == NULL)
return ENOBUFS;
}
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, qsc->qsc_buf_dmamap,
m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error == EFBIG) {
struct mbuf *m_new;
m_new = m_defrag(m, M_DONTWAIT);
if (m_new != NULL) {
crp->crp_buf = m_new;
qsc->qsc_buf = m_new;
error = bus_dmamap_load_mbuf(sc->sc_dmat,
qsc->qsc_buf_dmamap, m_new,
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error) {
m_freem(m_new);
crp->crp_buf = NULL;
}
}
}
} else if (crp->crp_flags & CRYPTO_F_IOV) {
error = bus_dmamap_load_uio(sc->sc_dmat, qsc->qsc_buf_dmamap,
(struct uio *)crp->crp_buf, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
} else {
error = bus_dmamap_load(sc->sc_dmat, qsc->qsc_buf_dmamap,
crp->crp_buf, crp->crp_ilen, NULL, BUS_DMA_NOWAIT);
}
if (error) {
aprint_debug_dev(sc->sc_dev,
"can't load crp_buf, error %d\n", error);
crp->crp_etype = error;
return error;
}
nsegs = qsc->qsc_buf_dmamap->dm_nsegs;
qsc->qsc_buf_list.num_buffers = nsegs;
for (i = 0; i < nsegs; i++) {
struct flat_buffer_desc *flatbuf =
&qsc->qsc_buf_list.phy_buffers[i];
bus_addr_t paddr = qsc->qsc_buf_dmamap->dm_segs[i].ds_addr;
bus_size_t len = qsc->qsc_buf_dmamap->dm_segs[i].ds_len;
flatbuf->data_len_in_bytes = len;
flatbuf->phy_buffer = (uint64_t)paddr;
if (icv_offset >= 0) {
if (icv_offset < len)
*icv_paddr = paddr + icv_offset;
else
icv_offset -= len;
}
}
bus_dmamap_sync(sc->sc_dmat, qsc->qsc_buf_dmamap, 0,
qsc->qsc_buf_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return 0;
}
int
qat_crypto_load_iv(struct qat_sym_cookie *qsc, struct cryptop *crp,
struct cryptodesc *crde, struct qat_crypto_desc const *desc)
{
uint32_t ivlen = desc->qcd_cipher_blk_sz;
if (crde->crd_flags & CRD_F_IV_EXPLICIT) {
memcpy(qsc->qsc_iv_buf, crde->crd_iv, ivlen);
} else {
if (crde->crd_flags & CRD_F_ENCRYPT) {
cprng_fast(qsc->qsc_iv_buf, ivlen);
} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
/* get iv from buf */
m_copydata(qsc->qsc_buf, crde->crd_inject, ivlen,
qsc->qsc_iv_buf);
} else if (crp->crp_flags & CRYPTO_F_IOV) {
cuio_copydata(qsc->qsc_buf, crde->crd_inject, ivlen,
qsc->qsc_iv_buf);
}
}
if ((crde->crd_flags & CRD_F_ENCRYPT) != 0 &&
(crde->crd_flags & CRD_F_IV_PRESENT) == 0) {
if (crp->crp_flags & CRYPTO_F_IMBUF) {
m_copyback(qsc->qsc_buf, crde->crd_inject, ivlen,
qsc->qsc_iv_buf);
} else if (crp->crp_flags & CRYPTO_F_IOV) {
cuio_copyback(qsc->qsc_buf, crde->crd_inject, ivlen,
qsc->qsc_iv_buf);
}
}
return 0;
}
static inline struct qat_crypto_bank *
qat_crypto_select_bank(struct qat_crypto *qcy)
{
u_int cpuid = cpu_index(curcpu());
return &qcy->qcy_banks[cpuid % qcy->qcy_num_banks];
}
int
qat_crypto_process(void *arg, struct cryptop *crp, int hint)
{
struct qat_crypto *qcy = arg;
struct qat_crypto_bank *qcb;
struct qat_session *qs = NULL;
struct qat_crypto_desc const *desc;
struct qat_sym_cookie *qsc = NULL;
struct qat_sym_bulk_cookie *qsbc;
struct cryptodesc *crd, *crda = NULL, *crde = NULL;
