/* $NetBSD: piixpm.c,v 1.73 2025/02/24 21:31:32 jmcneill Exp $ */
/* $OpenBSD: piixpm.c,v 1.39 2013/10/01 20:06:02 sf Exp $ */
/*
* Copyright (c) 2005, 2006 Alexander Yurchenko <
[email protected]>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Intel PIIX and compatible Power Management controller driver.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: piixpm.c,v 1.73 2025/02/24 21:31:32 jmcneill Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/proc.h>
#include <sys/bus.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/piixpmreg.h>
#include <dev/i2c/i2cvar.h>
#include <dev/ic/acpipmtimer.h>
#ifdef PIIXPM_DEBUG
#define DPRINTF(x) printf x
#else
#define DPRINTF(x)
#endif
#define PIIXPM_IS_CSB5(sc) \
(PCI_VENDOR((sc)->sc_id) == PCI_VENDOR_SERVERWORKS && \
PCI_PRODUCT((sc)->sc_id) == PCI_PRODUCT_SERVERWORKS_CSB5)
#define PIIXPM_DELAY 200
#define PIIXPM_TIMEOUT 1
#define PIIXPM_IS_SB800GRP(sc) \
((PCI_VENDOR((sc)->sc_id) == PCI_VENDOR_ATI) && \
((PCI_PRODUCT((sc)->sc_id) == PCI_PRODUCT_ATI_SB600_SMB) && \
((sc)->sc_rev >= 0x40)))
#define PIIXPM_IS_HUDSON(sc) \
((PCI_VENDOR((sc)->sc_id) == PCI_VENDOR_AMD) && \
(PCI_PRODUCT((sc)->sc_id) == PCI_PRODUCT_AMD_HUDSON_SMB))
#define PIIXPM_IS_KERNCZ(sc) \
((PCI_VENDOR((sc)->sc_id) == PCI_VENDOR_AMD) && \
(PCI_PRODUCT((sc)->sc_id) == PCI_PRODUCT_AMD_KERNCZ_SMB))
#define PIIXPM_IS_FCHGRP(sc) (PIIXPM_IS_HUDSON(sc) || PIIXPM_IS_KERNCZ(sc))
#define PIIX_SB800_TIMEOUT 500
struct piixpm_smbus {
int sda;
int sda_save;
struct piixpm_softc *softc;
};
struct piixpm_softc {
device_t sc_dev;
bus_space_tag_t sc_iot;
bus_space_tag_t sc_sb800_bt;
bus_space_handle_t sc_pm_ioh;
bus_space_handle_t sc_sb800_bh;
bus_space_handle_t sc_smb_ioh;
void * sc_smb_ih;
int sc_poll;
bool sc_sb800_mmio; /* Use MMIO access */
bool sc_sb800_selen; /* Use SMBUS0SEL */
pci_chipset_tag_t sc_pc;
pcitag_t sc_pcitag;
pcireg_t sc_id;
pcireg_t sc_rev;
int sc_numbusses;
device_t sc_i2c_device[4];
struct piixpm_smbus sc_busses[4];
struct i2c_controller sc_i2c_tags[4];
kmutex_t sc_exec_lock;
kcondvar_t sc_exec_wait;
struct {
i2c_op_t op;
void * buf;
size_t len;
int flags;
int error;
bool done;
} sc_i2c_xfer;
pcireg_t sc_devact[2];
};
static int piixpm_match(device_t, cfdata_t, void *);
static void piixpm_attach(device_t, device_t, void *);
static int piixpm_rescan(device_t, const char *, const int *);
static void piixpm_chdet(device_t, device_t);
static bool piixpm_suspend(device_t, const pmf_qual_t *);
static bool piixpm_resume(device_t, const pmf_qual_t *);
static uint8_t piixpm_sb800_pmread(struct piixpm_softc *, bus_size_t);
static int piixpm_sb800_init(struct piixpm_softc *);
static void piixpm_csb5_reset(void *);
static int piixpm_i2c_sb800_acquire_bus(void *, int);
static void piixpm_i2c_sb800_release_bus(void *, int);
