/* $NetBSD: if_igc.c,v 1.20 2025/06/01 05:28:42 rin Exp $ */
/* $OpenBSD: if_igc.c,v 1.13 2023/04/28 10:18:57 bluhm Exp $ */
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2016 Nicole Graziano <
[email protected]>
* All rights reserved.
* Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_igc.c,v 1.20 2025/06/01 05:28:42 rin Exp $");
#ifdef _KERNEL_OPT
#include "opt_if_igc.h"
#if 0 /* notyet */
#include "vlan.h"
#endif
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <sys/intr.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/socket.h>
#include <sys/workqueue.h>
#include <sys/xcall.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_vlanvar.h>
#include <net/rss_config.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/igc/if_igc.h>
#include <dev/pci/igc/igc_evcnt.h>
#include <dev/pci/igc/igc_hw.h>
#include <dev/mii/miivar.h>
#define IGC_WORKQUEUE_PRI PRI_SOFTNET
#ifndef IGC_RX_INTR_PROCESS_LIMIT_DEFAULT
#define IGC_RX_INTR_PROCESS_LIMIT_DEFAULT 0
#endif
#ifndef IGC_TX_INTR_PROCESS_LIMIT_DEFAULT
#define IGC_TX_INTR_PROCESS_LIMIT_DEFAULT 0
#endif
#ifndef IGC_RX_PROCESS_LIMIT_DEFAULT
#define IGC_RX_PROCESS_LIMIT_DEFAULT 256
#endif
#ifndef IGC_TX_PROCESS_LIMIT_DEFAULT
#define IGC_TX_PROCESS_LIMIT_DEFAULT 256
#endif
#define htolem32(p, x) (*((uint32_t *)(p)) = htole32(x))
#define htolem64(p, x) (*((uint64_t *)(p)) = htole64(x))
static const struct igc_product {
pci_vendor_id_t igcp_vendor;
pci_product_id_t igcp_product;
const char *igcp_name;
} igc_products[] = {
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_IT,
"Intel(R) Ethernet Controller I225-IT(2)" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LM,
"Intel(R) Ethernet Controller I226-LM" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_V,
"Intel(R) Ethernet Controller I226-V" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_IT,
"Intel(R) Ethernet Controller I226-IT" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I221_V,
"Intel(R) Ethernet Controller I221-V" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_BLANK_NVM,
"Intel(R) Ethernet Controller I226(blankNVM)" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LM,
"Intel(R) Ethernet Controller I225-LM" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_V,
"Intel(R) Ethernet Controller I225-V" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I220_V,
"Intel(R) Ethernet Controller I220-V" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_I,
"Intel(R) Ethernet Controller I225-I" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_BLANK_NVM,
"Intel(R) Ethernet Controller I225(blankNVM)" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K,
"Intel(R) Ethernet Controller I225-K" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K2,
"Intel(R) Ethernet Controller I225-K(2)" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_K,
"Intel(R) Ethernet Controller I226-K" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LMVP,
"Intel(R) Ethernet Controller I225-LMvP(2)" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LMVP,
"Intel(R) Ethernet Controller I226-LMvP" },
{ 0, 0, NULL },
};
#define IGC_DF_CFG 0x1
#define IGC_DF_TX 0x2
#define IGC_DF_RX 0x4
#define IGC_DF_MISC 0x8
#ifdef IGC_DEBUG_FLAGS
int igc_debug_flags = IGC_DEBUG_FLAGS;
#else
int igc_debug_flags = 0;
#endif
#define DPRINTF(flag, fmt, args...) do { \
if (igc_debug_flags & (IGC_DF_ ## flag)) \
printf("%s: %d: " fmt, __func__, __LINE__, ##args); \
} while (0)
/*********************************************************************
* Function Prototypes
*********************************************************************/
static int igc_match(device_t, cfdata_t, void *);
static void igc_attach(device_t, device_t, void *);
static int igc_detach(device_t, int);
static void igc_identify_hardware(struct igc_softc *);
static int igc_adjust_nqueues(struct igc_softc *);
static int igc_allocate_pci_resources(struct igc_softc *);
static int igc_allocate_interrupts(struct igc_softc *);
static int igc_allocate_queues(struct igc_softc *);
static void igc_free_pci_resources(struct igc_softc *);
static void igc_free_interrupts(struct igc_softc *);
static void igc_free_queues(struct igc_softc *);
static void igc_reset(struct igc_softc *);
static void igc_init_dmac(struct igc_softc *, uint32_t);
static int igc_setup_interrupts(struct igc_softc *);
static void igc_attach_counters(struct igc_softc *sc);
static void igc_detach_counters(struct igc_softc *sc);
static void igc_update_counters(struct igc_softc *sc);
static void igc_clear_counters(struct igc_softc *sc);
static int igc_setup_msix(struct igc_softc *);
static int igc_setup_msi(struct igc_softc *);
static int igc_setup_intx(struct igc_softc *);
