/*      $NetBSD: nvme_pci.c,v 1.37 2022/08/15 18:06:04 pgoyette Exp $   */
/*      $OpenBSD: nvme_pci.c,v 1.3 2016/04/14 11:18:32 dlg Exp $ */

/*
* Copyright (c) 2014 David Gwynne <[email protected]>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/

/*-
* Copyright (C) 2016 NONAKA Kimihiro <[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: nvme_pci.c,v 1.37 2022/08/15 18:06:04 pgoyette Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/bitops.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/interrupt.h>
#include <sys/kmem.h>
#include <sys/pmf.h>
#include <sys/module.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>

#include <dev/ic/nvmereg.h>
#include <dev/ic/nvmevar.h>

int nvme_pci_force_intx = 0;
int nvme_pci_mpsafe = 1;
int nvme_pci_mq = 1;            /* INTx: ioq=1, MSI/MSI-X: ioq=ncpu */

#define NVME_PCI_BAR            0x10

struct nvme_pci_softc {
       struct nvme_softc       psc_nvme;

       pci_chipset_tag_t       psc_pc;
       pci_intr_handle_t       *psc_intrs;
       int                     psc_nintrs;
};

static int      nvme_pci_match(device_t, cfdata_t, void *);
static void     nvme_pci_attach(device_t, device_t, void *);
static int      nvme_pci_detach(device_t, int);
static int      nvme_pci_rescan(device_t, const char *, const int *);
static bool     nvme_pci_suspend(device_t, const pmf_qual_t *);
static bool     nvme_pci_resume(device_t, const pmf_qual_t *);

CFATTACH_DECL3_NEW(nvme_pci, sizeof(struct nvme_pci_softc),
   nvme_pci_match, nvme_pci_attach, nvme_pci_detach, NULL, nvme_pci_rescan,
   nvme_childdet, DVF_DETACH_SHUTDOWN);

static int      nvme_pci_intr_establish(struct nvme_softc *,
                   uint16_t, struct nvme_queue *);
static int      nvme_pci_intr_disestablish(struct nvme_softc *, uint16_t);
static int      nvme_pci_setup_intr(struct pci_attach_args *,
                   struct nvme_pci_softc *);

static const struct nvme_pci_quirk {
       pci_vendor_id_t         vendor;
       pci_product_id_t        product;
       uint32_t                quirks;
} nvme_pci_quirks[] = {
       { PCI_VENDOR_HGST, PCI_PRODUCT_HGST_SN100,
           NVME_QUIRK_DELAY_B4_CHK_RDY },
       { PCI_VENDOR_HGST, PCI_PRODUCT_HGST_SN200,
           NVME_QUIRK_DELAY_B4_CHK_RDY },
       { PCI_VENDOR_BEIJING_MEMBLAZE, PCI_PRODUCT_BEIJING_MEMBLAZE_PBLAZE4,
           NVME_QUIRK_DELAY_B4_CHK_RDY },
       { PCI_VENDOR_SAMSUNGELEC3, PCI_PRODUCT_SAMSUNGELEC3_172X,
           NVME_QUIRK_DELAY_B4_CHK_RDY },
       { PCI_VENDOR_SAMSUNGELEC3, PCI_PRODUCT_SAMSUNGELEC3_172XAB,
           NVME_QUIRK_DELAY_B4_CHK_RDY },
       { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DC_P4500_SSD,
           NVME_QUIRK_NOMSI },
};

static const struct nvme_pci_quirk *
nvme_pci_lookup_quirk(struct pci_attach_args *pa)
{
       const struct nvme_pci_quirk *q;
       int i;

       for (i = 0; i < __arraycount(nvme_pci_quirks); i++) {
               q = &nvme_pci_quirks[i];

               if (PCI_VENDOR(pa->pa_id) == q->vendor &&
                   PCI_PRODUCT(pa->pa_id) == q->product)
                       return q;
       }
       return NULL;
}

static int
nvme_pci_match(device_t parent, cfdata_t match, void *aux)
{
       struct pci_attach_args *pa = aux;

       if (PCI_CLASS(pa->pa_class) == PCI_CLASS_MASS_STORAGE &&
           PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_MASS_STORAGE_NVM &&
           PCI_INTERFACE(pa->pa_class) == PCI_INTERFACE_NVM_NVME_IO)
               return 1;

       return 0;
}

static void
nvme_pci_attach(device_t parent, device_t self, void *aux)
{
       struct nvme_pci_softc *psc = device_private(self);
       struct nvme_softc *sc = &psc->psc_nvme;
       struct pci_attach_args *pa = aux;
       const struct nvme_pci_quirk *quirk;
       pcireg_t memtype, reg;
       bus_addr_t memaddr;
       int flags, error;
       int msixoff;

       sc->sc_dev = self;
       psc->psc_pc = pa->pa_pc;
       if (pci_dma64_available(pa))
               sc->sc_dmat = pa->pa_dmat64;
       else
               sc->sc_dmat = pa->pa_dmat;

       quirk = nvme_pci_lookup_quirk(pa);
       if (quirk != NULL)
               sc->sc_quirks = quirk->quirks;

       pci_aprint_devinfo(pa, NULL);