static int piixpm_i2c_exec(void *, i2c_op_t, i2c_addr_t, const void *,
size_t, void *, size_t, int);
static int piixpm_intr(void *);
CFATTACH_DECL3_NEW(piixpm, sizeof(struct piixpm_softc),
piixpm_match, piixpm_attach, NULL, NULL, piixpm_rescan, piixpm_chdet, 0);
static int
piixpm_match(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa;
pa = (struct pci_attach_args *)aux;
switch (PCI_VENDOR(pa->pa_id)) {
case PCI_VENDOR_INTEL:
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_INTEL_82371AB_PMC:
case PCI_PRODUCT_INTEL_82440MX_PMC:
return 1;
}
break;
case PCI_VENDOR_ATI:
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_ATI_SB200_SMB:
case PCI_PRODUCT_ATI_SB300_SMB:
case PCI_PRODUCT_ATI_SB400_SMB:
case PCI_PRODUCT_ATI_SB600_SMB: /* matches SB600/SB700/SB800 */
return 1;
}
break;
case PCI_VENDOR_SERVERWORKS:
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_SERVERWORKS_OSB4:
case PCI_PRODUCT_SERVERWORKS_CSB5:
case PCI_PRODUCT_SERVERWORKS_CSB6:
case PCI_PRODUCT_SERVERWORKS_HT1000SB:
case PCI_PRODUCT_SERVERWORKS_HT1100SB:
return 1;
}
break;
case PCI_VENDOR_AMD:
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_AMD_HUDSON_SMB:
case PCI_PRODUCT_AMD_KERNCZ_SMB:
return 1;
}
break;
}
return 0;
}
static void
piixpm_attach(device_t parent, device_t self, void *aux)
{
struct piixpm_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
pcireg_t base, conf;
pcireg_t pmmisc;
pci_intr_handle_t ih;
bool usesmi = false;
const char *intrstr = NULL;
int i;
char intrbuf[PCI_INTRSTR_LEN];
sc->sc_dev = self;
sc->sc_iot = pa->pa_iot;
sc->sc_id = pa->pa_id;
sc->sc_rev = PCI_REVISION(pa->pa_class);
sc->sc_pc = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
sc->sc_numbusses = 1;
pci_aprint_devinfo(pa, NULL);
mutex_init(&sc->sc_exec_lock, MUTEX_DEFAULT, IPL_BIO);
cv_init(&sc->sc_exec_wait, device_xname(self));
if (!pmf_device_register(self, piixpm_suspend, piixpm_resume))
aprint_error_dev(self, "couldn't establish power handler\n");
if ((PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) ||
(PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_INTEL_82371AB_PMC))
goto nopowermanagement;
/* check whether I/O access to PM regs is enabled */
pmmisc = pci_conf_read(pa->pa_pc, pa->pa_tag, PIIX_PMREGMISC);
if (!(pmmisc & 1))
goto nopowermanagement;
/* Map I/O space */
base = pci_conf_read(pa->pa_pc, pa->pa_tag, PIIX_PM_BASE);
if (base == 0 || bus_space_map(sc->sc_iot, PCI_MAPREG_IO_ADDR(base),
PIIX_PM_SIZE, 0, &sc->sc_pm_ioh)) {
aprint_error_dev(self,
"can't map power management I/O space\n");
goto nopowermanagement;
}
/*
* Revision 0 and 1 are PIIX4, 2 is PIIX4E, 3 is PIIX4M.
* PIIX4 and PIIX4E have a bug in the timer latch, see Errata #20
* in the "Specification update" (document #297738).