static int igc_dma_malloc(struct igc_softc *, bus_size_t,
struct igc_dma_alloc *);
static void igc_dma_free(struct igc_softc *, struct igc_dma_alloc *);
static void igc_setup_interface(struct igc_softc *);
static int igc_init(struct ifnet *);
static int igc_init_locked(struct igc_softc *);
static void igc_start(struct ifnet *);
static int igc_transmit(struct ifnet *, struct mbuf *);
static void igc_tx_common_locked(struct ifnet *, struct tx_ring *, int);
static bool igc_txeof(struct tx_ring *, u_int);
static void igc_intr_barrier(struct igc_softc *);
static void igc_stop(struct ifnet *, int);
static void igc_stop_locked(struct igc_softc *);
static int igc_ioctl(struct ifnet *, u_long, void *);
#ifdef IF_RXR
static int igc_rxrinfo(struct igc_softc *, struct if_rxrinfo *);
#endif
static void igc_rxfill(struct rx_ring *);
static void igc_rxrefill(struct rx_ring *, int);
static bool igc_rxeof(struct rx_ring *, u_int);
static int igc_rx_checksum(struct igc_queue *, uint64_t, uint32_t,
uint32_t);
static void igc_watchdog(struct ifnet *);
static void igc_tick(void *);
static void igc_media_status(struct ifnet *, struct ifmediareq *);
static int igc_media_change(struct ifnet *);
static int igc_ifflags_cb(struct ethercom *);
static void igc_set_filter(struct igc_softc *);
static void igc_update_link_status(struct igc_softc *);
static int igc_get_buf(struct rx_ring *, int, bool);
static bool igc_tx_ctx_setup(struct tx_ring *, struct mbuf *, int,
uint32_t *, uint32_t *);
static void igc_configure_queues(struct igc_softc *);
static void igc_set_queues(struct igc_softc *, uint32_t, uint32_t, int);
static void igc_enable_queue(struct igc_softc *, uint32_t);
static void igc_enable_intr(struct igc_softc *);
static void igc_disable_intr(struct igc_softc *);
static int igc_intr_link(void *);
static int igc_intr_queue(void *);
static int igc_intr(void *);
static void igc_handle_queue(void *);
static void igc_handle_queue_work(struct work *, void *);
static void igc_sched_handle_queue(struct igc_softc *, struct igc_queue *);
static void igc_barrier_handle_queue(struct igc_softc *);
static int igc_allocate_transmit_buffers(struct tx_ring *);
static int igc_setup_transmit_structures(struct igc_softc *);
static int igc_setup_transmit_ring(struct tx_ring *);
static void igc_initialize_transmit_unit(struct igc_softc *);
static void igc_free_transmit_structures(struct igc_softc *);
static void igc_free_transmit_buffers(struct tx_ring *);
static void igc_withdraw_transmit_packets(struct tx_ring *, bool);
static int igc_allocate_receive_buffers(struct rx_ring *);
static int igc_setup_receive_structures(struct igc_softc *);
static int igc_setup_receive_ring(struct rx_ring *);
static void igc_initialize_receive_unit(struct igc_softc *);
static void igc_free_receive_structures(struct igc_softc *);
static void igc_free_receive_buffers(struct rx_ring *);
static void igc_clear_receive_status(struct rx_ring *);
static void igc_initialize_rss_mapping(struct igc_softc *);
static void igc_get_hw_control(struct igc_softc *);
static void igc_release_hw_control(struct igc_softc *);
static int igc_is_valid_ether_addr(uint8_t *);
static void igc_print_devinfo(struct igc_softc *);
CFATTACH_DECL3_NEW(igc, sizeof(struct igc_softc),
igc_match, igc_attach, igc_detach, NULL, NULL, NULL, 0);
static inline int
igc_txdesc_incr(struct igc_softc *sc, int id)
{
if (++id == sc->num_tx_desc)
id = 0;
return id;
}
static inline int __unused
igc_txdesc_decr(struct igc_softc *sc, int id)
{
if (--id < 0)
id = sc->num_tx_desc - 1;
return id;
}
static inline void
igc_txdesc_sync(struct tx_ring *txr, int id, int ops)
{
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
id * sizeof(union igc_adv_tx_desc), sizeof(union igc_adv_tx_desc),
ops);
}
static inline int
igc_rxdesc_incr(struct igc_softc *sc, int id)
{
if (++id == sc->num_rx_desc)
id = 0;
return id;
}
static inline int
igc_rxdesc_decr(struct igc_softc *sc, int id)
{
if (--id < 0)
id = sc->num_rx_desc - 1;
return id;
}
static inline void
igc_rxdesc_sync(struct rx_ring *rxr, int id, int ops)
{
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
id * sizeof(union igc_adv_rx_desc), sizeof(union igc_adv_rx_desc),
ops);
}
static const struct igc_product *
igc_lookup(const struct pci_attach_args *pa)
{
const struct igc_product *igcp;
for (igcp = igc_products; igcp->igcp_name != NULL; igcp++) {
if (PCI_VENDOR(pa->pa_id) == igcp->igcp_vendor &&
PCI_PRODUCT(pa->pa_id) == igcp->igcp_product)
return igcp;
}
return NULL;
}
/*********************************************************************
* Device identification routine
*
* igc_match determines if the driver should be loaded on
* adapter based on PCI vendor/device id of the adapter.