bus_addr_t icv_paddr = 0;
int error, icv_offset = -1;
uint8_t icv_buf[CRYPTO_MAX_MAC_LEN];
qs = qcy->qcy_sessions[CRYPTO_SESID2LID(crp->crp_sid)];
mutex_spin_enter(&qs->qs_session_mtx);
KASSERT(qs->qs_status & QAT_SESSION_STATUS_ACTIVE);
qs->qs_inflight++;
mutex_spin_exit(&qs->qs_session_mtx);
qcb = qat_crypto_select_bank(qcy);
qsc = qat_crypto_alloc_sym_cookie(qcb);
if (qsc == NULL) {
error = ENOBUFS;
goto fail;
}
error = 0;
desc = &qs->qs_dec_desc;
crd = crp->crp_desc;
while (crd != NULL) {
switch (crd->crd_alg) {
case CRYPTO_DES_CBC:
case CRYPTO_3DES_CBC:
case CRYPTO_AES_CBC:
if (crde != NULL)
error = EINVAL;
if (crd->crd_flags & CRD_F_ENCRYPT) {
/* use encrypt desc */
desc = &qs->qs_enc_desc;
if (crda != NULL)
error = ENOTSUP;
}
crde = crd;
break;
case CRYPTO_MD5_HMAC_96:
case CRYPTO_SHA1_HMAC_96:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
if (crda != NULL)
error = EINVAL;
if (crde != NULL &&
(crde->crd_flags & CRD_F_ENCRYPT) == 0)
error = EINVAL;
crda = crd;
icv_offset = crd->crd_inject;
break;
}
if (error)
goto fail;
crd = crd->crd_next;
}
qsc->qsc_buf = crp->crp_buf;
if (crde != NULL) {
error = qat_crypto_load_iv(qsc, crp, crde, desc);
if (error)
goto fail;
}
error = qat_crypto_load_buf(qcy->qcy_sc, crp, qsc, desc, icv_buf,
icv_offset, &icv_paddr);
if (error)
goto fail;
qsbc = &qsc->u.qsc_bulk_cookie;
qsbc->qsbc_crypto = qcy;
qsbc->qsbc_session = qs;
qsbc->qsbc_cb_tag = crp;
qcy->qcy_sc->sc_hw.qhw_crypto_setup_req_params(qcb, qs, desc, qsc,
crde, crda, icv_paddr);
bus_dmamap_sync(qcy->qcy_sc->sc_dmat, *qsc->qsc_self_dmamap, 0,
offsetof(struct qat_sym_cookie, qsc_self_dmamap),
BUS_DMASYNC_PREWRITE);
error = qat_etr_put_msg(qcy->qcy_sc, qcb->qcb_sym_tx,
(uint32_t *)qsbc->qsbc_msg);
if (error)
goto fail;
return 0;
fail:
if (qsc)
qat_crypto_free_sym_cookie(qcb, qsc);
mutex_spin_enter(&qs->qs_session_mtx);
qs->qs_inflight--;
qat_crypto_check_free_session(qcy, qs);
crp->crp_etype = error;
crypto_done(crp);
return 0;
}
int
qat_crypto_setup_ring(struct qat_softc *sc, struct qat_crypto_bank *qcb)
{
int error, i, bank;
int curname = 0;
char *name;
bank = qcb->qcb_bank;
name = qcb->qcb_ring_names[curname++];
snprintf(name, QAT_RING_NAME_SIZE, "bank%d sym_tx", bank);
error = qat_etr_setup_ring(sc, qcb->qcb_bank,
sc->sc_hw.qhw_ring_sym_tx, QAT_NSYMREQ, sc->sc_hw.qhw_fw_req_size,
NULL, NULL, name, &qcb->qcb_sym_tx);
if (error)
return error;
name = qcb->qcb_ring_names[curname++];
snprintf(name, QAT_RING_NAME_SIZE, "bank%d sym_rx", bank);
error = qat_etr_setup_ring(sc, qcb->qcb_bank,
sc->sc_hw.qhw_ring_sym_rx, QAT_NSYMREQ, sc->sc_hw.qhw_fw_resp_size,
qat_crypto_sym_rxintr, qcb, name, &qcb->qcb_sym_rx);
if (error)
return error;
for (i = 0; i < QAT_NSYMCOOKIE; i++) {
struct qat_dmamem *qdm = &qcb->qcb_symck_dmamems[i];
struct qat_sym_cookie *qsc;
error = qat_alloc_dmamem(sc, qdm, sizeof(struct qat_sym_cookie),
QAT_OPTIMAL_ALIGN);
if (error)
return error;
