/*      $NetBSD: pci_subr.c,v 1.244 2024/04/19 21:24:00 andvar Exp $    */

/*
* Copyright (c) 1997 Zubin D. Dittia.  All rights reserved.
* Copyright (c) 1995, 1996, 1998, 2000
*      Christopher G. Demetriou.  All rights reserved.
* Copyright (c) 1994 Charles M. Hannum.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by Charles M. Hannum.
* 4. The name of the author may not be used to endorse or promote products
*    derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*
* PCI autoconfiguration support functions.
*
* Note: This file is also built into a userland library (libpci).
* Pay attention to this when you make modifications.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pci_subr.c,v 1.244 2024/04/19 21:24:00 andvar Exp $");

#ifdef _KERNEL_OPT
#include "opt_pci.h"
#endif

#include <sys/param.h>

#ifdef _KERNEL
#include <sys/systm.h>
#include <sys/intr.h>
#include <sys/module.h>
#include <sys/kmem.h>

#define MALLOC(sz)      kmem_alloc(sz, KM_SLEEP)
#define FREE(p, sz)     kmem_free(p, sz)

#else
#include <pci.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MALLOC(sz)      malloc(sz)
#define FREE(p, sz)     free(p)

#endif

#include <dev/pci/pcireg.h>
#include <dev/pci/pcidevs.h>
#ifdef _KERNEL
#include <dev/pci/pcivar.h>
#else
#include <dev/pci/pci_verbose.h>
#include <dev/pci/pcidevs_data.h>
#endif

static int pci_conf_find_cap(const pcireg_t *, unsigned int, int *);
static int pci_conf_find_extcap(const pcireg_t *, unsigned int, int *);
static void pci_conf_print_pcie_power(uint8_t, unsigned int);
#define PCIREG_SHIFTOUT(a, b) ((pcireg_t)__SHIFTOUT((a), (b)))

#ifdef _KERNEL
/*
* Common routines used to match a compatible device by its PCI ID code.
*/

const struct device_compatible_entry *
pci_compatible_lookup_id(pcireg_t const id,
   const struct device_compatible_entry *dce)
{
       return device_compatible_lookup_id(id, PCI_COMPAT_EOL_VALUE, dce);
}

const struct device_compatible_entry *
pci_compatible_lookup(const struct pci_attach_args * const pa,
   const struct device_compatible_entry * const dce)
{
       return pci_compatible_lookup_id(pa->pa_id, dce);
}

const struct device_compatible_entry *
pci_compatible_lookup_subsys(const struct pci_attach_args * const pa,
   const struct device_compatible_entry * const dce)
{
       const pcireg_t subsysid =
           pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);

       return pci_compatible_lookup_id(subsysid, dce);
}

int
pci_compatible_match(const struct pci_attach_args * const pa,
   const struct device_compatible_entry * const dce)
{
       return pci_compatible_lookup(pa, dce) != NULL;
}

int
pci_compatible_match_subsys(const struct pci_attach_args * const pa,
   const struct device_compatible_entry * const dce)
{
       return pci_compatible_lookup_subsys(pa, dce) != NULL;
}
#endif /* _KERNEL */

/*
* Descriptions of known PCI classes and subclasses.
*
* Subclasses are described in the same way as classes, but have a
* NULL subclass pointer.
*/
struct pci_class {
       const char      *name;
       u_int           val;            /* as wide as pci_{,sub}class_t */
       const struct pci_class *subclasses;
};

/*
* Class 0x00.
* Before rev. 2.0.
*/
static const struct pci_class pci_subclass_prehistoric[] = {
       { "miscellaneous",      PCI_SUBCLASS_PREHISTORIC_MISC,  NULL,   },
       { "VGA",                PCI_SUBCLASS_PREHISTORIC_VGA,   NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x01.
* Mass storage controller
*/

/* SCSI programming interface */
static const struct pci_class pci_interface_scsi[] = {
       { "vendor-specific",    PCI_INTERFACE_SCSI_VND,         NULL,   },
       { "PQI storage",        PCI_INTERFACE_SCSI_PQI_STORAGE, NULL,   },
       { "PQI controller",     PCI_INTERFACE_SCSI_PQI_CNTRL,   NULL,   },
       { "PQI storage and controller", PCI_INTERFACE_SCSI_PQI_STORAGE_CNTRL,
         NULL, },
       { "NVME",               PCI_INTERFACE_SCSI_NVME,        NULL,   },
       { NULL,                 0,                              NULL,   },
};

/* ATA programming interface */
static const struct pci_class pci_interface_ata[] = {
       { "with single DMA",    PCI_INTERFACE_ATA_SINGLEDMA,    NULL,   },
       { "with chained DMA",   PCI_INTERFACE_ATA_CHAINEDDMA,   NULL,   },
       { NULL,                 0,                              NULL,   },
};

/* SATA programming interface */
static const struct pci_class pci_interface_sata[] = {
       { "vendor-specific",    PCI_INTERFACE_SATA_VND,         NULL,   },
       { "AHCI 1.0",           PCI_INTERFACE_SATA_AHCI10,      NULL,   },
       { "Serial Storage Bus Interface", PCI_INTERFACE_SATA_SSBI, NULL, },
       { NULL,                 0,                              NULL,   },
};

/* Flash programming interface */
static const struct pci_class pci_interface_nvm[] = {
       { "vendor-specific",    PCI_INTERFACE_NVM_VND,          NULL,   },
       { "NVMHCI 1.0",         PCI_INTERFACE_NVM_NVMHCI10,     NULL,   },
       { "NVMe I/O",           PCI_INTERFACE_NVM_NVME_IO,      NULL,   },
       { "NVMe admin",         PCI_INTERFACE_NVM_NVME_ADMIN,   NULL,   },
       { NULL,                 0,                              NULL,   },
};

/* UFS programming interface */
static const struct pci_class pci_interface_ufs[] = {
       { "vendor-specific",    PCI_INTERFACE_UFS_VND,          NULL,   },
       { "UFSHCI",             PCI_INTERFACE_UFS_UFSHCI,       NULL,   },
       { NULL,                 0,                              NULL,   },
};

/* Subclasses */
static const struct pci_class pci_subclass_mass_storage[] = {
       { "SCSI",               PCI_SUBCLASS_MASS_STORAGE_SCSI,
         pci_interface_scsi },
       { "IDE",                PCI_SUBCLASS_MASS_STORAGE_IDE,  NULL,   },
       { "floppy",             PCI_SUBCLASS_MASS_STORAGE_FLOPPY, NULL, },
       { "IPI",                PCI_SUBCLASS_MASS_STORAGE_IPI,  NULL,   },
       { "RAID",               PCI_SUBCLASS_MASS_STORAGE_RAID, NULL,   },
       { "ATA",                PCI_SUBCLASS_MASS_STORAGE_ATA,
         pci_interface_ata },
       { "SATA",               PCI_SUBCLASS_MASS_STORAGE_SATA,
         pci_interface_sata },
       { "SAS",                PCI_SUBCLASS_MASS_STORAGE_SAS,  NULL,   },
       { "Flash",              PCI_SUBCLASS_MASS_STORAGE_NVM,
         pci_interface_nvm,    },
       { "UFS",                PCI_SUBCLASS_MASS_STORAGE_UFS,
         pci_interface_ufs,    },
       { "miscellaneous",      PCI_SUBCLASS_MASS_STORAGE_MISC, NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x02.
* Network controller.
*/
static const struct pci_class pci_subclass_network[] = {
       { "ethernet",           PCI_SUBCLASS_NETWORK_ETHERNET,  NULL,   },
       { "token ring",         PCI_SUBCLASS_NETWORK_TOKENRING, NULL,   },
       { "FDDI",               PCI_SUBCLASS_NETWORK_FDDI,      NULL,   },
       { "ATM",                PCI_SUBCLASS_NETWORK_ATM,       NULL,   },
       { "ISDN",               PCI_SUBCLASS_NETWORK_ISDN,      NULL,   },
       { "WorldFip",           PCI_SUBCLASS_NETWORK_WORLDFIP,  NULL,   },
       { "PCMIG Multi Computing", PCI_SUBCLASS_NETWORK_PCIMGMULTICOMP, NULL, },
       { "InfiniBand",         PCI_SUBCLASS_NETWORK_INFINIBAND, NULL, },
       { "Host fabric",        PCI_SUBCLASS_NETWORK_HFC,       NULL, },
       { "miscellaneous",      PCI_SUBCLASS_NETWORK_MISC,      NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x03.
* Display controller.
*/

/* VGA programming interface */
static const struct pci_class pci_interface_vga[] = {
       { "",                   PCI_INTERFACE_VGA_VGA,          NULL,   },
       { "8514-compat",        PCI_INTERFACE_VGA_8514,         NULL,   },
       { NULL,                 0,                              NULL,   },
};
/* Subclasses */
static const struct pci_class pci_subclass_display[] = {
       { "VGA",                PCI_SUBCLASS_DISPLAY_VGA,  pci_interface_vga,},
       { "XGA",                PCI_SUBCLASS_DISPLAY_XGA,       NULL,   },
       { "3D",                 PCI_SUBCLASS_DISPLAY_3D,        NULL,   },
       { "miscellaneous",      PCI_SUBCLASS_DISPLAY_MISC,      NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x04.
* Multimedia device.
*/

/* HD Audio programming interface */
static const struct pci_class pci_interface_hda[] = {
       { "HD Audio 1.0",       PCI_INTERFACE_HDAUDIO,          NULL,   },
       { "HD Audio 1.0 + vendor-ext",  PCI_INTERFACE_HDAUDIO_VND, NULL, },
       { NULL,                 0,                              NULL,   },
};

static const struct pci_class pci_subclass_multimedia[] = {
       { "video",              PCI_SUBCLASS_MULTIMEDIA_VIDEO,  NULL,   },
       { "audio",              PCI_SUBCLASS_MULTIMEDIA_AUDIO,  NULL,   },
       { "telephony",          PCI_SUBCLASS_MULTIMEDIA_TELEPHONY, NULL,},
       { "mixed mode",         PCI_SUBCLASS_MULTIMEDIA_HDAUDIO,
         pci_interface_hda, },
       { "miscellaneous",      PCI_SUBCLASS_MULTIMEDIA_MISC,   NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x05.
* Memory controller.
*/
static const struct pci_class pci_subclass_memory[] = {
       { "RAM",                PCI_SUBCLASS_MEMORY_RAM,        NULL,   },
       { "flash",              PCI_SUBCLASS_MEMORY_FLASH,      NULL,   },
       { "miscellaneous",      PCI_SUBCLASS_MEMORY_MISC,       NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x06.
* Bridge device.
*/

/* PCI bridge programming interface */
static const struct pci_class pci_interface_pcibridge[] = {
       { "",                   PCI_INTERFACE_BRIDGE_PCI_PCI,   NULL,   },
       { "subtractive decode", PCI_INTERFACE_BRIDGE_PCI_SUBDEC, NULL,  },
       { NULL,                 0,                              NULL,   },
};

/* Semi-transparent PCI-to-PCI bridge programming interface */
static const struct pci_class pci_interface_stpci[] = {
       { "primary side facing host",   PCI_INTERFACE_STPCI_PRIMARY, NULL, },
       { "secondary side facing host", PCI_INTERFACE_STPCI_SECONDARY, NULL, },
       { NULL,                 0,                              NULL,   },
};

/* Advanced Switching programming interface */
static const struct pci_class pci_interface_advsw[] = {
       { "custom interface",   PCI_INTERFACE_ADVSW_CUSTOM,     NULL, },
       { "ASI-SIG",            PCI_INTERFACE_ADVSW_ASISIG,     NULL, },
       { NULL,                 0,                              NULL,   },
};

/* Subclasses */
static const struct pci_class pci_subclass_bridge[] = {
       { "host",               PCI_SUBCLASS_BRIDGE_HOST,       NULL,   },
       { "ISA",                PCI_SUBCLASS_BRIDGE_ISA,        NULL,   },
       { "EISA",               PCI_SUBCLASS_BRIDGE_EISA,       NULL,   },
       { "MicroChannel",       PCI_SUBCLASS_BRIDGE_MC,         NULL,   },
       { "PCI",                PCI_SUBCLASS_BRIDGE_PCI,
         pci_interface_pcibridge },
       { "PCMCIA",             PCI_SUBCLASS_BRIDGE_PCMCIA,     NULL,   },
       { "NuBus",              PCI_SUBCLASS_BRIDGE_NUBUS,      NULL,   },
       { "CardBus",            PCI_SUBCLASS_BRIDGE_CARDBUS,    NULL,   },
       { "RACEway",            PCI_SUBCLASS_BRIDGE_RACEWAY,    NULL,   },
       { "Semi-transparent PCI", PCI_SUBCLASS_BRIDGE_STPCI,
         pci_interface_stpci, },
       { "InfiniBand",         PCI_SUBCLASS_BRIDGE_INFINIBAND, NULL,   },
       { "advanced switching", PCI_SUBCLASS_BRIDGE_ADVSW,
         pci_interface_advsw,  },
       { "miscellaneous",      PCI_SUBCLASS_BRIDGE_MISC,       NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x07.
* Simple communications controller.
*/

/* Serial controller programming interface */
static const struct pci_class pci_interface_serial[] = {
       { "generic XT-compat",  PCI_INTERFACE_SERIAL_XT,        NULL,   },
       { "16450-compat",       PCI_INTERFACE_SERIAL_16450,     NULL,   },
       { "16550-compat",       PCI_INTERFACE_SERIAL_16550,     NULL,   },
       { "16650-compat",       PCI_INTERFACE_SERIAL_16650,     NULL,   },
       { "16750-compat",       PCI_INTERFACE_SERIAL_16750,     NULL,   },
       { "16850-compat",       PCI_INTERFACE_SERIAL_16850,     NULL,   },
       { "16950-compat",       PCI_INTERFACE_SERIAL_16950,     NULL,   },
       { NULL,                 0,                              NULL,   },
};

/* Parallel controller programming interface */
static const struct pci_class pci_interface_parallel[] = {
       { "",                   PCI_INTERFACE_PARALLEL,                 NULL,},
       { "bi-directional",     PCI_INTERFACE_PARALLEL_BIDIRECTIONAL,   NULL,},
       { "ECP 1.X-compat",     PCI_INTERFACE_PARALLEL_ECP1X,           NULL,},
       { "IEEE1284 controller", PCI_INTERFACE_PARALLEL_IEEE1284_CNTRL, NULL,},
       { "IEEE1284 target",    PCI_INTERFACE_PARALLEL_IEEE1284_TGT,    NULL,},
       { NULL,                 0,                                      NULL,},
};

/* Modem programming interface */
static const struct pci_class pci_interface_modem[] = {
       { "",                   PCI_INTERFACE_MODEM,                    NULL,},
       { "Hayes&16450-compat", PCI_INTERFACE_MODEM_HAYES16450,         NULL,},
       { "Hayes&16550-compat", PCI_INTERFACE_MODEM_HAYES16550,         NULL,},
       { "Hayes&16650-compat", PCI_INTERFACE_MODEM_HAYES16650,         NULL,},
       { "Hayes&16750-compat", PCI_INTERFACE_MODEM_HAYES16750,         NULL,},
       { NULL,                 0,                                      NULL,},
};

/* Subclasses */
static const struct pci_class pci_subclass_communications[] = {
       { "serial",             PCI_SUBCLASS_COMMUNICATIONS_SERIAL,
         pci_interface_serial, },
       { "parallel",           PCI_SUBCLASS_COMMUNICATIONS_PARALLEL,
         pci_interface_parallel, },
       { "multi-port serial",  PCI_SUBCLASS_COMMUNICATIONS_MPSERIAL,   NULL,},
       { "modem",              PCI_SUBCLASS_COMMUNICATIONS_MODEM,
         pci_interface_modem, },
       { "GPIB",               PCI_SUBCLASS_COMMUNICATIONS_GPIB,       NULL,},
       { "smartcard",          PCI_SUBCLASS_COMMUNICATIONS_SMARTCARD,  NULL,},
       { "miscellaneous",      PCI_SUBCLASS_COMMUNICATIONS_MISC,       NULL,},
       { NULL,                 0,                                      NULL,},
};

/*
* Class 0x08.
* Base system peripheral.
*/

/* PIC programming interface */
static const struct pci_class pci_interface_pic[] = {
       { "generic 8259",       PCI_INTERFACE_PIC_8259,         NULL,   },
       { "ISA PIC",            PCI_INTERFACE_PIC_ISA,          NULL,   },
       { "EISA PIC",           PCI_INTERFACE_PIC_EISA,         NULL,   },
       { "IO APIC",            PCI_INTERFACE_PIC_IOAPIC,       NULL,   },
       { "IO(x) APIC",         PCI_INTERFACE_PIC_IOXAPIC,      NULL,   },
       { NULL,                 0,                              NULL,   },
};

/* DMA programming interface */
static const struct pci_class pci_interface_dma[] = {
       { "generic 8237",       PCI_INTERFACE_DMA_8237,         NULL,   },
       { "ISA",                PCI_INTERFACE_DMA_ISA,          NULL,   },
       { "EISA",               PCI_INTERFACE_DMA_EISA,         NULL,   },
       { NULL,                 0,                              NULL,   },
};

/* Timer programming interface */
static const struct pci_class pci_interface_tmr[] = {
       { "generic 8254",       PCI_INTERFACE_TIMER_8254,       NULL,   },
       { "ISA",                PCI_INTERFACE_TIMER_ISA,        NULL,   },
       { "EISA",               PCI_INTERFACE_TIMER_EISA,       NULL,   },
       { "HPET",               PCI_INTERFACE_TIMER_HPET,       NULL,   },
       { NULL,                 0,                              NULL,   },
};

/* RTC programming interface */
static const struct pci_class pci_interface_rtc[] = {
       { "generic",            PCI_INTERFACE_RTC_GENERIC,      NULL,   },
       { "ISA",                PCI_INTERFACE_RTC_ISA,          NULL,   },
       { NULL,                 0,                              NULL,   },
};

/* Subclasses */
static const struct pci_class pci_subclass_system[] = {
       { "interrupt",          PCI_SUBCLASS_SYSTEM_PIC,   pci_interface_pic,},
       { "DMA",                PCI_SUBCLASS_SYSTEM_DMA,   pci_interface_dma,},
       { "timer",              PCI_SUBCLASS_SYSTEM_TIMER, pci_interface_tmr,},
       { "RTC",                PCI_SUBCLASS_SYSTEM_RTC,   pci_interface_rtc,},
       { "PCI Hot-Plug",       PCI_SUBCLASS_SYSTEM_PCIHOTPLUG, NULL,   },
       { "SD Host Controller", PCI_SUBCLASS_SYSTEM_SDHC,       NULL,   },
       { "IOMMU",              PCI_SUBCLASS_SYSTEM_IOMMU,      NULL,   },
       { "Root Complex Event Collector", PCI_SUBCLASS_SYSTEM_RCEC, NULL, },
       { "miscellaneous",      PCI_SUBCLASS_SYSTEM_MISC,       NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x09.
* Input device.
*/

/* Gameport programming interface */
static const struct pci_class pci_interface_game[] = {
       { "generic",            PCI_INTERFACE_GAMEPORT_GENERIC, NULL,   },
       { "legacy",             PCI_INTERFACE_GAMEPORT_LEGACY,  NULL,   },
       { NULL,                 0,                              NULL,   },
};

/* Subclasses */
static const struct pci_class pci_subclass_input[] = {
       { "keyboard",           PCI_SUBCLASS_INPUT_KEYBOARD,    NULL,   },
       { "digitizer",          PCI_SUBCLASS_INPUT_DIGITIZER,   NULL,   },
       { "mouse",              PCI_SUBCLASS_INPUT_MOUSE,       NULL,   },
       { "scanner",            PCI_SUBCLASS_INPUT_SCANNER,     NULL,   },
       { "game port",          PCI_SUBCLASS_INPUT_GAMEPORT,
         pci_interface_game, },
       { "miscellaneous",      PCI_SUBCLASS_INPUT_MISC,        NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x0a.
* Docking station.
*/
static const struct pci_class pci_subclass_dock[] = {
       { "generic",            PCI_SUBCLASS_DOCK_GENERIC,      NULL,   },
       { "miscellaneous",      PCI_SUBCLASS_DOCK_MISC,         NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x0b.
* Processor.
*/
static const struct pci_class pci_subclass_processor[] = {
       { "386",                PCI_SUBCLASS_PROCESSOR_386,     NULL,   },
       { "486",                PCI_SUBCLASS_PROCESSOR_486,     NULL,   },
       { "Pentium",            PCI_SUBCLASS_PROCESSOR_PENTIUM, NULL,   },
       { "Alpha",              PCI_SUBCLASS_PROCESSOR_ALPHA,   NULL,   },
       { "PowerPC",            PCI_SUBCLASS_PROCESSOR_POWERPC, NULL,   },
       { "MIPS",               PCI_SUBCLASS_PROCESSOR_MIPS,    NULL,   },
       { "Co-processor",       PCI_SUBCLASS_PROCESSOR_COPROC,  NULL,   },
       { "miscellaneous",      PCI_SUBCLASS_PROCESSOR_MISC,    NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x0c.
* Serial bus controller.
*/

/* IEEE1394 programming interface */
static const struct pci_class pci_interface_ieee1394[] = {
       { "Firewire",           PCI_INTERFACE_IEEE1394_FIREWIRE,        NULL,},
       { "OpenHCI",            PCI_INTERFACE_IEEE1394_OPENHCI,         NULL,},
       { NULL,                 0,                                      NULL,},
};

/* USB programming interface */
static const struct pci_class pci_interface_usb[] = {
       { "UHCI",               PCI_INTERFACE_USB_UHCI,         NULL,   },
       { "OHCI",               PCI_INTERFACE_USB_OHCI,         NULL,   },
       { "EHCI",               PCI_INTERFACE_USB_EHCI,         NULL,   },
       { "xHCI",               PCI_INTERFACE_USB_XHCI,         NULL,   },
       { "USB4 HCI",           PCI_INTERFACE_USB_USB4HCI,      NULL,   },
       { "other HC",           PCI_INTERFACE_USB_OTHERHC,      NULL,   },
       { "device",             PCI_INTERFACE_USB_DEVICE,       NULL,   },
       { NULL,                 0,                              NULL,   },
};

/* IPMI programming interface */
static const struct pci_class pci_interface_ipmi[] = {
       { "SMIC",               PCI_INTERFACE_IPMI_SMIC,        NULL,   },
       { "keyboard",           PCI_INTERFACE_IPMI_KBD,         NULL,   },
       { "block transfer",     PCI_INTERFACE_IPMI_BLOCKXFER,   NULL,   },
       { NULL,                 0,                              NULL,   },
};

/* Subclasses */
static const struct pci_class pci_subclass_serialbus[] = {
       { "IEEE1394",           PCI_SUBCLASS_SERIALBUS_FIREWIRE,
         pci_interface_ieee1394, },
       { "ACCESS.bus",         PCI_SUBCLASS_SERIALBUS_ACCESS,  NULL,   },
       { "SSA",                PCI_SUBCLASS_SERIALBUS_SSA,     NULL,   },
       { "USB",                PCI_SUBCLASS_SERIALBUS_USB,
         pci_interface_usb, },
       /* XXX Fiber Channel/_FIBRECHANNEL */
       { "Fiber Channel",      PCI_SUBCLASS_SERIALBUS_FIBER,   NULL,   },
       { "SMBus",              PCI_SUBCLASS_SERIALBUS_SMBUS,   NULL,   },
       { "InfiniBand",         PCI_SUBCLASS_SERIALBUS_INFINIBAND, NULL,},
       { "IPMI",               PCI_SUBCLASS_SERIALBUS_IPMI,
         pci_interface_ipmi, },
       { "SERCOS",             PCI_SUBCLASS_SERIALBUS_SERCOS,  NULL,   },
       { "CANbus",             PCI_SUBCLASS_SERIALBUS_CANBUS,  NULL,   },
       { "MIPI I3C",           PCI_SUBCLASS_SERIALBUS_MIPI_I3C, NULL,  },
       { "miscellaneous",      PCI_SUBCLASS_SERIALBUS_MISC,    NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x0d.
* Wireless Controller.
*/
static const struct pci_class pci_subclass_wireless[] = {
       { "IrDA",               PCI_SUBCLASS_WIRELESS_IRDA,     NULL,   },
       { "Consumer IR",/*XXX*/ PCI_SUBCLASS_WIRELESS_CONSUMERIR, NULL, },
       { "RF",                 PCI_SUBCLASS_WIRELESS_RF,       NULL,   },
       { "bluetooth",          PCI_SUBCLASS_WIRELESS_BLUETOOTH, NULL,  },
       { "broadband",          PCI_SUBCLASS_WIRELESS_BROADBAND, NULL,  },
       { "802.11a (5 GHz)",    PCI_SUBCLASS_WIRELESS_802_11A,  NULL,   },
       { "802.11b (2.4 GHz)",  PCI_SUBCLASS_WIRELESS_802_11B,  NULL,   },
       { "Cellular",           PCI_SUBCLASS_WIRELESS_CELL,     NULL,   },
       { "Cellular + Ethernet", PCI_SUBCLASS_WIRELESS_CELL_E,  NULL,   },
       { "miscellaneous",      PCI_SUBCLASS_WIRELESS_MISC,     NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x0e.
* Intelligent IO controller.
*/

/* Intelligent IO programming interface */
static const struct pci_class pci_interface_i2o[] = {
       { "FIFO at offset 0x40", PCI_INTERFACE_I2O_FIFOAT40,    NULL,   },
       { NULL,                 0,                              NULL,   },
};

/* Subclasses */
static const struct pci_class pci_subclass_i2o[] = {
       { "standard",           PCI_SUBCLASS_I2O_STANDARD, pci_interface_i2o,},
       { "miscellaneous",      PCI_SUBCLASS_I2O_MISC,          NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x0f.
* Satellite communication controller.
*/
static const struct pci_class pci_subclass_satcom[] = {
       { "TV",                 PCI_SUBCLASS_SATCOM_TV,         NULL,   },
       { "audio",              PCI_SUBCLASS_SATCOM_AUDIO,      NULL,   },
       { "voice",              PCI_SUBCLASS_SATCOM_VOICE,      NULL,   },
       { "data",               PCI_SUBCLASS_SATCOM_DATA,       NULL,   },
       { "miscellaneous",      PCI_SUBCLASS_SATCOM_MISC,       NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x10.
* Encryption/Decryption controller.
*/
static const struct pci_class pci_subclass_crypto[] = {
       { "network/computing",  PCI_SUBCLASS_CRYPTO_NETCOMP,    NULL,   },
       { "entertainment",      PCI_SUBCLASS_CRYPTO_ENTERTAINMENT, NULL,},
       { "miscellaneous",      PCI_SUBCLASS_CRYPTO_MISC,       NULL,   },
       { NULL,                 0,                              NULL,   },
};

/*
* Class 0x11.
* Data acquisition and signal processing controller.
*/
static const struct pci_class pci_subclass_dasp[] = {
       { "DPIO",               PCI_SUBCLASS_DASP_DPIO,         NULL,   },
       { "performance counters", PCI_SUBCLASS_DASP_TIMEFREQ,   NULL,   },
       { "synchronization",    PCI_SUBCLASS_DASP_SYNC,         NULL,   },
       { "management",         PCI_SUBCLASS_DASP_MGMT,         NULL,   },
       { "miscellaneous",      PCI_SUBCLASS_DASP_MISC,         NULL,   },
       { NULL,                 0,                              NULL,   },
};