*
* return 0 on success, positive on failure
*********************************************************************/
static int
igc_match(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = aux;
if (igc_lookup(pa) != NULL)
return 1;
return 0;
}
/*********************************************************************
* Device initialization routine
*
* The attach entry point is called when the driver is being loaded.
* This routine identifies the type of hardware, allocates all resources
* and initializes the hardware.
*
* return 0 on success, positive on failure
*********************************************************************/
static void
igc_attach(device_t parent, device_t self, void *aux)
{
struct pci_attach_args *pa = aux;
struct igc_softc *sc = device_private(self);
struct igc_hw *hw = &sc->hw;
const struct igc_product *igcp = igc_lookup(pa);
KASSERT(igcp != NULL);
sc->sc_dev = self;
callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE);
callout_setfunc(&sc->sc_tick_ch, igc_tick, sc);
sc->sc_core_stopping = false;
sc->osdep.os_sc = sc;
sc->osdep.os_pa = *pa;
#ifndef __aarch64__
/*
* XXX PR port-arm/57643
* 64-bit DMA does not work at least for LX2K with 32/64GB memory.
* smmu(4) support may be required.
*/
if (pci_dma64_available(pa)) {
aprint_verbose(", 64-bit DMA");
sc->osdep.os_dmat = pa->pa_dmat64;
} else
#endif
{
aprint_verbose(", 32-bit DMA");
sc->osdep.os_dmat = pa->pa_dmat;
}
pci_aprint_devinfo_fancy(pa, "Ethernet controller", igcp->igcp_name, 1);
/* Determine hardware and mac info */
igc_identify_hardware(sc);
sc->num_tx_desc = IGC_DEFAULT_TXD;
sc->num_rx_desc = IGC_DEFAULT_RXD;
/* Setup PCI resources */
if (igc_allocate_pci_resources(sc)) {
aprint_error_dev(sc->sc_dev,
"unable to allocate PCI resources\n");
goto err_pci;
}
if (igc_allocate_interrupts(sc)) {
aprint_error_dev(sc->sc_dev, "unable to allocate interrupts\n");
goto err_pci;
}
/* Allocate TX/RX queues */
if (igc_allocate_queues(sc)) {
aprint_error_dev(sc->sc_dev, "unable to allocate queues\n");
goto err_alloc_intr;
}
/* Do shared code initialization */
if (igc_setup_init_funcs(hw, true)) {
aprint_error_dev(sc->sc_dev, "unable to initialize\n");
goto err_alloc_intr;
}
hw->mac.autoneg = DO_AUTO_NEG;
hw->phy.autoneg_wait_to_complete = false;
hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
/* Copper options. */
if (hw->phy.media_type == igc_media_type_copper)
hw->phy.mdix = AUTO_ALL_MODES;
/* Set the max frame size. */
sc->hw.mac.max_frame_size = 9234;
/* Allocate multicast array memory. */
sc->mta = kmem_alloc(IGC_MTA_LEN, KM_SLEEP);
/* Check SOL/IDER usage. */
if (igc_check_reset_block(hw)) {
aprint_error_dev(sc->sc_dev,
"PHY reset is blocked due to SOL/IDER session\n");
}
/* Disable Energy Efficient Ethernet. */
sc->hw.dev_spec._i225.eee_disable = true;
igc_reset_hw(hw);
/* Make sure we have a good EEPROM before we read from it. */
if (igc_validate_nvm_checksum(hw) < 0) {
/*
* Some PCI-E parts fail the first check due to
* the link being in sleep state, call it again,
* if it fails a second time its a real issue.
*/
if (igc_validate_nvm_checksum(hw) < 0) {
aprint_error_dev(sc->sc_dev,
"EEPROM checksum invalid\n");
goto err_late;
}
}
/* Copy the permanent MAC address out of the EEPROM. */
if (igc_read_mac_addr(hw) < 0) {
aprint_error_dev(sc->sc_dev,
"unable to read MAC address from EEPROM\n");
goto err_late;
}
if (!igc_is_valid_ether_addr(hw->mac.addr)) {
aprint_error_dev(sc->sc_dev, "invalid MAC address\n");
goto err_late;
}
if (igc_setup_interrupts(sc))
goto err_late;
/* Attach counters. */
igc_attach_counters(sc);
/* Setup OS specific network interface. */
igc_setup_interface(sc);
igc_print_devinfo(sc);
igc_reset(sc);
hw->mac.get_link_status = true;
igc_update_link_status(sc);
/* The driver can now take control from firmware. */
igc_get_hw_control(sc);
aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
ether_sprintf(sc->hw.mac.addr));
if (pmf_device_register(self, NULL, NULL))
pmf_class_network_register(self, &sc->sc_ec.ec_if);
else
aprint_error_dev(self, "couldn't establish power handler\n");
return;
err_late:
igc_release_hw_control(sc);
err_alloc_intr:
igc_free_interrupts(sc);
err_pci:
igc_free_pci_resources(sc);
kmem_free(sc->mta, IGC_MTA_LEN);
}
/*********************************************************************
* Device removal routine
*
* The detach entry point is called when the driver is being removed.