qsc = qdm->qdm_dma_vaddr;
qsc->qsc_self_dmamap = &qdm->qdm_dma_map;
qsc->qsc_bulk_req_params_buf_paddr =
qdm->qdm_dma_seg.ds_addr + offsetof(struct qat_sym_cookie,
u.qsc_bulk_cookie.qsbc_req_params_buf);
qsc->qsc_buffer_list_desc_paddr =
qdm->qdm_dma_seg.ds_addr + offsetof(struct qat_sym_cookie,
qsc_buf_list);
qsc->qsc_iv_buf_paddr =
qdm->qdm_dma_seg.ds_addr + offsetof(struct qat_sym_cookie,
qsc_iv_buf);
qcb->qcb_symck_free[i] = qsc;
qcb->qcb_symck_free_count++;
error = bus_dmamap_create(sc->sc_dmat, QAT_MAXLEN,
QAT_MAXSEG, MCLBYTES, 0, 0, &qsc->qsc_buf_dmamap);
if (error)
return error;
}
return 0;
}
int
qat_crypto_bank_init(struct qat_softc *sc, struct qat_crypto_bank *qcb)
{
int error;
mutex_init(&qcb->qcb_bank_mtx, MUTEX_DEFAULT, IPL_NET);
QAT_EVCNT_ATTACH(sc, &qcb->qcb_ev_no_symck, EVCNT_TYPE_MISC,
qcb->qcb_ev_no_symck_name, "crypto no_symck");
error = qat_crypto_setup_ring(sc, qcb);
if (error)
return error;
return 0;
}
int
qat_crypto_init(struct qat_softc *sc)
{
struct qat_crypto *qcy = &sc->sc_crypto;
int error, bank, i;
int num_banks;
qcy->qcy_sc = sc;
if (sc->sc_hw.qhw_init_arb != NULL)
num_banks = uimin(ncpu, sc->sc_hw.qhw_num_banks);
else
num_banks = sc->sc_ae_num;
qcy->qcy_num_banks = num_banks;
qcy->qcy_banks =
qat_alloc_mem(sizeof(struct qat_crypto_bank) * num_banks);
for (bank = 0; bank < num_banks; bank++) {
struct qat_crypto_bank *qcb = &qcy->qcy_banks[bank];
qcb->qcb_bank = bank;
qcb->qcb_crypto = qcy;
error = qat_crypto_bank_init(sc, qcb);
if (error)
return error;
}
mutex_init(&qcy->qcy_crypto_mtx, MUTEX_DEFAULT, IPL_NET);
for (i = 0; i < QAT_NSESSION; i++) {
struct qat_dmamem *qdm = &qcy->qcy_session_dmamems[i];
struct qat_session *qs;
error = qat_alloc_dmamem(sc, qdm, sizeof(struct qat_session),
QAT_OPTIMAL_ALIGN);
if (error)
return error;
qs = qdm->qdm_dma_vaddr;
qs->qs_lid = i;
qs->qs_dec_desc.qcd_desc_paddr = qdm->qdm_dma_seg.ds_addr;
qs->qs_dec_desc.qcd_hash_state_paddr =
qs->qs_dec_desc.qcd_desc_paddr +
offsetof(struct qat_crypto_desc, qcd_hash_state_prefix_buf);
qs->qs_enc_desc.qcd_desc_paddr = qdm->qdm_dma_seg.ds_addr +
offsetof(struct qat_session, qs_enc_desc);
qs->qs_enc_desc.qcd_hash_state_paddr =
qs->qs_enc_desc.qcd_desc_paddr +
offsetof(struct qat_crypto_desc, qcd_hash_state_prefix_buf);
mutex_init(&qs->qs_session_mtx, MUTEX_DEFAULT, IPL_NET);
qcy->qcy_sessions[i] = qs;
qcy->qcy_session_free[i] = qs;
qcy->qcy_session_free_count++;
}
QAT_EVCNT_ATTACH(sc, &qcy->qcy_ev_new_sess, EVCNT_TYPE_MISC,
qcy->qcy_ev_new_sess_name, "crypto new_sess");
QAT_EVCNT_ATTACH(sc, &qcy->qcy_ev_free_sess, EVCNT_TYPE_MISC,
qcy->qcy_ev_free_sess_name, "crypto free_sess");
QAT_EVCNT_ATTACH(sc, &qcy->qcy_ev_no_sess, EVCNT_TYPE_MISC,
qcy->qcy_ev_no_sess_name, "crypto no_sess");
return 0;
}
int
qat_crypto_new_session(void *arg, uint32_t *lid, struct cryptoini *cri)
{
struct qat_crypto *qcy = arg;
struct qat_session *qs = NULL;
struct cryptoini *crie = NULL;