/* List of classes */
static const struct pci_class pci_classes[] = {
       { "prehistoric",        PCI_CLASS_PREHISTORIC,
           pci_subclass_prehistoric,                           },
       { "mass storage",       PCI_CLASS_MASS_STORAGE,
           pci_subclass_mass_storage,                          },
       { "network",            PCI_CLASS_NETWORK,
           pci_subclass_network,                               },
       { "display",            PCI_CLASS_DISPLAY,
           pci_subclass_display,                               },
       { "multimedia",         PCI_CLASS_MULTIMEDIA,
           pci_subclass_multimedia,                            },
       { "memory",             PCI_CLASS_MEMORY,
           pci_subclass_memory,                                },
       { "bridge",             PCI_CLASS_BRIDGE,
           pci_subclass_bridge,                                },
       { "communications",     PCI_CLASS_COMMUNICATIONS,
           pci_subclass_communications,                        },
       { "system",             PCI_CLASS_SYSTEM,
           pci_subclass_system,                                },
       { "input",              PCI_CLASS_INPUT,
           pci_subclass_input,                                 },
       { "dock",               PCI_CLASS_DOCK,
           pci_subclass_dock,                                  },
       { "processor",          PCI_CLASS_PROCESSOR,
           pci_subclass_processor,                             },
       { "serial bus",         PCI_CLASS_SERIALBUS,
           pci_subclass_serialbus,                             },
       { "wireless",           PCI_CLASS_WIRELESS,
           pci_subclass_wireless,                              },
       { "I2O",                PCI_CLASS_I2O,
           pci_subclass_i2o,                                   },
       { "satellite comm",     PCI_CLASS_SATCOM,
           pci_subclass_satcom,                                },
       { "crypto",             PCI_CLASS_CRYPTO,
           pci_subclass_crypto,                                },
       { "DASP",               PCI_CLASS_DASP,
           pci_subclass_dasp,                                  },
       { "processing accelerators", PCI_CLASS_ACCEL,
           NULL,                                               },
       { "non-essential instrumentation", PCI_CLASS_INSTRUMENT,
           NULL,                                               },
       { "undefined",          PCI_CLASS_UNDEFINED,
           NULL,                                               },
       { NULL,                 0,
           NULL,                                               },
};

DEV_VERBOSE_DEFINE(pci);

/*
* Append a formatted string to dest without writing more than len
* characters (including the trailing NUL character).  dest and len
* are updated for use in subsequent calls to snappendf().
*
* Returns 0 on success, a negative value if vnsprintf() fails, or
* a positive value if the dest buffer would have overflowed.
*/

static int __printflike(3, 4)
snappendf(char **dest, size_t *len, const char * restrict fmt, ...)
{
       va_list ap;
       int count;

       va_start(ap, fmt);
       count = vsnprintf(*dest, *len, fmt, ap);
       va_end(ap);

       /* Let vsnprintf() errors bubble up to caller */
       if (count < 0 || *len == 0)
               return count;

       /* Handle overflow */
       if ((size_t)count >= *len) {
               *dest += *len - 1;
               *len = 1;
               return 1;
       }

       /* Update dest & len to point at trailing NUL */
       *dest += count;
       *len -= count;

       return 0;
}

void
pci_devinfo(pcireg_t id_reg, pcireg_t class_reg, int showclass, char *cp,
   size_t l)
{
       pci_class_t class;
       pci_subclass_t subclass;
       pci_interface_t interface;
       pci_revision_t revision;
       char vendor[PCI_VENDORSTR_LEN], product[PCI_PRODUCTSTR_LEN];
       const struct pci_class *classp, *subclassp, *interfacep;

       class = PCI_CLASS(class_reg);
       subclass = PCI_SUBCLASS(class_reg);
       interface = PCI_INTERFACE(class_reg);
       revision = PCI_REVISION(class_reg);

       pci_findvendor(vendor, sizeof(vendor), PCI_VENDOR(id_reg));
       pci_findproduct(product, sizeof(product), PCI_VENDOR(id_reg),
           PCI_PRODUCT(id_reg));

       classp = pci_classes;
       while (classp->name != NULL) {
               if (class == classp->val)
                       break;
               classp++;
       }

       subclassp = (classp->name != NULL) ? classp->subclasses : NULL;
       while (subclassp && subclassp->name != NULL) {
               if (subclass == subclassp->val)
                       break;
               subclassp++;
       }

       interfacep = (subclassp && subclassp->name != NULL) ?
           subclassp->subclasses : NULL;
       while (interfacep && interfacep->name != NULL) {
               if (interface == interfacep->val)
                       break;
               interfacep++;
       }

       (void)snappendf(&cp, &l, "%s %s", vendor, product);
       if (showclass) {
               (void)snappendf(&cp, &l, " (");
               if (classp->name == NULL)
                       (void)snappendf(&cp, &l,
                           "class 0x%02x, subclass 0x%02x",
                           class, subclass);
               else {
                       if (subclassp == NULL || subclassp->name == NULL)
                               (void)snappendf(&cp, &l,
                                   "%s, subclass 0x%02x",
                                   classp->name, subclass);
                       else
                               (void)snappendf(&cp, &l, "%s %s",
                                   subclassp->name, classp->name);
               }
               if ((interfacep == NULL) || (interfacep->name == NULL)) {
                       if (interface != 0)
                               (void)snappendf(&cp, &l, ", interface 0x%02x",
                                   interface);
               } else if (strncmp(interfacep->name, "", 1) != 0)
                       (void)snappendf(&cp, &l, ", %s", interfacep->name);
               if (revision != 0)
                       (void)snappendf(&cp, &l, ", revision 0x%02x", revision);
               (void)snappendf(&cp, &l, ")");
       }
}

#ifdef _KERNEL
void
pci_aprint_devinfo_fancy(const struct pci_attach_args *pa, const char *naive,
                        const char *known, int addrev)
{
       char devinfo[256];

       if (known) {
               aprint_normal(": %s", known);
               if (addrev)
                       aprint_normal(" (rev. 0x%02x)",
                                     PCI_REVISION(pa->pa_class));
               aprint_normal("\n");
       } else {
               pci_devinfo(pa->pa_id, pa->pa_class, 0,
                           devinfo, sizeof(devinfo));
               aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
                             PCI_REVISION(pa->pa_class));
       }
       if (naive)
               aprint_naive(": %s\n", naive);
       else
               aprint_naive("\n");
}
#endif

/*
* Print out most of the PCI configuration registers.  Typically used
* in a device attach routine like this:
*
*      #ifdef MYDEV_DEBUG
*              printf("%s: ", device_xname(sc->sc_dev));
*              pci_conf_print(pa->pa_pc, pa->pa_tag, NULL);
*      #endif
*/

#define i2o(i)  ((i) * 4)
#define o2i(o)  ((o) / 4)
#define onoff2(str, rval, bit, onstr, offstr)                           \
       /*CONSTCOND*/                                                   \
       printf("      %s: %s\n", (str), ((rval) & (bit)) ? onstr : offstr);
#define onoff(str, rval, bit)   onoff2(str, rval, bit, "on", "off")

static void
pci_conf_print_common(
#ifdef _KERNEL
   pci_chipset_tag_t pc, pcitag_t tag,
#endif
   const pcireg_t *regs)
{
       pci_class_t class;
       pci_subclass_t subclass;
       pci_interface_t interface;
       pci_revision_t revision;
       char vendor[PCI_VENDORSTR_LEN], product[PCI_PRODUCTSTR_LEN];
       const struct pci_class *classp, *subclassp, *interfacep;
       const char *name;
       pcireg_t rval;
       unsigned int num;

       rval = regs[o2i(PCI_CLASS_REG)];
       class = PCI_CLASS(rval);
       subclass = PCI_SUBCLASS(rval);
       interface = PCI_INTERFACE(rval);
       revision = PCI_REVISION(rval);

       rval = regs[o2i(PCI_ID_REG)];
       name = pci_findvendor(vendor, sizeof(vendor), PCI_VENDOR(rval));
       if (name)
               printf("    Vendor Name: %s (0x%04x)\n", name,
                   PCI_VENDOR(rval));
       else
               printf("    Vendor ID: 0x%04x\n", PCI_VENDOR(rval));
       name = pci_findproduct(product, sizeof(product), PCI_VENDOR(rval),
           PCI_PRODUCT(rval));
       if (name)
               printf("    Device Name: %s (0x%04x)\n", name,
                   PCI_PRODUCT(rval));
       else
               printf("    Device ID: 0x%04x\n", PCI_PRODUCT(rval));

       rval = regs[o2i(PCI_COMMAND_STATUS_REG)];

       printf("    Command register: 0x%04x\n", rval & 0xffff);
       onoff("I/O space accesses", rval, PCI_COMMAND_IO_ENABLE);
       onoff("Memory space accesses", rval, PCI_COMMAND_MEM_ENABLE);
       onoff("Bus mastering", rval, PCI_COMMAND_MASTER_ENABLE);
       onoff("Special cycles", rval, PCI_COMMAND_SPECIAL_ENABLE);
       onoff("MWI transactions", rval, PCI_COMMAND_INVALIDATE_ENABLE);
       onoff("Palette snooping", rval, PCI_COMMAND_PALETTE_ENABLE);
       onoff("Parity error checking", rval, PCI_COMMAND_PARITY_ENABLE);
       onoff("Address/data stepping", rval, PCI_COMMAND_STEPPING_ENABLE);
       onoff("System error (SERR)", rval, PCI_COMMAND_SERR_ENABLE);
       onoff("Fast back-to-back transactions", rval,
           PCI_COMMAND_BACKTOBACK_ENABLE);
       onoff("Interrupt disable", rval, PCI_COMMAND_INTERRUPT_DISABLE);

       printf("    Status register: 0x%04x\n", (rval >> 16) & 0xffff);
       onoff("Immediate Readiness", rval, PCI_STATUS_IMMD_READNESS);
       onoff2("Interrupt status", rval, PCI_STATUS_INT_STATUS, "active",
           "inactive");
       onoff("Capability List support", rval, PCI_STATUS_CAPLIST_SUPPORT);
       onoff("66 MHz capable", rval, PCI_STATUS_66MHZ_SUPPORT);
       onoff("User Definable Features (UDF) support", rval,
           PCI_STATUS_UDF_SUPPORT);
       onoff("Fast back-to-back capable", rval,
           PCI_STATUS_BACKTOBACK_SUPPORT);
       onoff("Data parity error detected", rval, PCI_STATUS_PARITY_ERROR);

       printf("      DEVSEL timing: ");
       switch (rval & PCI_STATUS_DEVSEL_MASK) {
       case PCI_STATUS_DEVSEL_FAST:
               printf("fast");
               break;
       case PCI_STATUS_DEVSEL_MEDIUM:
               printf("medium");
               break;
       case PCI_STATUS_DEVSEL_SLOW:
               printf("slow");
               break;
       default:
               printf("unknown/reserved");     /* XXX */
               break;
       }
       printf(" (0x%x)\n", PCIREG_SHIFTOUT(rval, PCI_STATUS_DEVSEL_MASK));

       onoff("Slave signaled Target Abort", rval,
           PCI_STATUS_TARGET_TARGET_ABORT);
       onoff("Master received Target Abort", rval,
           PCI_STATUS_MASTER_TARGET_ABORT);
       onoff("Master received Master Abort", rval, PCI_STATUS_MASTER_ABORT);
       onoff("Asserted System Error (SERR)", rval, PCI_STATUS_SPECIAL_ERROR);
       onoff("Parity error detected", rval, PCI_STATUS_PARITY_DETECT);

       rval = regs[o2i(PCI_CLASS_REG)];
       for (classp = pci_classes; classp->name != NULL; classp++) {
               if (class == classp->val)
                       break;
       }

       /*
        * ECN: Change Root Complex Event Collector Class Code
        * Old RCEC has subclass 0x06. It's the same as IOMMU. Read the type
        * in PCIe extend capability to know whether it's RCEC or IOMMU.
        */
       if ((class == PCI_CLASS_SYSTEM)
           && (subclass == PCI_SUBCLASS_SYSTEM_IOMMU)) {
               int pcie_capoff;
               pcireg_t reg;

               if (pci_conf_find_cap(regs, PCI_CAP_PCIEXPRESS, &pcie_capoff)) {
                       reg = regs[o2i(pcie_capoff + PCIE_XCAP)];
                       if (PCIE_XCAP_TYPE(reg) == PCIE_XCAP_TYPE_RC_EVNTC)
                               subclass = PCI_SUBCLASS_SYSTEM_RCEC;
               }
       }
       subclassp = (classp->name != NULL) ? classp->subclasses : NULL;
       while (subclassp && subclassp->name != NULL) {
               if (subclass == subclassp->val)
                       break;
               subclassp++;
       }

       interfacep = (subclassp && subclassp->name != NULL) ?
           subclassp->subclasses : NULL;
       while (interfacep && interfacep->name != NULL) {
               if (interface == interfacep->val)
                       break;
               interfacep++;
       }

       if (classp->name != NULL)
               printf("    Class Name: %s (0x%02x)\n", classp->name, class);
       else
               printf("    Class ID: 0x%02x\n", class);
       if (subclassp != NULL && subclassp->name != NULL)
               printf("    Subclass Name: %s (0x%02x)\n",
                   subclassp->name, PCI_SUBCLASS(rval));
       else
               printf("    Subclass ID: 0x%02x\n", PCI_SUBCLASS(rval));
       if ((interfacep != NULL) && (interfacep->name != NULL)
           && (strncmp(interfacep->name, "", 1) != 0))
               printf("    Interface Name: %s (0x%02x)\n",
                   interfacep->name, interface);
       else
               printf("    Interface: 0x%02x\n", interface);
       printf("    Revision ID: 0x%02x\n", revision);

       rval = regs[o2i(PCI_BHLC_REG)];
       printf("    BIST: 0x%02x\n", PCI_BIST(rval));
       printf("    Header Type: 0x%02x%s (0x%02x)\n", PCI_HDRTYPE_TYPE(rval),
           PCI_HDRTYPE_MULTIFN(rval) ? "+multifunction" : "",
           PCI_HDRTYPE(rval));
       printf("    Latency Timer: 0x%02x\n", PCI_LATTIMER(rval));
       num = PCI_CACHELINE(rval);
       printf("    Cache Line Size: %ubytes (0x%02x)\n", num * 4, num);
}

static int
pci_conf_print_bar(
#ifdef _KERNEL
   pci_chipset_tag_t pc, pcitag_t tag,
#endif
   const pcireg_t *regs, int reg, const char *name)
{
       int width;
       pcireg_t rval, rval64h;
       bool ioen, memen;
#ifdef _KERNEL
       pcireg_t mask, mask64h = 0;
#endif

       rval = regs[o2i(PCI_COMMAND_STATUS_REG)];
       ioen = rval & PCI_COMMAND_IO_ENABLE;
       memen = rval & PCI_COMMAND_MEM_ENABLE;

       width = 4;
       /*
        * Section 6.2.5.1, `Address Maps', tells us that:
        *
        * 1) The builtin software should have already mapped the
        * device in a reasonable way.
        *
        * 2) A device which wants 2^n bytes of memory will hardwire
        * the bottom n bits of the address to 0.  As recommended,
        * we write all 1s and see what we get back.
        */

       rval = regs[o2i(reg)];
       if (PCI_MAPREG_TYPE(rval) == PCI_MAPREG_TYPE_MEM &&
           PCI_MAPREG_MEM_TYPE(rval) == PCI_MAPREG_MEM_TYPE_64BIT) {
               rval64h = regs[o2i(reg + 4)];
               width = 8;
       } else
               rval64h = 0;

#ifdef _KERNEL
       if (rval != 0 && memen) {
               int s;

               /*
                * The following sequence seems to make some devices
                * (e.g. host bus bridges, which don't normally
                * have their space mapped) very unhappy, to
                * the point of crashing the system.
                *
                * Therefore, if the mapping register is zero to
                * start out with, don't bother trying.
                */
               s = splhigh();
               pci_conf_write(pc, tag, reg, 0xffffffff);
               mask = pci_conf_read(pc, tag, reg);
               pci_conf_write(pc, tag, reg, rval);
               if (PCI_MAPREG_TYPE(rval) == PCI_MAPREG_TYPE_MEM &&
                   PCI_MAPREG_MEM_TYPE(rval) == PCI_MAPREG_MEM_TYPE_64BIT) {
                       pci_conf_write(pc, tag, reg + 4, 0xffffffff);
                       mask64h = pci_conf_read(pc, tag, reg + 4);
                       pci_conf_write(pc, tag, reg + 4, rval64h);
               }
               splx(s);
       } else
               mask = mask64h = 0;
#endif /* _KERNEL */

       printf("    Base address register at 0x%02x", reg);
       if (name)
               printf(" (%s)", name);
       printf("\n      ");
       if (rval == 0) {
               printf("not implemented\n");
               return width;
       }
       printf("type: ");
       if (PCI_MAPREG_TYPE(rval) == PCI_MAPREG_TYPE_MEM) {
               const char *type, *prefetch;

               switch (PCI_MAPREG_MEM_TYPE(rval)) {
               case PCI_MAPREG_MEM_TYPE_32BIT:
                       type = "32-bit";
                       break;
               case PCI_MAPREG_MEM_TYPE_32BIT_1M:
                       type = "32-bit-1M";
                       break;
               case PCI_MAPREG_MEM_TYPE_64BIT:
                       type = "64-bit";
                       break;
               default:
                       type = "unknown (XXX)";
                       break;
               }
               if (PCI_MAPREG_MEM_PREFETCHABLE(rval))
                       prefetch = "";
               else
                       prefetch = "non";
               printf("%s %sprefetchable memory\n", type, prefetch);
               switch (PCI_MAPREG_MEM_TYPE(rval)) {
               case PCI_MAPREG_MEM_TYPE_64BIT:
                       printf("      base: 0x%016llx",
                           PCI_MAPREG_MEM64_ADDR(
                               ((((long long) rval64h) << 32) | rval)));
                       if (!memen)
                               printf(", disabled");
                       printf("\n");
#ifdef _KERNEL
                       printf("      size: 0x%016llx\n",
                           PCI_MAPREG_MEM64_SIZE(
                                   ((((long long) mask64h) << 32) | mask)));
#endif
                       break;
               case PCI_MAPREG_MEM_TYPE_32BIT:
               case PCI_MAPREG_MEM_TYPE_32BIT_1M:
               default:
                       printf("      base: 0x%08x",
                           PCI_MAPREG_MEM_ADDR(rval));
                       if (!memen)
                               printf(", disabled");
                       printf("\n");
#ifdef _KERNEL
                       printf("      size: 0x%08x\n",
                           PCI_MAPREG_MEM_SIZE(mask));
#endif
                       break;
               }
       } else {
#ifdef _KERNEL
               if (ioen)
                       printf("%d-bit ", mask & ~0x0000ffff ? 32 : 16);
#endif
               printf("I/O\n");
               printf("      base: 0x%08x", PCI_MAPREG_IO_ADDR(rval));
               if (!ioen)
                       printf(", disabled");
               printf("\n");
#ifdef _KERNEL
               printf("      size: 0x%08x\n", PCI_MAPREG_IO_SIZE(mask));
#endif
       }

       return width;
}

static void
pci_conf_print_regs(const pcireg_t *regs, int first, int pastlast)
{
       int off, needaddr, neednl;

       needaddr = 1;
       neednl = 0;
       for (off = first; off < pastlast; off += 4) {
               if ((off % 16) == 0 || needaddr) {
                       printf("    0x%02x:", off);
                       needaddr = 0;
               }
               printf(" 0x%08x", regs[o2i(off)]);
               neednl = 1;
               if ((off % 16) == 12) {
                       printf("\n");
                       neednl = 0;
               }
       }
       if (neednl)
               printf("\n");
}

static const char *
pci_conf_print_agp_calcycle(uint8_t cal)
{

       switch (cal) {
       case 0x0:
               return "4ms";
       case 0x1:
               return "16ms";
       case 0x2:
               return "64ms";
       case 0x3:
               return "256ms";
       case 0x7:
               return "Calibration Cycle Not Needed";
       default:
               return "(reserved)";
       }
}

static void
pci_conf_print_agp_datarate(pcireg_t reg, bool isagp3)
{
       if (isagp3) {
               /* AGP 3.0 */
               if (reg & AGP_MODE_V3_RATE_4x)
                       printf("x4");
               if (reg & AGP_MODE_V3_RATE_8x)
                       printf("x8");
       } else {
               /* AGP 2.0 */
               if (reg & AGP_MODE_V2_RATE_1x)
                       printf("x1");
               if (reg & AGP_MODE_V2_RATE_2x)
                       printf("x2");
               if (reg & AGP_MODE_V2_RATE_4x)
                       printf("x4");
       }
       printf("\n");
}

static void
pci_conf_print_agp_cap(const pcireg_t *regs, int capoff)
{
       pcireg_t rval;
       bool isagp3;

       printf("\n  AGP Capabilities Register\n");

       rval = regs[o2i(capoff)];
       printf("    Revision: %d.%d\n",
           PCI_CAP_AGP_MAJOR(rval), PCI_CAP_AGP_MINOR(rval));

       rval = regs[o2i(capoff + PCI_AGP_STATUS)];
       printf("    Status register: 0x%04x\n", rval);
       printf("      RQ: %u\n",
           PCIREG_SHIFTOUT(rval, AGP_MODE_RQ) + 1);
       printf("      ARQSZ: %u\n",
           PCIREG_SHIFTOUT(rval, AGP_MODE_ARQSZ));
       printf("      CAL cycle: %s\n",
              pci_conf_print_agp_calcycle(PCIREG_SHIFTOUT(rval, AGP_MODE_CAL)));
       onoff("SBA", rval, AGP_MODE_SBA);
       onoff("htrans#", rval, AGP_MODE_HTRANS);
       onoff("Over 4G", rval, AGP_MODE_4G);
       onoff("Fast Write", rval, AGP_MODE_FW);
       onoff("AGP 3.0 Mode", rval, AGP_MODE_MODE_3);
       isagp3 = rval & AGP_MODE_MODE_3;
       printf("      Data Rate Support: ");
       pci_conf_print_agp_datarate(rval, isagp3);

       rval = regs[o2i(capoff + PCI_AGP_COMMAND)];
       printf("    Command register: 0x%08x\n", rval);
       printf("      PRQ: %u\n",
           PCIREG_SHIFTOUT(rval, AGP_MODE_RQ) + 1);
       printf("      PARQSZ: %u\n",
           PCIREG_SHIFTOUT(rval, AGP_MODE_ARQSZ));
       printf("      PCAL cycle: %s\n",
              pci_conf_print_agp_calcycle(PCIREG_SHIFTOUT(rval, AGP_MODE_CAL)));
       onoff("SBA", rval, AGP_MODE_SBA);
       onoff("AGP", rval, AGP_MODE_AGP);
       onoff("Over 4G", rval, AGP_MODE_4G);
       onoff("Fast Write", rval, AGP_MODE_FW);
       if (isagp3) {
               printf("      Data Rate Enable: ");
               /*
                * The Data Rate Enable bits are used only on 3.0 and the
                * Command register has no AGP_MODE_MODE_3 bit, so pass the
                * flag to print correctly.
                */
               pci_conf_print_agp_datarate(rval, isagp3);
       }
}

static const char *
pci_conf_print_pcipm_cap_aux(uint16_t caps)
{

       switch ((caps >> 6) & 7) {
       case 0: return "self-powered";
       case 1: return "55 mA";
       case 2: return "100 mA";
       case 3: return "160 mA";
       case 4: return "220 mA";
       case 5: return "270 mA";
       case 6: return "320 mA";
       case 7:
       default: return "375 mA";
       }
}

static const char *
pci_conf_print_pcipm_cap_pmrev(uint8_t val)
{
       static const char unk[] = "unknown";
       static const char *pmrev[8] = {
               unk, "1.0", "1.1", "1.2", unk, unk, unk, unk
       };
       if (val > 7)
               return unk;
       return pmrev[val];
}

static void
pci_conf_print_pcipm_cap(const pcireg_t *regs, int capoff)
{
       uint16_t caps, pmcsr;

       caps = regs[o2i(capoff)] >> PCI_PMCR_SHIFT;
       pmcsr = regs[o2i(capoff + PCI_PMCSR)];

       printf("\n  PCI Power Management Capabilities Register\n");

       printf("    Capabilities register: 0x%04x\n", caps);
       printf("      Version: %s\n",
           pci_conf_print_pcipm_cap_pmrev(caps & PCI_PMCR_VERSION_MASK));
       onoff("PME# clock", caps, PCI_PMCR_PME_CLOCK);
       onoff("Device specific initialization", caps, PCI_PMCR_DSI);
       printf("      3.3V auxiliary current: %s\n",
           pci_conf_print_pcipm_cap_aux(caps));
       onoff("D1 power management state support", caps, PCI_PMCR_D1SUPP);
       onoff("D2 power management state support", caps, PCI_PMCR_D2SUPP);
       onoff("PME# support D0", caps, PCI_PMCR_PME_D0);
       onoff("PME# support D1", caps, PCI_PMCR_PME_D1);
       onoff("PME# support D2", caps, PCI_PMCR_PME_D2);
       onoff("PME# support D3 hot", caps, PCI_PMCR_PME_D3HOT);
       onoff("PME# support D3 cold", caps, PCI_PMCR_PME_D3COLD);

       printf("    Control/status register: 0x%08x\n", pmcsr);
       printf("      Power state: D%d\n", pmcsr & PCI_PMCSR_STATE_MASK);
       onoff("PCI Express reserved", (pmcsr >> 2), 1);
       onoff("No soft reset", pmcsr, PCI_PMCSR_NO_SOFTRST);
       printf("      PME# assertion: %sabled\n",
           (pmcsr & PCI_PMCSR_PME_EN) ? "en" : "dis");
       printf("      Data Select: %d\n",
           PCIREG_SHIFTOUT(pmcsr, PCI_PMCSR_DATASEL_MASK));
       printf("      Data Scale: %d\n",
           PCIREG_SHIFTOUT(pmcsr, PCI_PMCSR_DATASCL_MASK));
       onoff("PME# status", pmcsr, PCI_PMCSR_PME_STS);
       printf("    Bridge Support Extensions register: 0x%02x\n",
           (pmcsr >> 16) & 0xff);
       onoff("B2/B3 support", pmcsr, PCI_PMCSR_B2B3_SUPPORT);
       onoff("Bus Power/Clock Control Enable", pmcsr, PCI_PMCSR_BPCC_EN);
       printf("    Data register: 0x%02x\n",
              PCIREG_SHIFTOUT(pmcsr, PCI_PMCSR_DATA));
}

/* XXX pci_conf_print_vpd_cap */
/* XXX pci_conf_print_slotid_cap */

static void
pci_conf_print_msi_cap(const pcireg_t *regs, int capoff)
{
       uint32_t ctl, mmc, mme;

       regs += o2i(capoff);
       ctl = *regs++;
       mmc = PCIREG_SHIFTOUT(ctl, PCI_MSI_CTL_MMC_MASK);
       mme = PCIREG_SHIFTOUT(ctl, PCI_MSI_CTL_MME_MASK);

       printf("\n  PCI Message Signaled Interrupt\n");

       printf("    Message Control register: 0x%04x\n", ctl >> 16);
       onoff("MSI Enabled", ctl, PCI_MSI_CTL_MSI_ENABLE);
       printf("      Multiple Message Capable: %s (%d vector%s)\n",
           mmc > 0 ? "yes" : "no", 1 << mmc, mmc > 0 ? "s" : "");
       printf("      Multiple Message Enabled: %s (%d vector%s)\n",
           mme > 0 ? "on" : "off", 1 << mme, mme > 0 ? "s" : "");
       onoff("64 Bit Address Capable", ctl, PCI_MSI_CTL_64BIT_ADDR);
       onoff("Per-Vector Masking Capable", ctl, PCI_MSI_CTL_PERVEC_MASK);
       onoff("Extended Message Data Capable", ctl, PCI_MSI_CTL_EXTMDATA_CAP);
       onoff("Extended Message Data Enable", ctl, PCI_MSI_CTL_EXTMDATA_EN);
       printf("    Message Address %sregister: 0x%08x\n",
           ctl & PCI_MSI_CTL_64BIT_ADDR ? "(lower) " : "", *regs++);
       if (ctl & PCI_MSI_CTL_64BIT_ADDR) {
               printf("    Message Address %sregister: 0x%08x\n",
                   "(upper) ", *regs++);
       }
       printf("    Message Data register: ");
       if (ctl & PCI_MSI_CTL_EXTMDATA_CAP)
               printf("0x%08x\n", *regs);
       else
               printf("0x%04x\n", *regs & 0xffff);
       regs++;
       if (ctl & PCI_MSI_CTL_PERVEC_MASK) {
               printf("    Vector Mask register: 0x%08x\n", *regs++);
               printf("    Vector Pending register: 0x%08x\n", *regs++);
       }
}