*/
acpipmtimer_attach(self, sc->sc_iot, sc->sc_pm_ioh, PIIX_PM_PMTMR,
(PCI_REVISION(pa->pa_class) < 3) ? ACPIPMT_BADLATCH : 0);
nopowermanagement:
/* SB800 rev 0x40+, AMD HUDSON and newer need special initialization */
if (PIIXPM_IS_FCHGRP(sc) || PIIXPM_IS_SB800GRP(sc)) {
/* Newer chips don't support I/O access */
if (PIIXPM_IS_KERNCZ(sc) && (sc->sc_rev >= 0x51)) {
sc->sc_sb800_mmio = true;
sc->sc_sb800_bt = pa->pa_memt;
} else {
sc->sc_sb800_mmio = false;
sc->sc_sb800_bt = pa->pa_iot;
}
if (piixpm_sb800_init(sc) == 0) {
/* Read configuration */
conf = bus_space_read_1(sc->sc_iot,
sc->sc_smb_ioh, SB800_SMB_HOSTC);
usesmi = ((conf & SB800_SMB_HOSTC_IRQ) == 0);
goto setintr;
}
aprint_normal_dev(self, "SMBus initialization failed\n");
return;
}
/* Read configuration */
conf = pci_conf_read(pa->pa_pc, pa->pa_tag, PIIX_SMB_HOSTC);
DPRINTF(("%s: conf 0x%08x\n", device_xname(self), conf));
if ((conf & PIIX_SMB_HOSTC_HSTEN) == 0) {
aprint_normal_dev(self, "SMBus disabled\n");
return;
}
usesmi = (conf & PIIX_SMB_HOSTC_INTMASK) == PIIX_SMB_HOSTC_SMI;
/* Map I/O space */
base = pci_conf_read(pa->pa_pc, pa->pa_tag, PIIX_SMB_BASE) & 0xffff;
if (base == 0 ||
bus_space_map(sc->sc_iot, PCI_MAPREG_IO_ADDR(base),
PIIX_SMB_SIZE, 0, &sc->sc_smb_ioh)) {
aprint_error_dev(self, "can't map smbus I/O space\n");
return;
}
setintr:
sc->sc_poll = 1;
aprint_normal_dev(self, "");
if (usesmi) {
/* No PCI IRQ */
aprint_normal("interrupting at SMI, ");
} else {
if ((conf & PIIX_SMB_HOSTC_INTMASK) == PIIX_SMB_HOSTC_IRQ) {
/* Install interrupt handler */
if (pci_intr_map(pa, &ih) == 0) {
intrstr = pci_intr_string(pa->pa_pc, ih,
intrbuf, sizeof(intrbuf));
pci_intr_setattr(pa->pa_pc, &ih,
PCI_INTR_MPSAFE, true);
sc->sc_smb_ih = pci_intr_establish_xname(
pa->pa_pc, ih, IPL_BIO, piixpm_intr,
sc, device_xname(sc->sc_dev));
if (sc->sc_smb_ih != NULL) {
aprint_normal("interrupting at %s",
intrstr);
sc->sc_poll = 0;
}
}
}
}
if (sc->sc_poll)
aprint_normal("polling");
aprint_normal("\n");
for (i = 0; i < sc->sc_numbusses; i++)
sc->sc_i2c_device[i] = NULL;
piixpm_rescan(self, NULL, NULL);
}
static int
piixpm_iicbus_print(void *aux, const char *pnp)
{
struct i2cbus_attach_args *iba = aux;
struct i2c_controller *tag = iba->iba_tag;
struct piixpm_smbus *bus = tag->ic_cookie;
struct piixpm_softc *sc = bus->softc;
iicbus_print(aux, pnp);
if (sc->sc_numbusses != 0)
aprint_normal(" port %d", bus->sda);
return UNCONF;
}
static int
piixpm_rescan(device_t self, const char *ifattr, const int *locators)
{
struct piixpm_softc *sc = device_private(self);
struct i2cbus_attach_args iba;
int i;
/* Attach I2C bus */
for (i = 0; i < sc->sc_numbusses; i++) {
struct i2c_controller *tag = &sc->sc_i2c_tags[i];
if (sc->sc_i2c_device[i] != NULL)
continue;
sc->sc_busses[i].sda = i;
sc->sc_busses[i].softc = sc;
iic_tag_init(tag);