       /* Map registers */
       memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NVME_PCI_BAR);
       if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) {
               aprint_error_dev(self, "invalid type (type=0x%x)\n", memtype);
               return;
       }
       reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
       if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) ||
           ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) {
               /*
                * Enable address decoding for memory range in case BIOS or
                * UEFI didn't set it.
                */
               reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
               pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
                   reg);
       }

       sc->sc_iot = pa->pa_memt;
       error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, NVME_PCI_BAR,
           memtype, &memaddr, &sc->sc_ios, &flags);
       if (error) {
               aprint_error_dev(self, "can't get map info\n");
               return;
       }

       if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff,
           NULL)) {
               pcireg_t msixtbl;
               uint32_t table_offset;
               int bir;

               msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag,
                   msixoff + PCI_MSIX_TBLOFFSET);
               table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
               bir = msixtbl & PCI_MSIX_TBLBIR_MASK;
               if (bir == PCI_MAPREG_NUM(NVME_PCI_BAR)) {
                       sc->sc_ios = table_offset;
               }
       }

       error = bus_space_map(sc->sc_iot, memaddr, sc->sc_ios, flags,
           &sc->sc_ioh);
       if (error != 0) {
               aprint_error_dev(self, "can't map mem space (error=%d)\n",
                   error);
               return;
       }

       /* Establish interrupts */
       if (nvme_pci_setup_intr(pa, psc) != 0) {
               aprint_error_dev(self, "unable to allocate interrupt\n");
               goto unmap;
       }
       sc->sc_intr_establish = nvme_pci_intr_establish;
       sc->sc_intr_disestablish = nvme_pci_intr_disestablish;

       sc->sc_ih = kmem_zalloc(sizeof(*sc->sc_ih) * psc->psc_nintrs, KM_SLEEP);
       sc->sc_softih = kmem_zalloc(
           sizeof(*sc->sc_softih) * psc->psc_nintrs, KM_SLEEP);

       if (nvme_attach(sc) != 0) {
               /* error printed by nvme_attach() */
               goto softintr_free;
       }

       if (!pmf_device_register(self, nvme_pci_suspend, nvme_pci_resume))
               aprint_error_dev(self, "couldn't establish power handler\n");

       SET(sc->sc_flags, NVME_F_ATTACHED);
       return;

softintr_free:
       kmem_free(sc->sc_softih, sizeof(*sc->sc_softih) * psc->psc_nintrs);
       kmem_free(sc->sc_ih, sizeof(*sc->sc_ih) * psc->psc_nintrs);
       sc->sc_nq = 0;
       pci_intr_release(pa->pa_pc, psc->psc_intrs, psc->psc_nintrs);
       psc->psc_nintrs = 0;
unmap:
       bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
       sc->sc_ios = 0;
}

static int
nvme_pci_rescan(device_t self, const char *attr, const int *flags)
{

       return nvme_rescan(self, attr, flags);
}

static bool
nvme_pci_suspend(device_t self, const pmf_qual_t *qual)
{
       struct nvme_pci_softc *psc = device_private(self);
       struct nvme_softc *sc = &psc->psc_nvme;
       int error;

       error = nvme_suspend(sc);
       if (error)
               return false;

       return true;
}

static bool
nvme_pci_resume(device_t self, const pmf_qual_t *qual)
{
       struct nvme_pci_softc *psc = device_private(self);
       struct nvme_softc *sc = &psc->psc_nvme;
       int error;

       error = nvme_resume(sc);
       if (error)
               return false;

       return true;
}

static int
nvme_pci_detach(device_t self, int flags)
{
       struct nvme_pci_softc *psc = device_private(self);
       struct nvme_softc *sc = &psc->psc_nvme;
       int error;

       if (!ISSET(sc->sc_flags, NVME_F_ATTACHED))
               return 0;

       error = nvme_detach(sc, flags);
       if (error)
               return error;

