/* $NetBSD: pci_resource.c,v 1.7 2025/03/03 19:38:43 riastradh Exp $ */
/*-
* Copyright (c) 2022 Jared McNeill <
[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* pci_resource.c --
*
* Scan current PCI resource allocations and attempt to assign resources
* to devices that are not configured WITHOUT changing any configuration
* performed by system firmware.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pci_resource.c,v 1.7 2025/03/03 19:38:43 riastradh Exp $");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/bus.h>
#include <sys/kmem.h>
#include <sys/queue.h>
#include <sys/systm.h>
#include <sys/vmem.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pci_resource.h>
#define DPRINT aprint_debug
#if defined(PCI_RESOURCE_TEST_VENDOR_ID) && \
defined(PCI_RESOURCE_TEST_PRODUCT_ID)
#define IS_TEST_DEVICE(_pd) \
(PCI_VENDOR(pd->pd_id) == PCI_RESOURCE_TEST_VENDOR_ID && \
PCI_PRODUCT(pd->pd_id) == PCI_RESOURCE_TEST_PRODUCT_ID)
#else
#define IS_TEST_DEVICE(_pd) 0
#endif
#define PCI_MAX_DEVICE 32
#define PCI_MAX_FUNC 8
#define PCI_MAX_IORES 6
#define PCI_RANGE_FOREACH(_type) \
for (u_int _type = PCI_RANGE_BUS; _type < NUM_PCI_RANGES; _type++)
static const char *pci_range_typenames[NUM_PCI_RANGES] = {
[PCI_RANGE_BUS] = "bus",
[PCI_RANGE_IO] = "io",
[PCI_RANGE_MEM] = "mem",
[PCI_RANGE_PMEM] = "pmem",
};
struct pci_bus;
struct pci_iores {
uint64_t pi_base; /* Base address */
uint64_t pi_size; /* Resource size */
uint8_t pi_type; /* PCI_MAPREG_TYPE_* */
u_int pi_bar; /* PCI bar number */
union {
struct {
uint8_t memtype;
bool prefetch;
} pi_mem;
};
};
struct pci_device {
bool pd_present; /* Device is present */
bool pd_configured; /* Device is configured */
struct pci_bus *pd_bus; /* Parent bus */
uint8_t pd_devno; /* Device number */
uint8_t pd_funcno; /* Function number */
pcitag_t pd_tag; /* PCI tag */
pcireg_t pd_id; /* Vendor ID, Device ID */
pcireg_t pd_class; /* Revision ID, Class Code */
pcireg_t pd_bhlc; /* BIST, Header Type, Primary Latency
* Timer, Cache Line Size */
struct pci_iores pd_iores[PCI_MAX_IORES];
u_int pd_niores;
bool pd_ppb; /* PCI-PCI bridge */
union {
struct {
pcireg_t bridge_bus;
struct pci_resource_arena *ranges[NUM_PCI_RANGES];
} pd_bridge;
};
};
struct pci_bus {
uint8_t pb_busno; /* Bus number */
struct pci_device *pb_bridge; /* Parent bridge, or NULL */
struct pci_device pb_device[PCI_MAX_DEVICE * PCI_MAX_FUNC];
/* Devices on bus */
u_int pb_lastdevno; /* Last device found */
/* XXX Nothing seems to use pb_ranges? */
struct pci_resource_arena *pb_ranges[NUM_PCI_RANGES];
struct pci_resource_arena *pb_res[NUM_PCI_RANGES];
};
struct pci_resources {
struct pci_bus **pr_bus; /* Bus list */
pci_chipset_tag_t pr_pc; /* Chipset tag */
uint8_t pr_startbus; /* First bus number */
struct pci_resource_arena *pr_busranges;
struct pci_resource_arena *pr_ranges[NUM_PCI_RANGES];
};
struct pci_resource_arena {
vmem_t *vmem;
SIMPLEQ_HEAD(, pci_resource_range) list;
};
struct pci_resource_range {
uint64_t start;
uint64_t end;
SIMPLEQ_ENTRY(pci_resource_range) entry;
};
static int pci_resource_scan_bus(struct pci_resources *,
struct pci_device *, uint8_t);
#define PCI_SBDF_FMT "%04x:%02x:%02x.%u"
#define PCI_SBDF_FMT_ARGS(_pr, _pd) \
pci_get_segment((_pr)->pr_pc), \
(_pd)->pd_bus->pb_busno, \
(_pd)->pd_devno, \
(_pd)->pd_funcno
#define PCICONF_RES_BUS(_pr, _busno) \
((_pr)->pr_bus[(_busno) - (_pr)->pr_startbus])
#define PCICONF_BUS_DEVICE(_pb, _devno, _funcno) \
(&(_pb)->pb_device[(_devno) * PCI_MAX_FUNC + (_funcno)])
static bool
pci_bus_in_range(struct pci_resources *pr, int busno)
{
struct pci_resource_range *range;
SIMPLEQ_FOREACH(range, &pr->pr_busranges->list, entry) {
if (busno >= range->start && busno <= range->end)
return true;
}
return false;
}
static void
pci_resource_arena_add_range(struct pci_resource_arena **arenas,
enum pci_range_type type, uint64_t start, uint64_t end)
{
struct pci_resource_arena *arena;
struct pci_resource_range *new, *range, *prev;
int error;
KASSERTMSG(start <= end, "type=%d start=%" PRIu64 " end=%" PRIu64,
type, start, end);
/*
* Warn if this is a bus range and the start/end are bad. The
* other types of ranges can have larger addresses.