tag->ic_cookie = &sc->sc_busses[i];
if (PIIXPM_IS_SB800GRP(sc) || PIIXPM_IS_FCHGRP(sc)) {
tag->ic_acquire_bus = piixpm_i2c_sb800_acquire_bus;
tag->ic_release_bus = piixpm_i2c_sb800_release_bus;
} else {
tag->ic_acquire_bus = NULL;
tag->ic_release_bus = NULL;
}
tag->ic_exec = piixpm_i2c_exec;
memset(&iba, 0, sizeof(iba));
iba.iba_tag = tag;
sc->sc_i2c_device[i] =
config_found(self, &iba, piixpm_iicbus_print, CFARGS_NONE);
if (sc->sc_i2c_device[i] == NULL)
iic_tag_fini(tag);
}
return 0;
}
static void
piixpm_chdet(device_t self, device_t child)
{
struct piixpm_softc *sc = device_private(self);
int i;
for (i = 0; i < sc->sc_numbusses; i++) {
if (sc->sc_i2c_device[i] == child) {
struct i2c_controller *tag = &sc->sc_i2c_tags[i];
iic_tag_fini(tag);
sc->sc_i2c_device[i] = NULL;
break;
}
}
}
static bool
piixpm_suspend(device_t dv, const pmf_qual_t *qual)
{
struct piixpm_softc *sc = device_private(dv);
sc->sc_devact[0] = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
PIIX_DEVACTA);
sc->sc_devact[1] = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
PIIX_DEVACTB);
return true;
}
static bool
piixpm_resume(device_t dv, const pmf_qual_t *qual)
{
struct piixpm_softc *sc = device_private(dv);
pci_conf_write(sc->sc_pc, sc->sc_pcitag, PIIX_DEVACTA,
sc->sc_devact[0]);
pci_conf_write(sc->sc_pc, sc->sc_pcitag, PIIX_DEVACTB,
sc->sc_devact[1]);
return true;
}
static uint8_t
piixpm_sb800_pmread(struct piixpm_softc *sc, bus_size_t offset)
{
bus_space_tag_t sbt = sc->sc_sb800_bt;
bus_space_handle_t sbh = sc->sc_sb800_bh;
uint8_t val;
if (sc->sc_sb800_mmio)
val = bus_space_read_1(sbt, sbh, offset);
else {
bus_space_write_1(sbt, sbh, SB800_INDIRECTIO_INDEX, offset);
val = bus_space_read_1(sbt, sbh, SB800_INDIRECTIO_DATA);
}
return val;
}
/*
* Extract SMBus base address from SB800 Power Management (PM) registers.
* The PM registers can be accessed either through indirect I/O (CD6/CD7) or
* direct mapping if AcpiMMioDecodeEn is enabled. Newer devices support MMIO
* access only.
*/
static int
piixpm_sb800_init(struct piixpm_softc *sc)
{
bus_space_tag_t sbt = sc->sc_sb800_bt;
bus_space_handle_t sbh; /* indirect memory or I/O handle */
int rv;
uint16_t base_addr;
uint8_t lo, hi;
bool enabled;
if (PIIXPM_IS_KERNCZ(sc) ||
(PIIXPM_IS_HUDSON(sc) && (sc->sc_rev >= 0x1f)))
sc->sc_numbusses = 2;
else
sc->sc_numbusses = 4;
/* Check SMBus enable bit and Fetch SMB base address */
if (sc->sc_sb800_mmio)
rv = bus_space_map(sbt, SB800_FCH_PM_BASE,
SB800_FCH_PM_SIZE, 0, &sbh);
else
rv = bus_space_map(sbt, SB800_INDIRECTIO_BASE,
SB800_INDIRECTIO_SIZE, 0, &sbh);
if (rv != 0) {
device_printf(sc->sc_dev, "couldn't map indirect space\n");
return EBUSY;
}
sc->sc_sb800_bh = sbh;
if (PIIXPM_IS_FCHGRP(sc)) {
lo = piixpm_sb800_pmread(sc, AMDFCH41_PM_DECODE_EN0);
enabled = lo & AMDFCH41_SMBUS_EN;