/* XXX pci_conf_print_cpci_hostwap_cap */

/*
* For both command register and status register.
* The argument "idx" is index number (0 to 7).
*/
static int
pcix_split_trans(unsigned int idx)
{
       static int table[8] = {
               1, 2, 3, 4, 8, 12, 16, 32
       };

       if (idx >= __arraycount(table))
               return -1;
       return table[idx];
}

static void
pci_conf_print_pcix_cap_2ndbusmode(int num)
{
       const char *maxfreq, *maxperiod;

       printf("      Mode: ");
       if (num <= 0x07)
               printf("PCI-X Mode 1\n");
       else if (num <= 0x0b)
               printf("PCI-X 266 (Mode 2)\n");
       else
               printf("PCI-X 533 (Mode 2)\n");

       printf("      Error protection: %s\n", (num <= 3) ? "parity" : "ECC");
       switch (num & 0x03) {
       default:
       case 0:
               maxfreq = "N/A";
               maxperiod = "N/A";
               break;
       case 1:
               maxfreq = "66MHz";
               maxperiod = "15ns";
               break;
       case 2:
               maxfreq = "100MHz";
               maxperiod = "10ns";
               break;
       case 3:
               maxfreq = "133MHz";
               maxperiod = "7.5ns";
               break;
       }
       printf("      Max Clock Freq: %s\n", maxfreq);
       printf("      Min Clock Period: %s\n", maxperiod);
}

static void
pci_conf_print_pcix_cap(const pcireg_t *regs, int capoff)
{
       pcireg_t reg;
       int isbridge;
       int i;

       isbridge = (PCI_HDRTYPE_TYPE(regs[o2i(PCI_BHLC_REG)])
           & PCI_HDRTYPE_PPB) != 0 ? 1 : 0;
       printf("\n  PCI-X %s Capabilities Register\n",
           isbridge ? "Bridge" : "Non-bridge");

       reg = regs[o2i(capoff)];
       if (isbridge != 0) {
               printf("    Secondary status register: 0x%04x\n",
                   (reg & 0xffff0000) >> 16);
               onoff("64bit device", reg, PCIX_STATUS_64BIT);
               onoff("133MHz capable", reg, PCIX_STATUS_133);
               onoff("Split completion discarded", reg, PCIX_STATUS_SPLDISC);
               onoff("Unexpected split completion", reg, PCIX_STATUS_SPLUNEX);
               onoff("Split completion overrun", reg, PCIX_BRIDGE_ST_SPLOVRN);
               onoff("Split request delayed", reg, PCIX_BRIDGE_ST_SPLRQDL);
               pci_conf_print_pcix_cap_2ndbusmode(
                       PCIREG_SHIFTOUT(reg, PCIX_BRIDGE_2NDST_CLKF));
               printf("      Version: 0x%x\n",
                   (reg & PCIX_BRIDGE_2NDST_VER_MASK)
                   >> PCIX_BRIDGE_2NDST_VER_SHIFT);
               onoff("266MHz capable", reg, PCIX_BRIDGE_ST_266);
               onoff("533MHz capable", reg, PCIX_BRIDGE_ST_533);
       } else {
               printf("    Command register: 0x%04x\n",
                   (reg & 0xffff0000) >> 16);
               onoff("Data Parity Error Recovery", reg,
                   PCIX_CMD_PERR_RECOVER);
               onoff("Enable Relaxed Ordering", reg, PCIX_CMD_RELAXED_ORDER);
               printf("      Maximum Burst Read Count: %u\n",
                   PCIX_CMD_BYTECNT(reg));
               printf("      Maximum Split Transactions: %d\n",
                   pcix_split_trans((reg & PCIX_CMD_SPLTRANS_MASK)
                       >> PCIX_CMD_SPLTRANS_SHIFT));
       }
       reg = regs[o2i(capoff+PCIX_STATUS)]; /* Or PCIX_BRIDGE_PRI_STATUS */
       printf("    %sStatus register: 0x%08x\n",
           isbridge ? "Bridge " : "", reg);
       printf("      Function: %d\n", PCIX_STATUS_FN(reg));
       printf("      Device: %d\n", PCIX_STATUS_DEV(reg));
       printf("      Bus: %d\n", PCIX_STATUS_BUS(reg));
       onoff("64bit device", reg, PCIX_STATUS_64BIT);
       onoff("133MHz capable", reg, PCIX_STATUS_133);
       onoff("Split completion discarded", reg, PCIX_STATUS_SPLDISC);
       onoff("Unexpected split completion", reg, PCIX_STATUS_SPLUNEX);
       if (isbridge != 0) {
               onoff("Split completion overrun", reg, PCIX_BRIDGE_ST_SPLOVRN);
               onoff("Split request delayed", reg, PCIX_BRIDGE_ST_SPLRQDL);
       } else {
               onoff2("Device Complexity", reg, PCIX_STATUS_DEVCPLX,
                   "bridge device", "simple device");
               printf("      Designed max memory read byte count: %d\n",
                   512 << ((reg & PCIX_STATUS_MAXB_MASK)
                       >> PCIX_STATUS_MAXB_SHIFT));
               printf("      Designed max outstanding split transaction: %d\n",
                   pcix_split_trans((reg & PCIX_STATUS_MAXST_MASK)
                       >> PCIX_STATUS_MAXST_SHIFT));
               printf("      MAX cumulative Read Size: %u\n",
                   8 << ((reg & 0x1c000000) >> PCIX_STATUS_MAXRS_SHIFT));
               onoff("Received split completion error", reg,
                   PCIX_STATUS_SCERR);
       }
       onoff("266MHz capable", reg, PCIX_STATUS_266);
       onoff("533MHz capable", reg, PCIX_STATUS_533);

       if (isbridge == 0)
               return;

       /* Only for bridge */
       for (i = 0; i < 2; i++) {
               reg = regs[o2i(capoff + PCIX_BRIDGE_UP_STCR + (4 * i))];
               printf("    %s split transaction control register: 0x%08x\n",
                   (i == 0) ? "Upstream" : "Downstream", reg);
               printf("      Capacity: %d\n", reg & PCIX_BRIDGE_STCAP);
               printf("      Commitment Limit: %d\n",
                   (reg & PCIX_BRIDGE_STCLIM) >> PCIX_BRIDGE_STCLIM_SHIFT);
       }
}

/* pci_conf_print_ht_slave_cap */
/* pci_conf_print_ht_host_cap */
/* pci_conf_print_ht_switch_cap */
/* pci_conf_print_ht_intr_cap */
/* pci_conf_print_ht_revid_cap */
/* pci_conf_print_ht_unitid_cap */
/* pci_conf_print_ht_extcnf_cap */
/* pci_conf_print_ht_addrmap_cap */
/* pci_conf_print_ht_msimap_cap */

static void
pci_conf_print_ht_msimap_cap(const pcireg_t *regs, int capoff)
{
       pcireg_t val;
       uint32_t lo, hi;

       /*
        * Print the rest of the command register bits. Others are
        * printed in pci_conf_print_ht_cap().
        */
       val = regs[o2i(capoff + PCI_HT_CMD)];
       onoff("Enable", val, PCI_HT_MSI_ENABLED);
       onoff("Fixed", val, PCI_HT_MSI_FIXED);

       lo = regs[o2i(capoff + PCI_HT_MSI_ADDR_LO)];
       hi = regs[o2i(capoff + PCI_HT_MSI_ADDR_HI)];
       printf("    Address Low register: 0x%08x\n", lo);
       printf("    Address high register: 0x%08x\n", hi);
       printf("      Address: 0x%016" PRIx64 "\n",
           (uint64_t)hi << 32 | (lo & PCI_HT_MSI_ADDR_LO_MASK));
}

/* pci_conf_print_ht_droute_cap */
/* pci_conf_print_ht_vcset_cap */
/* pci_conf_print_ht_retry_cap */
/* pci_conf_print_ht_x86enc_cap */
/* pci_conf_print_ht_gen3_cap */
/* pci_conf_print_ht_fle_cap */
/* pci_conf_print_ht_pm_cap */
/* pci_conf_print_ht_hnc_cap */

static const struct ht_types {
       pcireg_t cap;
       const char *name;
       void (*printfunc)(const pcireg_t *, int);
} ht_captab[] = {
       {PCI_HT_CAP_SLAVE,      "Slave or Primary Interface", NULL },
       {PCI_HT_CAP_HOST,       "Host or Secondary Interface", NULL },
       {PCI_HT_CAP_SWITCH,     "Switch", NULL },
       {PCI_HT_CAP_INTERRUPT,  "Interrupt Discovery and Configuration", NULL},
       {PCI_HT_CAP_REVID,      "Revision ID",  NULL },
       {PCI_HT_CAP_UNITID_CLUMP, "UnitID Clumping",    NULL },
       {PCI_HT_CAP_EXTCNFSPACE, "Extended Configuration Space Access", NULL },
       {PCI_HT_CAP_ADDRMAP,    "Address Mapping",      NULL },
       {PCI_HT_CAP_MSIMAP,     "MSI Mapping",  pci_conf_print_ht_msimap_cap },
       {PCI_HT_CAP_DIRECTROUTE, "Direct Route",        NULL },
       {PCI_HT_CAP_VCSET,      "VCSet",        NULL },
       {PCI_HT_CAP_RETRYMODE,  "Retry Mode",   NULL },
       {PCI_HT_CAP_X86ENCODE,  "X86 Encoding", NULL },
       {PCI_HT_CAP_GEN3,       "Gen3", NULL },
       {PCI_HT_CAP_FLE,        "Function-Level Extension",     NULL },
       {PCI_HT_CAP_PM,         "Power Management",     NULL },
       {PCI_HT_CAP_HIGHNODECNT, "High Node Count",     NULL },
};

static void
pci_conf_print_ht_cap(const pcireg_t *regs, int capoff)
{
       pcireg_t val, foundcap;
       unsigned int off;

       val = regs[o2i(capoff + PCI_HT_CMD)];

       printf("\n  HyperTransport Capability Register at 0x%02x\n", capoff);

       printf("    Command register: 0x%04x\n", val >> 16);
       foundcap = PCI_HT_CAP(val);
       for (off = 0; off < __arraycount(ht_captab); off++) {
               if (ht_captab[off].cap == foundcap)
                       break;
       }
       printf("      Capability Type: 0x%02x ", foundcap);
       if (off >= __arraycount(ht_captab)) {
               printf("(unknown)\n");
               return;
       }
       printf("(%s)\n", ht_captab[off].name);
       if (ht_captab[off].printfunc != NULL)
               ht_captab[off].printfunc(regs, capoff);
}

static void
pci_conf_print_vendspec_cap(const pcireg_t *regs, int capoff)
{
       uint16_t caps;

       caps = regs[o2i(capoff)] >> PCI_VENDORSPECIFIC_SHIFT;

       printf("\n  PCI Vendor Specific Capabilities Register\n");
       printf("    Capabilities length: 0x%02x\n", caps & 0xff);
}

static void
pci_conf_print_debugport_cap(const pcireg_t *regs, int capoff)
{
       pcireg_t val;

       val = regs[o2i(capoff + PCI_DEBUG_BASER)];

       printf("\n  Debugport Capability Register\n");
       printf("    Debug base Register: 0x%04x\n",
           val >> PCI_DEBUG_BASER_SHIFT);
       printf("      port offset: 0x%04x\n",
           (val & PCI_DEBUG_PORTOFF_MASK) >> PCI_DEBUG_PORTOFF_SHIFT);
       printf("      BAR number: %u\n",
           (val & PCI_DEBUG_BARNUM_MASK) >> PCI_DEBUG_BARNUM_SHIFT);
}

/* XXX pci_conf_print_cpci_rsrcctl_cap */
/* XXX pci_conf_print_hotplug_cap */

static void
pci_conf_print_subsystem_cap(const pcireg_t *regs, int capoff)
{
       pcireg_t reg;

       reg = regs[o2i(capoff + PCI_CAP_SUBSYS_ID)];

       printf("\n  Subsystem ID Capability Register\n");
       printf("    Subsystem ID: 0x%08x\n", reg);
}

/* XXX pci_conf_print_agp8_cap */
static void
pci_conf_print_secure_cap(const pcireg_t *regs, int capoff)
{
       pcireg_t reg, reg2, val;
       bool havemisc1;

       printf("\n  Secure Capability Register\n");
       reg = regs[o2i(capoff + PCI_SECURE_CAP)];
       printf("    Capability Register: 0x%04x\n", reg >> 16);
       val = PCIREG_SHIFTOUT(reg, PCI_SECURE_CAP_TYPE);
       printf("      Capability block type: ");
       /* I know IOMMU Only */
       if (val == PCI_SECURE_CAP_TYPE_IOMMU)
               printf("IOMMU\n");
       else {
               printf("0x%x(unknown)\n", val);
               return;
       }

       val = PCIREG_SHIFTOUT(reg, PCI_SECURE_CAP_REV);
       printf("      Capability revision: 0x%02x ", val);
       if (val == PCI_SECURE_CAP_REV_IOMMU)
               printf("(IOMMU)\n");
       else {
               printf("(unknown)\n");
               return;
       }
       onoff("IOTLB support", reg, PCI_SECURE_CAP_IOTLBSUP);
       onoff("HyperTransport tunnel translation support", reg,
           PCI_SECURE_CAP_HTTUNNEL);
       onoff("Not present table entries cached", reg, PCI_SECURE_CAP_NPCACHE);
       onoff("IOMMU Extended Feature Register support", reg,
           PCI_SECURE_CAP_EFRSUP);
       onoff("IOMMU Miscellaneous Information Register 1", reg,
           PCI_SECURE_CAP_EXT);
       havemisc1 = reg & PCI_SECURE_CAP_EXT;

       reg = regs[o2i(capoff + PCI_SECURE_IOMMU_BAL)];
       printf("    Base Address Low Register: 0x%08x\n", reg);
       onoff("Enable", reg, PCI_SECURE_IOMMU_BAL_EN);
       reg2 = regs[o2i(capoff + PCI_SECURE_IOMMU_BAH)];
       printf("    Base Address High Register: 0x%08x\n", reg2);
       printf("      Base Address: 0x%016" PRIx64 "\n",
           ((uint64_t)reg2 << 32)
           | (reg & (PCI_SECURE_IOMMU_BAL_H | PCI_SECURE_IOMMU_BAL_L)));

       reg = regs[o2i(capoff + PCI_SECURE_IOMMU_RANGE)];
       printf("    IOMMU Range Register: 0x%08x\n", reg);
       printf("      HyperTransport UnitID: 0x%02x\n",
           PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_RANGE_UNITID));
       onoff("Range valid", reg, PCI_SECURE_IOMMU_RANGE_RNGVALID);
       printf("      Device range bus number: 0x%02x\n",
           PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_RANGE_BUSNUM));
       printf("      First device: 0x%04x\n",
           PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_RANGE_FIRSTDEV));
       printf("      Last device: 0x%04x\n",
           PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_RANGE_LASTDEV));

       reg = regs[o2i(capoff + PCI_SECURE_IOMMU_MISC0)];
       printf("    Miscellaneous Information Register 0: 0x%08x\n", reg);
       printf("      MSI Message number: 0x%02x\n",
           PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_MISC0_MSINUM));
       val = PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_MISC0_GVASIZE);
       printf("      Guest Virtual Address size: ");
       if (val == PCI_SECURE_IOMMU_MISC0_GVASIZE_48B)
               printf("48bits\n");
       else
               printf("0x%x(unknown)\n", val);
       val = PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_MISC0_PASIZE);
       printf("      Physical Address size: %dbits\n", val);
       val = PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_MISC0_VASIZE);
       printf("      Virtual Address size: %dbits\n", val);
       onoff("ATS response address range reserved", reg,
           PCI_SECURE_IOMMU_MISC0_ATSRESV);
       printf("      Peripheral Page Request MSI Message number: 0x%02x\n",
           PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_MISC0_MISNPPR));

       if (!havemisc1)
               return;

       reg = regs[o2i(capoff + PCI_SECURE_IOMMU_MISC1)];
       printf("    Miscellaneous Information Register 1: 0x%08x\n", reg);
       printf("      MSI Message number (GA): 0x%02x\n",
           PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_MISC1_MSINUM));
}

static void
pci_print_pcie_L0s_latency(uint32_t val)
{

       switch (val) {
       case 0x0:
               printf("Less than 64ns\n");
               break;
       case 0x1:
       case 0x2:
       case 0x3:
               printf("%dns to less than %dns\n", 32 << val, 32 << (val + 1));
               break;
       case 0x4:
               printf("512ns to less than 1us\n");
               break;
       case 0x5:
               printf("1us to less than 2us\n");
               break;
       case 0x6:
               printf("2us - 4us\n");
               break;
       case 0x7:
               printf("More than 4us\n");
               break;
       }
}

static void
pci_print_pcie_L1_latency(uint32_t val)
{

       switch (val) {
       case 0x0:
               printf("Less than 1us\n");
               break;
       case 0x6:
               printf("32us - 64us\n");
               break;
       case 0x7:
               printf("More than 64us\n");
               break;
       default:
               printf("%dus to less than %dus\n", 1 << (val - 1), 1 << val);
               break;
       }
}

static void
pci_print_pcie_compl_timeout(uint32_t val)
{

       switch (val) {
       case 0x0:
               printf("50us to 50ms\n");
               break;
       case 0x5:
               printf("16ms to 55ms\n");
               break;
       case 0x6:
               printf("65ms to 210ms\n");
               break;
       case 0x9:
               printf("260ms to 900ms\n");
               break;
       case 0xa:
               printf("1s to 3.5s\n");
               break;
       default:
               printf("unknown %u value\n", val);
               break;
       }
}

static const char * const pcie_linkspeeds[] = {
       "2.5", "5.0", "8.0", "16.0", "32.0"
};

/*
* Print link speed. This function is used for the following register bits:
*   Maximum Link Speed in LCAP
*   Current Link Speed in LCSR
*   Target Link Speed in LCSR2
* All of above bitfield's values start from 1.
* For LCSR2, 0 is allowed for a device which supports 2.5GT/s only (and
* this check also works for devices which compliant to versions of the base
* specification prior to 3.0.
*/
static void
pci_print_pcie_linkspeed(int regnum, pcireg_t val)
{

       if ((regnum == PCIE_LCSR2) && (val == 0))
               printf("2.5GT/s\n");
       else if ((val < 1) || (val > __arraycount(pcie_linkspeeds)))
               printf("unknown value (%u)\n", val);
       else
               printf("%sGT/s\n", pcie_linkspeeds[val - 1]);
}

/*
* Print link speed "vector".
* This function is used for the following register bits:
*   Supported Link Speeds Vector in LCAP2
*   Lower SKP OS Generation Supported Speed Vector  in LCAP2
*   Lower SKP OS Reception Supported Speed Vector in LCAP2
*   Enable Lower SKP OS Generation Vector in LCTL3
* All of above bitfield's values start from 0.
*/
static void
pci_print_pcie_linkspeedvector(pcireg_t val)
{
       unsigned int i;

       /* Start from 0 */
       for (i = 0; i < 16; i++)
               if (((val >> i) & 0x01) != 0) {
                       if (i >= __arraycount(pcie_linkspeeds))
                               printf(" unknown vector (0x%x)", 1 << i);
                       else
                               printf(" %sGT/s", pcie_linkspeeds[i]);
               }
}

static void
pci_print_pcie_link_deemphasis(pcireg_t val)
{
       switch (val) {
       case 0:
               printf("-6dB");
               break;
       case 1:
               printf("-3.5dB");
               break;
       default:
               printf("(reserved value)");
       }
}

static const struct _pcie_link_preset_preshoot_deemphasis {
       const char *preshoot;
       const char *deemphasis;
} pcie_link_preset_preshoot_deemphasis[] = {
       { "0.0",        "-6.0+-1.5" },  /* P0 */
       { "0.0",        "-3.5+-1" },    /* P1 */
       { "0.0",        "-4.4+-1.5" },  /* P2 */
       { "0.0",        "-2.5+-1" },    /* P3 */
       { "0.0",        "0.0" },        /* P4 */
       { "1.9+-1",     "0.0" },        /* P5 */
       { "2.5+-1",     "0.0" },        /* P6 */
       { "3.5+-1",     "-6.0+-1.5" },  /* P7 */
       { "3.5+-1",     "-3.5+-1" },    /* P8 */
       { "3.5+-1",     "0.0" },        /* P9 */
       { "0.0",        NULL }          /* P10 */
};

static void
pci_print_pcie_link_preset_preshoot_deemphasis(pcireg_t val)
{
       const char *deemphasis;

       if (val >= __arraycount(pcie_link_preset_preshoot_deemphasis)) {
               /*
                * This may be printed because the default value of some
                * register fields is 0b1111.
                */
               printf("reserved value (0x%x)", val);
               return;
       }

       printf("Preshoot %sdB",
           pcie_link_preset_preshoot_deemphasis[val].preshoot);
       deemphasis = pcie_link_preset_preshoot_deemphasis[val].deemphasis;

       if (deemphasis != NULL)
               printf(", De-emphasis %sdB", deemphasis);
}

static void
pci_conf_print_pcie_cap(const pcireg_t *regs, int capoff)
{
       pcireg_t reg; /* for each register */
       pcireg_t val; /* for each bitfield */
       bool check_slot = false;
       unsigned int pcie_devtype;
       bool check_upstreamport = false;
       unsigned int pciever;
       unsigned int i;

       printf("\n  PCI Express Capabilities Register\n");
       /* Capability Register */
       reg = regs[o2i(capoff)];
       printf("    Capability register: 0x%04x\n", reg >> 16);
       pciever = (unsigned int)(PCIE_XCAP_VER(reg));
       printf("      Capability version: %u\n", pciever);
       printf("      Device type: ");
       pcie_devtype = PCIE_XCAP_TYPE(reg);
       switch (pcie_devtype) {
       case PCIE_XCAP_TYPE_PCIE_DEV:   /* 0x0 */
               printf("PCI Express Endpoint device\n");
               check_upstreamport = true;
               break;
       case PCIE_XCAP_TYPE_PCI_DEV:    /* 0x1 */
               printf("Legacy PCI Express Endpoint device\n");
               check_upstreamport = true;
               break;
       case PCIE_XCAP_TYPE_RP:         /* 0x4 */
               printf("Root Port of PCI Express Root Complex\n");
               check_slot = true;
               break;
       case PCIE_XCAP_TYPE_UP:         /* 0x5 */
               printf("Upstream Port of PCI Express Switch\n");
               check_upstreamport = true;
               break;
       case PCIE_XCAP_TYPE_DOWN:       /* 0x6 */
               printf("Downstream Port of PCI Express Switch\n");
               check_slot = true;
               break;
       case PCIE_XCAP_TYPE_PCIE2PCI:   /* 0x7 */
               printf("PCI Express to PCI/PCI-X Bridge\n");
               check_upstreamport = true;
               break;
       case PCIE_XCAP_TYPE_PCI2PCIE:   /* 0x8 */
               printf("PCI/PCI-X to PCI Express Bridge\n");
               /* Upstream port is not PCIe */
               check_slot = true;
               break;
       case PCIE_XCAP_TYPE_RCIEP:      /* 0x9 */
               printf("Root Complex Integrated Endpoint\n");
               break;
       case PCIE_XCAP_TYPE_RC_EVNTC:   /* 0xa */
               printf("Root Complex Event Collector\n");
               break;
       default:
               printf("unknown\n");
               break;
       }
       onoff("Slot implemented", reg, PCIE_XCAP_SI);
       printf("      Interrupt Message Number: 0x%02x\n",
           PCIREG_SHIFTOUT(reg, PCIE_XCAP_IRQ));

       /* Device Capability Register */
       reg = regs[o2i(capoff + PCIE_DCAP)];
       printf("    Device Capabilities Register: 0x%08x\n", reg);
       printf("      Max Payload Size Supported: %u bytes max\n",
           128 << (unsigned int)(reg & PCIE_DCAP_MAX_PAYLOAD));
       printf("      Phantom Functions Supported: ");
       switch (PCIREG_SHIFTOUT(reg, PCIE_DCAP_PHANTOM_FUNCS)) {
       case 0x0:
               printf("not available\n");
               break;
       case 0x1:
               printf("MSB\n");
               break;
       case 0x2:
               printf("two MSB\n");
               break;
       case 0x3:
               printf("All three bits\n");
               break;
       }
       printf("      Extended Tag Field Supported: %dbit\n",
           (reg & PCIE_DCAP_EXT_TAG_FIELD) == 0 ? 5 : 8);
       printf("      Endpoint L0 Acceptable Latency: ");
       pci_print_pcie_L0s_latency(PCIREG_SHIFTOUT(reg, PCIE_DCAP_L0S_LATENCY));
       printf("      Endpoint L1 Acceptable Latency: ");
       pci_print_pcie_L1_latency(PCIREG_SHIFTOUT(reg, PCIE_DCAP_L1_LATENCY));
       onoff("Attention Button Present", reg, PCIE_DCAP_ATTN_BUTTON);
       onoff("Attention Indicator Present", reg, PCIE_DCAP_ATTN_IND);
       onoff("Power Indicator Present", reg, PCIE_DCAP_PWR_IND);
       onoff("Role-Based Error Report", reg, PCIE_DCAP_ROLE_ERR_RPT);
       if (check_upstreamport) {
               printf("      Captured Slot Power Limit: ");
               pci_conf_print_pcie_power(
                       PCIREG_SHIFTOUT(reg, PCIE_DCAP_SLOT_PWR_LIM_VAL),
                       PCIREG_SHIFTOUT(reg, PCIE_DCAP_SLOT_PWR_LIM_SCALE));
       }
       onoff("Function-Level Reset Capability", reg, PCIE_DCAP_FLR);

       /* Device Control Register */
       reg = regs[o2i(capoff + PCIE_DCSR)];
       printf("    Device Control Register: 0x%04x\n", reg & 0xffff);
       onoff("Correctable Error Reporting Enable", reg,
           PCIE_DCSR_ENA_COR_ERR);
       onoff("Non Fatal Error Reporting Enable", reg, PCIE_DCSR_ENA_NFER);
       onoff("Fatal Error Reporting Enable", reg, PCIE_DCSR_ENA_FER);
       onoff("Unsupported Request Reporting Enable", reg, PCIE_DCSR_ENA_URR);
       onoff("Enable Relaxed Ordering", reg, PCIE_DCSR_ENA_RELAX_ORD);
       printf("      Max Payload Size: %d byte\n",
           128 << PCIREG_SHIFTOUT(reg, PCIE_DCSR_MAX_PAYLOAD));
       onoff("Extended Tag Field Enable", reg, PCIE_DCSR_EXT_TAG_FIELD);
       onoff("Phantom Functions Enable", reg, PCIE_DCSR_PHANTOM_FUNCS);
       onoff("Aux Power PM Enable", reg, PCIE_DCSR_AUX_POWER_PM);
       onoff("Enable No Snoop", reg, PCIE_DCSR_ENA_NO_SNOOP);
       printf("      Max Read Request Size: %d byte\n",
           128 << PCIREG_SHIFTOUT(reg, PCIE_DCSR_MAX_READ_REQ));
       if (pcie_devtype == PCIE_XCAP_TYPE_PCIE2PCI)
               onoff("Bridge Config Retry Enable", reg,
                   PCIE_DCSR_BRDG_CFG_RETRY);

       /* Device Status Register */
       reg = regs[o2i(capoff + PCIE_DCSR)];
       printf("    Device Status Register: 0x%04x\n", reg >> 16);
       onoff("Correctable Error Detected", reg, PCIE_DCSR_CED);
       onoff("Non Fatal Error Detected", reg, PCIE_DCSR_NFED);
       onoff("Fatal Error Detected", reg, PCIE_DCSR_FED);
       onoff("Unsupported Request Detected", reg, PCIE_DCSR_URD);
       onoff("Aux Power Detected", reg, PCIE_DCSR_AUX_PWR);
       onoff("Transaction Pending", reg, PCIE_DCSR_TRANSACTION_PND);
       onoff("Emergency Power Reduction Detected", reg, PCIE_DCSR_EMGPWRREDD);

       if (PCIE_HAS_LINKREGS(pcie_devtype)) {
               /* Link Capability Register */
               reg = regs[o2i(capoff + PCIE_LCAP)];
               printf("    Link Capabilities Register: 0x%08x\n", reg);
               printf("      Maximum Link Speed: ");
               pci_print_pcie_linkspeed(PCIE_LCAP, reg & PCIE_LCAP_MAX_SPEED);
               printf("      Maximum Link Width: x%u lanes\n",
                   PCIREG_SHIFTOUT(reg, PCIE_LCAP_MAX_WIDTH));
               printf("      Active State PM Support: ");
               switch (PCIREG_SHIFTOUT(reg, PCIE_LCAP_ASPM)) {
               case 0x0:
                       printf("No ASPM support\n");
                       break;
               case 0x1:
                       printf("L0s supported\n");
                       break;
               case 0x2:
                       printf("L1 supported\n");
                       break;
               case 0x3:
                       printf("L0s and L1 supported\n");
                       break;
               }
               printf("      L0 Exit Latency: ");
               pci_print_pcie_L0s_latency(PCIREG_SHIFTOUT(reg,PCIE_LCAP_L0S_EXIT));
               printf("      L1 Exit Latency: ");
               pci_print_pcie_L1_latency(PCIREG_SHIFTOUT(reg, PCIE_LCAP_L1_EXIT));
               printf("      Port Number: %u\n",
                   PCIREG_SHIFTOUT(reg, PCIE_LCAP_PORT));
               onoff("Clock Power Management", reg, PCIE_LCAP_CLOCK_PM);
               onoff("Surprise Down Error Report", reg,
                   PCIE_LCAP_SURPRISE_DOWN);
               onoff("Data Link Layer Link Active", reg, PCIE_LCAP_DL_ACTIVE);
               onoff("Link BW Notification Capable", reg,
                       PCIE_LCAP_LINK_BW_NOTIFY);
               onoff("ASPM Optionally Compliance", reg,
                   PCIE_LCAP_ASPM_COMPLIANCE);