*/
if (type == PCI_RANGE_BUS &&
(start > UINT8_MAX || end > UINT8_MAX)) {
aprint_error("PCI: unexpected bus range"
" %" PRIu64 "-%" PRIu64 ", ignoring\n",
start, end);
return;
}
/*
* Create an arena if we haven't already.
*/
if ((arena = arenas[type]) == NULL) {
arena = arenas[type] = kmem_zalloc(sizeof(*arenas[type]),
KM_SLEEP);
arena->vmem = vmem_create(pci_resource_typename(type),
0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP, IPL_NONE);
SIMPLEQ_INIT(&arena->list);
}
/*
* Reserve the range in the vmem for allocation. If there's
* already an overlapping range, just drop this one.
*/
error = vmem_add(arena->vmem, start, end - start + 1, VM_SLEEP);
if (error) {
/* XXX show some more context */
aprint_error("overlapping %s range: %#" PRIx64 "-%#" PRIx64 ","
" discarding\n",
pci_resource_typename(type), start, end);
return;
}
/*
* Add an entry to the list so we can iterate over them, in
* ascending address order for the sake of legible printing.
* (We don't expect to have so many entries that the linear
* time of insertion will cause trouble.)
*/
new = kmem_zalloc(sizeof(*new), KM_SLEEP);
new->start = start;
new->end = end;
prev = NULL;
SIMPLEQ_FOREACH(range, &arena->list, entry) {
if (new->start < range->start)
break;
KASSERT(new->start > range->end);
prev = range;
}
if (prev) {
SIMPLEQ_INSERT_AFTER(&arena->list, prev, new, entry);
} else {
SIMPLEQ_INSERT_HEAD(&arena->list, new, entry);
}
}
/*
* pci_resource_add_range --
*
* Add a contiguous range of addresses (inclusive of both bounds) for
* the specified type of resource.
*/
void
pci_resource_add_range(struct pci_resource_info *info,
enum pci_range_type type, uint64_t start, uint64_t end)
{
pci_resource_arena_add_range(info->ranges, type, start, end);
}
/*
* pci_new_bus --
*
* Create a new PCI bus and initialize its resource ranges.
*/
static struct pci_bus *
pci_new_bus(struct pci_resources *pr, uint8_t busno, struct pci_device *bridge)
{
struct pci_bus *pb;
struct pci_resource_arena **ranges;
pb = kmem_zalloc(sizeof(*pb), KM_SLEEP);
pb->pb_busno = busno;
pb->pb_bridge = bridge;
if (bridge == NULL) {
/*
* No additional constraints on resource allocations for
* the root bus.
*/
ranges = pr->pr_ranges;
} else {
/*
* Resource allocations for this bus are constrained by the
* bridge forwarding settings.
*/
ranges = bridge->pd_bridge.ranges;
}
memcpy(pb->pb_ranges, ranges, sizeof(pb->pb_ranges));
return pb;
}
/*
* pci_resource_device_functions --
*
* Returns the number of PCI functions for a a given bus and device.
*/
static uint8_t
pci_resource_device_functions(struct pci_resources *pr,
uint8_t busno, uint8_t devno)
{
struct pci_bus *pb;
struct pci_device *pd;
pb = PCICONF_RES_BUS(pr, busno);
pd = PCICONF_BUS_DEVICE(pb, devno, 0);
if (!pd->pd_present) {
return 0;
}
return PCI_HDRTYPE_MULTIFN(pd->pd_bhlc) ? 8 : 1;
}
/*
* pci_resource_device_print --
*
* Log details about a device.