struct cryptoini *cria = NULL;
int slice, error;
mutex_spin_enter(&qcy->qcy_crypto_mtx);
if (qcy->qcy_session_free_count == 0) {
QAT_EVCNT_INCR(&qcy->qcy_ev_no_sess);
mutex_spin_exit(&qcy->qcy_crypto_mtx);
return ENOBUFS;
}
qs = qcy->qcy_session_free[--qcy->qcy_session_free_count];
QAT_EVCNT_INCR(&qcy->qcy_ev_new_sess);
mutex_spin_exit(&qcy->qcy_crypto_mtx);
qs->qs_status = QAT_SESSION_STATUS_ACTIVE;
qs->qs_inflight = 0;
*lid = qs->qs_lid;
error = 0;
while (cri) {
switch (cri->cri_alg) {
case CRYPTO_DES_CBC:
case CRYPTO_3DES_CBC:
case CRYPTO_AES_CBC:
if (crie != NULL)
error = EINVAL;
crie = cri;
break;
case CRYPTO_MD5_HMAC_96:
case CRYPTO_SHA1_HMAC_96:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
if (cria != NULL)
error = EINVAL;
cria = cri;
break;
default:
error = EINVAL;
}
if (error)
goto fail;
cri = cri->cri_next;
}
slice = 1;
if (crie != NULL && cria != NULL) {
slice = 2;
/* auth then decrypt */
qs->qs_dec_desc.qcd_slices[0] = FW_SLICE_AUTH;
qs->qs_dec_desc.qcd_slices[1] = FW_SLICE_CIPHER;
qs->qs_dec_desc.qcd_cipher_dir = HW_CIPHER_DECRYPT;
qs->qs_dec_desc.qcd_cmd_id = FW_LA_CMD_HASH_CIPHER;
/* encrypt then auth */
qs->qs_enc_desc.qcd_slices[0] = FW_SLICE_CIPHER;
qs->qs_enc_desc.qcd_slices[1] = FW_SLICE_AUTH;
qs->qs_enc_desc.qcd_cipher_dir = HW_CIPHER_ENCRYPT;
qs->qs_enc_desc.qcd_cmd_id = FW_LA_CMD_CIPHER_HASH;
} else if (crie != NULL) {
/* decrypt */
qs->qs_dec_desc.qcd_slices[0] = FW_SLICE_CIPHER;
qs->qs_dec_desc.qcd_cipher_dir = HW_CIPHER_DECRYPT;
qs->qs_dec_desc.qcd_cmd_id = FW_LA_CMD_CIPHER;
/* encrypt */
qs->qs_enc_desc.qcd_slices[0] = FW_SLICE_CIPHER;
qs->qs_enc_desc.qcd_cipher_dir = HW_CIPHER_ENCRYPT;
qs->qs_enc_desc.qcd_cmd_id = FW_LA_CMD_CIPHER;
} else if (cria != NULL) {
/* auth */
qs->qs_dec_desc.qcd_slices[0] = FW_SLICE_AUTH;
qs->qs_dec_desc.qcd_cmd_id = FW_LA_CMD_AUTH;
/* auth */
qs->qs_enc_desc.qcd_slices[0] = FW_SLICE_AUTH;
qs->qs_enc_desc.qcd_cmd_id = FW_LA_CMD_AUTH;
} else {
error = EINVAL;
goto fail;
}
qs->qs_dec_desc.qcd_slices[slice] = FW_SLICE_DRAM_WR;
qs->qs_enc_desc.qcd_slices[slice] = FW_SLICE_DRAM_WR;
qcy->qcy_sc->sc_hw.qhw_crypto_setup_desc(qcy, qs, &qs->qs_dec_desc, crie, cria);
qcy->qcy_sc->sc_hw.qhw_crypto_setup_desc(qcy, qs, &qs->qs_enc_desc, crie, cria);
return 0;
fail:
if (qs != NULL) {
mutex_spin_enter(&qs->qs_session_mtx);
qat_crypto_free_session0(qcy, qs);
}
return error;
}
static inline void
qat_crypto_clean_desc(struct qat_crypto_desc *desc)
{
explicit_memset(desc->qcd_content_desc, 0,
sizeof(desc->qcd_content_desc));
explicit_memset(desc->qcd_hash_state_prefix_buf, 0,
sizeof(desc->qcd_hash_state_prefix_buf));
explicit_memset(desc->qcd_req_cache, 0,
sizeof(desc->qcd_req_cache));
}
void
qat_crypto_free_session0(struct qat_crypto *qcy, struct qat_session *qs)
{
qat_crypto_clean_desc(&qs->qs_dec_desc);
qat_crypto_clean_desc(&qs->qs_enc_desc);
qs->qs_status &= ~QAT_SESSION_STATUS_ACTIVE;
mutex_spin_exit(&qs->qs_session_mtx);