               /* Link Control Register */
               reg = regs[o2i(capoff + PCIE_LCSR)];
               printf("    Link Control Register: 0x%04x\n", reg & 0xffff);
               printf("      Active State PM Control: ");
               switch (reg & (PCIE_LCSR_ASPM_L1 | PCIE_LCSR_ASPM_L0S)) {
               case 0:
                       printf("disabled\n");
                       break;
               case 1:
                       printf("L0s Entry Enabled\n");
                       break;
               case 2:
                       printf("L1 Entry Enabled\n");
                       break;
               case 3:
                       printf("L0s and L1 Entry Enabled\n");
                       break;
               }
               onoff2("Read Completion Boundary Control", reg, PCIE_LCSR_RCB,
                   "128bytes", "64bytes");
               onoff("Link Disable", reg, PCIE_LCSR_LINK_DIS);
               onoff("Retrain Link", reg, PCIE_LCSR_RETRAIN);
               onoff("Common Clock Configuration", reg, PCIE_LCSR_COMCLKCFG);
               onoff("Extended Synch", reg, PCIE_LCSR_EXTNDSYNC);
               onoff("Enable Clock Power Management", reg, PCIE_LCSR_ENCLKPM);
               onoff("Hardware Autonomous Width Disable", reg,PCIE_LCSR_HAWD);
               onoff("Link Bandwidth Management Interrupt Enable", reg,
                   PCIE_LCSR_LBMIE);
               onoff("Link Autonomous Bandwidth Interrupt Enable", reg,
                   PCIE_LCSR_LABIE);
               printf("      DRS Signaling Control: ");
               switch (PCIREG_SHIFTOUT(reg, PCIE_LCSR_DRSSGNL)) {
               case 0:
                       printf("not reported\n");
                       break;
               case 1:
                       printf("Interrupt Enabled\n");
                       break;
               case 2:
                       printf("DRS to FRS Signaling Enabled\n");
                       break;
               default:
                       printf("reserved\n");
                       break;
               }

               /* Link Status Register */
               reg = regs[o2i(capoff + PCIE_LCSR)];
               printf("    Link Status Register: 0x%04x\n", reg >> 16);
               printf("      Negotiated Link Speed: ");
               pci_print_pcie_linkspeed(PCIE_LCSR,
                   PCIREG_SHIFTOUT(reg, PCIE_LCSR_LINKSPEED));
               printf("      Negotiated Link Width: x%u lanes\n",
                   PCIREG_SHIFTOUT(reg, PCIE_LCSR_NLW));
               onoff("Training Error", reg, PCIE_LCSR_LINKTRAIN_ERR);
               onoff("Link Training", reg, PCIE_LCSR_LINKTRAIN);
               onoff("Slot Clock Configuration", reg, PCIE_LCSR_SLOTCLKCFG);
               onoff("Data Link Layer Link Active", reg, PCIE_LCSR_DLACTIVE);
               onoff("Link Bandwidth Management Status", reg,
                   PCIE_LCSR_LINK_BW_MGMT);
               onoff("Link Autonomous Bandwidth Status", reg,
                   PCIE_LCSR_LINK_AUTO_BW);
       }

       if (check_slot == true) {
               pcireg_t slcap;

               /* Slot Capability Register */
               slcap = reg = regs[o2i(capoff + PCIE_SLCAP)];
               printf("    Slot Capability Register: 0x%08x\n", reg);
               onoff("Attention Button Present", reg, PCIE_SLCAP_ABP);
               onoff("Power Controller Present", reg, PCIE_SLCAP_PCP);
               onoff("MRL Sensor Present", reg, PCIE_SLCAP_MSP);
               onoff("Attention Indicator Present", reg, PCIE_SLCAP_AIP);
               onoff("Power Indicator Present", reg, PCIE_SLCAP_PIP);
               onoff("Hot-Plug Surprise", reg, PCIE_SLCAP_HPS);
               onoff("Hot-Plug Capable", reg, PCIE_SLCAP_HPC);
               printf("      Slot Power Limit Value: ");
               pci_conf_print_pcie_power(PCIREG_SHIFTOUT(reg, PCIE_SLCAP_SPLV),
                   PCIREG_SHIFTOUT(reg, PCIE_SLCAP_SPLS));
               onoff("Electromechanical Interlock Present", reg,
                   PCIE_SLCAP_EIP);
               onoff("No Command Completed Support", reg, PCIE_SLCAP_NCCS);
               printf("      Physical Slot Number: %d\n",
                   (unsigned int)(reg & PCIE_SLCAP_PSN) >> 19);

               /* Slot Control Register */
               reg = regs[o2i(capoff + PCIE_SLCSR)];
               printf("    Slot Control Register: 0x%04x\n", reg & 0xffff);
               onoff("Attention Button Pressed Enabled", reg, PCIE_SLCSR_ABE);
               onoff("Power Fault Detected Enabled", reg, PCIE_SLCSR_PFE);
               onoff("MRL Sensor Changed Enabled", reg, PCIE_SLCSR_MSE);
               onoff("Presence Detect Changed Enabled", reg, PCIE_SLCSR_PDE);
               onoff("Command Completed Interrupt Enabled", reg,
                   PCIE_SLCSR_CCE);
               onoff("Hot-Plug Interrupt Enabled", reg, PCIE_SLCSR_HPE);
               /*
                * For Attention Indicator Control and Power Indicator Control,
                * it's allowed to be a read only value 0 if corresponding
                * capability register bit is 0.
                */
               if (slcap & PCIE_SLCAP_AIP) {
                       printf("      Attention Indicator Control: ");
                       switch ((reg & PCIE_SLCSR_AIC) >> 6) {
                       case 0x0:
                               printf("reserved\n");
                               break;
                       case PCIE_SLCSR_IND_ON:
                               printf("on\n");
                               break;
                       case PCIE_SLCSR_IND_BLINK:
                               printf("blink\n");
                               break;
                       case PCIE_SLCSR_IND_OFF:
                               printf("off\n");
                               break;
                       }
               }
               if (slcap & PCIE_SLCAP_PIP) {
                       printf("      Power Indicator Control: ");
                       switch ((reg & PCIE_SLCSR_PIC) >> 8) {
                       case 0x0:
                               printf("reserved\n");
                               break;
                       case PCIE_SLCSR_IND_ON:
                               printf("on\n");
                               break;
                       case PCIE_SLCSR_IND_BLINK:
                               printf("blink\n");
                               break;
                       case PCIE_SLCSR_IND_OFF:
                               printf("off\n");
                               break;
                       }
               }
               printf("      Power Controller Control: Power %s\n",
                   reg & PCIE_SLCSR_PCC ? "off" : "on");
               onoff("Electromechanical Interlock Control",
                   reg, PCIE_SLCSR_EIC);
               onoff("Data Link Layer State Changed Enable", reg,
                   PCIE_SLCSR_DLLSCE);
               onoff("Auto Slot Power Limit Disable", reg,
                   PCIE_SLCSR_AUTOSPLDIS);

               /* Slot Status Register */
               printf("    Slot Status Register: 0x%04x\n", reg >> 16);
               onoff("Attention Button Pressed", reg, PCIE_SLCSR_ABP);
               onoff("Power Fault Detected", reg, PCIE_SLCSR_PFD);
               onoff("MRL Sensor Changed", reg, PCIE_SLCSR_MSC);
               onoff("Presence Detect Changed", reg, PCIE_SLCSR_PDC);
               onoff("Command Completed", reg, PCIE_SLCSR_CC);
               onoff("MRL Open", reg, PCIE_SLCSR_MS);
               onoff("Card Present in slot", reg, PCIE_SLCSR_PDS);
               onoff("Electromechanical Interlock engaged", reg,
                   PCIE_SLCSR_EIS);
               onoff("Data Link Layer State Changed", reg, PCIE_SLCSR_LACS);
       }

       if (PCIE_HAS_ROOTREGS(pcie_devtype)) {
               /* Root Control Register */
               reg = regs[o2i(capoff + PCIE_RCR)];
               printf("    Root Control Register: 0x%04x\n", reg & 0xffff);
               onoff("SERR on Correctable Error Enable", reg,
                   PCIE_RCR_SERR_CER);
               onoff("SERR on Non-Fatal Error Enable", reg,
                   PCIE_RCR_SERR_NFER);
               onoff("SERR on Fatal Error Enable", reg, PCIE_RCR_SERR_FER);
               onoff("PME Interrupt Enable", reg, PCIE_RCR_PME_IE);
               onoff("CRS Software Visibility Enable", reg, PCIE_RCR_CRS_SVE);

               /* Root Capability Register */
               printf("    Root Capability Register: 0x%04x\n",
                   reg >> 16);
               onoff("CRS Software Visibility", reg, PCIE_RCR_CRS_SV);

               /* Root Status Register */
               reg = regs[o2i(capoff + PCIE_RSR)];
               printf("    Root Status Register: 0x%08x\n", reg);
               printf("      PME Requester ID: 0x%04x\n",
                   (unsigned int)(reg & PCIE_RSR_PME_REQESTER));
               onoff("PME was asserted", reg, PCIE_RSR_PME_STAT);
               onoff("another PME is pending", reg, PCIE_RSR_PME_PEND);
       }

       /* PCIe DW9 to DW14 is for PCIe 2.0 and newer */
       if (pciever < 2)
               return;

       /* Device Capabilities 2 */
       reg = regs[o2i(capoff + PCIE_DCAP2)];
       printf("    Device Capabilities 2: 0x%08x\n", reg);
       printf("      Completion Timeout Ranges Supported: ");
       val = reg & PCIE_DCAP2_COMPT_RANGE;
       switch (val) {
       case 0:
               printf("not supported\n");
               break;
       default:
               for (i = 0; i <= 3; i++) {
                       if (((val >> i) & 0x01) != 0)
                               printf("%c", 'A' + i);
               }
               printf("\n");
       }
       onoff("Completion Timeout Disable Supported", reg,
           PCIE_DCAP2_COMPT_DIS);
       onoff("ARI Forwarding Supported", reg, PCIE_DCAP2_ARI_FWD);
       onoff("AtomicOp Routing Supported", reg, PCIE_DCAP2_ATOM_ROUT);
       onoff("32bit AtomicOp Completer Supported", reg, PCIE_DCAP2_32ATOM);
       onoff("64bit AtomicOp Completer Supported", reg, PCIE_DCAP2_64ATOM);
       onoff("128-bit CAS Completer Supported", reg, PCIE_DCAP2_128CAS);
       onoff("No RO-enabled PR-PR passing", reg, PCIE_DCAP2_NO_ROPR_PASS);
       onoff("LTR Mechanism Supported", reg, PCIE_DCAP2_LTR_MEC);
       printf("      TPH Completer Supported: ");
       switch (PCIREG_SHIFTOUT(reg, PCIE_DCAP2_TPH_COMP)) {
       case 0:
               printf("Not supported\n");
               break;
       case 1:
               printf("TPH\n");
               break;
       case 3:
               printf("TPH and Extended TPH\n");
               break;
       default:
               printf("(reserved value)\n");
               break;
       }
       printf("      LN System CLS: ");
       switch (PCIREG_SHIFTOUT(reg, PCIE_DCAP2_LNSYSCLS)) {
       case 0x0:
               printf("Not supported or not in effect\n");
               break;
       case 0x1:
               printf("64byte cachelines in effect\n");
               break;
       case 0x2:
               printf("128byte cachelines in effect\n");
               break;
       case 0x3:
               printf("Reserved\n");
               break;
       }
       onoff("10-bit Tag Completer Supported", reg, PCIE_DCAP2_TBT_COMP);
       onoff("10-bit Tag Requester Supported", reg, PCIE_DCAP2_TBT_REQ);
       printf("      OBFF Supported: ");
       switch (PCIREG_SHIFTOUT(reg, PCIE_DCAP2_OBFF)) {
       case 0x0:
               printf("Not supported\n");
               break;
       case 0x1:
               printf("Message only\n");
               break;
       case 0x2:
               printf("WAKE# only\n");
               break;
       case 0x3:
               printf("Both\n");
               break;
       }
       onoff("Extended Fmt Field Supported", reg, PCIE_DCAP2_EXTFMT_FLD);
       onoff("End-End TLP Prefix Supported", reg, PCIE_DCAP2_EETLP_PREF);
       val = PCIREG_SHIFTOUT(reg, PCIE_DCAP2_MAX_EETLP);
       printf("      Max End-End TLP Prefixes: %u\n", (val == 0) ? 4 : val);
       printf("      Emergency Power Reduction Supported: ");
       switch (PCIREG_SHIFTOUT(reg, PCIE_DCAP2_EMGPWRRED)) {
       case 0x0:
               printf("Not supported\n");
               break;
       case 0x1:
               printf("Device Specific mechanism\n");
               break;
       case 0x2:
               printf("Form Factor spec or Device Specific mechanism\n");
               break;
       case 0x3:
               printf("Reserved\n");
               break;
       }
       onoff("Emergency Power Reduction Initialization Required", reg,
           PCIE_DCAP2_EMGPWRRED_INI);
       onoff("FRS Supported", reg, PCIE_DCAP2_FRS);

       /* Device Control 2 */
       reg = regs[o2i(capoff + PCIE_DCSR2)];
       printf("    Device Control 2: 0x%04x\n", reg & 0xffff);
       printf("      Completion Timeout Value: ");
       pci_print_pcie_compl_timeout(reg & PCIE_DCSR2_COMPT_VAL);
       onoff("Completion Timeout Disabled", reg, PCIE_DCSR2_COMPT_DIS);
       onoff("ARI Forwarding Enabled", reg, PCIE_DCSR2_ARI_FWD);
       onoff("AtomicOp Requester Enabled", reg, PCIE_DCSR2_ATOM_REQ);
       onoff("AtomicOp Egress Blocking", reg, PCIE_DCSR2_ATOM_EBLK);
       onoff("IDO Request Enabled", reg, PCIE_DCSR2_IDO_REQ);
       onoff("IDO Completion Enabled", reg, PCIE_DCSR2_IDO_COMP);
       onoff("LTR Mechanism Enabled", reg, PCIE_DCSR2_LTR_MEC);
       onoff("Emergency Power Reduction Request", reg,
           PCIE_DCSR2_EMGPWRRED_REQ);
       onoff("10-bit Tag Requester Enabled", reg, PCIE_DCSR2_TBT_REQ);
       printf("      OBFF: ");
       switch (PCIREG_SHIFTOUT(reg, PCIE_DCSR2_OBFF_EN)) {
       case 0x0:
               printf("Disabled\n");
               break;
       case 0x1:
               printf("Enabled with Message Signaling Variation A\n");
               break;
       case 0x2:
               printf("Enabled with Message Signaling Variation B\n");
               break;
       case 0x3:
               printf("Enabled using WAKE# signaling\n");
               break;
       }
       onoff("End-End TLP Prefix Blocking on", reg, PCIE_DCSR2_EETLP);

       if (PCIE_HAS_LINKREGS(pcie_devtype)) {
               bool drs_supported = false;

               /* Link Capability 2 */
               reg = regs[o2i(capoff + PCIE_LCAP2)];
               /* If the vector is 0, LCAP2 is not implemented */
               if ((reg & PCIE_LCAP2_SUP_LNKSV) != 0) {
                       printf("    Link Capabilities 2: 0x%08x\n", reg);
                       printf("      Supported Link Speeds Vector:");
                       pci_print_pcie_linkspeedvector(
                               PCIREG_SHIFTOUT(reg, PCIE_LCAP2_SUP_LNKSV));
                       printf("\n");
                       onoff("Crosslink Supported", reg, PCIE_LCAP2_CROSSLNK);
                       printf("      "
                           "Lower SKP OS Generation Supported Speed Vector:");
                       pci_print_pcie_linkspeedvector(
                               PCIREG_SHIFTOUT(reg, PCIE_LCAP2_LOWSKPOS_GENSUPPSV));
                       printf("\n");
                       printf("      "
                           "Lower SKP OS Reception Supported Speed Vector:");
                       pci_print_pcie_linkspeedvector(
                               PCIREG_SHIFTOUT(reg, PCIE_LCAP2_LOWSKPOS_RECSUPPSV));
                       printf("\n");
                       onoff("Retimer Presence Detect Supported", reg,
                           PCIE_LCAP2_RETIMERPD);
                       onoff("DRS Supported", reg, PCIE_LCAP2_DRS);
                       drs_supported = (reg & PCIE_LCAP2_DRS) ? true : false;
               }

               /* Link Control 2 */
               reg = regs[o2i(capoff + PCIE_LCSR2)];
               /* If the vector is 0, LCAP2 is not implemented */
               printf("    Link Control 2: 0x%04x\n", reg & 0xffff);
               printf("      Target Link Speed: ");
               pci_print_pcie_linkspeed(PCIE_LCSR2,
                   PCIREG_SHIFTOUT(reg, PCIE_LCSR2_TGT_LSPEED));
               onoff("Enter Compliance Enabled", reg, PCIE_LCSR2_ENT_COMPL);
               onoff("HW Autonomous Speed Disabled", reg,
                   PCIE_LCSR2_HW_AS_DIS);
               printf("      Selectable De-emphasis: ");
               pci_print_pcie_link_deemphasis(
                       PCIREG_SHIFTOUT(reg, PCIE_LCSR2_SEL_DEEMP));
               printf("\n");
               printf("      Transmit Margin: %u\n",
                   PCIREG_SHIFTOUT(reg,  PCIE_LCSR2_TX_MARGIN));
               onoff("Enter Modified Compliance", reg, PCIE_LCSR2_EN_MCOMP);
               onoff("Compliance SOS", reg, PCIE_LCSR2_COMP_SOS);
               printf("      Compliance Preset/De-emphasis: ");
               pci_print_pcie_link_preset_preshoot_deemphasis(
                       PCIREG_SHIFTOUT(reg, PCIE_LCSR2_COMP_DEEMP));
               printf("\n");

               /* Link Status 2 */
               printf("    Link Status 2: 0x%04x\n", (reg >> 16) & 0xffff);
               printf("      Current De-emphasis Level: ");
               pci_print_pcie_link_deemphasis(
                       PCIREG_SHIFTOUT(reg, PCIE_LCSR2_DEEMP_LVL));
               printf("\n");
               onoff("Equalization Complete", reg, PCIE_LCSR2_EQ_COMPL);
               onoff("Equalization Phase 1 Successful", reg,
                   PCIE_LCSR2_EQP1_SUC);
               onoff("Equalization Phase 2 Successful", reg,
                   PCIE_LCSR2_EQP2_SUC);
               onoff("Equalization Phase 3 Successful", reg,
                   PCIE_LCSR2_EQP3_SUC);
               onoff("Link Equalization Request", reg, PCIE_LCSR2_LNKEQ_REQ);
               onoff("Retimer Presence Detected", reg, PCIE_LCSR2_RETIMERPD);
               if (drs_supported) {
                       printf("      Downstream Component Presence: ");
                       switch (PCIREG_SHIFTOUT(reg, PCIE_LCSR2_DSCOMPN)) {
                       case PCIE_DSCOMPN_DOWN_NOTDETERM:
                               printf("Link Down - Presence Not"
                                   " Determined\n");
                               break;
                       case PCIE_DSCOMPN_DOWN_NOTPRES:
                               printf("Link Down - Component Not Present\n");
                               break;
                       case PCIE_DSCOMPN_DOWN_PRES:
                               printf("Link Down - Component Present\n");
                               break;
                       case PCIE_DSCOMPN_UP_PRES:
                               printf("Link Up - Component Present\n");
                               break;
                       case PCIE_DSCOMPN_UP_PRES_DRS:
                               printf("Link Up - Component Present and DRS"
                                   " received\n");
                               break;
                       default:
                               printf("reserved\n");
                               break;
                       }
                       onoff("DRS Message Received", reg, PCIE_LCSR2_DRSRCV);
               }
       }

       /* Slot Capability 2 */
       /* Slot Control 2 */
       /* Slot Status 2 */
}

static void
pci_conf_print_msix_cap(const pcireg_t *regs, int capoff)
{
       pcireg_t reg;

       printf("\n  MSI-X Capability Register\n");

       reg = regs[o2i(capoff + PCI_MSIX_CTL)];
       printf("    Message Control register: 0x%04x\n",
           (reg >> 16) & 0xff);
       printf("      Table Size: %d\n", PCI_MSIX_CTL_TBLSIZE(reg));
       onoff("Function Mask", reg, PCI_MSIX_CTL_FUNCMASK);
       onoff("MSI-X Enable", reg, PCI_MSIX_CTL_ENABLE);
       reg = regs[o2i(capoff + PCI_MSIX_TBLOFFSET)];
       printf("    Table offset register: 0x%08x\n", reg);
       printf("      Table offset: 0x%08x\n",
           (pcireg_t)(reg & PCI_MSIX_TBLOFFSET_MASK));
       printf("      BIR: 0x%x\n", (pcireg_t)(reg & PCI_MSIX_TBLBIR_MASK));
       reg = regs[o2i(capoff + PCI_MSIX_PBAOFFSET)];
       printf("    Pending bit array register: 0x%08x\n", reg);
       printf("      Pending bit array offset: 0x%08x\n",
           (pcireg_t)(reg & PCI_MSIX_PBAOFFSET_MASK));
       printf("      BIR: 0x%x\n", (pcireg_t)(reg & PCI_MSIX_PBABIR_MASK));
}

static void
pci_conf_print_sata_cap(const pcireg_t *regs, int capoff)
{
       pcireg_t reg;

       printf("\n  Serial ATA Capability Register\n");

       reg = regs[o2i(capoff + PCI_SATA_REV)];
       printf("    Revision register: 0x%04x\n", (reg >> 16) & 0xff);
       printf("      Revision: %u.%u\n",
           PCIREG_SHIFTOUT(reg, PCI_SATA_REV_MAJOR),
           PCIREG_SHIFTOUT(reg, PCI_SATA_REV_MINOR));

       reg = regs[o2i(capoff + PCI_SATA_BAR)];

       printf("    BAR Register: 0x%08x\n", reg);
       printf("      Register location: ");
       if ((reg & PCI_SATA_BAR_SPEC) == PCI_SATA_BAR_INCONF)
               printf("in config space\n");
       else {
               printf("BAR %d\n", (int)PCI_SATA_BAR_NUM(reg));
               printf("      BAR offset: 0x%08x\n",
                   PCIREG_SHIFTOUT(reg, PCI_SATA_BAR_OFFSET) * 4);
       }
}

static void
pci_conf_print_pciaf_cap(const pcireg_t *regs, int capoff)
{
       pcireg_t reg;

       printf("\n  Advanced Features Capability Register\n");

       reg = regs[o2i(capoff + PCI_AFCAPR)];
       printf("    AF Capabilities register: 0x%02x\n", (reg >> 24) & 0xff);
       printf("    AF Structure Length: 0x%02x\n",
           PCIREG_SHIFTOUT(reg, PCI_AF_LENGTH));
       onoff("Transaction Pending", reg, PCI_AF_TP_CAP);
       onoff("Function Level Reset", reg, PCI_AF_FLR_CAP);
       reg = regs[o2i(capoff + PCI_AFCSR)];
       printf("    AF Control register: 0x%02x\n", reg & 0xff);
       /*
        * Only PCI_AFCR_INITIATE_FLR is a member of the AF control register
        * and it's always 0 on read
        */
       printf("    AF Status register: 0x%02x\n", (reg >> 8) & 0xff);
       onoff("Transaction Pending", reg, PCI_AFSR_TP);
}

static void
pci_conf_print_ea_cap_prop(unsigned int prop)
{

       switch (prop) {
       case PCI_EA_PROP_MEM_NONPREF:
               printf("Memory Space, Non-Prefetchable\n");
               break;
       case PCI_EA_PROP_MEM_PREF:
               printf("Memory Space, Prefetchable\n");
               break;
       case PCI_EA_PROP_IO:
               printf("I/O Space\n");
               break;
       case PCI_EA_PROP_VF_MEM_NONPREF:
               printf("Resource for VF use, Memory Space, Non-Prefetchable\n");
               break;
       case PCI_EA_PROP_VF_MEM_PREF:
               printf("Resource for VF use, Memory Space, Prefetch\n");
               break;
       case PCI_EA_PROP_BB_MEM_NONPREF:
               printf("Behind the Bridge, Memory Space, Non-Pref\n");
               break;
       case PCI_EA_PROP_BB_MEM_PREF:
               printf("Behind the Bridge, Memory Space. Prefetchable\n");
               break;
       case PCI_EA_PROP_BB_IO:
               printf("Behind Bridge, I/O Space\n");
               break;
       case PCI_EA_PROP_MEM_UNAVAIL:
               printf("Memory Space Unavailable\n");
               break;
       case PCI_EA_PROP_IO_UNAVAIL:
               printf("IO Space Unavailable\n");
               break;
       case PCI_EA_PROP_UNAVAIL:
               printf("Entry Unavailable for use\n");
               break;
       default:
               printf("Reserved\n");
               break;
       }
}

static void
pci_conf_print_ea_cap(const pcireg_t *regs, int capoff)
{
       pcireg_t reg, reg2;
       unsigned int entries, entoff, i;

       printf("\n  Enhanced Allocation Capability Register\n");

       reg = regs[o2i(capoff + PCI_EA_CAP1)];
       printf("    EA Num Entries register: 0x%04x\n", reg >> 16);
       entries = PCIREG_SHIFTOUT(reg, PCI_EA_CAP1_NUMENTRIES);
       printf("      EA Num Entries: %u\n", entries);

       /* Type 1 only */
       if (PCI_HDRTYPE_TYPE(regs[o2i(PCI_BHLC_REG)]) == PCI_HDRTYPE_PPB) {
               reg = regs[o2i(capoff + PCI_EA_CAP2)];
               printf("    EA Capability Second register: 0x%08x\n", reg);
               printf("      Fixed Secondary Bus Number: %hhu\n",
                   (uint8_t)PCIREG_SHIFTOUT(reg, PCI_EA_CAP2_SECONDARY));
               printf("      Fixed Subordinate Bus Number: %hhu\n",
                   (uint8_t)PCIREG_SHIFTOUT(reg, PCI_EA_CAP2_SUBORDINATE));
               entoff = capoff + 8;
       } else
               entoff = capoff + 4;

       for (i = 0; i < entries; i++) {
               uint64_t base, offset;
               bool baseis64, offsetis64;
               unsigned int bei, entry_size;

               printf("    Entry %u:\n", i);
               /* The first DW */
               reg = regs[o2i(entoff)];
               printf("      The first register: 0x%08x\n", reg);
               entry_size = PCIREG_SHIFTOUT(reg, PCI_EA_ES);
               printf("        Entry size: %u\n", entry_size);
               printf("        BAR Equivalent Indicator: ");
               bei = PCIREG_SHIFTOUT(reg, PCI_EA_BEI);
               switch (bei) {
               case PCI_EA_BEI_BAR0:
               case PCI_EA_BEI_BAR1:
               case PCI_EA_BEI_BAR2:
               case PCI_EA_BEI_BAR3:
               case PCI_EA_BEI_BAR4:
               case PCI_EA_BEI_BAR5:
                       printf("BAR %u\n", bei - PCI_EA_BEI_BAR0);
                       break;
               case PCI_EA_BEI_BEHIND:
                       printf("Behind the function\n");
                       break;
               case PCI_EA_BEI_NOTIND:
                       printf("Not Indicated\n");
                       break;
               case PCI_EA_BEI_EXPROM:
                       printf("Expansion ROM\n");
                       break;
               case PCI_EA_BEI_VFBAR0:
               case PCI_EA_BEI_VFBAR1:
               case PCI_EA_BEI_VFBAR2:
               case PCI_EA_BEI_VFBAR3:
               case PCI_EA_BEI_VFBAR4:
               case PCI_EA_BEI_VFBAR5:
                       printf("VF BAR %u\n", bei - PCI_EA_BEI_VFBAR0);
                       break;
               case PCI_EA_BEI_RESERVED:
               default:
                       printf("Reserved\n");
                       break;
               }

               printf("      Primary Properties: ");
               pci_conf_print_ea_cap_prop(PCIREG_SHIFTOUT(reg, PCI_EA_PP));
               printf("      Secondary Properties: ");
               pci_conf_print_ea_cap_prop(PCIREG_SHIFTOUT(reg, PCI_EA_SP));
               onoff("Writable", reg, PCI_EA_W);
               onoff("Enable for this entry", reg, PCI_EA_E);

               if (entry_size == 0) {
                       entoff += 4;
                       continue;
               }