*/
static void
pci_resource_device_print(struct pci_resources *pr,
struct pci_device *pd)
{
struct pci_iores *pi;
struct pci_resource_range *range;
u_int res;
DPRINT("PCI: " PCI_SBDF_FMT " %04x:%04x %02x 0x%06x",
PCI_SBDF_FMT_ARGS(pr, pd),
PCI_VENDOR(pd->pd_id), PCI_PRODUCT(pd->pd_id),
PCI_REVISION(pd->pd_class), (pd->pd_class >> 8) & 0xffffff);
switch (PCI_HDRTYPE_TYPE(pd->pd_bhlc)) {
case PCI_HDRTYPE_DEVICE:
DPRINT(" (device)\n");
break;
case PCI_HDRTYPE_PPB:
DPRINT(" (bridge %u -> %u-%u)\n",
PCI_BRIDGE_BUS_NUM_PRIMARY(pd->pd_bridge.bridge_bus),
PCI_BRIDGE_BUS_NUM_SECONDARY(pd->pd_bridge.bridge_bus),
PCI_BRIDGE_BUS_NUM_SUBORDINATE(pd->pd_bridge.bridge_bus));
if (pd->pd_bridge.ranges[PCI_RANGE_IO]) {
SIMPLEQ_FOREACH(range,
&pd->pd_bridge.ranges[PCI_RANGE_IO]->list,
entry) {
DPRINT("PCI: " PCI_SBDF_FMT
" [bridge] window io "
" %#" PRIx64 "-%#" PRIx64
"\n",
PCI_SBDF_FMT_ARGS(pr, pd),
range->start,
range->end);
}
}
if (pd->pd_bridge.ranges[PCI_RANGE_MEM]) {
SIMPLEQ_FOREACH(range,
&pd->pd_bridge.ranges[PCI_RANGE_MEM]->list,
entry) {
DPRINT("PCI: " PCI_SBDF_FMT
" [bridge] window mem"
" %#" PRIx64 "-%#" PRIx64
" (non-prefetchable)\n",
PCI_SBDF_FMT_ARGS(pr, pd),
range->start,
range->end);
}
}
if (pd->pd_bridge.ranges[PCI_RANGE_PMEM]) {
SIMPLEQ_FOREACH(range,
&pd->pd_bridge.ranges[PCI_RANGE_PMEM]->list,
entry) {
DPRINT("PCI: " PCI_SBDF_FMT
" [bridge] window mem"
" %#" PRIx64 "-%#" PRIx64
" (prefetchable)\n",
PCI_SBDF_FMT_ARGS(pr, pd),
range->start,
range->end);
}
}
break;
default:
DPRINT(" (0x%02x)\n", PCI_HDRTYPE_TYPE(pd->pd_bhlc));
}
for (res = 0; res < pd->pd_niores; res++) {
pi = &pd->pd_iores[res];
DPRINT("PCI: " PCI_SBDF_FMT
" [device] resource BAR%u: %s @ %#" PRIx64 " size %#"
PRIx64,
PCI_SBDF_FMT_ARGS(pr, pd), pi->pi_bar,
pi->pi_type == PCI_MAPREG_TYPE_MEM ? "mem" : "io ",
pi->pi_base, pi->pi_size);
if (pi->pi_type == PCI_MAPREG_TYPE_MEM) {
switch (pi->pi_mem.memtype) {
case PCI_MAPREG_MEM_TYPE_32BIT:
DPRINT(", 32-bit");
break;
case PCI_MAPREG_MEM_TYPE_32BIT_1M:
DPRINT(", 32-bit (1M)");
break;
case PCI_MAPREG_MEM_TYPE_64BIT:
DPRINT(", 64-bit");
break;
}
DPRINT(" %sprefetchable",
pi->pi_mem.prefetch ? "" : "non-");
}
DPRINT("\n");
}
}
/*
* pci_resource_scan_bar --
*
* Determine the current BAR configuration for a given device.
*/
static void
pci_resource_scan_bar(struct pci_resources *pr,
struct pci_device *pd, pcireg_t mapreg_start, pcireg_t mapreg_end,
bool is_ppb)
{
pci_chipset_tag_t pc = pr->pr_pc;
pcitag_t tag = pd->pd_tag;
pcireg_t mapreg = mapreg_start;
pcireg_t ocmd, cmd, bar[2], mask[2];
uint64_t addr, size;
struct pci_iores *pi;
if (!is_ppb) {
ocmd = cmd = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
cmd &= ~(PCI_COMMAND_MASTER_ENABLE |
PCI_COMMAND_MEM_ENABLE |
PCI_COMMAND_IO_ENABLE);
pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, cmd);
}
while (mapreg < mapreg_end) {
u_int width = 4;
bar[0] = pci_conf_read(pc, tag, mapreg);
pci_conf_write(pc, tag, mapreg, 0xffffffff);
mask[0] = pci_conf_read(pc, tag, mapreg);
pci_conf_write(pc, tag, mapreg, bar[0]);
switch (PCI_MAPREG_TYPE(mask[0])) {
case PCI_MAPREG_TYPE_MEM:
switch (PCI_MAPREG_MEM_TYPE(mask[0])) {
case PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_MEM_TYPE_32BIT_1M:
size = PCI_MAPREG_MEM_SIZE(mask[0]);
addr = PCI_MAPREG_MEM_ADDR(bar[0]);
break;
case PCI_MAPREG_MEM_TYPE_64BIT:
bar[1] = pci_conf_read(pc, tag, mapreg + 4);
pci_conf_write(pc, tag, mapreg + 4, 0xffffffff);
mask[1] = pci_conf_read(pc, tag, mapreg + 4);
pci_conf_write(pc, tag, mapreg + 4, bar[1]);
size = PCI_MAPREG_MEM64_SIZE(
((uint64_t)mask[1] << 32) | mask[0]);
addr = PCI_MAPREG_MEM64_ADDR(
((uint64_t)bar[1] << 32) | bar[0]);
width = 8;
break;
default:
size = 0;
}
if (size > 0) {
pi = &pd->pd_iores[pd->pd_niores++];
pi->pi_type = PCI_MAPREG_TYPE_MEM;
pi->pi_base = addr;
pi->pi_size = size;
pi->pi_bar = (mapreg - mapreg_start) / 4;
pi->pi_mem.memtype =
PCI_MAPREG_MEM_TYPE(mask[0]);
pi->pi_mem.prefetch =
PCI_MAPREG_MEM_PREFETCHABLE(mask[0]);
}
break;
case PCI_MAPREG_TYPE_IO:
size = PCI_MAPREG_IO_SIZE(mask[0] | 0xffff0000);
addr = PCI_MAPREG_IO_ADDR(bar[0]);
if (size > 0) {
pi = &pd->pd_iores[pd->pd_niores++];
pi->pi_type = PCI_MAPREG_TYPE_IO;
pi->pi_base = addr;
pi->pi_size = size;
pi->pi_bar = (mapreg - mapreg_start) / 4;
}
break;
}
KASSERT(pd->pd_niores <= PCI_MAX_IORES);
mapreg += width;
}
if (!is_ppb) {
pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, ocmd);
}
}
/*
* pci_resource_scan_bridge --
*
* Determine the current configuration of a PCI-PCI bridge.
*/
static void
pci_resource_scan_bridge(struct pci_resources *pr,
struct pci_device *pd)
{
pci_chipset_tag_t pc = pr->pr_pc;
pcitag_t tag = pd->pd_tag;
pcireg_t res, reshigh;
uint64_t iostart, ioend;
uint64_t memstart, memend;
uint64_t pmemstart, pmemend;
pd->pd_ppb = true;
res = pci_conf_read(pc, tag, PCI_BRIDGE_BUS_REG);
pd->pd_bridge.bridge_bus = res;
pci_resource_arena_add_range(pd->pd_bridge.ranges,
PCI_RANGE_BUS,
PCI_BRIDGE_BUS_NUM_SECONDARY(res),
PCI_BRIDGE_BUS_NUM_SUBORDINATE(res));
res = pci_conf_read(pc, tag, PCI_BRIDGE_STATIO_REG);
iostart = PCI_BRIDGE_STATIO_IOBASE_ADDR(res);
ioend = PCI_BRIDGE_STATIO_IOLIMIT_ADDR(res);
if (PCI_BRIDGE_IO_32BITS(res)) {
reshigh = pci_conf_read(pc, tag, PCI_BRIDGE_IOHIGH_REG);
iostart |= __SHIFTOUT(reshigh, PCI_BRIDGE_IOHIGH_BASE) << 16;
ioend |= __SHIFTOUT(reshigh, PCI_BRIDGE_IOHIGH_LIMIT) << 16;
}
if (iostart < ioend) {
pci_resource_arena_add_range(pd->pd_bridge.ranges,
PCI_RANGE_IO, iostart, ioend);
}
res = pci_conf_read(pc, tag, PCI_BRIDGE_MEMORY_REG);
memstart = PCI_BRIDGE_MEMORY_BASE_ADDR(res);
memend = PCI_BRIDGE_MEMORY_LIMIT_ADDR(res);
if (memstart < memend) {
pci_resource_arena_add_range(pd->pd_bridge.ranges,
PCI_RANGE_MEM, memstart, memend);
}
res = pci_conf_read(pc, tag, PCI_BRIDGE_PREFETCHMEM_REG);
pmemstart = PCI_BRIDGE_PREFETCHMEM_BASE_ADDR(res);
pmemend = PCI_BRIDGE_PREFETCHMEM_LIMIT_ADDR(res);
if (PCI_BRIDGE_PREFETCHMEM_64BITS(res)) {
reshigh = pci_conf_read(pc, tag,
PCI_BRIDGE_PREFETCHBASEUP32_REG);
pmemstart |= (uint64_t)reshigh << 32;
reshigh = pci_conf_read(pc, tag,
PCI_BRIDGE_PREFETCHLIMITUP32_REG);
pmemend |= (uint64_t)reshigh << 32;
}
if (pmemstart < pmemend) {
pci_resource_arena_add_range(pd->pd_bridge.ranges,
PCI_RANGE_PMEM, pmemstart, pmemend);
}
}
/*
* pci_resource_scan_device --
*
* Determine the current configuration of a PCI device.