if (!enabled)
return ENOENT;
hi = piixpm_sb800_pmread(sc, AMDFCH41_PM_DECODE_EN1);
base_addr = (uint16_t)hi << 8;
} else {
uint8_t data;
lo = piixpm_sb800_pmread(sc, SB800_PM_SMBUS0EN_LO);
enabled = lo & SB800_PM_SMBUS0EN_ENABLE;
if (!enabled)
return ENOENT;
hi = piixpm_sb800_pmread(sc, SB800_PM_SMBUS0EN_HI);
base_addr = ((uint16_t)hi << 8) & SB800_PM_SMBUS0EN_BADDR;
bus_space_write_1(sbt, sbh, SB800_INDIRECTIO_INDEX,
SB800_PM_SMBUS0SELEN);
data = bus_space_read_1(sbt, sbh, SB800_INDIRECTIO_DATA);
if ((data & SB800_PM_USE_SMBUS0SEL) != 0)
sc->sc_sb800_selen = true;
}
aprint_debug_dev(sc->sc_dev, "SMBus %s access @ 0x%04x\n",
sc->sc_sb800_mmio ? "memory" : "I/O", base_addr);
if (bus_space_map(sc->sc_iot, PCI_MAPREG_IO_ADDR(base_addr),
SB800_SMB_SIZE, 0, &sc->sc_smb_ioh)) {
aprint_error_dev(sc->sc_dev, "can't map smbus I/O space\n");
return EBUSY;
}
return 0;
}
static void
piixpm_csb5_reset(void *arg)
{
struct piixpm_softc *sc = arg;
pcireg_t base, hostc, pmbase;
base = pci_conf_read(sc->sc_pc, sc->sc_pcitag, PIIX_SMB_BASE);
hostc = pci_conf_read(sc->sc_pc, sc->sc_pcitag, PIIX_SMB_HOSTC);
pmbase = pci_conf_read(sc->sc_pc, sc->sc_pcitag, PIIX_PM_BASE);
pmbase |= PIIX_PM_BASE_CSB5_RESET;
pci_conf_write(sc->sc_pc, sc->sc_pcitag, PIIX_PM_BASE, pmbase);
pmbase &= ~PIIX_PM_BASE_CSB5_RESET;
pci_conf_write(sc->sc_pc, sc->sc_pcitag, PIIX_PM_BASE, pmbase);
pci_conf_write(sc->sc_pc, sc->sc_pcitag, PIIX_SMB_BASE, base);
pci_conf_write(sc->sc_pc, sc->sc_pcitag, PIIX_SMB_HOSTC, hostc);
(void) tsleep(&sc, PRIBIO, "csb5reset", hz/2);
}
static int
piixpm_i2c_sb800_acquire_bus(void *cookie, int flags)
{
struct piixpm_smbus *smbus = cookie;
struct piixpm_softc *sc = smbus->softc;
uint8_t sctl, old_sda, index, mask, reg;
int i;
sctl = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_SC);
for (i = 0; i < PIIX_SB800_TIMEOUT; i++) {
/* Try to acquire the host semaphore */
sctl &= ~PIIX_SMB_SC_SEMMASK;
bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_SC,
sctl | PIIX_SMB_SC_HOSTSEM);
sctl = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh,
PIIX_SMB_SC);
if ((sctl & PIIX_SMB_SC_HOSTSEM) != 0)
break;
delay(1000);
}
if (i >= PIIX_SB800_TIMEOUT) {
device_printf(sc->sc_dev,
"Failed to acquire the host semaphore\n");
return -1;
}
if (PIIXPM_IS_KERNCZ(sc) ||
(PIIXPM_IS_HUDSON(sc) && (sc->sc_rev >= 0x1f))) {
index = AMDFCH41_PM_PORT_INDEX;
mask = AMDFCH41_SMBUS_PORTMASK;
} else if (sc->sc_sb800_selen) {
index = SB800_PM_SMBUS0SEL;
mask = SB800_PM_SMBUS0_MASK_E;
} else {
index = SB800_PM_SMBUS0EN_LO;
mask = SB800_PM_SMBUS0_MASK_C;
}
reg = piixpm_sb800_pmread(sc, index);
old_sda = __SHIFTOUT(reg, mask);
if (smbus->sda != old_sda) {
reg &= ~mask;
reg |= __SHIFTIN(smbus->sda, mask);
/*
* SB800_INDIRECTIO_INDEX is already set on I/O access,
* so it's not required to write it again.