               /* Base addr */
               reg = regs[o2i(entoff + 4)];
               base = reg & PCI_EA_LOWMASK;
               baseis64 = reg & PCI_EA_BASEMAXOFFSET_64BIT;
               printf("      Base Address Register Low: 0x%08x\n", reg);
               if (baseis64) {
                       /* 64bit */
                       reg2 = regs[o2i(entoff + 12)];
                       printf("      Base Address Register high: 0x%08x\n",
                           reg2);
                       base |= (uint64_t)reg2 << 32;
               }

               /* Offset addr */
               reg = regs[o2i(entoff + 8)];
               offset = reg & PCI_EA_LOWMASK;
               offsetis64 = reg & PCI_EA_BASEMAXOFFSET_64BIT;
               printf("      Max Offset Register Low: 0x%08x\n", reg);
               if (offsetis64) {
                       /* 64bit */
                       reg2 = regs[o2i(entoff + (baseis64 ? 16 : 12))];
                       printf("      Max Offset Register high: 0x%08x\n",
                           reg2);
                       offset |= (uint64_t)reg2 << 32;
               }

               printf("        range: 0x%016" PRIx64 "-0x%016" PRIx64
                           "\n", base, base + offset);

               entoff += 4 + (4 * entry_size);
       }
}

/* XXX pci_conf_print_fpb_cap */

static struct {
       pcireg_t cap;
       const char *name;
       void (*printfunc)(const pcireg_t *, int);
} pci_captab[] = {
       { PCI_CAP_RESERVED0,    "reserved",     NULL },
       { PCI_CAP_PWRMGMT,      "Power Management", pci_conf_print_pcipm_cap },
       { PCI_CAP_AGP,          "AGP",          pci_conf_print_agp_cap },
       { PCI_CAP_VPD,          "VPD",          NULL },
       { PCI_CAP_SLOTID,       "SlotID",       NULL },
       { PCI_CAP_MSI,          "MSI",          pci_conf_print_msi_cap },
       { PCI_CAP_CPCI_HOTSWAP, "CompactPCI Hot-swapping", NULL },
       { PCI_CAP_PCIX,         "PCI-X",        pci_conf_print_pcix_cap },
       { PCI_CAP_LDT,          "HyperTransport", pci_conf_print_ht_cap },
       { PCI_CAP_VENDSPEC,     "Vendor-specific",
         pci_conf_print_vendspec_cap },
       { PCI_CAP_DEBUGPORT,    "Debug Port",   pci_conf_print_debugport_cap },
       { PCI_CAP_CPCI_RSRCCTL, "CompactPCI Resource Control", NULL },
       { PCI_CAP_HOTPLUG,      "Hot-Plug",     NULL },
       { PCI_CAP_SUBVENDOR,    "Subsystem vendor ID",
         pci_conf_print_subsystem_cap },
       { PCI_CAP_AGP8,         "AGP 8x",       NULL },
       { PCI_CAP_SECURE,       "Secure Device", pci_conf_print_secure_cap },
       { PCI_CAP_PCIEXPRESS,   "PCI Express",  pci_conf_print_pcie_cap },
       { PCI_CAP_MSIX,         "MSI-X",        pci_conf_print_msix_cap },
       { PCI_CAP_SATA,         "SATA",         pci_conf_print_sata_cap },
       { PCI_CAP_PCIAF,        "Advanced Features", pci_conf_print_pciaf_cap},
       { PCI_CAP_EA,           "Enhanced Allocation", pci_conf_print_ea_cap },
       { PCI_CAP_FPB,          "Flattening Portal Bridge", NULL }
};

static int
pci_conf_find_cap(const pcireg_t *regs, unsigned int capid, int *offsetp)
{
       pcireg_t rval;
       unsigned int capptr;
       int off;

       if (!(regs[o2i(PCI_COMMAND_STATUS_REG)] & PCI_STATUS_CAPLIST_SUPPORT))
               return 0;

       /* Determine the Capability List Pointer register to start with. */
       switch (PCI_HDRTYPE_TYPE(regs[o2i(PCI_BHLC_REG)])) {
       case 0: /* standard device header */
       case 1: /* PCI-PCI bridge header */
               capptr = PCI_CAPLISTPTR_REG;
               break;
       case 2: /* PCI-CardBus Bridge header */
               capptr = PCI_CARDBUS_CAPLISTPTR_REG;
               break;
       default:
               return 0;
       }

       for (off = PCI_CAPLIST_PTR(regs[o2i(capptr)]);
            off != 0; off = PCI_CAPLIST_NEXT(rval)) {
               rval = regs[o2i(off)];
               if (capid == PCI_CAPLIST_CAP(rval)) {
                       if (offsetp != NULL)
                               *offsetp = off;
                       return 1;
               }
       }
       return 0;
}

static void
pci_conf_print_caplist(
#ifdef _KERNEL
   pci_chipset_tag_t pc, pcitag_t tag,
#endif
   const pcireg_t *regs, int capoff)
{
       int off;
       pcireg_t foundcap;
       pcireg_t rval;
       bool foundtable[__arraycount(pci_captab)];
       unsigned int i;

       /* Clear table */
       for (i = 0; i < __arraycount(pci_captab); i++)
               foundtable[i] = false;

       /* Print capability register's offset and the type first */
       for (off = PCI_CAPLIST_PTR(regs[o2i(capoff)]);
            off != 0; off = PCI_CAPLIST_NEXT(regs[o2i(off)])) {
               rval = regs[o2i(off)];
               printf("  Capability register at 0x%02x\n", off);

               printf("    type: 0x%02x (", PCI_CAPLIST_CAP(rval));
               foundcap = PCI_CAPLIST_CAP(rval);
               if (foundcap < __arraycount(pci_captab)) {
                       printf("%s)\n", pci_captab[foundcap].name);
                       /* Mark as found */
                       foundtable[foundcap] = true;
               } else
                       printf("unknown)\n");
       }

       /*
        * And then, print the detail of each capability registers
        * in capability value's order.
        */
       for (i = 0; i < __arraycount(pci_captab); i++) {
               if (foundtable[i] == false)
                       continue;

               /*
                * The type was found. Search capability list again and
                * print all capabilities that the capability type is
                * the same. This is required because some capabilities
                * appear multiple times (e.g. HyperTransport capability).
                */
               for (off = PCI_CAPLIST_PTR(regs[o2i(capoff)]);
                    off != 0; off = PCI_CAPLIST_NEXT(regs[o2i(off)])) {
                       rval = regs[o2i(off)];
                       if ((PCI_CAPLIST_CAP(rval) == i)
                           && (pci_captab[i].printfunc != NULL))
                               pci_captab[i].printfunc(regs, off);
               }
       }
}

/* Extended Capability */

static void
pci_conf_print_aer_cap_uc(pcireg_t reg)
{

       onoff("Undefined", reg, PCI_AER_UC_UNDEFINED);
       onoff("Data Link Protocol Error", reg, PCI_AER_UC_DL_PROTOCOL_ERROR);
       onoff("Surprise Down Error", reg, PCI_AER_UC_SURPRISE_DOWN_ERROR);
       onoff("Poisoned TLP Received", reg, PCI_AER_UC_POISONED_TLP);
       onoff("Flow Control Protocol Error", reg, PCI_AER_UC_FC_PROTOCOL_ERROR);
       onoff("Completion Timeout", reg, PCI_AER_UC_COMPLETION_TIMEOUT);
       onoff("Completer Abort", reg, PCI_AER_UC_COMPLETER_ABORT);
       onoff("Unexpected Completion", reg, PCI_AER_UC_UNEXPECTED_COMPLETION);
       onoff("Receiver Overflow", reg, PCI_AER_UC_RECEIVER_OVERFLOW);
       onoff("Malformed TLP", reg, PCI_AER_UC_MALFORMED_TLP);
       onoff("ECRC Error", reg, PCI_AER_UC_ECRC_ERROR);
       onoff("Unsupported Request Error", reg,
           PCI_AER_UC_UNSUPPORTED_REQUEST_ERROR);
       onoff("ACS Violation", reg, PCI_AER_UC_ACS_VIOLATION);
       onoff("Uncorrectable Internal Error", reg, PCI_AER_UC_INTERNAL_ERROR);
       onoff("MC Blocked TLP", reg, PCI_AER_UC_MC_BLOCKED_TLP);
       onoff("AtomicOp Egress BLK", reg, PCI_AER_UC_ATOMIC_OP_EGRESS_BLOCKED);
       onoff("TLP Prefix Blocked Error", reg,
           PCI_AER_UC_TLP_PREFIX_BLOCKED_ERROR);
       onoff("Poisoned TLP Egress Blocked", reg,
           PCI_AER_UC_POISONTLP_EGRESS_BLOCKED);
}

static void
pci_conf_print_aer_cap_cor(pcireg_t reg)
{

       onoff("Receiver Error", reg, PCI_AER_COR_RECEIVER_ERROR);
       onoff("Bad TLP", reg, PCI_AER_COR_BAD_TLP);
       onoff("Bad DLLP", reg, PCI_AER_COR_BAD_DLLP);
       onoff("REPLAY_NUM Rollover", reg, PCI_AER_COR_REPLAY_NUM_ROLLOVER);
       onoff("Replay Timer Timeout", reg, PCI_AER_COR_REPLAY_TIMER_TIMEOUT);
       onoff("Advisory Non-Fatal Error", reg, PCI_AER_COR_ADVISORY_NF_ERROR);
       onoff("Corrected Internal Error", reg, PCI_AER_COR_INTERNAL_ERROR);
       onoff("Header Log Overflow", reg, PCI_AER_COR_HEADER_LOG_OVERFLOW);
}

static void
pci_conf_print_aer_cap_control(pcireg_t reg, bool *tlp_prefix_log)
{

       printf("      First Error Pointer: 0x%04x\n",
           PCIREG_SHIFTOUT(reg, PCI_AER_FIRST_ERROR_PTR));
       onoff("ECRC Generation Capable", reg, PCI_AER_ECRC_GEN_CAPABLE);
       onoff("ECRC Generation Enable", reg, PCI_AER_ECRC_GEN_ENABLE);
       onoff("ECRC Check Capable", reg, PCI_AER_ECRC_CHECK_CAPABLE);
       onoff("ECRC Check Enable", reg, PCI_AER_ECRC_CHECK_ENABLE);
       onoff("Multiple Header Recording Capable", reg,
           PCI_AER_MULT_HDR_CAPABLE);
       onoff("Multiple Header Recording Enable", reg,PCI_AER_MULT_HDR_ENABLE);
       onoff("Completion Timeout Prefix/Header Log Capable", reg,
           PCI_AER_COMPTOUTPRFXHDRLOG_CAP);

       /* This bit is RsvdP if the End-End TLP Prefix Supported bit is Clear */
       if (!tlp_prefix_log)
               return;
       onoff("TLP Prefix Log Present", reg, PCI_AER_TLP_PREFIX_LOG_PRESENT);
       *tlp_prefix_log = (reg & PCI_AER_TLP_PREFIX_LOG_PRESENT) ? true : false;
}

static void
pci_conf_print_aer_cap_rooterr_cmd(pcireg_t reg)
{

       onoff("Correctable Error Reporting Enable", reg,
           PCI_AER_ROOTERR_COR_ENABLE);
       onoff("Non-Fatal Error Reporting Enable", reg,
           PCI_AER_ROOTERR_NF_ENABLE);
       onoff("Fatal Error Reporting Enable", reg, PCI_AER_ROOTERR_F_ENABLE);
}

static void
pci_conf_print_aer_cap_rooterr_status(pcireg_t reg)
{

       onoff("ERR_COR Received", reg, PCI_AER_ROOTERR_COR_ERR);
       onoff("Multiple ERR_COR Received", reg, PCI_AER_ROOTERR_MULTI_COR_ERR);
       onoff("ERR_FATAL/NONFATAL_ERR Received", reg, PCI_AER_ROOTERR_UC_ERR);
       onoff("Multiple ERR_FATAL/NONFATAL_ERR Received", reg,
           PCI_AER_ROOTERR_MULTI_UC_ERR);
       onoff("First Uncorrectable Fatal", reg,PCI_AER_ROOTERR_FIRST_UC_FATAL);
       onoff("Non-Fatal Error Messages Received", reg,PCI_AER_ROOTERR_NF_ERR);
       onoff("Fatal Error Messages Received", reg, PCI_AER_ROOTERR_F_ERR);
       printf("      Advanced Error Interrupt Message Number: 0x%02x\n",
           PCIREG_SHIFTOUT(reg, PCI_AER_ROOTERR_INT_MESSAGE));
}

static void
pci_conf_print_aer_cap_errsrc_id(pcireg_t reg)
{

       printf("      Correctable Source ID: 0x%04x\n",
           PCIREG_SHIFTOUT(reg, PCI_AER_ERRSRC_ID_ERR_COR));
       printf("      ERR_FATAL/NONFATAL Source ID: 0x%04x\n",
           PCIREG_SHIFTOUT(reg, PCI_AER_ERRSRC_ID_ERR_UC));
}

static void
pci_conf_print_aer_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg;
       int pcie_capoff;
       int pcie_devtype = -1;
       bool tlp_prefix_log = false;

       if (pci_conf_find_cap(regs, PCI_CAP_PCIEXPRESS, &pcie_capoff)) {
               reg = regs[o2i(pcie_capoff)];
               pcie_devtype = PCIE_XCAP_TYPE(reg);
               /* PCIe DW9 to DW14 is for PCIe 2.0 and newer */
               if (PCIREG_SHIFTOUT(reg, PCIE_XCAP_VER_MASK) >= 2) {
                       reg = regs[o2i(pcie_capoff + PCIE_DCAP2)];
                       /* End-End TLP Prefix Supported */
                       if (reg & PCIE_DCAP2_EETLP_PREF) {
                               tlp_prefix_log = true;
                       }
               }
       }

       printf("\n  Advanced Error Reporting Register\n");

       reg = regs[o2i(extcapoff + PCI_AER_UC_STATUS)];
       printf("    Uncorrectable Error Status register: 0x%08x\n", reg);
       pci_conf_print_aer_cap_uc(reg);
       reg = regs[o2i(extcapoff + PCI_AER_UC_MASK)];
       printf("    Uncorrectable Error Mask register: 0x%08x\n", reg);
       pci_conf_print_aer_cap_uc(reg);
       reg = regs[o2i(extcapoff + PCI_AER_UC_SEVERITY)];
       printf("    Uncorrectable Error Severity register: 0x%08x\n", reg);
       pci_conf_print_aer_cap_uc(reg);

       reg = regs[o2i(extcapoff + PCI_AER_COR_STATUS)];
       printf("    Correctable Error Status register: 0x%08x\n", reg);
       pci_conf_print_aer_cap_cor(reg);
       reg = regs[o2i(extcapoff + PCI_AER_COR_MASK)];
       printf("    Correctable Error Mask register: 0x%08x\n", reg);
       pci_conf_print_aer_cap_cor(reg);

       reg = regs[o2i(extcapoff + PCI_AER_CAP_CONTROL)];
       printf("    Advanced Error Capabilities and Control register: 0x%08x\n",
           reg);
       pci_conf_print_aer_cap_control(reg, &tlp_prefix_log);
       reg = regs[o2i(extcapoff + PCI_AER_HEADER_LOG)];
       printf("    Header Log register:\n");
       pci_conf_print_regs(regs, extcapoff + PCI_AER_HEADER_LOG,
           extcapoff + PCI_AER_ROOTERR_CMD);

       switch (pcie_devtype) {
       case PCIE_XCAP_TYPE_RP: /* Root Port of PCI Express Root Complex */
       case PCIE_XCAP_TYPE_RC_EVNTC:   /* Root Complex Event Collector */
               reg = regs[o2i(extcapoff + PCI_AER_ROOTERR_CMD)];
               printf("    Root Error Command register: 0x%08x\n", reg);
               pci_conf_print_aer_cap_rooterr_cmd(reg);
               reg = regs[o2i(extcapoff + PCI_AER_ROOTERR_STATUS)];
               printf("    Root Error Status register: 0x%08x\n", reg);
               pci_conf_print_aer_cap_rooterr_status(reg);

               reg = regs[o2i(extcapoff + PCI_AER_ERRSRC_ID)];
               printf("    Error Source Identification register: 0x%08x\n",
                   reg);
               pci_conf_print_aer_cap_errsrc_id(reg);
               break;
       }

       if (tlp_prefix_log) {
               reg = regs[o2i(extcapoff + PCI_AER_TLP_PREFIX_LOG)];
               printf("    TLP Prefix Log register: 0x%08x\n", reg);
       }
}

/*
* Helper function to print the arbitration phase register.
*
* phases: Number of phases in the arbitration tables.
* arbsize: Number of bits in each phase.
* indent: Add more two spaces if it's true.
*/
static void
pci_conf_print_vc_cap_arbtab(const pcireg_t *regs, int off, const char *name,
   const int phases, int arbsize, bool indent)
{
       pcireg_t reg;
       int num_per_reg = 32 / arbsize;
       int i, j;

       printf("%s    %s Arbitration Table:\n", indent ? "  " : "", name);
       for (i = 0; i < phases; i += num_per_reg) {
               reg = regs[o2i(off + (sizeof(uint32_t) * (i / num_per_reg)))];
               for (j = 0; j < num_per_reg; j++) {
                       printf("%s      Phase[%d]: 0x%x\n", indent ? "  " : "",
                           i + j,
                           (uint32_t)(reg & __BITS(arbsize - 1, 0)));
                       reg >>= arbsize;
               }
       }
}

/* For VC, bit 4-7 are reserved. For Port, bit 6-7 are reserved */
static const int arb_phases[8] = {0, 32, 64, 128, 128, 256, 0, 0 };

static void
pci_conf_print_vc_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg, n;
       int arbtab, parbsize;
       pcireg_t arbsel;
       int i, count;

       printf("\n  Virtual Channel Register\n");
       reg = regs[o2i(extcapoff + PCI_VC_CAP1)];
       printf("    Port VC Capability register 1: 0x%08x\n", reg);
       count = PCIREG_SHIFTOUT(reg, PCI_VC_CAP1_EXT_COUNT);
       printf("      Extended VC Count: %d\n", count);
       n = PCIREG_SHIFTOUT(reg, PCI_VC_CAP1_LOWPRI_EXT_COUNT);
       printf("      Low Priority Extended VC Count: %u\n", n);
       n = PCIREG_SHIFTOUT(reg, PCI_VC_CAP1_REFCLK);
       printf("      Reference Clock: %s\n",
           (n == PCI_VC_CAP1_REFCLK_100NS) ? "100ns" : "unknown");
       parbsize = 1 << PCIREG_SHIFTOUT(reg, PCI_VC_CAP1_PORT_ARB_TABLE_SIZE);
       printf("      Port Arbitration Table Entry Size: %dbit\n", parbsize);

       reg = regs[o2i(extcapoff + PCI_VC_CAP2)];
       printf("    Port VC Capability register 2: 0x%08x\n", reg);
       onoff("Hardware fixed arbitration scheme",
           reg, PCI_VC_CAP2_ARB_CAP_HW_FIXED_SCHEME);
       onoff("WRR arbitration with 32 phases",
           reg, PCI_VC_CAP2_ARB_CAP_WRR_32);
       onoff("WRR arbitration with 64 phases",
           reg, PCI_VC_CAP2_ARB_CAP_WRR_64);
       onoff("WRR arbitration with 128 phases",
           reg, PCI_VC_CAP2_ARB_CAP_WRR_128);
       arbtab = PCIREG_SHIFTOUT(reg, PCI_VC_CAP2_ARB_TABLE_OFFSET);
       printf("      VC Arbitration Table Offset: 0x%x\n", arbtab);

       reg = regs[o2i(extcapoff + PCI_VC_CONTROL)] & 0xffff;
       printf("    Port VC Control register: 0x%04x\n", reg);
       arbsel = PCIREG_SHIFTOUT(reg, PCI_VC_CONTROL_VC_ARB_SELECT);
       printf("      VC Arbitration Select: 0x%x\n", arbsel);

       reg = regs[o2i(extcapoff + PCI_VC_STATUS)] >> 16;
       printf("    Port VC Status register: 0x%04x\n", reg);
       onoff("VC Arbitration Table Status",
           reg, PCI_VC_STATUS_LOAD_VC_ARB_TABLE);

       if ((arbtab != 0) && (arbsel != 0))
               pci_conf_print_vc_cap_arbtab(regs, extcapoff + (arbtab * 16),
                   "VC", arb_phases[arbsel], 4, false);

       for (i = 0; i < count + 1; i++) {
               reg = regs[o2i(extcapoff + PCI_VC_RESOURCE_CAP(i))];
               printf("    VC number %d\n", i);
               printf("      VC Resource Capability Register: 0x%08x\n", reg);
               onoff("  Non-configurable Hardware fixed arbitration scheme",
                   reg, PCI_VC_RESOURCE_CAP_PORT_ARB_CAP_HW_FIXED_SCHEME);
               onoff("  WRR arbitration with 32 phases",
                   reg, PCI_VC_RESOURCE_CAP_PORT_ARB_CAP_WRR_32);
               onoff("  WRR arbitration with 64 phases",
                   reg, PCI_VC_RESOURCE_CAP_PORT_ARB_CAP_WRR_64);
               onoff("  WRR arbitration with 128 phases",
                   reg, PCI_VC_RESOURCE_CAP_PORT_ARB_CAP_WRR_128);
               onoff("  Time-based WRR arbitration with 128 phases",
                   reg, PCI_VC_RESOURCE_CAP_PORT_ARB_CAP_TWRR_128);
               onoff("  WRR arbitration with 256 phases",
                   reg, PCI_VC_RESOURCE_CAP_PORT_ARB_CAP_WRR_256);
               onoff("  Advanced Packet Switching",
                   reg, PCI_VC_RESOURCE_CAP_ADV_PKT_SWITCH);
               onoff("  Reject Snoop Transaction",
                   reg, PCI_VC_RESOURCE_CAP_REJCT_SNOOP_TRANS);
               n = PCIREG_SHIFTOUT(reg, PCI_VC_RESOURCE_CAP_MAX_TIME_SLOTS) + 1;
               printf("        Maximum Time Slots: %d\n", n);
               arbtab = PCIREG_SHIFTOUT(reg,
                   PCI_VC_RESOURCE_CAP_PORT_ARB_TABLE_OFFSET);
               printf("        Port Arbitration Table offset: 0x%02x\n",
                   arbtab);

               reg = regs[o2i(extcapoff + PCI_VC_RESOURCE_CTL(i))];
               printf("      VC Resource Control Register: 0x%08x\n", reg);
               printf("        TC/VC Map: 0x%02x\n",
                   PCIREG_SHIFTOUT(reg, PCI_VC_RESOURCE_CTL_TCVC_MAP));
               /*
                * The load Port Arbitration Table bit is used to update
                * the Port Arbitration logic and it's always 0 on read, so
                * we don't print it.
                */
               arbsel = PCIREG_SHIFTOUT(reg, PCI_VC_RESOURCE_CTL_PORT_ARB_SELECT);
               printf("        Port Arbitration Select: 0x%x\n", arbsel);
               n = PCIREG_SHIFTOUT(reg, PCI_VC_RESOURCE_CTL_VC_ID);
               printf("        VC ID: %d\n", n);
               onoff("  VC Enable", reg, PCI_VC_RESOURCE_CTL_VC_ENABLE);

               reg = regs[o2i(extcapoff + PCI_VC_RESOURCE_STA(i))] >> 16;
               printf("      VC Resource Status Register: 0x%08x\n", reg);
               onoff("  Port Arbitration Table Status",
                   reg, PCI_VC_RESOURCE_STA_PORT_ARB_TABLE);
               onoff("  VC Negotiation Pending",
                   reg, PCI_VC_RESOURCE_STA_VC_NEG_PENDING);

               if ((arbtab != 0) && (arbsel != 0))
                       pci_conf_print_vc_cap_arbtab(regs,
                           extcapoff + (arbtab * 16),
                           "Port", arb_phases[arbsel], parbsize, true);
       }
}

/*
* Print Power limit. This encoding is the same among the following registers:
*  - The Captured Slot Power Limit in the PCIe Device Capability Register.
*  - The Slot Power Limit in the PCIe Slot Capability Register.
*  - The Base Power in the Data register of Power Budgeting capability.
*/
static void
pci_conf_print_pcie_power(uint8_t base, unsigned int scale)
{
       unsigned int sdiv = 1;

       if ((scale == 0) && (base > 0xef)) {
               const char *s;

               switch (base) {
               case 0xf0:
                       s = "239W < x <= 250W";
                       break;
               case 0xf1:
                       s = "250W < x <= 275W";
                       break;
               case 0xf2:
                       s = "275W < x <= 300W";
                       break;
               default:
                       s = "reserved for greater than 300W";
                       break;
               }
               printf("%s\n", s);
               return;
       }

       for (unsigned int i = scale; i > 0; i--)
               sdiv *= 10;

       printf("%u", base / sdiv);

       if (scale != 0) {
               printf(".%u", base % sdiv);
       }
       printf ("W\n");
       return;
}

static const char *
pci_conf_print_pwrbdgt_type(uint8_t reg)
{

       switch (reg) {
       case 0x00:
               return "PME Aux";
       case 0x01:
               return "Auxilary";
       case 0x02:
               return "Idle";
       case 0x03:
               return "Sustained";
       case 0x04:
               return "Sustained (Emergency Power Reduction)";
       case 0x05:
               return "Maximum (Emergency Power Reduction)";
       case 0x07:
               return "Maximum";
       default:
               return "Unknown";
       }
}

static const char *
pci_conf_print_pwrbdgt_pwrrail(uint8_t reg)
{

       switch (reg) {
       case 0x00:
               return "Power(12V)";
       case 0x01:
               return "Power(3.3V)";
       case 0x02:
               return "Power(1.5V or 1.8V)";
       case 0x07:
               return "Thermal";
       default:
               return "Unknown";
       }
}

static void
pci_conf_print_pwrbdgt_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg;

       printf("\n  Power Budgeting\n");

       reg = regs[o2i(extcapoff + PCI_PWRBDGT_DSEL)];
       printf("    Data Select register: 0x%08x\n", reg);

       reg = regs[o2i(extcapoff + PCI_PWRBDGT_DATA)];
       printf("    Data register: 0x%08x\n", reg);
       printf("      Base Power: ");
       pci_conf_print_pcie_power(
           PCIREG_SHIFTOUT(reg, PCI_PWRBDGT_DATA_BASEPWR),
           PCIREG_SHIFTOUT(reg, PCI_PWRBDGT_DATA_SCALE));
       printf("      PM Sub State: 0x%hhx\n",
           (uint8_t)PCIREG_SHIFTOUT(reg, PCI_PWRBDGT_PM_SUBSTAT));
       printf("      PM State: D%u\n",
           PCIREG_SHIFTOUT(reg, PCI_PWRBDGT_PM_STAT));
       printf("      Type: %s\n",
           pci_conf_print_pwrbdgt_type(
                   (uint8_t)(PCIREG_SHIFTOUT(reg, PCI_PWRBDGT_TYPE))));
       printf("      Power Rail: %s\n",
           pci_conf_print_pwrbdgt_pwrrail(
                   (uint8_t)(PCIREG_SHIFTOUT(reg, PCI_PWRBDGT_PWRRAIL))));

       reg = regs[o2i(extcapoff + PCI_PWRBDGT_CAP)];
       printf("    Power Budget Capability register: 0x%08x\n", reg);
       onoff("System Allocated",
           reg, PCI_PWRBDGT_CAP_SYSALLOC);
}

static const char *
pci_conf_print_rclink_dcl_cap_elmtype(unsigned char type)
{

       switch (type) {
       case 0x00:
               return "Configuration Space Element";
       case 0x01:
               return "System Egress Port or internal sink (memory)";
       case 0x02:
               return "Internal Root Complex Link";
       default:
               return "Unknown";
       }
}

static void
pci_conf_print_rclink_dcl_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg;
       unsigned char nent, linktype;
       int i;

       printf("\n  Root Complex Link Declaration\n");

       reg = regs[o2i(extcapoff + PCI_RCLINK_DCL_ESDESC)];
       printf("    Element Self Description Register: 0x%08x\n", reg);
       printf("      Element Type: %s\n",
           pci_conf_print_rclink_dcl_cap_elmtype((unsigned char)reg));
       nent = PCIREG_SHIFTOUT(reg, PCI_RCLINK_DCL_ESDESC_NUMLINKENT);
       printf("      Number of Link Entries: %hhu\n", nent);
       printf("      Component ID: %hhu\n",
           (uint8_t)PCIREG_SHIFTOUT(reg, PCI_RCLINK_DCL_ESDESC_COMPID));
       printf("      Port Number: %hhu\n",
           (uint8_t)PCIREG_SHIFTOUT(reg, PCI_RCLINK_DCL_ESDESC_PORTNUM));
       for (i = 0; i < nent; i++) {
               reg = regs[o2i(extcapoff + PCI_RCLINK_DCL_LINKDESC(i))];
               printf("    Link Entry %d:\n", i + 1);
               printf("      Link Description Register: 0x%08x\n", reg);
               onoff("  Link Valid", reg, PCI_RCLINK_DCL_LINKDESC_LVALID);
               linktype = reg & PCI_RCLINK_DCL_LINKDESC_LTYPE;
               onoff2("  Link Type", reg, PCI_RCLINK_DCL_LINKDESC_LTYPE,
                   "Configuration Space", "Memory-Mapped Space");
               onoff("  Associated RCRB Header", reg,
                   PCI_RCLINK_DCL_LINKDESC_ARCRBH);
               printf("        Target Component ID: %hhu\n",
                   (uint8_t)PCIREG_SHIFTOUT(reg,
                   PCI_RCLINK_DCL_LINKDESC_TCOMPID));
               printf("        Target Port Number: %hhu\n",
                   (uint8_t)PCIREG_SHIFTOUT(reg,
                   PCI_RCLINK_DCL_LINKDESC_TPNUM));

               if (linktype == 0) {
                       /* Memory-Mapped Space */
                       reg = regs[o2i(extcapoff
                                   + PCI_RCLINK_DCL_LINKADDR_LT0_LO(i))];
                       printf("      Link Address Low Register: 0x%08x\n",
                           reg);
                       reg = regs[o2i(extcapoff
                                   + PCI_RCLINK_DCL_LINKADDR_LT0_HI(i))];
                       printf("      Link Address High Register: 0x%08x\n",
                           reg);
               } else {
                       unsigned int nb;
                       pcireg_t lo, hi;