*/
static bool
pci_resource_scan_device(struct pci_resources *pr,
struct pci_bus *parent_bus, uint8_t devno, uint8_t funcno)
{
struct pci_device *pd;
pcitag_t tag;
pcireg_t id, bridge_bus;
uint8_t sec_bus;
tag = pci_make_tag(pr->pr_pc, parent_bus->pb_busno, devno, funcno);
id = pci_conf_read(pr->pr_pc, tag, PCI_ID_REG);
if (PCI_VENDOR(id) == PCI_VENDOR_INVALID) {
return false;
}
pd = PCICONF_BUS_DEVICE(parent_bus, devno, funcno);
pd->pd_present = true;
pd->pd_bus = parent_bus;
pd->pd_tag = tag;
pd->pd_devno = devno;
pd->pd_funcno = funcno;
pd->pd_id = id;
pd->pd_class = pci_conf_read(pr->pr_pc, tag, PCI_CLASS_REG);
pd->pd_bhlc = pci_conf_read(pr->pr_pc, tag, PCI_BHLC_REG);
switch (PCI_HDRTYPE_TYPE(pd->pd_bhlc)) {
case PCI_HDRTYPE_DEVICE:
pci_resource_scan_bar(pr, pd, PCI_MAPREG_START,
PCI_MAPREG_END, false);
break;
case PCI_HDRTYPE_PPB:
pci_resource_scan_bar(pr, pd, PCI_MAPREG_START,
PCI_MAPREG_PPB_END, true);
pci_resource_scan_bridge(pr, pd);
break;
}
pci_resource_device_print(pr, pd);
if (PCI_HDRTYPE_TYPE(pd->pd_bhlc) == PCI_HDRTYPE_PPB &&
PCI_CLASS(pd->pd_class) == PCI_CLASS_BRIDGE &&
PCI_SUBCLASS(pd->pd_class) == PCI_SUBCLASS_BRIDGE_PCI) {
bridge_bus = pci_conf_read(pr->pr_pc, tag, PCI_BRIDGE_BUS_REG);
sec_bus = PCI_BRIDGE_BUS_NUM_SECONDARY(bridge_bus);
if (pci_bus_in_range(pr, sec_bus)) {
if (pci_resource_scan_bus(pr, pd, sec_bus) != 0) {
DPRINT("PCI: " PCI_SBDF_FMT " bus %u "
"already scanned (firmware bug!)\n",
PCI_SBDF_FMT_ARGS(pr, pd), sec_bus);
}
} else {
DPRINT("PCI: " PCI_SBDF_FMT " bus %u "
"out of range (firmware bug!)\n",
PCI_SBDF_FMT_ARGS(pr, pd), sec_bus);
}
}
return true;
}
/*
* pci_resource_scan_bus --
*
* Enumerate devices on a bus, recursively.
*/
static int
pci_resource_scan_bus(struct pci_resources *pr,
struct pci_device *bridge_dev, uint8_t busno)
{
struct pci_bus *pb;
uint8_t devno, funcno;
uint8_t nfunc;
KASSERT(busno >= pr->pr_startbus);
KASSERT(pci_bus_in_range(pr, busno));
if (PCICONF_RES_BUS(pr, busno) != NULL) {
/*
* Firmware has configured more than one bridge with the
* same secondary bus number.
*/
return EINVAL;
}
pb = pci_new_bus(pr, busno, bridge_dev);
PCICONF_RES_BUS(pr, busno) = pb;
for (devno = 0; devno < PCI_MAX_DEVICE; devno++) {
if (!pci_resource_scan_device(pr, pb, devno, 0)) {
continue;
}
pb->pb_lastdevno = devno;
nfunc = pci_resource_device_functions(pr, busno, devno);
for (funcno = 1; funcno < nfunc; funcno++) {
pci_resource_scan_device(pr, pb, devno, funcno);
}
}
return 0;
}
/*
* pci_resource_claim --
*
* Claim a resource from a vmem arena. This is called to inform the
* resource manager about resources already configured by system firmware.
*/
static int
pci_resource_claim(struct pci_resource_arena *arena,
vmem_addr_t start, vmem_addr_t end)
{
KASSERT(end >= start);
return vmem_xalloc(arena->vmem, end - start + 1, 0, 0, 0, start, end,
VM_BESTFIT | VM_NOSLEEP, NULL);
}
/*
* pci_resource_alloc --
*
* Allocate a resource from a vmem arena. This is called when configuring
* devices that were not already configured by system firmware.
*/
static int
pci_resource_alloc(struct pci_resource_arena *arena, vmem_size_t size,
vmem_size_t align,
uint64_t *base)
{
vmem_addr_t addr;
int error;
KASSERT(size != 0);
error = vmem_xalloc(arena->vmem, size, align, 0, 0, VMEM_ADDR_MIN,
VMEM_ADDR_MAX, VM_BESTFIT | VM_NOSLEEP, &addr);
if (error == 0) {
*base = (uint64_t)addr;
}
return error;
}
/*
* pci_resource_init_device --
*
* Discover resources assigned by system firmware, notify the resource
* manager of these ranges, and determine if the device has additional
* resources that need to be allocated.