* This routine stops the adapter and deallocates all the resources
* that were allocated for driver operation.
*
* return 0 on success, positive on failure
*********************************************************************/
static int
igc_detach(device_t self, int flags)
{
struct igc_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_ec.ec_if;
mutex_enter(&sc->sc_core_lock);
igc_stop_locked(sc);
mutex_exit(&sc->sc_core_lock);
igc_detach_counters(sc);
igc_free_queues(sc);
igc_phy_hw_reset(&sc->hw);
igc_release_hw_control(sc);
ether_ifdetach(ifp);
if_detach(ifp);
ifmedia_fini(&sc->media);
igc_free_interrupts(sc);
igc_free_pci_resources(sc);
kmem_free(sc->mta, IGC_MTA_LEN);
mutex_destroy(&sc->sc_core_lock);
return 0;
}
static void
igc_identify_hardware(struct igc_softc *sc)
{
struct igc_osdep *os = &sc->osdep;
struct pci_attach_args *pa = &os->os_pa;
/* Save off the information about this board. */
sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
/* Do shared code init and setup. */
if (igc_set_mac_type(&sc->hw)) {
aprint_error_dev(sc->sc_dev, "unable to identify hardware\n");
return;
}
}
static int
igc_allocate_pci_resources(struct igc_softc *sc)
{
struct igc_osdep *os = &sc->osdep;
struct pci_attach_args *pa = &os->os_pa;
/*
* Enable bus mastering and memory-mapped I/O for sure.
*/
pcireg_t csr =
pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
csr |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
const pcireg_t memtype =
pci_mapreg_type(pa->pa_pc, pa->pa_tag, IGC_PCIREG);
if (pci_mapreg_map(pa, IGC_PCIREG, memtype, 0, &os->os_memt,
&os->os_memh, &os->os_membase, &os->os_memsize)) {
aprint_error_dev(sc->sc_dev, "unable to map registers\n");
return ENXIO;
}
sc->hw.hw_addr = os->os_membase;
sc->hw.back = os;
return 0;
}
static int __unused
igc_adjust_nqueues(struct igc_softc *sc)
{
struct pci_attach_args *pa = &sc->osdep.os_pa;
int nqueues = MIN(IGC_MAX_NQUEUES, ncpu);
const int nmsix = pci_msix_count(pa->pa_pc, pa->pa_tag);
if (nmsix <= 1)
nqueues = 1;
else if (nmsix < nqueues + 1)
nqueues = nmsix - 1;
return nqueues;
}
static int
igc_allocate_interrupts(struct igc_softc *sc)
{
struct pci_attach_args *pa = &sc->osdep.os_pa;
int error;
#ifndef IGC_DISABLE_MSIX
const int nqueues = igc_adjust_nqueues(sc);
if (nqueues > 1) {
sc->sc_nintrs = nqueues + 1;
error = pci_msix_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
if (!error) {
sc->sc_nqueues = nqueues;
sc->sc_intr_type = PCI_INTR_TYPE_MSIX;
return 0;
}
}
#endif
/* fallback to MSI */
sc->sc_nintrs = sc->sc_nqueues = 1;
#ifndef IGC_DISABLE_MSI
error = pci_msi_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
if (!error) {
sc->sc_intr_type = PCI_INTR_TYPE_MSI;
return 0;
}
#endif
/* fallback to INTx */
error = pci_intx_alloc(pa, &sc->sc_intrs);
if (!error) {
sc->sc_intr_type = PCI_INTR_TYPE_INTX;
return 0;
}
return error;
}
static int
igc_allocate_queues(struct igc_softc *sc)
{
device_t dev = sc->sc_dev;
int rxconf = 0, txconf = 0;
/* Allocate the top level queue structs. */
sc->queues =
kmem_zalloc(sc->sc_nqueues * sizeof(struct igc_queue), KM_SLEEP);
/* Allocate the TX ring. */
sc->tx_rings =
kmem_zalloc(sc->sc_nqueues * sizeof(struct tx_ring), KM_SLEEP);
/* Allocate the RX ring. */
sc->rx_rings =
kmem_zalloc(sc->sc_nqueues * sizeof(struct rx_ring), KM_SLEEP);
/* Set up the TX queues. */
for (int iq = 0; iq < sc->sc_nqueues; iq++, txconf++) {
struct tx_ring *txr = &sc->tx_rings[iq];
const int tsize = roundup2(
sc->num_tx_desc * sizeof(union igc_adv_tx_desc),
IGC_DBA_ALIGN);
txr->sc = sc;
txr->txr_igcq = &sc->queues[iq];
txr->me = iq;
if (igc_dma_malloc(sc, tsize, &txr->txdma)) {
aprint_error_dev(dev,
"unable to allocate TX descriptor\n");
goto fail;
}
txr->tx_base = (union igc_adv_tx_desc *)txr->txdma.dma_vaddr;