                       /* Configuration Space */
                       lo = regs[o2i(extcapoff
                                   + PCI_RCLINK_DCL_LINKADDR_LT1_LO(i))];
                       printf("      Configuration Space Low Register: "
                           "0x%08x\n", lo);
                       hi = regs[o2i(extcapoff
                                   + PCI_RCLINK_DCL_LINKADDR_LT1_HI(i))];
                       printf("      Configuration Space High Register: "
                           "0x%08x\n", hi);
                       nb = PCIREG_SHIFTOUT(lo, PCI_RCLINK_DCL_LINKADDR_LT1_N);
                       printf("        N: %u\n", nb);
                       printf("        Func: %hhu\n",
                           (uint8_t)PCIREG_SHIFTOUT(lo,
                           PCI_RCLINK_DCL_LINKADDR_LT1_FUNC));
                       printf("        Dev: %hhu\n",
                           (uint8_t)PCIREG_SHIFTOUT(lo,
                           PCI_RCLINK_DCL_LINKADDR_LT1_DEV));
                       printf("        Bus: %hhu\n",
                           (uint8_t)PCIREG_SHIFTOUT(lo,
                           PCI_RCLINK_DCL_LINKADDR_LT1_BUS(nb)));
                       lo &= PCI_RCLINK_DCL_LINKADDR_LT1_BAL(i);
                       printf("        Configuration Space Base Address: "
                           "0x%016" PRIx64 "\n", ((uint64_t)hi << 32) + lo);
               }
       }
}

/* XXX pci_conf_print_rclink_ctl_cap */

static void
pci_conf_print_rcec_assoc_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg;

       printf("\n  Root Complex Event Collector Association\n");

       reg = regs[o2i(extcapoff + PCI_RCEC_ASSOC_ASSOCBITMAP)];
       printf("    Association Bitmap for Root Complex Integrated Devices:"
           " 0x%08x\n", reg);

       if (PCI_EXTCAPLIST_VERSION(regs[o2i(extcapoff)]) >= 2) {
               reg = regs[o2i(extcapoff + PCI_RCEC_ASSOC_ASSOCBUSNUM)];
               printf("    RCEC Associated Bus Numbers register: 0x%08x\n",
                   reg);
               printf("      RCEC Next Bus: %u\n",
                   PCIREG_SHIFTOUT(reg,
                       PCI_RCEC_ASSOCBUSNUM_RCECNEXT));
               printf("      RCEC Last Bus: %u\n",
                   PCIREG_SHIFTOUT(reg,
                       PCI_RCEC_ASSOCBUSNUM_RCECLAST));
       }
}

/* XXX pci_conf_print_mfvc_cap */
/* XXX pci_conf_print_vc2_cap */
/* XXX pci_conf_print_rcrb_cap */
/* XXX pci_conf_print_vendor_cap */
/* XXX pci_conf_print_cac_cap */

static void
pci_conf_print_acs_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg, cap, ctl;
       unsigned int size, i;

       printf("\n  Access Control Services\n");

       reg = regs[o2i(extcapoff + PCI_ACS_CAP)];
       cap = reg & 0xffff;
       ctl = reg >> 16;
       printf("    ACS Capability register: 0x%08x\n", cap);
       onoff("ACS Source Validation", cap, PCI_ACS_CAP_V);
       onoff("ACS Transaction Blocking", cap, PCI_ACS_CAP_B);
       onoff("ACS P2P Request Redirect", cap, PCI_ACS_CAP_R);
       onoff("ACS P2P Completion Redirect", cap, PCI_ACS_CAP_C);
       onoff("ACS Upstream Forwarding", cap, PCI_ACS_CAP_U);
       onoff("ACS Egress Control", cap, PCI_ACS_CAP_E);
       onoff("ACS Direct Translated P2P", cap, PCI_ACS_CAP_T);
       size = PCIREG_SHIFTOUT(cap, PCI_ACS_CAP_ECVSIZE);
       if (size == 0)
               size = 256;
       printf("      Egress Control Vector Size: %u\n", size);
       printf("    ACS Control register: 0x%08x\n", ctl);
       onoff("ACS Source Validation Enable", ctl, PCI_ACS_CTL_V);
       onoff("ACS Transaction Blocking Enable", ctl, PCI_ACS_CTL_B);
       onoff("ACS P2P Request Redirect Enable", ctl, PCI_ACS_CTL_R);
       onoff("ACS P2P Completion Redirect Enable", ctl, PCI_ACS_CTL_C);
       onoff("ACS Upstream Forwarding Enable", ctl, PCI_ACS_CTL_U);
       onoff("ACS Egress Control Enable", ctl, PCI_ACS_CTL_E);
       onoff("ACS Direct Translated P2P Enable", ctl, PCI_ACS_CTL_T);

       /*
        * If the P2P Egress Control Capability bit is 0, ignore the Egress
        * Control vector.
        */
       if ((cap & PCI_ACS_CAP_E) == 0)
               return;
       for (i = 0; i < size; i += 32)
               printf("    Egress Control Vector [%u..%u]: 0x%08x\n", i + 31,
                   i, regs[o2i(extcapoff + PCI_ACS_ECV + (i / 32) * 4 )]);
}

static void
pci_conf_print_ari_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg, cap, ctl;

       printf("\n  Alternative Routing-ID Interpretation Register\n");

       reg = regs[o2i(extcapoff + PCI_ARI_CAP)];
       cap = reg & 0xffff;
       ctl = reg >> 16;
       printf("    Capability register: 0x%08x\n", cap);
       onoff("MVFC Function Groups Capability", reg, PCI_ARI_CAP_M);
       onoff("ACS Function Groups Capability", reg, PCI_ARI_CAP_A);
       printf("      Next Function Number: %u\n",
           PCIREG_SHIFTOUT(reg, PCI_ARI_CAP_NXTFN));
       printf("    Control register: 0x%08x\n", ctl);
       onoff("MVFC Function Groups Enable", reg, PCI_ARI_CTL_M);
       onoff("ACS Function Groups Enable", reg, PCI_ARI_CTL_A);
       printf("      Function Group: %u\n",
           PCIREG_SHIFTOUT(reg, PCI_ARI_CTL_FUNCGRP));
}

static void
pci_conf_print_ats_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg, cap, ctl;
       unsigned int num;

       printf("\n  Address Translation Services\n");

       reg = regs[o2i(extcapoff + PCI_ARI_CAP)];
       cap = reg & 0xffff;
       ctl = reg >> 16;
       printf("    Capability register: 0x%04x\n", cap);
       num = PCIREG_SHIFTOUT(reg, PCI_ATS_CAP_INVQDEPTH);
       if (num == 0)
               num = 32;
       printf("      Invalidate Queue Depth: %u\n", num);
       onoff("Page Aligned Request", reg, PCI_ATS_CAP_PALIGNREQ);
       onoff("Global Invalidate", reg, PCI_ATS_CAP_GLOBALINVL);
       onoff("Relaxed Ordering", reg, PCI_ATS_CAP_RELAXORD);

       printf("    Control register: 0x%04x\n", ctl);
       printf("      Smallest Translation Unit: %u\n",
           PCIREG_SHIFTOUT(reg, PCI_ATS_CTL_STU));
       onoff("Enable", reg, PCI_ATS_CTL_EN);
}

static void
pci_conf_print_sernum_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t lo, hi;

       printf("\n  Device Serial Number Register\n");

       lo = regs[o2i(extcapoff + PCI_SERIAL_LOW)];
       hi = regs[o2i(extcapoff + PCI_SERIAL_HIGH)];
       printf("    Serial Number: %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x\n",
           hi >> 24, (hi >> 16) & 0xff, (hi >> 8) & 0xff, hi & 0xff,
           lo >> 24, (lo >> 16) & 0xff, (lo >> 8) & 0xff, lo & 0xff);
}

static void
pci_conf_print_sriov_cap(const pcireg_t *regs, int extcapoff)
{
       char buf[sizeof("99999 MB")];
       pcireg_t reg;
       pcireg_t total_vfs;
       int i;
       bool first;

       printf("\n  Single Root IO Virtualization Register\n");

       reg = regs[o2i(extcapoff + PCI_SRIOV_CAP)];
       printf("    Capabilities register: 0x%08x\n", reg);
       onoff("VF Migration Capable", reg, PCI_SRIOV_CAP_VF_MIGRATION);
       onoff("ARI Capable Hierarchy Preserved", reg,
           PCI_SRIOV_CAP_ARI_CAP_HIER_PRESERVED);
       if (reg & PCI_SRIOV_CAP_VF_MIGRATION) {
               printf("      VF Migration Interrupt Message Number: 0x%03x\n",
                   PCIREG_SHIFTOUT(reg, PCI_SRIOV_CAP_VF_MIGRATION_INTMSG_N));
       }

       reg = regs[o2i(extcapoff + PCI_SRIOV_CTL)] & 0xffff;
       printf("    Control register: 0x%04x\n", reg);
       onoff("VF Enable", reg, PCI_SRIOV_CTL_VF_ENABLE);
       onoff("VF Migration Enable", reg, PCI_SRIOV_CTL_VF_MIGRATION_SUPPORT);
       onoff("VF Migration Interrupt Enable", reg,
           PCI_SRIOV_CTL_VF_MIGRATION_INT_ENABLE);
       onoff("VF Memory Space Enable", reg, PCI_SRIOV_CTL_VF_MSE);
       onoff("ARI Capable Hierarchy", reg, PCI_SRIOV_CTL_ARI_CAP_HIER);

       reg = regs[o2i(extcapoff + PCI_SRIOV_STA)] >> 16;
       printf("    Status register: 0x%04x\n", reg);
       onoff("VF Migration Status", reg, PCI_SRIOV_STA_VF_MIGRATION);

       reg = regs[o2i(extcapoff + PCI_SRIOV_INITIAL_VFS)] & 0xffff;
       printf("    InitialVFs register: 0x%04x\n", reg);
       total_vfs = reg = regs[o2i(extcapoff + PCI_SRIOV_TOTAL_VFS)] >> 16;
       printf("    TotalVFs register: 0x%04x\n", reg);
       reg = regs[o2i(extcapoff + PCI_SRIOV_NUM_VFS)] & 0xffff;
       printf("    NumVFs register: 0x%04x\n", reg);

       reg = regs[o2i(extcapoff + PCI_SRIOV_FUNC_DEP_LINK)] >> 16;
       printf("    Function Dependency Link register: 0x%04x\n", reg);

       reg = regs[o2i(extcapoff + PCI_SRIOV_VF_OFF)] & 0xffff;
       printf("    First VF Offset register: 0x%04x\n", reg);
       reg = regs[o2i(extcapoff + PCI_SRIOV_VF_STRIDE)] >> 16;
       printf("    VF Stride register: 0x%04x\n", reg);
       reg = regs[o2i(extcapoff + PCI_SRIOV_VF_DID)] >> 16;
       printf("    Device ID: 0x%04x\n", reg);

       reg = regs[o2i(extcapoff + PCI_SRIOV_PAGE_CAP)];
       printf("    Supported Page Sizes register: 0x%08x\n", reg);
       printf("      Supported Page Size:");
       for (i = 0, first = true; i < 32; i++) {
               if (reg & __BIT(i)) {
#ifdef _KERNEL
                       format_bytes(buf, sizeof(buf), 1LL << (i + 12));
#else
                       humanize_number(buf, sizeof(buf), 1LL << (i + 12), "B",
                           HN_AUTOSCALE, 0);
#endif
                       printf("%s %s", first ? "" : ",", buf);
                       first = false;
               }
       }
       printf("\n");

       reg = regs[o2i(extcapoff + PCI_SRIOV_PAGE_SIZE)];
       printf("    System Page Sizes register: 0x%08x\n", reg);
       printf("      Page Size: ");
       if (reg != 0) {
               int bitpos = ffs(reg) -1;

               /* Assume only one bit is set. */
#ifdef _KERNEL
               format_bytes(buf, sizeof(buf), 1LL << (bitpos + 12));
#else
               humanize_number(buf, sizeof(buf), 1LL << (bitpos + 12),
                   "B", HN_AUTOSCALE, 0);
#endif
               printf("%s", buf);
       } else {
               printf("unknown");
       }
       printf("\n");

       for (i = 0; i < 6; i++) {
               reg = regs[o2i(extcapoff + PCI_SRIOV_BAR(i))];
               printf("    VF BAR%d register: 0x%08x\n", i, reg);
       }

       if (total_vfs > 0) {
               reg = regs[o2i(extcapoff + PCI_SRIOV_VF_MIG_STA_AR)];
               printf("    VF Migration State Array Offset register: 0x%08x\n",
                   reg);
               printf("      VF Migration State Offset: 0x%08x\n",
                   PCIREG_SHIFTOUT(reg, PCI_SRIOV_VF_MIG_STA_OFFSET));
               i = PCIREG_SHIFTOUT(reg, PCI_SRIOV_VF_MIG_STA_BIR);
               printf("      VF Migration State BIR: ");
               if (i >= 0 && i <= 5) {
                       printf("BAR%d", i);
               } else {
                       printf("unknown BAR (%d)", i);
               }
               printf("\n");
       }
}

/* XXX pci_conf_print_mriov_cap */

static void
pci_conf_print_multicast_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg, cap, ctl;
       pcireg_t regl, regh;
       uint64_t addr;
       int n;

       printf("\n  Multicast\n");

       reg = regs[o2i(extcapoff + PCI_MCAST_CTL)];
       cap = reg & 0xffff;
       ctl = reg >> 16;
       printf("    Capability Register: 0x%04x\n", cap);
       printf("      Max Group: %u\n",
           (pcireg_t)(reg & PCI_MCAST_CAP_MAXGRP) + 1);

       /* Endpoint Only */
       n = PCIREG_SHIFTOUT(reg, PCI_MCAST_CAP_WINSIZEREQ);
       if (n > 0)
               printf("      Window Size Requested: %d\n", 1 << (n - 1));

       onoff("ECRC Regeneration Supported", reg, PCI_MCAST_CAP_ECRCREGEN);

       printf("    Control Register: 0x%04x\n", ctl);
       printf("      Num Group: %u\n",
           PCIREG_SHIFTOUT(reg, PCI_MCAST_CTL_NUMGRP) + 1);
       onoff("Enable", reg, PCI_MCAST_CTL_ENA);

       regl = regs[o2i(extcapoff + PCI_MCAST_BARL)];
       regh = regs[o2i(extcapoff + PCI_MCAST_BARH)];
       printf("    Base Address Register 0: 0x%08x\n", regl);
       printf("    Base Address Register 1: 0x%08x\n", regh);
       printf("      Index Position: %u\n",
           (unsigned int)(regl & PCI_MCAST_BARL_INDPOS));
       addr = ((uint64_t)regh << 32) | (regl & PCI_MCAST_BARL_ADDR);
       printf("      Base Address: 0x%016" PRIx64 "\n", addr);

       regl = regs[o2i(extcapoff + PCI_MCAST_RECVL)];
       regh = regs[o2i(extcapoff + PCI_MCAST_RECVH)];
       printf("    Receive Register 0: 0x%08x\n", regl);
       printf("    Receive Register 1: 0x%08x\n", regh);

       regl = regs[o2i(extcapoff + PCI_MCAST_BLOCKALLL)];
       regh = regs[o2i(extcapoff + PCI_MCAST_BLOCKALLH)];
       printf("    Block All Register 0: 0x%08x\n", regl);
       printf("    Block All Register 1: 0x%08x\n", regh);

       regl = regs[o2i(extcapoff + PCI_MCAST_BLOCKUNTRNSL)];
       regh = regs[o2i(extcapoff + PCI_MCAST_BLOCKUNTRNSH)];
       printf("    Block Untranslated Register 0: 0x%08x\n", regl);
       printf("    Block Untranslated Register 1: 0x%08x\n", regh);

       regl = regs[o2i(extcapoff + PCI_MCAST_OVERLAYL)];
       regh = regs[o2i(extcapoff + PCI_MCAST_OVERLAYH)];
       printf("    Overlay BAR 0: 0x%08x\n", regl);
       printf("    Overlay BAR 1: 0x%08x\n", regh);

       n = regl & PCI_MCAST_OVERLAYL_SIZE;
       printf("      Overlay Size: ");
       if (n >= 6)
               printf("%d\n", n);
       else
               printf("off\n");
       addr = ((uint64_t)regh << 32) | (regl & PCI_MCAST_OVERLAYL_ADDR);
       printf("      Overlay BAR: 0x%016" PRIx64 "\n", addr);
}

static void
pci_conf_print_page_req_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg, ctl, sta;

       printf("\n  Page Request\n");

       reg = regs[o2i(extcapoff + PCI_PAGE_REQ_CTL)];
       ctl = reg & 0xffff;
       sta = reg >> 16;
       printf("    Control Register: 0x%04x\n", ctl);
       onoff("Enable", reg, PCI_PAGE_REQ_CTL_E);
       onoff("Reset", reg, PCI_PAGE_REQ_CTL_R);

       printf("    Status Register: 0x%04x\n", sta);
       onoff("Response Failure", reg, PCI_PAGE_REQ_STA_RF);
       onoff("Unexpected Page Request Group Index", reg,
           PCI_PAGE_REQ_STA_UPRGI);
       onoff("Stopped", reg, PCI_PAGE_REQ_STA_S);
       onoff("PRG Response PASID Required", reg, PCI_PAGE_REQ_STA_PASIDR);

       reg = regs[o2i(extcapoff + PCI_PAGE_REQ_OUTSTCAPA)];
       printf("    Outstanding Page Request Capacity: %u\n", reg);
       reg = regs[o2i(extcapoff + PCI_PAGE_REQ_OUTSTALLOC)];
       printf("    Outstanding Page Request Allocation: %u\n", reg);
}

/* XXX pci_conf_print_amd_cap */

#define MEM_PBUFSIZE    sizeof("999GB")

static void
pci_conf_print_resizbar_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t cap, ctl;
       unsigned int bars, i, n;
       char pbuf[MEM_PBUFSIZE];

       printf("\n  Resizable BAR\n");

       /* Get Number of Resizable BARs */
       ctl = regs[o2i(extcapoff + PCI_RESIZBAR_CTL(0))];
       bars = PCIREG_SHIFTOUT(ctl, PCI_RESIZBAR_CTL_NUMBAR);
       printf("    Number of Resizable BARs: ");
       if (bars <= 6)
               printf("%u\n", bars);
       else {
               printf("incorrect (%u)\n", bars);
               return;
       }

       for (n = 0; n < 6; n++) {
               cap = regs[o2i(extcapoff + PCI_RESIZBAR_CAP(n))];
               printf("    Capability register(%u): 0x%08x\n", n, cap);
               if ((cap & PCI_RESIZBAR_CAP_SIZEMASK) == 0)
                       continue; /* Not Used */
               printf("      Acceptable BAR sizes:");
               for (i = 4; i <= 23; i++) {
                       if ((cap & (1 << i)) != 0) {
                               humanize_number(pbuf, MEM_PBUFSIZE,
                                   (int64_t)1024 * 1024 << (i - 4), "B",
#ifdef _KERNEL
                                   1);
#else
                                   HN_AUTOSCALE, HN_NOSPACE);
#endif
                               printf(" %s", pbuf);
                       }
               }
               printf("\n");

               ctl = regs[o2i(extcapoff + PCI_RESIZBAR_CTL(n))];
               printf("    Control register(%u): 0x%08x\n", n, ctl);
               printf("      BAR Index: %u\n",
                   PCIREG_SHIFTOUT(ctl, PCI_RESIZBAR_CTL_BARIDX));
               humanize_number(pbuf, MEM_PBUFSIZE,
                   (int64_t)1024 * 1024
                   << PCIREG_SHIFTOUT(ctl, PCI_RESIZBAR_CTL_BARSIZ),
                   "B",
#ifdef _KERNEL
                   1);
#else
                   HN_AUTOSCALE, HN_NOSPACE);
#endif
               printf("      BAR Size: %s\n", pbuf);
       }
}

static void
pci_conf_print_dpa_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg;
       unsigned int substmax, i;

       printf("\n  Dynamic Power Allocation\n");

       reg = regs[o2i(extcapoff + PCI_DPA_CAP)];
       printf("    Capability register: 0x%08x\n", reg);
       substmax = PCIREG_SHIFTOUT(reg, PCI_DPA_CAP_SUBSTMAX);
       printf("      Substate Max: %u\n", substmax);
       printf("      Transition Latency Unit: ");
       switch (PCIREG_SHIFTOUT(reg, PCI_DPA_CAP_TLUINT)) {
       case 0:
               printf("1ms\n");
               break;
       case 1:
               printf("10ms\n");
               break;
       case 2:
               printf("100ms\n");
               break;
       default:
               printf("reserved\n");
               break;
       }
       printf("      Power Allocation Scale: ");
       switch (PCIREG_SHIFTOUT(reg, PCI_DPA_CAP_PAS)) {
       case 0:
               printf("10.0x\n");
               break;
       case 1:
               printf("1.0x\n");
               break;
       case 2:
               printf("0.1x\n");
               break;
       case 3:
               printf("0.01x\n");
               break;
       }
       printf("      Transition Latency Value 0: %u\n",
           PCIREG_SHIFTOUT(reg, PCI_DPA_CAP_XLCY0));
       printf("      Transition Latency Value 1: %u\n",
           PCIREG_SHIFTOUT(reg, PCI_DPA_CAP_XLCY1));

       reg = regs[o2i(extcapoff + PCI_DPA_LATIND)];
       printf("    Latency Indicator register: 0x%08x\n", reg);

       reg = regs[o2i(extcapoff + PCI_DPA_CS)];
       printf("    Status register: 0x%04x\n", reg & 0xffff);
       printf("      Substate Status: 0x%02x\n",
           PCIREG_SHIFTOUT(reg, PCI_DPA_CS_SUBSTSTAT));
       onoff("Substate Control Enabled", reg, PCI_DPA_CS_SUBSTCTLEN);
       printf("    Control register: 0x%04x\n", reg >> 16);
       printf("      Substate Control: 0x%02x\n",
           PCIREG_SHIFTOUT(reg, PCI_DPA_CS_SUBSTCTL));

       for (i = 0; i <= substmax; i++)
               printf("    Substate Power Allocation register %d: 0x%02x\n",
                   i, (regs[PCI_DPA_PWRALLOC + (i / 4)] >> (i % 4) & 0xff));
}

static const char *
pci_conf_print_tph_req_cap_sttabloc(uint8_t val)
{

       switch (val) {
       case PCI_TPH_REQ_STTBLLOC_NONE:
               return "Not Present";
       case PCI_TPH_REQ_STTBLLOC_TPHREQ:
               return "in the TPH Requester Capability Structure";
       case PCI_TPH_REQ_STTBLLOC_MSIX:
               return "in the MSI-X Table";
       default:
               return "Unknown";
       }
}

static void
pci_conf_print_tph_req_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg;
       int size = 0, i, j;
       uint8_t sttbloc;

       printf("\n  TPH Requester Extended Capability\n");

       reg = regs[o2i(extcapoff + PCI_TPH_REQ_CAP)];
       printf("    TPH Requester Capabililty register: 0x%08x\n", reg);
       onoff("No ST Mode Supported", reg, PCI_TPH_REQ_CAP_NOST);
       onoff("Interrupt Vector Mode Supported", reg, PCI_TPH_REQ_CAP_INTVEC);
       onoff("Device Specific Mode Supported", reg, PCI_TPH_REQ_CAP_DEVSPEC);
       onoff("Extend TPH Requester Supported", reg, PCI_TPH_REQ_CAP_XTPHREQ);
       sttbloc = PCIREG_SHIFTOUT(reg, PCI_TPH_REQ_CAP_STTBLLOC);
       printf("      ST Table Location: %s\n",
           pci_conf_print_tph_req_cap_sttabloc(sttbloc));
       if (sttbloc == PCI_TPH_REQ_STTBLLOC_TPHREQ) {
               size = PCIREG_SHIFTOUT(reg, PCI_TPH_REQ_CAP_STTBLSIZ) + 1;
               printf("      ST Table Size: %d\n", size);
       }

       reg = regs[o2i(extcapoff + PCI_TPH_REQ_CTL)];
       printf("    TPH Requester Control register: 0x%08x\n", reg);
       printf("      ST Mode Select: ");
       switch (PCIREG_SHIFTOUT(reg, PCI_TPH_REQ_CTL_STSEL)) {
       case PCI_TPH_REQ_CTL_STSEL_NO:
               printf("No ST Mode\n");
               break;
       case PCI_TPH_REQ_CTL_STSEL_IV:
               printf("Interrupt Vector Mode\n");
               break;
       case PCI_TPH_REQ_CTL_STSEL_DS:
               printf("Device Specific Mode\n");
               break;
       default:
               printf("(reserved value)\n");
               break;
       }
       printf("      TPH Requester Enable: ");
       switch (PCIREG_SHIFTOUT(reg, PCI_TPH_REQ_CTL_TPHREQEN)) {
       case PCI_TPH_REQ_CTL_TPHREQEN_NO: /* 0x0 */
               printf("Not permitted\n");
               break;
       case PCI_TPH_REQ_CTL_TPHREQEN_TPH:
               printf("TPH and not Extended TPH\n");
               break;
       case PCI_TPH_REQ_CTL_TPHREQEN_ETPH:
               printf("TPH and Extended TPH");
               break;
       default:
               printf("(reserved value)\n");
               break;
       }

       if (sttbloc != PCI_TPH_REQ_STTBLLOC_TPHREQ)
               return;

       for (i = 0; i < size ; i += 2) {
               reg = regs[o2i(extcapoff + PCI_TPH_REQ_STTBL + i / 2)];
               for (j = 0; j < 2 ; j++) {
                       uint32_t entry = reg;

                       if (j != 0)
                               entry >>= 16;
                       entry &= 0xffff;
                       printf("    TPH ST Table Entry (%d): 0x%04"PRIx32"\n",
                           i + j, entry);
               }
       }
}

static void
pci_conf_print_ltr_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg;

       printf("\n  Latency Tolerance Reporting\n");
       reg = regs[o2i(extcapoff + PCI_LTR_MAXSNOOPLAT)];
       printf("    Max Snoop Latency Register: 0x%04x\n", reg & 0xffff);
       printf("      Max Snoop Latency: %juns\n",
           (uintmax_t)(PCIREG_SHIFTOUT(reg, PCI_LTR_MAXSNOOPLAT_VAL)
           * PCI_LTR_SCALETONS(PCIREG_SHIFTOUT(reg, PCI_LTR_MAXSNOOPLAT_SCALE))));
       printf("    Max No-Snoop Latency Register: 0x%04x\n", reg >> 16);
       printf("      Max No-Snoop Latency: %juns\n",
           (uintmax_t)(PCIREG_SHIFTOUT(reg, PCI_LTR_MAXNOSNOOPLAT_VAL)
           * PCI_LTR_SCALETONS(PCIREG_SHIFTOUT(reg, PCI_LTR_MAXNOSNOOPLAT_SCALE))));
}

static void
pci_conf_print_sec_pcie_cap(const pcireg_t *regs, int extcapoff)
{
       int pcie_capoff;
       pcireg_t reg;
       int i, maxlinkwidth;

       printf("\n  Secondary PCI Express Register\n");

       reg = regs[o2i(extcapoff + PCI_SECPCIE_LCTL3)];
       printf("    Link Control 3 register: 0x%08x\n", reg);
       onoff("Perform Equalization", reg, PCI_SECPCIE_LCTL3_PERFEQ);
       onoff("Link Equalization Request Interrupt Enable",
           reg, PCI_SECPCIE_LCTL3_LINKEQREQ_IE);
       printf("      Enable Lower SKP OS Generation Vector:");
       pci_print_pcie_linkspeedvector(
               PCIREG_SHIFTOUT(reg, PCI_SECPCIE_LCTL3_ELSKPOSGENV));
       printf("\n");

       reg = regs[o2i(extcapoff + PCI_SECPCIE_LANEERR_STA)];
       printf("    Lane Error Status register: 0x%08x\n", reg);