*/
static void
pci_resource_init_device(struct pci_resources *pr,
struct pci_device *pd)
{
struct pci_iores *pi;
struct pci_bus *pb = pd->pd_bus;
struct pci_resource_arena *res_io = pb->pb_res[PCI_RANGE_IO];
struct pci_resource_arena *res_mem = pb->pb_res[PCI_RANGE_MEM];
struct pci_resource_arena *res_pmem = pb->pb_res[PCI_RANGE_PMEM];
pcireg_t cmd;
u_int enabled, required;
u_int iores;
int error;
KASSERT(pd->pd_present);
if (IS_TEST_DEVICE(pd)) {
cmd = pci_conf_read(pr->pr_pc, pd->pd_tag,
PCI_COMMAND_STATUS_REG);
cmd &= ~(PCI_COMMAND_MEM_ENABLE|PCI_COMMAND_IO_ENABLE|
PCI_COMMAND_MASTER_ENABLE);
pci_conf_write(pr->pr_pc, pd->pd_tag, PCI_COMMAND_STATUS_REG,
cmd);
}
enabled = required = 0;
cmd = pci_conf_read(pr->pr_pc, pd->pd_tag, PCI_COMMAND_STATUS_REG);
if ((cmd & PCI_COMMAND_MEM_ENABLE) != 0) {
enabled |= __BIT(PCI_MAPREG_TYPE_MEM);
}
if ((cmd & PCI_COMMAND_IO_ENABLE) != 0) {
enabled |= __BIT(PCI_MAPREG_TYPE_IO);
}
for (iores = 0; iores < pd->pd_niores; iores++) {
pi = &pd->pd_iores[iores];
required |= __BIT(pi->pi_type);
if (IS_TEST_DEVICE(pd)) {
pci_conf_write(pr->pr_pc, pd->pd_tag,
PCI_BAR(pi->pi_bar), 0);
continue;
}
if ((enabled & __BIT(pi->pi_type)) == 0) {
continue;
}
if (pi->pi_type == PCI_MAPREG_TYPE_IO) {
error = res_io == NULL ? ERANGE :
pci_resource_claim(res_io, pi->pi_base,
pi->pi_base + pi->pi_size - 1);
if (error) {
DPRINT("PCI: " PCI_SBDF_FMT " [device] io "
" %#" PRIx64 "-%#" PRIx64
" invalid (%d)\n",
PCI_SBDF_FMT_ARGS(pr, pd),
pi->pi_base,
pi->pi_base + pi->pi_size - 1,
error);
}
continue;
}
KASSERT(pi->pi_type == PCI_MAPREG_TYPE_MEM);
error = ERANGE;
if (pi->pi_mem.prefetch) {
/*
* Prefetchable memory must be allocated from the
* bridge's prefetchable region.
*/
if (res_pmem != NULL) {
error = pci_resource_claim(res_pmem, pi->pi_base,
pi->pi_base + pi->pi_size - 1);
}
} else if (pi->pi_mem.memtype == PCI_MAPREG_MEM_TYPE_64BIT) {
/*
* Non-prefetchable 64-bit memory can be allocated from
* any range. Prefer allocations from the prefetchable
* region to save 32-bit only resources for 32-bit BARs.
*/
if (res_pmem != NULL) {
error = pci_resource_claim(res_pmem, pi->pi_base,
pi->pi_base + pi->pi_size - 1);
}
if (error && res_mem != NULL) {
error = pci_resource_claim(res_mem, pi->pi_base,
pi->pi_base + pi->pi_size - 1);
}
} else {
/*
* Non-prefetchable 32-bit memory can be allocated from
* any range, provided that the range is below 4GB. Try
* the non-prefetchable range first, and if that fails,
* make one last attempt at allocating from the
* prefetchable range in case the platform provides
* memory below 4GB.
*/
if (res_mem != NULL) {
error = pci_resource_claim(res_mem, pi->pi_base,
pi->pi_base + pi->pi_size - 1);
}
if (error && res_pmem != NULL) {
error = pci_resource_claim(res_pmem, pi->pi_base,
pi->pi_base + pi->pi_size - 1);
}
}
if (error) {
DPRINT("PCI: " PCI_SBDF_FMT " [device] mem"
" (%sprefetchable)"
" %#" PRIx64 "-%#" PRIx64
" invalid (%d)\n",
PCI_SBDF_FMT_ARGS(pr, pd),
pi->pi_mem.prefetch ? "" : "non-",
pi->pi_base,
pi->pi_base + pi->pi_size - 1,
error);
}
}
pd->pd_configured = (enabled & required) == required;
if (!pd->pd_configured) {
DPRINT("PCI: " PCI_SBDF_FMT " [device] "
"not configured by firmware\n",
PCI_SBDF_FMT_ARGS(pr, pd));
}
}
/*
* pci_resource_init_bus --
*
* Discover resources in use on a given bus, recursively.