*/
bus_space_write_1(sc->sc_sb800_bt, sc->sc_sb800_bh,
sc->sc_sb800_mmio ? index : SB800_INDIRECTIO_DATA, reg);
}
/* Save the old port number */
smbus->sda_save = old_sda;
return 0;
}
static void
piixpm_i2c_sb800_release_bus(void *cookie, int flags)
{
struct piixpm_smbus *smbus = cookie;
struct piixpm_softc *sc = smbus->softc;
uint8_t sctl, index, mask, reg;
if (PIIXPM_IS_KERNCZ(sc) ||
(PIIXPM_IS_HUDSON(sc) && (sc->sc_rev >= 0x1f))) {
index = AMDFCH41_PM_PORT_INDEX;
mask = AMDFCH41_SMBUS_PORTMASK;
} else if (sc->sc_sb800_selen) {
index = SB800_PM_SMBUS0SEL;
mask = SB800_PM_SMBUS0_MASK_E;
} else {
index = SB800_PM_SMBUS0EN_LO;
mask = SB800_PM_SMBUS0_MASK_C;
}
if (smbus->sda != smbus->sda_save) {
/* Restore the port number */
reg = piixpm_sb800_pmread(sc, index);
reg &= ~mask;
reg |= __SHIFTIN(smbus->sda_save, mask);
/*
* SB800_INDIRECTIO_INDEX is already set on I/O access,
* so it's not required to write it again.
*/
bus_space_write_1(sc->sc_sb800_bt, sc->sc_sb800_bh,
sc->sc_sb800_mmio ? index : SB800_INDIRECTIO_DATA, reg);
}
/* Release the host semaphore */
sctl = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_SC);
sctl &= ~PIIX_SMB_SC_SEMMASK;
bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_SC,
sctl | PIIX_SMB_SC_CLRHOSTSEM);
}
static int
piixpm_i2c_exec(void *cookie, i2c_op_t op, i2c_addr_t addr,
const void *cmdbuf, size_t cmdlen, void *buf, size_t len, int flags)
{
struct piixpm_smbus *smbus = cookie;
struct piixpm_softc *sc = smbus->softc;
const uint8_t *b;
uint8_t ctl = 0, st;
int retries;
DPRINTF(("%s: exec: op %d, addr 0x%02x, cmdlen %zu, len %zu, "
"flags 0x%x\n",
device_xname(sc->sc_dev), op, addr, cmdlen, len, flags));
mutex_enter(&sc->sc_exec_lock);
/* Clear status bits */
bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HS,
PIIX_SMB_HS_INTR | PIIX_SMB_HS_DEVERR |
PIIX_SMB_HS_BUSERR | PIIX_SMB_HS_FAILED);
bus_space_barrier(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HS, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
/* Wait for bus to be idle */
for (retries = 100; retries > 0; retries--) {
st = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh,
PIIX_SMB_HS);
if (!(st & PIIX_SMB_HS_BUSY))
break;
DELAY(PIIXPM_DELAY);
}
DPRINTF(("%s: exec: st %#x\n", device_xname(sc->sc_dev), st & 0xff));
if (st & PIIX_SMB_HS_BUSY) {
mutex_exit(&sc->sc_exec_lock);
return (EBUSY);
}
if (sc->sc_poll)
flags |= I2C_F_POLL;
if (!I2C_OP_STOP_P(op) || cmdlen > 1 || len > 2 ||
(cmdlen == 0 && len > 1)) {
mutex_exit(&sc->sc_exec_lock);
return (EINVAL);
}
/* Setup transfer */
sc->sc_i2c_xfer.op = op;
sc->sc_i2c_xfer.buf = buf;
sc->sc_i2c_xfer.len = len;
sc->sc_i2c_xfer.flags = flags;
sc->sc_i2c_xfer.error = 0;
sc->sc_i2c_xfer.done = false;
/* Set slave address and transfer direction */
bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_TXSLVA,
PIIX_SMB_TXSLVA_ADDR(addr) |
(I2C_OP_READ_P(op) ? PIIX_SMB_TXSLVA_READ : 0));
b = cmdbuf;
if (cmdlen > 0)
/* Set command byte */
bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh,
PIIX_SMB_HCMD, b[0]);
if (I2C_OP_WRITE_P(op)) {
/* Write data */
b = buf;
if (cmdlen == 0 && len == 1)
bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh,