       /* Get Max Link Width */
       if (pci_conf_find_cap(regs, PCI_CAP_PCIEXPRESS, &pcie_capoff)) {
               reg = regs[o2i(pcie_capoff + PCIE_LCAP)];
               maxlinkwidth = PCIREG_SHIFTOUT(reg, PCIE_LCAP_MAX_WIDTH);
       } else {
               printf("error: failed to get PCIe capability\n");
               return;
       }
       for (i = 0; i < maxlinkwidth; i++) {
               reg = regs[o2i(extcapoff + PCI_SECPCIE_EQCTL(i))];
               if (i % 2 != 0)
                       reg >>= 16;
               else
                       reg &= 0xffff;
               printf("    Equalization Control Register (Link %d): 0x%04x\n",
                   i, reg);
               printf("      Downstream Port Transmit Preset: 0x%x\n",
                   PCIREG_SHIFTOUT(reg,
                       PCI_SECPCIE_EQCTL_DP_XMIT_PRESET));
               printf("      Downstream Port Receive Hint: 0x%x\n",
                   PCIREG_SHIFTOUT(reg, PCI_SECPCIE_EQCTL_DP_RCV_HINT));
               printf("      Upstream Port Transmit Preset: 0x%x\n",
                   PCIREG_SHIFTOUT(reg,
                       PCI_SECPCIE_EQCTL_UP_XMIT_PRESET));
               printf("      Upstream Port Receive Hint: 0x%x\n",
                   PCIREG_SHIFTOUT(reg, PCI_SECPCIE_EQCTL_UP_RCV_HINT));
       }
}

/* XXX pci_conf_print_pmux_cap */

static void
pci_conf_print_pasid_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg, cap, ctl;
       unsigned int num;

       printf("\n  Process Address Space ID\n");

       reg = regs[o2i(extcapoff + PCI_PASID_CAP)];
       cap = reg & 0xffff;
       ctl = reg >> 16;
       printf("    PASID Capability Register: 0x%04x\n", cap);
       onoff("Execute Permission Supported", reg, PCI_PASID_CAP_XPERM);
       onoff("Privileged Mode Supported", reg, PCI_PASID_CAP_PRIVMODE);
       num = (1 << PCIREG_SHIFTOUT(reg, PCI_PASID_CAP_MAXPASIDW)) - 1;
       printf("      Max PASID Width: %u\n", num);

       printf("    PASID Control Register: 0x%04x\n", ctl);
       onoff("PASID Enable", reg, PCI_PASID_CTL_PASID_EN);
       onoff("Execute Permission Enable", reg, PCI_PASID_CTL_XPERM_EN);
       onoff("Privileged Mode Enable", reg, PCI_PASID_CTL_PRIVMODE_EN);
}

static void
pci_conf_print_lnr_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg, cap, ctl;
       unsigned int num;

       printf("\n  LN Requester\n");

       reg = regs[o2i(extcapoff + PCI_LNR_CAP)];
       cap = reg & 0xffff;
       ctl = reg >> 16;
       printf("    LNR Capability register: 0x%04x\n", cap);
       onoff("LNR-64 Supported", reg, PCI_LNR_CAP_64);
       onoff("LNR-128 Supported", reg, PCI_LNR_CAP_128);
       num = 1 << PCIREG_SHIFTOUT(reg, PCI_LNR_CAP_REGISTMAX);
       printf("      LNR Registration MAX: %u\n", num);

       printf("    LNR Control register: 0x%04x\n", ctl);
       onoff("LNR Enable", reg, PCI_LNR_CTL_EN);
       onoff("LNR CLS", reg, PCI_LNR_CTL_CLS);
       num = 1 << PCIREG_SHIFTOUT(reg, PCI_LNR_CTL_REGISTLIM);
       printf("      LNR Registration Limit: %u\n", num);
}

static void
pci_conf_print_dpc_pio(pcireg_t r)
{
       onoff("Cfg Request received UR Completion", r,PCI_DPC_RPPIO_CFGUR_CPL);
       onoff("Cfg Request received CA Completion", r,PCI_DPC_RPPIO_CFGCA_CPL);
       onoff("Cfg Request Completion Timeout", r, PCI_DPC_RPPIO_CFG_CTO);
       onoff("I/O Request received UR Completion", r, PCI_DPC_RPPIO_IOUR_CPL);
       onoff("I/O Request received CA Completion", r, PCI_DPC_RPPIO_IOCA_CPL);
       onoff("I/O Request Completion Timeout", r, PCI_DPC_RPPIO_IO_CTO);
       onoff("Mem Request received UR Completion", r,PCI_DPC_RPPIO_MEMUR_CPL);
       onoff("Mem Request received CA Completion", r,PCI_DPC_RPPIO_MEMCA_CPL);
       onoff("Mem Request Completion Timeout", r, PCI_DPC_RPPIO_MEM_CTO);
}

static void
pci_conf_print_dpc_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg, cap, ctl, stat, errsrc;
       const char *trigstr;
       bool rpext;

       printf("\n  Downstream Port Containment\n");

       reg = regs[o2i(extcapoff + PCI_DPC_CCR)];
       cap = reg & 0xffff;
       ctl = reg >> 16;
       rpext = (reg & PCI_DPCCAP_RPEXT) ? true : false;
       printf("    DPC Capability register: 0x%04x\n", cap);
       printf("      DPC Interrupt Message Number: %02x\n",
           (unsigned int)(cap & PCI_DPCCAP_IMSGN));
       onoff("RP Extensions for DPC", reg, PCI_DPCCAP_RPEXT);
       onoff("Poisoned TLP Egress Blocking Supported", reg,
           PCI_DPCCAP_POISONTLPEB);
       onoff("DPC Software Triggering Supported", reg, PCI_DPCCAP_SWTRIG);
       printf("      RP PIO Log Size: %u\n",
           PCIREG_SHIFTOUT(reg, PCI_DPCCAP_RPPIOLOGSZ));
       onoff("DL_Active ERR_COR Signaling Supported", reg,
           PCI_DPCCAP_DLACTECORS);
       printf("    DPC Control register: 0x%04x\n", ctl);
       switch (PCIREG_SHIFTOUT(reg, PCI_DPCCTL_TIRGEN)) {
       case 0:
               trigstr = "disabled";
               break;
       case 1:
               trigstr = "enabled(ERR_FATAL)";
               break;
       case 2:
               trigstr = "enabled(ERR_NONFATAL or ERR_FATAL)";
               break;
       default:
               trigstr = "(reserverd)";
               break;
       }
       printf("      DPC Trigger Enable: %s\n", trigstr);
       printf("      DPC Completion Control: %s Completion Status\n",
           (reg & PCI_DPCCTL_COMPCTL)
           ? "Unsupported Request(UR)" : "Completer Abort(CA)");
       onoff("DPC Interrupt Enable", reg, PCI_DPCCTL_IE);
       onoff("DPC ERR_COR Enable", reg, PCI_DPCCTL_ERRCOREN);
       onoff("Poisoned TLP Egress Blocking Enable", reg,
           PCI_DPCCTL_POISONTLPEB);
       onoff("DPC Software Trigger", reg, PCI_DPCCTL_SWTRIG);
       onoff("DL_Active ERR_COR Enable", reg, PCI_DPCCTL_DLACTECOR);

       reg = regs[o2i(extcapoff + PCI_DPC_STATESID)];
       stat = reg & 0xffff;
       errsrc = reg >> 16;
       printf("    DPC Status register: 0x%04x\n", stat);
       onoff("DPC Trigger Status", reg, PCI_DPCSTAT_TSTAT);
       switch (PCIREG_SHIFTOUT(reg, PCI_DPCSTAT_TREASON)) {
       case 0:
               trigstr = "an unmasked uncorrectable error";
               break;
       case 1:
               trigstr = "receiving an ERR_NONFATAL";
               break;
       case 2:
               trigstr = "receiving an ERR_FATAL";
               break;
       case 3:
               trigstr = "DPC Trigger Reason Extension field";
               break;
       }
       printf("      DPC Trigger Reason: Due to %s\n", trigstr);
       onoff("DPC Interrupt Status", reg, PCI_DPCSTAT_ISTAT);
       if (rpext)
               onoff("DPC RP Busy", reg, PCI_DPCSTAT_RPBUSY);
       switch (PCIREG_SHIFTOUT(reg, PCI_DPCSTAT_TREASON)) {
       case 0:
               trigstr = "Due to RP PIO error";
               break;
       case 1:
               trigstr = "Due to the DPC Software trigger bit";
               break;
       default:
               trigstr = "(reserved)";
               break;
       }
       printf("      DPC Trigger Reason Extension: %s\n", trigstr);
       if (rpext)
               printf("      RP PIO First Error Pointer: 0x%02x\n",
                   PCIREG_SHIFTOUT(reg, PCI_DPCSTAT_RPPIOFEP));
       printf("    DPC Error Source ID register: 0x%04x\n", errsrc);

       if (!rpext)
               return;
       /*
        * All of the following registers are implemented by a device which has
        * RP Extensions for DPC
        */

       reg = regs[o2i(extcapoff + PCI_DPC_RPPIO_STAT)];
       printf("    RP PIO Status Register: 0x%08x\n", reg);
       pci_conf_print_dpc_pio(reg);

       reg = regs[o2i(extcapoff + PCI_DPC_RPPIO_MASK)];
       printf("    RP PIO Mask Register: 0x%08x\n", reg);
       pci_conf_print_dpc_pio(reg);

       reg = regs[o2i(extcapoff + PCI_DPC_RPPIO_SEVE)];
       printf("    RP PIO Severity Register: 0x%08x\n", reg);
       pci_conf_print_dpc_pio(reg);

       reg = regs[o2i(extcapoff + PCI_DPC_RPPIO_SYSERR)];
       printf("    RP PIO SysError Register: 0x%08x\n", reg);
       pci_conf_print_dpc_pio(reg);

       reg = regs[o2i(extcapoff + PCI_DPC_RPPIO_EXCPT)];
       printf("    RP PIO Exception Register: 0x%08x\n", reg);
       pci_conf_print_dpc_pio(reg);

       printf("    RP PIO Header Log Register: start from 0x%03x\n",
           extcapoff + PCI_DPC_RPPIO_HLOG);
       printf("    RP PIO ImpSpec Log Register: start from 0x%03x\n",
           extcapoff + PCI_DPC_RPPIO_IMPSLOG);
       printf("    RP PIO TLP Prefix Log Register: start from 0x%03x\n",
           extcapoff + PCI_DPC_RPPIO_TLPPLOG);
}


static int
pci_conf_l1pm_cap_tposcale(unsigned char scale)
{

       /* Return scale in us */
       switch (scale) {
       case 0x0:
               return 2;
       case 0x1:
               return 10;
       case 0x2:
               return 100;
       default:
               return -1;
       }
}

static void
pci_conf_print_l1pm_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg;
       int scale, val;
       int pcie_capoff;

       printf("\n  L1 PM Substates\n");

       reg = regs[o2i(extcapoff + PCI_L1PM_CAP)];
       printf("    L1 PM Substates Capability register: 0x%08x\n", reg);
       onoff("PCI-PM L1.2 Supported", reg, PCI_L1PM_CAP_PCIPM12);
       onoff("PCI-PM L1.1 Supported", reg, PCI_L1PM_CAP_PCIPM11);
       onoff("ASPM L1.2 Supported", reg, PCI_L1PM_CAP_ASPM12);
       onoff("ASPM L1.1 Supported", reg, PCI_L1PM_CAP_ASPM11);
       onoff("L1 PM Substates Supported", reg, PCI_L1PM_CAP_L1PM);
       /* The Link Activation Supported bit is only for Downstream Port */
       if (pci_conf_find_cap(regs, PCI_CAP_PCIEXPRESS, &pcie_capoff)) {
               uint32_t t = regs[o2i(pcie_capoff)];

               if ((t == PCIE_XCAP_TYPE_RP) || (t == PCIE_XCAP_TYPE_DOWN))
                       onoff("Link Activation Supported", reg,
                           PCI_L1PM_CAP_LA);
       }
       printf("      Port Common Mode Restore Time: %uus\n",
           PCIREG_SHIFTOUT(reg, PCI_L1PM_CAP_PCMRT));
       scale = pci_conf_l1pm_cap_tposcale(
           PCIREG_SHIFTOUT(reg, PCI_L1PM_CAP_PTPOSCALE));
       val = PCIREG_SHIFTOUT(reg, PCI_L1PM_CAP_PTPOVAL);
       printf("      Port T_POWER_ON: ");
       if (scale == -1)
               printf("unknown\n");
       else
               printf("%dus\n", val * scale);

       reg = regs[o2i(extcapoff + PCI_L1PM_CTL1)];
       printf("    L1 PM Substates Control register 1: 0x%08x\n", reg);
       onoff("PCI-PM L1.2 Enable", reg, PCI_L1PM_CTL1_PCIPM12_EN);
       onoff("PCI-PM L1.1 Enable", reg, PCI_L1PM_CTL1_PCIPM11_EN);
       onoff("ASPM L1.2 Enable", reg, PCI_L1PM_CTL1_ASPM12_EN);
       onoff("ASPM L1.1 Enable", reg, PCI_L1PM_CTL1_ASPM11_EN);
       onoff("Link Activation Interrupt Enable", reg, PCI_L1PM_CTL1_LAIE);
       onoff("Link Activation Control", reg, PCI_L1PM_CTL1_LA);
       printf("      Common Mode Restore Time: %uus\n",
           PCIREG_SHIFTOUT(reg, PCI_L1PM_CTL1_CMRT));
       scale = PCI_LTR_SCALETONS(PCIREG_SHIFTOUT(reg, PCI_L1PM_CTL1_LTRTHSCALE));
       val = PCIREG_SHIFTOUT(reg, PCI_L1PM_CTL1_LTRTHVAL);
       printf("      LTR L1.2 THRESHOLD: %dus\n", val * scale);

       reg = regs[o2i(extcapoff + PCI_L1PM_CTL2)];
       printf("    L1 PM Substates Control register 2: 0x%08x\n", reg);
       scale = pci_conf_l1pm_cap_tposcale(
               PCIREG_SHIFTOUT(reg, PCI_L1PM_CTL2_TPOSCALE));
       val = PCIREG_SHIFTOUT(reg, PCI_L1PM_CTL2_TPOVAL);
       printf("      T_POWER_ON: ");
       if (scale == -1)
               printf("unknown\n");
       else
               printf("%dus\n", val * scale);

       if (PCI_EXTCAPLIST_VERSION(regs[o2i(extcapoff)]) >= 2) {
               reg = regs[o2i(extcapoff + PCI_L1PM_CTL2)];
               printf("    L1 PM Substates Status register: 0x%08x\n", reg);
               onoff("Link Activation Status", reg, PCI_L1PM_STAT_LA);
       }
}

static void
pci_conf_print_ptm_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg;
       uint32_t val;

       printf("\n  Precision Time Measurement\n");

       reg = regs[o2i(extcapoff + PCI_PTM_CAP)];
       printf("    PTM Capability register: 0x%08x\n", reg);
       onoff("PTM Requester Capable", reg, PCI_PTM_CAP_REQ);
       onoff("PTM Responder Capable", reg, PCI_PTM_CAP_RESP);
       onoff("PTM Root Capable", reg, PCI_PTM_CAP_ROOT);
       printf("      Local Clock Granularity: ");
       val = PCIREG_SHIFTOUT(reg, PCI_PTM_CAP_LCLCLKGRNL);
       switch (val) {
       case 0:
               printf("Not implemented\n");
               break;
       case 0xffff:
               printf("> 254ns\n");
               break;
       default:
               printf("%uns\n", val);
               break;
       }

       reg = regs[o2i(extcapoff + PCI_PTM_CTL)];
       printf("    PTM Control register: 0x%08x\n", reg);
       onoff("PTM Enable", reg, PCI_PTM_CTL_EN);
       onoff("Root Select", reg, PCI_PTM_CTL_ROOTSEL);
       printf("      Effective Granularity: ");
       val = PCIREG_SHIFTOUT(reg, PCI_PTM_CTL_EFCTGRNL);
       switch (val) {
       case 0:
               printf("Unknown\n");
               break;
       case 0xffff:
               printf("> 254ns\n");
               break;
       default:
               printf("%uns\n", val);
               break;
       }
}

/* XXX pci_conf_print_mpcie_cap */
/* XXX pci_conf_print_frsq_cap */
/* XXX pci_conf_print_rtr_cap */
/* XXX pci_conf_print_desigvndsp_cap */
/* XXX pci_conf_print_vf_resizbar_cap */

static void
pci_conf_print_dlf_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg;

       printf("\n  Data link Feature Register\n");
       reg = regs[o2i(extcapoff + PCI_DLF_CAP)];
       printf("    Capability register: 0x%08x\n", reg);
       onoff("Scaled Flow Control", reg, PCI_DLF_LFEAT_SCLFCTL);
       onoff("DLF Exchange enable", reg, PCI_DLF_CAP_XCHG);

       reg = regs[o2i(extcapoff + PCI_DLF_STAT)];
       printf("    Status register: 0x%08x\n", reg);
       onoff("Scaled Flow Control", reg, PCI_DLF_LFEAT_SCLFCTL);
       onoff("Remote DLF supported Valid", reg, PCI_DLF_STAT_RMTVALID);
}

static void
pci_conf_print_pl16g_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg, lwidth;
       int pcie_capoff;
       unsigned int i, j;

       printf("\n  Physical Layer 16.0 GT/s\n");
       reg = regs[o2i(extcapoff + PCI_PL16G_CAP)];
       printf("    Capability register: 0x%08x\n", reg);

       reg = regs[o2i(extcapoff + PCI_PL16G_CTL)];
       printf("    Control register: 0x%08x\n", reg);

       reg = regs[o2i(extcapoff + PCI_PL16G_STAT)];
       printf("    Status register: 0x%08x\n", reg);
       onoff("Equalization 16.0 GT/s Complete", reg, PCI_PL16G_STAT_EQ_COMPL);
       onoff("Equalization 16.0 GT/s Phase 1 Successful", reg,
           PCI_PL16G_STAT_EQ_P1S);
       onoff("Equalization 16.0 GT/s Phase 2 Successful", reg,
           PCI_PL16G_STAT_EQ_P2S);
       onoff("Equalization 16.0 GT/s Phase 3 Successful", reg,
           PCI_PL16G_STAT_EQ_P3S);

       reg = regs[o2i(extcapoff + PCI_PL16G_LDPMS)];
       printf("    Local Data Parity Mismatch Status register: 0x%08x\n",
           reg);

       reg = regs[o2i(extcapoff + PCI_PL16G_FRDPMS)];
       printf("    First Retimer Data Parity Mismatch Status register:"
           " 0x%08x\n", reg);

       reg = regs[o2i(extcapoff + PCI_PL16G_SRDPMS)];
       printf("    Second Retimer Data Parity Mismatch Status register:"
           " 0x%08x\n", reg);

       if (pci_conf_find_cap(regs, PCI_CAP_PCIEXPRESS, &pcie_capoff) == 0)
               return; /* error */

       reg = regs[o2i(pcie_capoff + PCIE_LCAP)];
       lwidth = PCIREG_SHIFTOUT(reg, PCIE_LCAP_MAX_WIDTH);

       for (i = 0; i < lwidth;) {
               reg = regs[o2i(extcapoff + PCI_PL16G_LEC + i)];

               for (j = 0; j < 4; j++) {
                       pcireg_t up, down;

                       down = reg & 0x0000000f;
                       up = (reg >> 4) & 0x0000000f;
                       printf("      Lane %d downstream: ", i);
                       pci_print_pcie_link_preset_preshoot_deemphasis(down);
                       printf("\n      Lane %d upstream:   ", i);
                       pci_print_pcie_link_preset_preshoot_deemphasis(up);
                       printf("\n");

                       reg >>= 8;
                       i++;
                       if (i >= lwidth)
                               break;
               }
       }
}

static const char * const pcie_receive_number_dp[] = {
       [0] = ("Broadcast "
           "(Downstream Port Receiver and all Retimer Pseudo Port Receiver)"),
       [1] =  "Rx(A) (Downstream Port Receiver)",
       [2] = "Rx(B) (Retimer X or Z Upstream Pseudo Port Receiver)",
       [3] = "Rx(C) (Retimer X or Z Downstream Pseudo Port Receiver)",
       [4] = "Rx(D) (Retimer Y Upstream Pseudo Port Receiver)",
       [5] = "Rx(E) (Retimer Y Downstream Pseudo Port Receiver)",
       [6] = "Reserved",
       [7] = "Reserved"
};

static const char * const pcie_receive_number_up[] = {
       "Broadcast (Upstream Port Receiver)",
       "Reserved",
       "Reserved",
       "Reserved",
       "Reserved",
       "Reserved",
       "Rx(F) (Upstream Port Receiver)",
       "Reserved"
};

/*
* Print PCI_LMR_LANECSR. This function is used for both control and status
* register. The reg argument in the lower 16bit has the control or status
* register. The encoding is the same except the receive number, so use _LCTL_
* macro.
*/
static void
pci_conf_print_lmr_lcsr(pcireg_t reg, bool up, bool dp)
{
       int rnum;

       printf("      Receive Number: ");
       rnum = PCIREG_SHIFTOUT(reg, PCI_LMR_LCTL_RNUM);
       if (up)
               printf("%s\n", pcie_receive_number_up[rnum]);
       else if (dp)
               printf("%s\n", pcie_receive_number_dp[rnum]);
       else
               printf("%x\n", rnum);

       printf("      Margin Type: %x\n",
           PCIREG_SHIFTOUT(reg, PCI_LMR_LCTL_MTYPE));
       printf("      Usage Model: %s\n",
           (PCIREG_SHIFTOUT(reg, PCI_LMR_LCTL_UMODEL) == 0)
           ? "Lane Margining at Receiver" : "Reserved Encoding");
       printf("      Margin Payload: 0x%02x\n",
           PCIREG_SHIFTOUT(reg, PCI_LMR_LCTL_MPAYLOAD));
}

static void
pci_conf_print_lmr_cap(const pcireg_t *regs, int extcapoff)
{
       pcireg_t reg, lwidth;
       int pcie_capoff;
       int pcie_devtype;
       unsigned int i;
       bool up, dp;

       printf("\n  Lane Margining at the Receiver\n");
       reg = regs[o2i(extcapoff + PCI_LMR_PCAPSTAT)];
       printf("    Port Capability register: 0x%04x\n", reg & 0xffff);
       onoff("Margining uses Driver Software", reg, PCI_LMR_PCAP_MUDS);
       printf("    Port Status register: 0x%04x\n", (reg >> 16) & 0xffff);
       onoff("Margining Ready", reg, PCI_LMR_PSTAT_MR);
       onoff("Margining Software Ready", reg, PCI_LMR_PSTAT_MSR);

       if (pci_conf_find_cap(regs, PCI_CAP_PCIEXPRESS, &pcie_capoff) == 0)
               return; /* error */

       up = dp = false;
       reg = regs[o2i(pcie_capoff)];
       pcie_devtype = PCIE_XCAP_TYPE(reg);
       switch (pcie_devtype) {
       case PCIE_XCAP_TYPE_PCIE_DEV:   /* 0x0 */
       case PCIE_XCAP_TYPE_PCI_DEV:    /* 0x1 */
       case PCIE_XCAP_TYPE_UP:         /* 0x5 */
       case PCIE_XCAP_TYPE_PCIE2PCI:   /* 0x7 */
               up = true;
               break;
       case PCIE_XCAP_TYPE_RP:         /* 0x4 */
       case PCIE_XCAP_TYPE_DOWN:       /* 0x6 */
               dp = true;
               break;
       default:
               printf("neither upstream nor downstream?(%x)\n", pcie_devtype);
               break;
       }

       reg = regs[o2i(pcie_capoff + PCIE_LCAP)];
       lwidth = PCIREG_SHIFTOUT(reg, PCIE_LCAP_MAX_WIDTH);

       for (i = 0; i < lwidth; i++) {
               pcireg_t lctl, lstat;

               reg = regs[o2i(extcapoff + PCI_LMR_LANECSR + (i * 4))];

               lctl = reg & 0xffff;
               printf("    Lane %d control: 0x%04x\n", i, lctl);
               pci_conf_print_lmr_lcsr(lctl, up, dp);

               lstat = (reg >> 16) & 0xffff;
               printf("    Lane %d status: 0x%04x\n", i, lstat);
               pci_conf_print_lmr_lcsr(lstat, up, dp);
       }
}