*/
static void
pci_resource_init_bus(struct pci_resources *pr, uint8_t busno)
{
struct pci_bus *pb, *parent_bus;
struct pci_device *pd, *bridge;
uint8_t devno, funcno;
uint8_t nfunc;
int error;
KASSERT(busno >= pr->pr_startbus);
KASSERT(pci_bus_in_range(pr, busno));
pb = PCICONF_RES_BUS(pr, busno);
bridge = pb->pb_bridge;
KASSERT(pb != NULL);
KASSERT((busno == pr->pr_startbus) == (bridge == NULL));
if (bridge == NULL) {
/* Use resources provided by firmware. */
PCI_RANGE_FOREACH(prtype) {
pb->pb_res[prtype] = pr->pr_ranges[prtype];
pr->pr_ranges[prtype] = NULL;
}
} else {
/*
* Using the resources configured in to the bridge by
* firmware, claim the resources on the parent bus and
* create a new vmem arena for the secondary bus.
*/
KASSERT(bridge->pd_bus != NULL);
parent_bus = bridge->pd_bus;
PCI_RANGE_FOREACH(prtype) {
struct pci_resource_range *range;
if (parent_bus->pb_res[prtype] == NULL ||
bridge->pd_bridge.ranges[prtype] == NULL) {
continue;
}
SIMPLEQ_FOREACH(range,
&bridge->pd_bridge.ranges[prtype]->list,
entry) {
error = pci_resource_claim(
parent_bus->pb_res[prtype],
range->start, range->end);
if (error) {
DPRINT("PCI: " PCI_SBDF_FMT
" bridge (bus %u)"
" %-4s %#" PRIx64 "-%#" PRIx64
" invalid\n",
PCI_SBDF_FMT_ARGS(pr, bridge),
busno,
pci_resource_typename(prtype),
range->start, range->end);
continue;
}
pci_resource_arena_add_range(
pb->pb_res, prtype,
range->start, range->end);
KASSERT(pb->pb_res[prtype] != NULL);
}
}
}
for (devno = 0; devno <= pb->pb_lastdevno; devno++) {
KASSERT(devno < PCI_MAX_DEVICE);
nfunc = pci_resource_device_functions(pr, busno, devno);
for (funcno = 0; funcno < nfunc; funcno++) {
pd = PCICONF_BUS_DEVICE(pb, devno, funcno);
if (!pd->pd_present) {
continue;
}
if (pd->pd_ppb) {
uint8_t sec_bus = PCI_BRIDGE_BUS_NUM_SECONDARY(
pd->pd_bridge.bridge_bus);
KASSERT(pci_bus_in_range(pr, sec_bus));
pci_resource_init_bus(pr, sec_bus);
}
pci_resource_init_device(pr, pd);
}
}
}
/*
* pci_resource_probe --
*
* Scan for PCI devices and initialize the resource manager.
*/
static void
pci_resource_probe(struct pci_resources *pr,
const struct pci_resource_info *info)
{
struct pci_resource_arena *busarena = info->ranges[PCI_RANGE_BUS];
uint8_t startbus = SIMPLEQ_FIRST(&busarena->list)->start;
uint8_t endbus = SIMPLEQ_LAST(&busarena->list, pci_resource_range,
entry)->end;
u_int nbus;
KASSERT(startbus <= endbus);
KASSERT(pr->pr_bus == NULL);
nbus = endbus - startbus + 1;
pr->pr_pc = info->pc;
pr->pr_startbus = startbus;
pr->pr_busranges = busarena;
pr->pr_bus = kmem_zalloc(nbus * sizeof(pr->pr_bus[0]), KM_SLEEP);
memcpy(pr->pr_ranges, info->ranges, sizeof(pr->pr_ranges));
/* Scan devices */
pci_resource_scan_bus(pr, NULL, pr->pr_startbus);
/*
* Create per-bus resource pools and remove ranges that are already
* in use by devices and downstream bridges.
*/
pci_resource_init_bus(pr, pr->pr_startbus);
}
/*
* pci_resource_alloc_device --
*
* Attempt to allocate resources for a given device.