memset(txr->tx_base, 0, tsize);
}
/* Prepare transmit descriptors and buffers. */
if (igc_setup_transmit_structures(sc)) {
aprint_error_dev(dev, "unable to setup transmit structures\n");
goto fail;
}
/* Set up the RX queues. */
for (int iq = 0; iq < sc->sc_nqueues; iq++, rxconf++) {
struct rx_ring *rxr = &sc->rx_rings[iq];
const int rsize = roundup2(
sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
IGC_DBA_ALIGN);
rxr->sc = sc;
rxr->rxr_igcq = &sc->queues[iq];
rxr->me = iq;
#ifdef OPENBSD
timeout_set(&rxr->rx_refill, igc_rxrefill, rxr);
#endif
if (igc_dma_malloc(sc, rsize, &rxr->rxdma)) {
aprint_error_dev(dev,
"unable to allocate RX descriptor\n");
goto fail;
}
rxr->rx_base = (union igc_adv_rx_desc *)rxr->rxdma.dma_vaddr;
memset(rxr->rx_base, 0, rsize);
}
sc->rx_mbuf_sz = MCLBYTES;
/* Prepare receive descriptors and buffers. */
if (igc_setup_receive_structures(sc)) {
aprint_error_dev(sc->sc_dev,
"unable to setup receive structures\n");
goto fail;
}
/* Set up the queue holding structs. */
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct igc_queue *q = &sc->queues[iq];
q->sc = sc;
q->txr = &sc->tx_rings[iq];
q->rxr = &sc->rx_rings[iq];
}
return 0;
fail:
for (struct rx_ring *rxr = sc->rx_rings; rxconf > 0; rxr++, rxconf--)
igc_dma_free(sc, &rxr->rxdma);
for (struct tx_ring *txr = sc->tx_rings; txconf > 0; txr++, txconf--)
igc_dma_free(sc, &txr->txdma);
kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
sc->rx_rings = NULL;
kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
sc->tx_rings = NULL;
kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
sc->queues = NULL;
return ENOMEM;
}
static void
igc_free_pci_resources(struct igc_softc *sc)
{
struct igc_osdep *os = &sc->osdep;
if (os->os_membase != 0)
bus_space_unmap(os->os_memt, os->os_memh, os->os_memsize);
os->os_membase = 0;
}
static void
igc_free_interrupts(struct igc_softc *sc)
{
struct pci_attach_args *pa = &sc->osdep.os_pa;
pci_chipset_tag_t pc = pa->pa_pc;
for (int i = 0; i < sc->sc_nintrs; i++) {
if (sc->sc_ihs[i] != NULL) {
pci_intr_disestablish(pc, sc->sc_ihs[i]);
sc->sc_ihs[i] = NULL;
}
}
pci_intr_release(pc, sc->sc_intrs, sc->sc_nintrs);
}
static void
igc_free_queues(struct igc_softc *sc)
{
igc_free_receive_structures(sc);
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct rx_ring *rxr = &sc->rx_rings[iq];
igc_dma_free(sc, &rxr->rxdma);
}
igc_free_transmit_structures(sc);
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct tx_ring *txr = &sc->tx_rings[iq];
igc_dma_free(sc, &txr->txdma);
}
kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
}
/*********************************************************************
*
* Initialize the hardware to a configuration as specified by the
* adapter structure.
*
**********************************************************************/
static void
igc_reset(struct igc_softc *sc)
{
struct igc_hw *hw = &sc->hw;
/* Let the firmware know the OS is in control */
igc_get_hw_control(sc);
/*
* Packet Buffer Allocation (PBA)
* Writing PBA sets the receive portion of the buffer
* the remainder is used for the transmit buffer.
*/
const uint32_t pba = IGC_PBA_34K;
/*
* These parameters control the automatic generation (Tx) and
* response (Rx) to Ethernet PAUSE frames.
* - High water mark should allow for at least two frames to be
* received after sending an XOFF.
* - Low water mark works best when it is very near the high water mark.
* This allows the receiver to restart by sending XON when it has
* drained a bit. Here we use an arbitrary value of 1500 which will
* restart after one full frame is pulled from the buffer. There
* could be several smaller frames in the buffer and if so they will
* not trigger the XON until their total number reduces the buffer
* by 1500.