mutex_spin_enter(&qcy->qcy_crypto_mtx);
qcy->qcy_session_free[qcy->qcy_session_free_count++] = qs;
QAT_EVCNT_INCR(&qcy->qcy_ev_free_sess);
mutex_spin_exit(&qcy->qcy_crypto_mtx);
}
void
qat_crypto_check_free_session(struct qat_crypto *qcy, struct qat_session *qs)
{
if ((qs->qs_status & QAT_SESSION_STATUS_FREEING) &&
qs->qs_inflight == 0) {
qat_crypto_free_session0(qcy, qs);
} else {
mutex_spin_exit(&qs->qs_session_mtx);
}
}
void
qat_crypto_free_session(void *arg, uint64_t sid)
{
struct qat_crypto *qcy = arg;
struct qat_session *qs;
qs = qcy->qcy_sessions[CRYPTO_SESID2LID(sid)];
mutex_spin_enter(&qs->qs_session_mtx);
if (qs->qs_inflight > 0) {
qs->qs_status |= QAT_SESSION_STATUS_FREEING;
mutex_spin_exit(&qs->qs_session_mtx);
return;
}
qat_crypto_free_session0(qcy, qs);
}
int
qat_crypto_start(struct qat_softc *sc)
{
struct qat_crypto *qcy = &sc->sc_crypto;
int error, i;
static const int algs[] = {
CRYPTO_DES_CBC, CRYPTO_3DES_CBC, CRYPTO_AES_CBC,
CRYPTO_MD5_HMAC_96, CRYPTO_SHA1_HMAC_96, CRYPTO_SHA2_256_HMAC,
CRYPTO_SHA2_384_HMAC, CRYPTO_SHA2_512_HMAC,
};
/* opencrypto */
qcy->qcy_cid = crypto_get_driverid(0);
if (qcy->qcy_cid < 0) {
aprint_error_dev(sc->sc_dev,
"could not get opencrypto driver id\n");
return ENOENT;
}
for (i = 0; i < __arraycount(algs); i++) {
error = crypto_register(qcy->qcy_cid, algs[i], 0, 0,
qat_crypto_new_session, qat_crypto_free_session,
qat_crypto_process, qcy);
if (error) {
aprint_error_dev(sc->sc_dev,
"could not register crypto: %d\n", error);
return error;
}
}
return 0;
}
int
qat_crypto_sym_rxintr(struct qat_softc *sc, void *arg, void *msg)
{
struct qat_crypto_bank *qcb = arg;
struct qat_crypto *qcy;
struct qat_session *qs;
struct qat_sym_cookie *qsc;
struct qat_sym_bulk_cookie *qsbc;
struct cryptop *crp;
qsc = *(void **)((uintptr_t)msg + sc->sc_hw.qhw_crypto_opaque_offset);
qsbc = &qsc->u.qsc_bulk_cookie;
qcy = qsbc->qsbc_crypto;
qs = qsbc->qsbc_session;
crp = qsbc->qsbc_cb_tag;
bus_dmamap_sync(sc->sc_dmat, qsc->qsc_buf_dmamap, 0,
qsc->qsc_buf_dmamap->dm_mapsize,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, qsc->qsc_buf_dmamap);
qat_crypto_free_sym_cookie(qcb, qsc);
crp->crp_etype = 0;
crypto_done(crp);
mutex_spin_enter(&qs->qs_session_mtx);
KASSERT(qs->qs_status & QAT_SESSION_STATUS_ACTIVE);
qs->qs_inflight--;
qat_crypto_check_free_session(qcy, qs);
return 1;
}
#ifdef QAT_DUMP
void
qat_dump_raw(int flag, const char *label, void *d, size_t len)
{
uintptr_t pc;
size_t pos;
uint8_t *dp = (uint8_t *)d;
if ((qat_dump & flag) == 0)
return;
printf("dumping %s at %p len %zu\n", label, d, len);
pc = (uintptr_t)__builtin_return_address(0);
printf("\tcallpc ");
qat_print_sym(pc);
printf("\n");
for (pos = 0; pos < len; pos++) {
if (pos % 32 == 0)
printf("%8zx: ", pos);
else if (pos % 4 == 0)
printf(" ");
printf("%02x", dp[pos]);
if (pos % 32 == 31 || pos + 1 == len)
printf("\n");
}
}
void
qat_dump_ring(int bank, int ring)
{
struct qat_softc *sc = gsc;