       kmem_free(sc->sc_softih, sizeof(*sc->sc_softih) * psc->psc_nintrs);
       sc->sc_softih = NULL;

       kmem_free(sc->sc_ih, sizeof(*sc->sc_ih) * psc->psc_nintrs);
       pci_intr_release(psc->psc_pc, psc->psc_intrs, psc->psc_nintrs);
       bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
       return 0;
}

static int
nvme_pci_intr_establish(struct nvme_softc *sc, uint16_t qid,
   struct nvme_queue *q)
{
       struct nvme_pci_softc *psc = (struct nvme_pci_softc *)sc;
       char intr_xname[INTRDEVNAMEBUF];
       char intrbuf[PCI_INTRSTR_LEN];
       const char *intrstr = NULL;
       int (*ih_func)(void *);
       void (*ih_func_soft)(void *);
       void *ih_arg;
       int error;

       KASSERT(sc->sc_use_mq || qid == NVME_ADMIN_Q);
       KASSERT(sc->sc_ih[qid] == NULL);

       if (nvme_pci_mpsafe) {
               pci_intr_setattr(psc->psc_pc, &psc->psc_intrs[qid],
                   PCI_INTR_MPSAFE, true);
       }

       if (!sc->sc_use_mq) {
               snprintf(intr_xname, sizeof(intr_xname), "%s",
                   device_xname(sc->sc_dev));
               ih_arg = sc;
               ih_func = nvme_intr;
               ih_func_soft = nvme_softintr_intx;
       } else {
               if (qid == NVME_ADMIN_Q) {
                       snprintf(intr_xname, sizeof(intr_xname), "%s adminq",
                           device_xname(sc->sc_dev));
               } else {
                       snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
                           device_xname(sc->sc_dev), qid);
               }
               ih_arg = q;
               ih_func = nvme_intr_msi;
               ih_func_soft = nvme_softintr_msi;
       }

       /* establish hardware interrupt */
       sc->sc_ih[qid] = pci_intr_establish_xname(psc->psc_pc,
           psc->psc_intrs[qid], IPL_BIO, ih_func, ih_arg, intr_xname);
       if (sc->sc_ih[qid] == NULL) {
               aprint_error_dev(sc->sc_dev,
                   "unable to establish %s interrupt\n", intr_xname);
               return 1;
       }

       /* establish also the software interrupt */
       sc->sc_softih[qid] = softint_establish(
           SOFTINT_BIO|(nvme_pci_mpsafe ? SOFTINT_MPSAFE : 0),
           ih_func_soft, q);
       if (sc->sc_softih[qid] == NULL) {
               pci_intr_disestablish(psc->psc_pc, sc->sc_ih[qid]);
               sc->sc_ih[qid] = NULL;

               aprint_error_dev(sc->sc_dev,
                   "unable to establish %s soft interrupt\n",
                   intr_xname);
               return 1;
       }

       intrstr = pci_intr_string(psc->psc_pc, psc->psc_intrs[qid], intrbuf,
           sizeof(intrbuf));
       if (!sc->sc_use_mq) {
               aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
       } else if (qid == NVME_ADMIN_Q) {
               aprint_normal_dev(sc->sc_dev,
                   "for admin queue interrupting at %s\n", intrstr);
       } else if (!nvme_pci_mpsafe) {
               aprint_normal_dev(sc->sc_dev,
                   "for io queue %d interrupting at %s\n", qid, intrstr);
       } else {
               kcpuset_t *affinity;
               cpuid_t affinity_to;

               kcpuset_create(&affinity, true);
               affinity_to = (qid - 1) % ncpu;
               kcpuset_set(affinity, affinity_to);
               error = interrupt_distribute(sc->sc_ih[qid], affinity, NULL);
               kcpuset_destroy(affinity);
               aprint_normal_dev(sc->sc_dev,
                   "for io queue %d interrupting at %s", qid, intrstr);
               if (error == 0)
                       aprint_normal(" affinity to cpu%lu", affinity_to);
               aprint_normal("\n");
       }
       return 0;
}

static int
nvme_pci_intr_disestablish(struct nvme_softc *sc, uint16_t qid)
{
       struct nvme_pci_softc *psc = (struct nvme_pci_softc *)sc;