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
*/
const uint16_t rx_buffer_size = (pba & 0xffff) << 10;
hw->fc.high_water = rx_buffer_size -
roundup2(sc->hw.mac.max_frame_size, 1024);
/* 16-byte granularity */
hw->fc.low_water = hw->fc.high_water - 16;
if (sc->fc) /* locally set flow control value? */
hw->fc.requested_mode = sc->fc;
else
hw->fc.requested_mode = igc_fc_full;
hw->fc.pause_time = IGC_FC_PAUSE_TIME;
hw->fc.send_xon = true;
/* Issue a global reset */
igc_reset_hw(hw);
IGC_WRITE_REG(hw, IGC_WUC, 0);
/* and a re-init */
if (igc_init_hw(hw) < 0) {
aprint_error_dev(sc->sc_dev, "unable to reset hardware\n");
return;
}
/* Setup DMA Coalescing */
igc_init_dmac(sc, pba);
IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
igc_get_phy_info(hw);
igc_check_for_link(hw);
}
/*********************************************************************
*
* Initialize the DMA Coalescing feature
*
**********************************************************************/
static void
igc_init_dmac(struct igc_softc *sc, uint32_t pba)
{
struct igc_hw *hw = &sc->hw;
const uint16_t max_frame_size = sc->hw.mac.max_frame_size;
uint32_t reg, status;
if (sc->dmac == 0) { /* Disabling it */
reg = ~IGC_DMACR_DMAC_EN; /* XXXRO */
IGC_WRITE_REG(hw, IGC_DMACR, reg);
DPRINTF(MISC, "DMA coalescing disabled\n");
return;
} else {
device_printf(sc->sc_dev, "DMA coalescing enabled\n");
}
/* Set starting threshold */
IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
uint16_t hwm = 64 * pba - max_frame_size / 16;
if (hwm < 64 * (pba - 6))
hwm = 64 * (pba - 6);
reg = IGC_READ_REG(hw, IGC_FCRTC);
reg &= ~IGC_FCRTC_RTH_COAL_MASK;
reg |= (hwm << IGC_FCRTC_RTH_COAL_SHIFT) & IGC_FCRTC_RTH_COAL_MASK;
IGC_WRITE_REG(hw, IGC_FCRTC, reg);
uint32_t dmac = pba - max_frame_size / 512;
if (dmac < pba - 10)
dmac = pba - 10;
reg = IGC_READ_REG(hw, IGC_DMACR);
reg &= ~IGC_DMACR_DMACTHR_MASK;
reg |= (dmac << IGC_DMACR_DMACTHR_SHIFT) & IGC_DMACR_DMACTHR_MASK;
/* transition to L0x or L1 if available..*/
reg |= IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK;
/* Check if status is 2.5Gb backplane connection
* before configuration of watchdog timer, which is
* in msec values in 12.8usec intervals
* watchdog timer= msec values in 32usec intervals
* for non 2.5Gb connection
*/
status = IGC_READ_REG(hw, IGC_STATUS);
if ((status & IGC_STATUS_2P5_SKU) &&
!(status & IGC_STATUS_2P5_SKU_OVER))
reg |= (sc->dmac * 5) >> 6;
else
reg |= sc->dmac >> 5;
IGC_WRITE_REG(hw, IGC_DMACR, reg);
IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
/* Set the interval before transition */
reg = IGC_READ_REG(hw, IGC_DMCTLX);
reg |= IGC_DMCTLX_DCFLUSH_DIS;
/*
* in 2.5Gb connection, TTLX unit is 0.4 usec
* which is 0x4*2 = 0xA. But delay is still 4 usec
*/
status = IGC_READ_REG(hw, IGC_STATUS);
if ((status & IGC_STATUS_2P5_SKU) &&
!(status & IGC_STATUS_2P5_SKU_OVER))
reg |= 0xA;
else
reg |= 0x4;
IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
/* free space in tx packet buffer to wake from DMA coal */
IGC_WRITE_REG(hw, IGC_DMCTXTH,
(IGC_TXPBSIZE - (2 * max_frame_size)) >> 6);
/* make low power state decision controlled by DMA coal */
reg = IGC_READ_REG(hw, IGC_PCIEMISC);
reg &= ~IGC_PCIEMISC_LX_DECISION;
IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
}
static int
igc_setup_interrupts(struct igc_softc *sc)
{
int error;
switch (sc->sc_intr_type) {
case PCI_INTR_TYPE_MSIX:
error = igc_setup_msix(sc);
break;
case PCI_INTR_TYPE_MSI:
error = igc_setup_msi(sc);
break;
case PCI_INTR_TYPE_INTX:
error = igc_setup_intx(sc);
break;
default:
panic("%s: invalid interrupt type: %d",
device_xname(sc->sc_dev), sc->sc_intr_type);
}
return error;
}
static void
igc_attach_counters(struct igc_softc *sc)
{
#ifdef IGC_EVENT_COUNTERS
/* Global counters */
sc->sc_global_evcnts = kmem_zalloc(
IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts[0]), KM_SLEEP);
for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++) {
evcnt_attach_dynamic(&sc->sc_global_evcnts[cnt],
igc_global_counters[cnt].type, NULL,
device_xname(sc->sc_dev), igc_global_counters[cnt].name);
}
/* Driver counters */
sc->sc_driver_evcnts = kmem_zalloc(
IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts[0]), KM_SLEEP);
for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
evcnt_attach_dynamic(&sc->sc_driver_evcnts[cnt],
igc_driver_counters[cnt].type, NULL,
device_xname(sc->sc_dev), igc_driver_counters[cnt].name);
}
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct igc_queue *q = &sc->queues[iq];
q->igcq_driver_counters = kmem_zalloc(
IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]),
KM_SLEEP);
}
/* Queue counters */
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct igc_queue *q = &sc->queues[iq];
snprintf(q->igcq_queue_evname, sizeof(q->igcq_queue_evname),
"%s q%d", device_xname(sc->sc_dev), iq);
q->igcq_queue_evcnts = kmem_zalloc(
IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]),