/* XXX pci_conf_print_hierarchyid_cap */
/* XXX pci_conf_print_npem_cap */

#undef  MS
#undef  SM
#undef  RW

static struct {
       pcireg_t cap;
       const char *name;
       void (*printfunc)(const pcireg_t *, int);
} pci_extcaptab[] = {
       { 0,                    "reserved",
         NULL },
       { PCI_EXTCAP_AER,       "Advanced Error Reporting",
         pci_conf_print_aer_cap },
       { PCI_EXTCAP_VC,        "Virtual Channel",
         pci_conf_print_vc_cap },
       { PCI_EXTCAP_SERNUM,    "Device Serial Number",
         pci_conf_print_sernum_cap },
       { PCI_EXTCAP_PWRBDGT,   "Power Budgeting",
         pci_conf_print_pwrbdgt_cap },
       { PCI_EXTCAP_RCLINK_DCL,"Root Complex Link Declaration",
         pci_conf_print_rclink_dcl_cap },
       { PCI_EXTCAP_RCLINK_CTL,"Root Complex Internal Link Control",
         NULL },
       { PCI_EXTCAP_RCEC_ASSOC,"Root Complex Event Collector Association",
         pci_conf_print_rcec_assoc_cap },
       { PCI_EXTCAP_MFVC,      "Multi-Function Virtual Channel",
         NULL },
       { PCI_EXTCAP_VC2,       "Virtual Channel",
         NULL },
       { PCI_EXTCAP_RCRB,      "RCRB Header",
         NULL },
       { PCI_EXTCAP_VENDOR,    "Vendor Unique",
         NULL },
       { PCI_EXTCAP_CAC,       "Configuration Access Correction",
         NULL },
       { PCI_EXTCAP_ACS,       "Access Control Services",
         pci_conf_print_acs_cap },
       { PCI_EXTCAP_ARI,       "Alternative Routing-ID Interpretation",
         pci_conf_print_ari_cap },
       { PCI_EXTCAP_ATS,       "Address Translation Services",
         pci_conf_print_ats_cap },
       { PCI_EXTCAP_SRIOV,     "Single Root IO Virtualization",
         pci_conf_print_sriov_cap },
       { PCI_EXTCAP_MRIOV,     "Multiple Root IO Virtualization",
         NULL },
       { PCI_EXTCAP_MCAST,     "Multicast",
         pci_conf_print_multicast_cap },
       { PCI_EXTCAP_PAGE_REQ,  "Page Request",
         pci_conf_print_page_req_cap },
       { PCI_EXTCAP_AMD,       "Reserved for AMD",
         NULL },
       { PCI_EXTCAP_RESIZBAR,  "Resizable BAR",
         pci_conf_print_resizbar_cap },
       { PCI_EXTCAP_DPA,       "Dynamic Power Allocation",
         pci_conf_print_dpa_cap },
       { PCI_EXTCAP_TPH_REQ,   "TPH Requester",
         pci_conf_print_tph_req_cap },
       { PCI_EXTCAP_LTR,       "Latency Tolerance Reporting",
         pci_conf_print_ltr_cap },
       { PCI_EXTCAP_SEC_PCIE,  "Secondary PCI Express",
         pci_conf_print_sec_pcie_cap },
       { PCI_EXTCAP_PMUX,      "Protocol Multiplexing",
         NULL },
       { PCI_EXTCAP_PASID,     "Process Address Space ID",
         pci_conf_print_pasid_cap },
       { PCI_EXTCAP_LNR,       "LN Requester",
         pci_conf_print_lnr_cap },
       { PCI_EXTCAP_DPC,       "Downstream Port Containment",
         pci_conf_print_dpc_cap },
       { PCI_EXTCAP_L1PM,      "L1 PM Substates",
         pci_conf_print_l1pm_cap },
       { PCI_EXTCAP_PTM,       "Precision Time Measurement",
         pci_conf_print_ptm_cap },
       { PCI_EXTCAP_MPCIE,     "M-PCIe",
         NULL },
       { PCI_EXTCAP_FRSQ,      "Function Reading Status Queueing",
         NULL },
       { PCI_EXTCAP_RTR,       "Readiness Time Reporting",
         NULL },
       { PCI_EXTCAP_DESIGVNDSP, "Designated Vendor-Specific",
         NULL },
       { PCI_EXTCAP_VF_RESIZBAR, "VF Resizable BARs",
         NULL },
       { PCI_EXTCAP_DLF,       "Data link Feature", pci_conf_print_dlf_cap },
       { PCI_EXTCAP_PL16G,     "Physical Layer 16.0 GT/s",
         pci_conf_print_pl16g_cap },
       { PCI_EXTCAP_LMR,       "Lane Margining at the Receiver",
         pci_conf_print_lmr_cap },
       { PCI_EXTCAP_HIERARCHYID, "Hierarchy ID",
         NULL },
       { PCI_EXTCAP_NPEM,      "Native PCIe Enclosure Management",
         NULL },
       { PCI_EXTCAP_PL32G,     "Physical Layer 32.0 GT/s",
         NULL },
       { PCI_EXTCAP_AP,        "Alternate Protocol",
         NULL },
       { PCI_EXTCAP_SFI,       "System Firmware Intermediary",
         NULL },
};

static int
pci_conf_find_extcap(const pcireg_t *regs, unsigned int capid, int *offsetp)
{
       int off;
       pcireg_t rval;

       for (off = PCI_EXTCAPLIST_BASE;
            off != 0;
            off = PCI_EXTCAPLIST_NEXT(rval)) {
               rval = regs[o2i(off)];
               if (capid == PCI_EXTCAPLIST_CAP(rval)) {
                       if (offsetp != NULL)
                               *offsetp = off;
                       return 1;
               }
       }
       return 0;
}

static void
pci_conf_print_extcaplist(
#ifdef _KERNEL
   pci_chipset_tag_t pc, pcitag_t tag,
#endif
   const pcireg_t *regs)
{
       int off;
       pcireg_t foundcap;
       pcireg_t rval;
       bool foundtable[__arraycount(pci_extcaptab)];
       unsigned int i;

       /* Check Extended capability structure */
       off = PCI_EXTCAPLIST_BASE;
       rval = regs[o2i(off)];
       if (rval == 0xffffffff || rval == 0)
               return;

       /* Clear table */
       for (i = 0; i < __arraycount(pci_extcaptab); i++)
               foundtable[i] = false;

       /* Print extended capability register's offset and the type first */
       for (;;) {
               printf("  Extended Capability Register at 0x%02x\n", off);

               foundcap = PCI_EXTCAPLIST_CAP(rval);
               printf("    type: 0x%04x (", foundcap);
               if (foundcap < __arraycount(pci_extcaptab)) {
                       printf("%s)\n", pci_extcaptab[foundcap].name);
                       /* Mark as found */
                       foundtable[foundcap] = true;
               } else
                       printf("unknown)\n");
               printf("    version: %d\n", PCI_EXTCAPLIST_VERSION(rval));

               off = PCI_EXTCAPLIST_NEXT(rval);
               if (off == 0)
                       break;
               else if (off <= PCI_CONF_SIZE) {
                       printf("    next pointer: 0x%03x (incorrect)\n", off);
                       return;
               }
               rval = regs[o2i(off)];
       }

       /*
        * And then, print the detail of each capability registers
        * in capability value's order.
        */
       for (i = 0; i < __arraycount(pci_extcaptab); i++) {
               if (foundtable[i] == false)
                       continue;

               /*
                * The type was found. Search capability list again and
                * print all capabilities that the capability type is
                * the same.
                */
               if (pci_conf_find_extcap(regs, i, &off) == 0)
                       continue;
               rval = regs[o2i(off)];
               if ((PCI_EXTCAPLIST_VERSION(rval) <= 0)
                   || (pci_extcaptab[i].printfunc == NULL))
                       continue;

               pci_extcaptab[i].printfunc(regs, off);

       }
}

/* Print the Secondary Status Register. */
static void
pci_conf_print_ssr(pcireg_t rval)
{
       pcireg_t devsel;

       printf("    Secondary status register: 0x%04x\n", rval); /* XXX bits */
       onoff("66 MHz capable", rval, __BIT(5));
       onoff("User Definable Features (UDF) support", rval, __BIT(6));
       onoff("Fast back-to-back capable", rval, __BIT(7));
       onoff("Data parity error detected", rval, __BIT(8));

       printf("      DEVSEL timing: ");
       devsel = PCIREG_SHIFTOUT(rval, __BITS(10, 9));
       switch (devsel) {
       case 0:
               printf("fast");
               break;
       case 1:
               printf("medium");
               break;
       case 2:
               printf("slow");
               break;
       default:
               printf("unknown/reserved");     /* XXX */
               break;
       }
       printf(" (0x%x)\n", devsel);

       onoff("Signalled target abort", rval, __BIT(11));
       onoff("Received target abort", rval, __BIT(12));
       onoff("Received master abort", rval, __BIT(13));
       onoff("Received system error", rval, __BIT(14));
       onoff("Detected parity error", rval, __BIT(15));
}

static void
pci_conf_print_type0(
#ifdef _KERNEL
   pci_chipset_tag_t pc, pcitag_t tag,
#endif
   const pcireg_t *regs)
{
       int off, width;
       pcireg_t rval;
       const char *str;

       for (off = PCI_MAPREG_START; off < PCI_MAPREG_END; off += width) {
#ifdef _KERNEL
               width = pci_conf_print_bar(pc, tag, regs, off, NULL);
#else
               width = pci_conf_print_bar(regs, off, NULL);
#endif
       }

       printf("    Cardbus CIS Pointer: 0x%08x\n",
           regs[o2i(PCI_CARDBUS_CIS_REG)]);

       rval = regs[o2i(PCI_SUBSYS_ID_REG)];
       printf("    Subsystem vendor ID: 0x%04x\n", PCI_VENDOR(rval));
       printf("    Subsystem ID: 0x%04x\n", PCI_PRODUCT(rval));

       rval = regs[o2i(PCI_MAPREG_ROM)];
       printf("    Expansion ROM Base Address Register: 0x%08x\n", rval);
       printf("      base: 0x%08x\n", (uint32_t)PCI_MAPREG_ROM_ADDR(rval));
       onoff("Expansion ROM Enable", rval, PCI_MAPREG_ROM_ENABLE);
       printf("      Validation Status: ");
       switch (PCIREG_SHIFTOUT(rval, PCI_MAPREG_ROM_VALID_STAT)) {
       case PCI_MAPREG_ROM_VSTAT_NOTSUPP:
               str = "Validation not supported";
               break;
       case PCI_MAPREG_ROM_VSTAT_INPROG:
               str = "Validation in Progress";
               break;
       case PCI_MAPREG_ROM_VSTAT_VPASS:
               str = "Validation Pass. "
                   "Valid contents, trust test was not performed";
               break;
       case PCI_MAPREG_ROM_VSTAT_VPASSTRUST:
               str = "Validation Pass. Valid and trusted contents";
               break;
       case PCI_MAPREG_ROM_VSTAT_VFAIL:
               str = "Validation Fail. Invalid contents";
               break;
       case PCI_MAPREG_ROM_VSTAT_VFAILUNTRUST:
               str = "Validation Fail. Valid but untrusted contents";
               break;
       case PCI_MAPREG_ROM_VSTAT_WPASS:
               str = "Warning Pass. Validation passed with warning. "
                   "Valid contents, trust test was not performed";
               break;
       case PCI_MAPREG_ROM_VSTAT_WPASSTRUST:
               str = "Warning Pass. Validation passed with warning. "
                   "Valid and trusted contents";
               break;
       }
       printf("%s\n", str);
       printf("      Validation Details: 0x%x\n",
           PCIREG_SHIFTOUT(rval, PCI_MAPREG_ROM_VALID_DETAIL));

       if (regs[o2i(PCI_COMMAND_STATUS_REG)] & PCI_STATUS_CAPLIST_SUPPORT)
               printf("    Capability list pointer: 0x%02x\n",
                   PCI_CAPLIST_PTR(regs[o2i(PCI_CAPLISTPTR_REG)]));
       else
               printf("    Reserved @ 0x34: 0x%08x\n", regs[o2i(0x34)]);

       printf("    Reserved @ 0x38: 0x%08x\n", regs[o2i(0x38)]);

       rval = regs[o2i(PCI_INTERRUPT_REG)];
       printf("    Maximum Latency: 0x%02x\n", PCI_MAX_LAT(rval));
       printf("    Minimum Grant: 0x%02x\n", PCI_MIN_GNT(rval));
       printf("    Interrupt pin: 0x%02x ", PCI_INTERRUPT_PIN(rval));
       switch (PCI_INTERRUPT_PIN(rval)) {
       case PCI_INTERRUPT_PIN_NONE:
               printf("(none)");
               break;
       case PCI_INTERRUPT_PIN_A:
               printf("(pin A)");
               break;
       case PCI_INTERRUPT_PIN_B:
               printf("(pin B)");
               break;
       case PCI_INTERRUPT_PIN_C:
               printf("(pin C)");
               break;
       case PCI_INTERRUPT_PIN_D:
               printf("(pin D)");
               break;
       default:
               printf("(? ? ?)");
               break;
       }
       printf("\n");
       printf("    Interrupt line: 0x%02x\n", PCI_INTERRUPT_LINE(rval));
}

static void
pci_conf_print_type1(
#ifdef _KERNEL
   pci_chipset_tag_t pc, pcitag_t tag,
#endif
   const pcireg_t *regs)
{
       int off, width;
       pcireg_t rval, csreg;
       uint32_t base, limit;
       uint32_t base_h, limit_h;
       uint64_t pbase, plimit;
       int use_upper;

       /*
        * This layout was cribbed from the TI PCI2030 PCI-to-PCI
        * Bridge chip documentation, and may not be correct with
        * respect to various standards. (XXX)
        */

       for (off = 0x10; off < 0x18; off += width) {
#ifdef _KERNEL
               width = pci_conf_print_bar(pc, tag, regs, off, NULL);
#else
               width = pci_conf_print_bar(regs, off, NULL);
#endif
       }

       rval = regs[o2i(PCI_BRIDGE_BUS_REG)];
       printf("    Primary bus number: 0x%02x\n",
           PCI_BRIDGE_BUS_NUM_PRIMARY(rval));
       printf("    Secondary bus number: 0x%02x\n",
           PCI_BRIDGE_BUS_NUM_SECONDARY(rval));
       printf("    Subordinate bus number: 0x%02x\n",
           PCI_BRIDGE_BUS_NUM_SUBORDINATE(rval));
       printf("    Secondary bus latency timer: 0x%02x\n",
           PCI_BRIDGE_BUS_SEC_LATTIMER_VAL(rval));

       rval = regs[o2i(PCI_BRIDGE_STATIO_REG)];
       pci_conf_print_ssr(PCIREG_SHIFTOUT(rval, __BITS(31, 16)));

       /* I/O region */
       printf("    I/O region:\n");
       printf("      base register:  0x%02x\n", (rval >> 0) & 0xff);
       printf("      limit register: 0x%02x\n", (rval >> 8) & 0xff);
       if (PCI_BRIDGE_IO_32BITS(rval))
               use_upper = 1;
       else
               use_upper = 0;
       onoff("32bit I/O", rval, use_upper);
       base = PCI_BRIDGE_STATIO_IOBASE_ADDR(rval);
       limit = PCI_BRIDGE_STATIO_IOLIMIT_ADDR(rval);

       rval = regs[o2i(PCI_BRIDGE_IOHIGH_REG)];
       base_h = PCIREG_SHIFTOUT(rval, PCI_BRIDGE_IOHIGH_BASE);
       limit_h = PCIREG_SHIFTOUT(rval, PCI_BRIDGE_IOHIGH_LIMIT);
       printf("      base upper 16 bits register:  0x%04x\n", base_h);
       printf("      limit upper 16 bits register: 0x%04x\n", limit_h);

       if (use_upper == 1) {
               base |= base_h << 16;
               limit |= limit_h << 16;
       }
       if (base < limit) {
               if (use_upper == 1)
                       printf("      range: 0x%08x-0x%08x\n", base, limit);
               else
                       printf("      range: 0x%04x-0x%04x\n", base, limit);
       } else
               printf("      range:  not set\n");

       /* Non-prefetchable memory region */
       rval = regs[o2i(PCI_BRIDGE_MEMORY_REG)];
       printf("    Memory region:\n");
       printf("      base register:  0x%04hx\n",
           (uint16_t)PCIREG_SHIFTOUT(rval, PCI_BRIDGE_MEMORY_BASE));
       printf("      limit register: 0x%04hx\n",
           (uint16_t)PCIREG_SHIFTOUT(rval, PCI_BRIDGE_MEMORY_LIMIT));
       base = PCI_BRIDGE_MEMORY_BASE_ADDR(rval);
       limit = PCI_BRIDGE_MEMORY_LIMIT_ADDR(rval);
       if (base < limit)
               printf("      range: 0x%08x-0x%08x\n", base, limit);
       else
               printf("      range: not set\n");

       /* Prefetchable memory region */
       rval = regs[o2i(PCI_BRIDGE_PREFETCHMEM_REG)];
       printf("    Prefetchable memory region:\n");
       printf("      base register:  0x%04x\n",
           (rval >> 0) & 0xffff);
       printf("      limit register: 0x%04x\n",
           (rval >> 16) & 0xffff);
       base_h = regs[o2i(PCI_BRIDGE_PREFETCHBASEUP32_REG)];
       limit_h = regs[o2i(PCI_BRIDGE_PREFETCHLIMITUP32_REG)];
       printf("      base upper 32 bits register:  0x%08x\n",
           base_h);
       printf("      limit upper 32 bits register: 0x%08x\n",
           limit_h);
       if (PCI_BRIDGE_PREFETCHMEM_64BITS(rval))
               use_upper = 1;
       else
               use_upper = 0;
       onoff("64bit memory address", rval, use_upper);
       pbase = PCI_BRIDGE_PREFETCHMEM_BASE_ADDR(rval);
       plimit = PCI_BRIDGE_PREFETCHMEM_LIMIT_ADDR(rval);
       if (use_upper == 1) {
               pbase |= (uint64_t)base_h << 32;
               plimit |= (uint64_t)limit_h << 32;
       }
       if (pbase < plimit) {
               if (use_upper == 1)
                       printf("      range: 0x%016" PRIx64 "-0x%016" PRIx64
                           "\n", pbase, plimit);
               else
                       printf("      range: 0x%08x-0x%08x\n",
                           (uint32_t)pbase, (uint32_t)plimit);
       } else
               printf("      range: not set\n");

       csreg = regs[o2i(PCI_COMMAND_STATUS_REG)];
       if (csreg & PCI_STATUS_CAPLIST_SUPPORT)
               printf("    Capability list pointer: 0x%02x\n",
                   PCI_CAPLIST_PTR(regs[o2i(PCI_CAPLISTPTR_REG)]));
       else
               printf("    Reserved @ 0x34: 0x%08x\n", regs[o2i(0x34)]);

       printf("    Expansion ROM Base Address: 0x%08x\n",
           regs[o2i(PCI_BRIDGE_EXPROMADDR_REG)]);

       rval = regs[o2i(PCI_INTERRUPT_REG)];
       printf("    Interrupt line: 0x%02x\n",
           (rval >> 0) & 0xff);
       printf("    Interrupt pin: 0x%02x ",
           (rval >> 8) & 0xff);
       switch ((rval >> 8) & 0xff) {
       case PCI_INTERRUPT_PIN_NONE:
               printf("(none)");
               break;
       case PCI_INTERRUPT_PIN_A:
               printf("(pin A)");
               break;
       case PCI_INTERRUPT_PIN_B:
               printf("(pin B)");
               break;
       case PCI_INTERRUPT_PIN_C:
               printf("(pin C)");
               break;
       case PCI_INTERRUPT_PIN_D:
               printf("(pin D)");
               break;
       default:
               printf("(? ? ?)");
               break;
       }
       printf("\n");
       rval = regs[o2i(PCI_BRIDGE_CONTROL_REG)];
       printf("    Bridge control register: 0x%04hx\n",
           (uint16_t)PCIREG_SHIFTOUT(rval, PCI_BRIDGE_CONTROL));
       onoff("Parity error response", rval, PCI_BRIDGE_CONTROL_PERE);
       onoff("Secondary SERR forwarding", rval, PCI_BRIDGE_CONTROL_SERR);
       onoff("ISA enable", rval, PCI_BRIDGE_CONTROL_ISA);
       onoff("VGA enable", rval, PCI_BRIDGE_CONTROL_VGA);
       /*
        * VGA 16bit decode bit has meaning if the VGA enable bit or the
        * VGA Palette Snoop Enable bit is set.
        */
       if (((rval & PCI_BRIDGE_CONTROL_VGA) != 0)
           || ((csreg & PCI_COMMAND_PALETTE_ENABLE) != 0))
               onoff("VGA 16bit enable", rval, PCI_BRIDGE_CONTROL_VGA16);
       onoff("Master abort reporting", rval, PCI_BRIDGE_CONTROL_MABRT);
       onoff("Secondary bus reset", rval, PCI_BRIDGE_CONTROL_SECBR);
       onoff("Fast back-to-back enable", rval, PCI_BRIDGE_CONTROL_SECFASTB2B);
       onoff("Primary Discard Timer", rval,
           PCI_BRIDGE_CONTROL_PRI_DISC_TIMER);
       onoff("Secondary Discard Timer",
           rval, PCI_BRIDGE_CONTROL_SEC_DISC_TIMER);
       onoff("Discard Timer Status", rval,
           PCI_BRIDGE_CONTROL_DISC_TIMER_STAT);
       onoff("Discard Timer SERR# Enable", rval,
           PCI_BRIDGE_CONTROL_DISC_TIMER_SERR);
}

static void
pci_conf_print_type2(
#ifdef _KERNEL
   pci_chipset_tag_t pc, pcitag_t tag,
#endif
   const pcireg_t *regs)
{
       pcireg_t rval;

       /*
        * XXX these need to be printed in more detail, need to be
        * XXX checked against specs/docs, etc.
        *
        * This layout was cribbed from the TI PCI1420 PCI-to-CardBus
        * controller chip documentation, and may not be correct with
        * respect to various standards. (XXX)
        */

#ifdef _KERNEL
       pci_conf_print_bar(pc, tag, regs, 0x10,
           "CardBus socket/ExCA registers");
#else
       pci_conf_print_bar(regs, 0x10, "CardBus socket/ExCA registers");
#endif

       /* Capability list pointer and secondary status register */
       rval = regs[o2i(PCI_CARDBUS_CAPLISTPTR_REG)];
       if (regs[o2i(PCI_COMMAND_STATUS_REG)] & PCI_STATUS_CAPLIST_SUPPORT)
               printf("    Capability list pointer: 0x%02x\n",
                   PCI_CAPLIST_PTR(rval));
       else
               printf("    Reserved @ 0x14: 0x%04x\n",
                      PCIREG_SHIFTOUT(rval, __BITS(15, 0)));
       pci_conf_print_ssr(PCIREG_SHIFTOUT(rval, __BITS(31, 16)));

       rval = regs[o2i(PCI_BRIDGE_BUS_REG)];
       printf("    PCI bus number: 0x%02x\n",
           (rval >> 0) & 0xff);
       printf("    CardBus bus number: 0x%02x\n",
           (rval >> 8) & 0xff);
       printf("    Subordinate bus number: 0x%02x\n",
           (rval >> 16) & 0xff);
       printf("    CardBus latency timer: 0x%02x\n",
           (rval >> 24) & 0xff);

       /* XXX Print more prettily */
       printf("    CardBus memory region 0:\n");
       printf("      base register:  0x%08x\n", regs[o2i(0x1c)]);
       printf("      limit register: 0x%08x\n", regs[o2i(0x20)]);
       printf("    CardBus memory region 1:\n");
       printf("      base register:  0x%08x\n", regs[o2i(0x24)]);
       printf("      limit register: 0x%08x\n", regs[o2i(0x28)]);
       printf("    CardBus I/O region 0:\n");
       printf("      base register:  0x%08x\n", regs[o2i(0x2c)]);
       printf("      limit register: 0x%08x\n", regs[o2i(0x30)]);
       printf("    CardBus I/O region 1:\n");
       printf("      base register:  0x%08x\n", regs[o2i(0x34)]);
       printf("      limit register: 0x%08x\n", regs[o2i(0x38)]);

       rval = regs[o2i(PCI_INTERRUPT_REG)];
       printf("    Interrupt line: 0x%02x\n",
           (rval >> 0) & 0xff);
       printf("    Interrupt pin: 0x%02x ",
           (rval >> 8) & 0xff);
       switch ((rval >> 8) & 0xff) {
       case PCI_INTERRUPT_PIN_NONE:
               printf("(none)");
               break;
       case PCI_INTERRUPT_PIN_A:
               printf("(pin A)");
               break;
       case PCI_INTERRUPT_PIN_B:
               printf("(pin B)");
               break;
       case PCI_INTERRUPT_PIN_C:
               printf("(pin C)");
               break;
       case PCI_INTERRUPT_PIN_D:
               printf("(pin D)");
               break;
       default:
               printf("(? ? ?)");
               break;
       }
       printf("\n");
       rval = (regs[o2i(PCI_BRIDGE_CONTROL_REG)] >> 16) & 0xffff;
       printf("    Bridge control register: 0x%04x\n", rval);
       onoff("Parity error response", rval, __BIT(0));
       onoff("SERR# enable", rval, __BIT(1));
       onoff("ISA enable", rval, __BIT(2));
       onoff("VGA enable", rval, __BIT(3));
       onoff("Master abort mode", rval, __BIT(5));
       onoff("Secondary (CardBus) bus reset", rval, __BIT(6));
       onoff("Functional interrupts routed by ExCA registers", rval,
           __BIT(7));
       onoff("Memory window 0 prefetchable", rval, __BIT(8));
       onoff("Memory window 1 prefetchable", rval, __BIT(9));
       onoff("Write posting enable", rval, __BIT(10));

       rval = regs[o2i(0x40)];
       printf("    Subsystem vendor ID: 0x%04x\n", PCI_VENDOR(rval));
       printf("    Subsystem ID: 0x%04x\n", PCI_PRODUCT(rval));

#ifdef _KERNEL
       pci_conf_print_bar(pc, tag, regs, 0x44, "legacy-mode registers");
#else
       pci_conf_print_bar(regs, 0x44, "legacy-mode registers");
#endif
}

void
pci_conf_print(
#ifdef _KERNEL
   pci_chipset_tag_t pc, pcitag_t tag,
   void (*printfn)(pci_chipset_tag_t, pcitag_t, const pcireg_t *)
#else
   int pcifd, u_int bus, u_int dev, u_int func
#endif
   )
{
       pcireg_t *regs;
       int off, capoff, endoff, hdrtype;
       const char *type_name;
#ifdef _KERNEL
       void (*type_printfn)(pci_chipset_tag_t, pcitag_t, const pcireg_t *);
#else
       void (*type_printfn)(const pcireg_t *);
#endif

       regs = MALLOC(PCI_EXTCONF_SIZE);

       printf("PCI configuration registers:\n");

       for (off = 0; off < PCI_EXTCONF_SIZE; off += 4) {
#ifdef _KERNEL
               regs[o2i(off)] = pci_conf_read(pc, tag, off);
#else
               if (pcibus_conf_read(pcifd, bus, dev, func, off,
                   &regs[o2i(off)]) == -1)
                       regs[o2i(off)] = 0;
#endif
       }

       /* common header */
       printf("  Common header:\n");
       pci_conf_print_regs(regs, 0, 16);

       printf("\n");
#ifdef _KERNEL
       pci_conf_print_common(pc, tag, regs);
#else
       pci_conf_print_common(regs);
#endif
       printf("\n");

       /* type-dependent header */
       hdrtype = PCI_HDRTYPE_TYPE(regs[o2i(PCI_BHLC_REG)]);
       switch (hdrtype) {              /* XXX make a table, eventually */
       case 0:
               /* Standard device header */
               type_name = "\"normal\" device";
               type_printfn = &pci_conf_print_type0;
               capoff = PCI_CAPLISTPTR_REG;
               endoff = 64;
               break;
       case 1:
               /* PCI-PCI bridge header */
               type_name = "PCI-PCI bridge";
               type_printfn = &pci_conf_print_type1;
               capoff = PCI_CAPLISTPTR_REG;
               endoff = 64;
               break;
       case 2:
               /* PCI-CardBus bridge header */
               type_name = "PCI-CardBus bridge";
               type_printfn = &pci_conf_print_type2;
               capoff = PCI_CARDBUS_CAPLISTPTR_REG;
               endoff = 72;
               break;
       default:
               type_name = NULL;
               type_printfn = 0;
               capoff = -1;
               endoff = 64;
               break;
       }
       printf("  Type %d ", hdrtype);
       if (type_name != NULL)
               printf("(%s) ", type_name);
       printf("header:\n");
       pci_conf_print_regs(regs, 16, endoff);
       printf("\n");
       if (type_printfn) {
#ifdef _KERNEL
               (*type_printfn)(pc, tag, regs);
#else
               (*type_printfn)(regs);
#endif
       } else
               printf("    Don't know how to pretty-print type %d header.\n",
                   hdrtype);
       printf("\n");

       /* capability list, if present */
       if ((regs[o2i(PCI_COMMAND_STATUS_REG)] & PCI_STATUS_CAPLIST_SUPPORT)
               && (capoff > 0)) {
#ifdef _KERNEL
               pci_conf_print_caplist(pc, tag, regs, capoff);
#else
               pci_conf_print_caplist(regs, capoff);
#endif
               printf("\n");
       }

       /* device-dependent header */
       printf("  Device-dependent header:\n");
       pci_conf_print_regs(regs, endoff, PCI_CONF_SIZE);
#ifdef _KERNEL
       printf("\n");
       if (printfn)
               (*printfn)(pc, tag, regs);
       else
               printf("    Don't know how to pretty-print device-dependent header.\n");
#endif /* _KERNEL */

       if (regs[o2i(PCI_EXTCAPLIST_BASE)] == 0xffffffff ||
           regs[o2i(PCI_EXTCAPLIST_BASE)] == 0)
               goto out;

       printf("\n");
#ifdef _KERNEL
       pci_conf_print_extcaplist(pc, tag, regs);
#else
       pci_conf_print_extcaplist(regs);
#endif
       printf("\n");

       /* Extended Configuration Space, if present */
       printf("  Extended Configuration Space:\n");
       pci_conf_print_regs(regs, PCI_EXTCAPLIST_BASE, PCI_EXTCONF_SIZE);

out:
       FREE(regs, PCI_EXTCONF_SIZE);
}