       KASSERT(sc->sc_use_mq || qid == NVME_ADMIN_Q);
       KASSERT(sc->sc_ih[qid] != NULL);

       if (sc->sc_softih) {
               softint_disestablish(sc->sc_softih[qid]);
               sc->sc_softih[qid] = NULL;
       }

       pci_intr_disestablish(psc->psc_pc, sc->sc_ih[qid]);
       sc->sc_ih[qid] = NULL;

       return 0;
}

static int
nvme_pci_setup_intr(struct pci_attach_args *pa, struct nvme_pci_softc *psc)
{
       struct nvme_softc *sc = &psc->psc_nvme;
       int error;
       int counts[PCI_INTR_TYPE_SIZE];
       pci_intr_handle_t *ihps;
       int intr_type;

       memset(counts, 0, sizeof(counts));

       if (nvme_pci_force_intx)
               goto setup_intx;

       /* MSI-X */
       counts[PCI_INTR_TYPE_MSIX] = uimin(pci_msix_count(pa->pa_pc, pa->pa_tag),
           ncpu + 1);
       if (counts[PCI_INTR_TYPE_MSIX] < 1) {
               counts[PCI_INTR_TYPE_MSIX] = 0;
       } else if (!nvme_pci_mq || !nvme_pci_mpsafe) {
               if (counts[PCI_INTR_TYPE_MSIX] > 2)
                       counts[PCI_INTR_TYPE_MSIX] = 2; /* adminq + 1 ioq */
       }

       /* MSI */
       if (sc->sc_quirks & NVME_QUIRK_NOMSI)
               goto setup_intx;
       counts[PCI_INTR_TYPE_MSI] = pci_msi_count(pa->pa_pc, pa->pa_tag);
       if (counts[PCI_INTR_TYPE_MSI] > 0) {
               while (counts[PCI_INTR_TYPE_MSI] > ncpu + 1) {
                       if (counts[PCI_INTR_TYPE_MSI] / 2 <= ncpu + 1)
                               break;
                       counts[PCI_INTR_TYPE_MSI] /= 2;
               }
       }
       if (counts[PCI_INTR_TYPE_MSI] < 1) {
               counts[PCI_INTR_TYPE_MSI] = 0;
       } else if (!nvme_pci_mq || !nvme_pci_mpsafe) {
               if (counts[PCI_INTR_TYPE_MSI] > 2)
                       counts[PCI_INTR_TYPE_MSI] = 2;  /* adminq + 1 ioq */
       }

setup_intx:
       /* INTx */
       counts[PCI_INTR_TYPE_INTX] = 1;

       error = pci_intr_alloc(pa, &ihps, counts, PCI_INTR_TYPE_MSIX);
       if (error)
               return error;

       intr_type = pci_intr_type(pa->pa_pc, ihps[0]);

       psc->psc_intrs = ihps;
       psc->psc_nintrs = counts[intr_type];
       if (intr_type == PCI_INTR_TYPE_MSI) {
               if (counts[intr_type] > ncpu + 1)
                       counts[intr_type] = ncpu + 1;
       }
       sc->sc_use_mq = counts[intr_type] > 1;
       sc->sc_nq = sc->sc_use_mq ? counts[intr_type] - 1 : 1;

       return 0;
}

MODULE(MODULE_CLASS_DRIVER, nvme, "pci,dk_subr");

#ifdef _MODULE
#include "ioconf.c"
#endif

static int
nvme_modcmd(modcmd_t cmd, void *opaque)
{
#ifdef _MODULE
       devmajor_t cmajor, bmajor;
       extern const struct cdevsw nvme_cdevsw;
       static bool devsw_ok;
#endif
       int error = 0;

#ifdef _MODULE
       switch (cmd) {
       case MODULE_CMD_INIT:
               bmajor = cmajor = NODEVMAJOR;
               error = devsw_attach(nvme_cd.cd_name, NULL, &bmajor,
                   &nvme_cdevsw, &cmajor);
               if (error) {
                       aprint_error("%s: unable to register devsw, err %d\n",
                           nvme_cd.cd_name, error);
                       /* do not abort, just /dev/nvme* will not work */
               }
               else
                       devsw_ok = true;

               error = config_init_component(cfdriver_ioconf_nvme_pci,
                   cfattach_ioconf_nvme_pci, cfdata_ioconf_nvme_pci);
               if (error) {
                       if (devsw_ok) {
                               devsw_detach(NULL, &nvme_cdevsw);
                               devsw_ok = false;
                       }
                       break;
               }
               break;
       case MODULE_CMD_FINI:
               error = config_fini_component(cfdriver_ioconf_nvme_pci,
                   cfattach_ioconf_nvme_pci, cfdata_ioconf_nvme_pci);
               if (devsw_ok) {
                       devsw_detach(NULL, &nvme_cdevsw);
                       devsw_ok = false;
               }
               break;
       default:
               break;
       }
#endif
       return error;
}