PIIX_SMB_HCMD, b[0]);
else if (len > 0)
bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh,
PIIX_SMB_HD0, b[0]);
if (len > 1)
bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh,
PIIX_SMB_HD1, b[1]);
}
/* Set SMBus command */
if (cmdlen == 0) {
if (len == 0)
ctl = PIIX_SMB_HC_CMD_QUICK;
else
ctl = PIIX_SMB_HC_CMD_BYTE;
} else if (len == 1)
ctl = PIIX_SMB_HC_CMD_BDATA;
else if (len == 2)
ctl = PIIX_SMB_HC_CMD_WDATA;
else
panic("%s: unexpected len %zu", __func__, len);
if ((flags & I2C_F_POLL) == 0)
ctl |= PIIX_SMB_HC_INTREN;
/* Start transaction */
ctl |= PIIX_SMB_HC_START;
bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HC, ctl);
if (flags & I2C_F_POLL) {
/* Poll for completion */
if (PIIXPM_IS_CSB5(sc))
DELAY(2*PIIXPM_DELAY);
else
DELAY(PIIXPM_DELAY);
for (retries = 1000; retries > 0; retries--) {
st = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh,
PIIX_SMB_HS);
if ((st & PIIX_SMB_HS_BUSY) == 0)
break;
DELAY(PIIXPM_DELAY);
}
if (st & PIIX_SMB_HS_BUSY)
goto timeout;
piixpm_intr(sc);
} else {
/* Wait for interrupt */
while (! sc->sc_i2c_xfer.done) {
if (cv_timedwait(&sc->sc_exec_wait, &sc->sc_exec_lock,
PIIXPM_TIMEOUT * hz))
goto timeout;
}
}
int error = sc->sc_i2c_xfer.error;
mutex_exit(&sc->sc_exec_lock);
return (error);
timeout:
/*
* Transfer timeout. Kill the transaction and clear status bits.
*/
aprint_error_dev(sc->sc_dev, "timeout, status 0x%x\n", st);
bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HC,
PIIX_SMB_HC_KILL);
DELAY(PIIXPM_DELAY);
st = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HS);
if ((st & PIIX_SMB_HS_FAILED) == 0)
aprint_error_dev(sc->sc_dev,
"transaction abort failed, status 0x%x\n", st);
bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HS, st);
/*
* CSB5 needs hard reset to unlock the smbus after timeout.
*/
if (PIIXPM_IS_CSB5(sc))
piixpm_csb5_reset(sc);
mutex_exit(&sc->sc_exec_lock);
return (ETIMEDOUT);
}
static int
piixpm_intr(void *arg)
{
struct piixpm_softc *sc = arg;
uint8_t st;
uint8_t *b;
size_t len;
/* Read status */
st = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HS);
if ((st & PIIX_SMB_HS_BUSY) != 0 || (st & (PIIX_SMB_HS_INTR |
PIIX_SMB_HS_DEVERR | PIIX_SMB_HS_BUSERR |
PIIX_SMB_HS_FAILED)) == 0)
/* Interrupt was not for us */
return (0);
DPRINTF(("%s: intr st %#x\n", device_xname(sc->sc_dev), st & 0xff));
if ((sc->sc_i2c_xfer.flags & I2C_F_POLL) == 0)
mutex_enter(&sc->sc_exec_lock);
/* Clear status bits */
bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HS, st);
/* Check for errors */
if (st & (PIIX_SMB_HS_DEVERR | PIIX_SMB_HS_BUSERR |
PIIX_SMB_HS_FAILED)) {
sc->sc_i2c_xfer.error = EIO;
goto done;
}
if (st & PIIX_SMB_HS_INTR) {
if (I2C_OP_WRITE_P(sc->sc_i2c_xfer.op))
goto done;
/* Read data */
b = sc->sc_i2c_xfer.buf;
len = sc->sc_i2c_xfer.len;
if (len > 0)
b[0] = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh,
PIIX_SMB_HD0);
if (len > 1)
b[1] = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh,
PIIX_SMB_HD1);
}
done:
sc->sc_i2c_xfer.done = true;
if ((sc->sc_i2c_xfer.flags & I2C_F_POLL) == 0) {
cv_signal(&sc->sc_exec_wait);
mutex_exit(&sc->sc_exec_lock);
}
return (1);
}