*/
static void
pci_resource_alloc_device(struct pci_resources *pr, struct pci_device *pd)
{
struct pci_iores *pi;
struct pci_resource_arena *arena;
pcireg_t cmd, ocmd, base;
uint64_t addr;
u_int enabled;
u_int res;
u_int align;
int error;
enabled = 0;
ocmd = cmd = pci_conf_read(pr->pr_pc, pd->pd_tag,
PCI_COMMAND_STATUS_REG);
if ((cmd & PCI_COMMAND_MEM_ENABLE) != 0) {
enabled |= __BIT(PCI_MAPREG_TYPE_MEM);
}
if ((cmd & PCI_COMMAND_IO_ENABLE) != 0) {
enabled |= __BIT(PCI_MAPREG_TYPE_IO);
}
for (res = 0; res < pd->pd_niores; res++) {
pi = &pd->pd_iores[res];
if ((enabled & __BIT(pi->pi_type)) != 0) {
continue;
}
if (pi->pi_type == PCI_MAPREG_TYPE_IO) {
arena = pd->pd_bus->pb_res[PCI_RANGE_IO];
align = uimax(pi->pi_size, 4);
} else {
KASSERT(pi->pi_type == PCI_MAPREG_TYPE_MEM);
arena = NULL;
align = uimax(pi->pi_size, 16);
if (pi->pi_mem.prefetch) {
arena = pd->pd_bus->pb_res[PCI_RANGE_PMEM];
}
if (arena == NULL) {
arena = pd->pd_bus->pb_res[PCI_RANGE_MEM];
}
}
if (arena == NULL) {
DPRINT("PCI: " PCI_SBDF_FMT " BAR%u failed to"
" allocate %#" PRIx64 " bytes (no arena)\n",
PCI_SBDF_FMT_ARGS(pr, pd),
pi->pi_bar, pi->pi_size);
return;
}
error = pci_resource_alloc(arena, pi->pi_size, align, &addr);
if (error != 0) {
DPRINT("PCI: " PCI_SBDF_FMT " BAR%u failed to"
" allocate %#" PRIx64 " bytes (no space)\n",
PCI_SBDF_FMT_ARGS(pr, pd),
pi->pi_bar, pi->pi_size);
return;
}
DPRINT("PCI: " PCI_SBDF_FMT " BAR%u assigned range"
" %#" PRIx64 "-%#" PRIx64 "\n",
PCI_SBDF_FMT_ARGS(pr, pd),
pi->pi_bar, addr, addr + pi->pi_size - 1);
if (pi->pi_type == PCI_MAPREG_TYPE_IO) {
cmd |= PCI_COMMAND_IO_ENABLE;
pci_conf_write(pr->pr_pc, pd->pd_tag,
PCI_BAR(pi->pi_bar),
PCI_MAPREG_IO_ADDR(addr) | PCI_MAPREG_TYPE_IO);
} else {
cmd |= PCI_COMMAND_MEM_ENABLE;
base = pci_conf_read(pr->pr_pc, pd->pd_tag,
PCI_BAR(pi->pi_bar));
base = PCI_MAPREG_MEM_ADDR(addr) |
PCI_MAPREG_MEM_TYPE(base);
pci_conf_write(pr->pr_pc, pd->pd_tag,
PCI_BAR(pi->pi_bar), base);
if (pi->pi_mem.memtype == PCI_MAPREG_MEM_TYPE_64BIT) {
base = (pcireg_t)
(PCI_MAPREG_MEM64_ADDR(addr) >> 32);
pci_conf_write(pr->pr_pc, pd->pd_tag,
PCI_BAR(pi->pi_bar + 1), base);
}
}
}
if (ocmd != cmd) {
pci_conf_write(pr->pr_pc, pd->pd_tag,
PCI_COMMAND_STATUS_REG, cmd);
}
}
/*
* pci_resource_alloc_bus --
*
* Attempt to assign resources to all devices on a given bus, recursively.
*/
static void
pci_resource_alloc_bus(struct pci_resources *pr, uint8_t busno)
{
struct pci_bus *pb = PCICONF_RES_BUS(pr, busno);
struct pci_device *pd;
uint8_t devno, funcno;
for (devno = 0; devno <= pb->pb_lastdevno; devno++) {
for (funcno = 0; funcno < 8; funcno++) {
pd = PCICONF_BUS_DEVICE(pb, devno, funcno);
if (!pd->pd_present) {
if (funcno == 0) {
break;
}
continue;
}
if (!pd->pd_configured) {
pci_resource_alloc_device(pr, pd);
}
if (pd->pd_ppb) {
uint8_t sec_bus = PCI_BRIDGE_BUS_NUM_SECONDARY(
pd->pd_bridge.bridge_bus);
pci_resource_alloc_bus(pr, sec_bus);
}
}
}
}
/*
* pci_resource_init --
*
* Public interface to PCI resource manager. Scans for available devices
* and assigns resources.
*/
void
pci_resource_init(const struct pci_resource_info *info)
{
struct pci_resources pr = {};
if (info->ranges[PCI_RANGE_BUS] == NULL) {
aprint_error("PCI: no buses\n");
return;
}
KASSERT(!SIMPLEQ_EMPTY(&info->ranges[PCI_RANGE_BUS]->list));
pci_resource_probe(&pr, info);
pci_resource_alloc_bus(&pr, pr.pr_startbus);
}
/*
* pci_resource_typename --
*
* Return a string description of a PCI range type.
*/
const char *
pci_resource_typename(enum pci_range_type prtype)
{
KASSERT(prtype < NUM_PCI_RANGES);
return pci_range_typenames[prtype];
}