struct qat_bank *qb = &sc->sc_etr_banks[bank];
struct qat_ring *qr = &qb->qb_et_rings[ring];
u_int offset;
int i;
uint32_t msg;
printf("dumping bank %d ring %d\n", bank, ring);
printf("\tid %d name %s msg size %d ring size %d\n",
qr->qr_ring_id, qr->qr_name,
QAT_MSG_SIZE_TO_BYTES(qr->qr_msg_size),
qr->qr_ring_size);
printf("\thost head 0x%08x tail 0x%08x\n", qr->qr_head, qr->qr_tail);
printf("\ttarget head 0x%08x tail 0x%08x\n",
qat_etr_bank_ring_read_4(sc, qr->qr_bank, qr->qr_ring,
ETR_RING_HEAD_OFFSET),
qat_etr_bank_ring_read_4(sc, qr->qr_bank, qr->qr_ring,
ETR_RING_TAIL_OFFSET));
printf("\n");
i = 0;
offset = 0;
do {
if (i % 8 == 0)
printf("%8x:", offset);
if (offset == qr->qr_head) {
printf("*");
} else if (offset == qr->qr_tail) {
printf("v");
} else {
printf(" ");
}
msg = *(uint32_t *)((uintptr_t)qr->qr_ring_vaddr + offset);
printf("%08x", htobe32(msg));
if (i % 8 == 7)
printf("\n");
i++;
offset = qat_modulo(offset +
QAT_MSG_SIZE_TO_BYTES(qr->qr_msg_size),
QAT_RING_SIZE_MODULO(qr->qr_ring_size));
} while (offset != 0);
}
void
qat_dump_mbuf(struct mbuf *m0, int pre, int post)
{
struct mbuf *m;
for (m = m0; m != NULL; m = m->m_next) {
size_t pos, len;
uint8_t *buf_start, *data_start, *data_end, *buf_end;
uint8_t *start, *end, *dp;
bool skip_ind;
const char *ind;
printf("dumping mbuf %p len %d flags 0x%08x\n",
m, m->m_len, m->m_flags);
if (m->m_len == 0)
continue;
data_start = (uint8_t *)m->m_data;
data_end = data_start + m->m_len;
switch (m->m_flags & (M_EXT|M_EXT_CLUSTER|M_EXT_PAGES)) {
case 0:
buf_start = (uint8_t *)M_BUFADDR(m);
buf_end = buf_start +
((m->m_flags & M_PKTHDR) ? MHLEN : MLEN);
break;
case M_EXT|M_EXT_CLUSTER:
buf_start = (uint8_t *)m->m_ext.ext_buf;
buf_end = buf_start +m->m_ext.ext_size;
break;
default:
/* XXX */
buf_start = data_start;
buf_end = data_end;
break;
}
start = data_start - pre;
if (start < buf_start)
start = buf_start;
end = data_end + post;
if (end > buf_end)
end = buf_end;
dp = start;
len = (size_t)(end - start);
skip_ind = false;
for (pos = 0; pos < len; pos++) {
if (skip_ind)
ind = "";
else if (&dp[pos] == data_start)
ind = "`";
else
ind = " ";
if (pos % 32 == 0)
printf("%8zx:%s", pos, ind);
else if (pos % 2 == 0)
printf("%s", ind);
printf("%02x", dp[pos]);
skip_ind = false;
if (&dp[pos + 1] == data_end) {
skip_ind = true;
printf("'");
}
if (pos % 32 == 31 || pos + 1 == len) {
printf("\n");
skip_ind = false;
}
}
}
}
#endif /* QAT_DUMP */
MODULE(MODULE_CLASS_DRIVER, qat, "pci,opencrypto");
#ifdef _MODULE
#include "ioconf.c"
#endif
int
qat_modcmd(modcmd_t cmd, void *data)
{
int error = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
error = config_init_component(cfdriver_ioconf_qat,
cfattach_ioconf_qat, cfdata_ioconf_qat);
#endif
return error;
case MODULE_CMD_FINI:
#ifdef _MODULE
error = config_fini_component(cfdriver_ioconf_qat,
cfattach_ioconf_qat, cfdata_ioconf_qat);
#endif
return error;
default:
return ENOTTY;
}
}