KM_SLEEP);
for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++) {
evcnt_attach_dynamic(&q->igcq_queue_evcnts[cnt],
igc_queue_counters[cnt].type, NULL,
q->igcq_queue_evname, igc_queue_counters[cnt].name);
}
}
/* MAC counters */
snprintf(sc->sc_mac_evname, sizeof(sc->sc_mac_evname),
"%s Mac Statistics", device_xname(sc->sc_dev));
sc->sc_mac_evcnts = kmem_zalloc(
IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]), KM_SLEEP);
for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
evcnt_attach_dynamic(&sc->sc_mac_evcnts[cnt], EVCNT_TYPE_MISC,
NULL, sc->sc_mac_evname, igc_mac_counters[cnt].name);
}
#endif
}
static void
igc_detach_counters(struct igc_softc *sc)
{
#ifdef IGC_EVENT_COUNTERS
/* Global counters */
for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
evcnt_detach(&sc->sc_global_evcnts[cnt]);
kmem_free(sc->sc_global_evcnts,
IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts[0]));
/* Driver counters */
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct igc_queue *q = &sc->queues[iq];
kmem_free(q->igcq_driver_counters,
IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]));
}
for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
evcnt_detach(&sc->sc_driver_evcnts[cnt]);
kmem_free(sc->sc_driver_evcnts,
IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts[0]));
/* Queue counters */
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct igc_queue *q = &sc->queues[iq];
for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
evcnt_detach(&q->igcq_queue_evcnts[cnt]);
kmem_free(q->igcq_queue_evcnts,
IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]));
}
/* MAC statistics */
for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++)
evcnt_detach(&sc->sc_mac_evcnts[cnt]);
kmem_free(sc->sc_mac_evcnts,
IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]));
#endif
}
/*
* XXX
* FreeBSD uses 4-byte-wise read for 64-bit counters, while Linux just
* drops hi words.
*/
static inline uint64_t __unused
igc_read_mac_counter(struct igc_hw *hw, bus_size_t reg, bool is64)
{
uint64_t val;
val = IGC_READ_REG(hw, reg);
if (is64)
val += ((uint64_t)IGC_READ_REG(hw, reg + 4)) << 32;
return val;
}
static void
igc_update_counters(struct igc_softc *sc)
{
#ifdef IGC_EVENT_COUNTERS
/* Global counters: nop */
/* Driver counters */
uint64_t sum[IGC_DRIVER_COUNTERS];
memset(sum, 0, sizeof(sum));
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct igc_queue *q = &sc->queues[iq];
for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
sum[cnt] += IGC_QUEUE_DRIVER_COUNTER_VAL(q, cnt);
IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
}
}
for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
IGC_DRIVER_COUNTER_ADD(sc, cnt, sum[cnt]);
/* Queue counters: nop */
/* Mac statistics */
struct igc_hw *hw = &sc->hw;
struct ifnet *ifp = &sc->sc_ec.ec_if;
uint64_t iqdrops = 0;
for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
uint64_t val;
bus_size_t regaddr = igc_mac_counters[cnt].reg;
val = igc_read_mac_counter(hw, regaddr,
igc_mac_counters[cnt].is64);
IGC_MAC_COUNTER_ADD(sc, cnt, val);
/* XXX Count MPC to iqdrops. */
if (regaddr == IGC_MPC)
iqdrops += val;
}
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
uint32_t val;
/* XXX RQDPC should be visible via evcnt(9). */
val = IGC_READ_REG(hw, IGC_RQDPC(iq));
/* RQDPC is not cleard on read. */
if (val != 0)
IGC_WRITE_REG(hw, IGC_RQDPC(iq), 0);
iqdrops += val;
}
if (iqdrops != 0)
if_statadd(ifp, if_iqdrops, iqdrops);
#endif
}
static void
igc_clear_counters(struct igc_softc *sc)
{
#ifdef IGC_EVENT_COUNTERS
/* Global counters */
for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
IGC_GLOBAL_COUNTER_STORE(sc, cnt, 0);
/* Driver counters */
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct igc_queue *q = &sc->queues[iq];
for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
}
for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
IGC_DRIVER_COUNTER_STORE(sc, cnt, 0);
/* Queue counters */
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct igc_queue *q = &sc->queues[iq];
for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
IGC_QUEUE_COUNTER_STORE(q, cnt, 0);
}
/* Mac statistics */
struct igc_hw *hw = &sc->hw;
for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
(void)igc_read_mac_counter(hw, igc_mac_counters[cnt].reg,
igc_mac_counters[cnt].is64);
IGC_MAC_COUNTER_STORE(sc, cnt, 0);
}
#endif
}
static int
igc_setup_msix(struct igc_softc *sc)
{
pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
device_t dev = sc->sc_dev;
pci_intr_handle_t *intrs;
void **ihs;
const char *intrstr;
char intrbuf[PCI_INTRSTR_LEN];
char xnamebuf[MAX(32, MAXCOMLEN)];
int iq, error;
for (iq = 0, intrs = sc->sc_intrs, ihs = sc->sc_ihs;
iq < sc->sc_nqueues; iq++, intrs++, ihs++) {
struct igc_queue *q = &sc->queues[iq];
snprintf(xnamebuf, sizeof(xnamebuf), "%s: txrx %d",
device_xname(dev), iq);
intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
*ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
igc_intr_queue, q, xnamebuf);
if (*ihs == NULL) {
aprint_error_dev(dev,
"unable to establish txrx interrupt at %s\n",
intrstr);
return ENOBUFS;
}
aprint_normal_dev(dev, "txrx interrupting at %s\n", intrstr);
kcpuset_t *affinity;
kcpuset_create(&affinity, true);
kcpuset_set(affinity, iq % ncpu);
error = interrupt_distribute(*ihs, affinity, NULL);
if (error) {
aprint_normal_dev(dev,
"%s: unable to change affinity, use default CPU\n",
intrstr);
}
kcpuset_destroy(affinity);
q->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
igc_handle_queue, q);
if (q->igcq_si == NULL) {
aprint_error_dev(dev,
"%s: unable to establish softint\n", intrstr);
return ENOBUFS;
}
q->msix = iq;
q->eims = 1 << iq;
}
snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
WQ_PERCPU | WQ_MPSAFE);
if (error) {
aprint_error_dev(dev, "workqueue_create failed\n");
return ENOBUFS;
}
sc->sc_txrx_workqueue = false;
intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
snprintf(xnamebuf, sizeof(xnamebuf), "%s: link", device_xname(dev));
pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
*ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
igc_intr_link, sc, xnamebuf);
if (*ihs == NULL) {
aprint_error_dev(dev,
"unable to establish link interrupt at %s\n", intrstr);
return ENOBUFS;
}
aprint_normal_dev(dev, "link interrupting at %s\n", intrstr);
/* use later in igc_configure_queues() */
sc->linkvec = iq;
return 0;
}
static int
igc_setup_msi(struct igc_softc *sc)
{
pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
device_t dev = sc->sc_dev;
pci_intr_handle_t *intr = sc->sc_intrs;
void **ihs = sc->sc_ihs;
const char *intrstr;
char intrbuf[PCI_INTRSTR_LEN];
char xnamebuf[MAX(32, MAXCOMLEN)];
int error;
intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
snprintf(xnamebuf, sizeof(xnamebuf), "%s: msi", device_xname(dev));
pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
*ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
igc_intr, sc, xnamebuf);
if (*ihs == NULL) {
aprint_error_dev(dev,
"unable to establish interrupt at %s\n", intrstr);
return ENOBUFS;
}
aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
struct igc_queue *iq = sc->queues;
iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
igc_handle_queue, iq);
if (iq->igcq_si == NULL) {
aprint_error_dev(dev,
"%s: unable to establish softint\n", intrstr);
return ENOBUFS;
}
snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
WQ_PERCPU | WQ_MPSAFE);
if (error) {
aprint_error_dev(dev, "workqueue_create failed\n");
return ENOBUFS;
}
sc->sc_txrx_workqueue = false;
sc->queues[0].msix = 0;
sc->linkvec = 0;
return 0;
}
static int
igc_setup_intx(struct igc_softc *sc)
{
pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
device_t dev = sc->sc_dev;
pci_intr_handle_t *intr = sc->sc_intrs;
void **ihs = sc->sc_ihs;
const char *intrstr;
char intrbuf[PCI_INTRSTR_LEN];
char xnamebuf[32];
intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
snprintf(xnamebuf, sizeof(xnamebuf), "%s:intx", device_xname(dev));
pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
*ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
igc_intr, sc, xnamebuf);
if (*ihs == NULL) {
aprint_error_dev(dev,
"unable to establish interrupt at %s\n", intrstr);
return ENOBUFS;
}
aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
struct igc_queue *iq = sc->queues;
iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
igc_handle_queue, iq);
if (iq->igcq_si == NULL) {
aprint_error_dev(dev,
"%s: unable to establish softint\n", intrstr);
return ENOBUFS;
}
/* create workqueue? */
sc->sc_txrx_workqueue = false;
sc->queues[0].msix = 0;
sc->linkvec = 0;
return 0;
}
static int
igc_dma_malloc(struct igc_softc *sc, bus_size_t size, struct igc_dma_alloc *dma)
{
struct igc_osdep *os = &sc->osdep;
dma->dma_tag = os->os_dmat;
if (bus_dmamap_create(dma->dma_tag, size, 1, size, 0,
BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->dma_map))
return 1;
if (bus_dmamem_alloc(dma->dma_tag, size, PAGE_SIZE, 0, &dma->dma_seg,
1, &dma->dma_nseg, BUS_DMA_WAITOK))
goto destroy;
/*
* XXXRO
*
* Coherent mapping for descriptors is required for now.
*
* Both TX and RX descriptors are 16-byte length, which is shorter
* than dcache lines on modern CPUs. Therefore, sync for a descriptor
* may overwrite DMA read for descriptors in the same cache line.
*
* Can't we avoid this by use cache-line-aligned descriptors at once?
*/
if (bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
&dma->dma_vaddr, BUS_DMA_WAITOK | BUS_DMA_COHERENT /* XXXRO */))
goto free;
if (bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
NULL, BUS_DMA_WAITOK))
goto unmap;
dma->dma_size = size;
return 0;
unmap:
bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
free:
bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
destroy:
bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
dma->dma_map = NULL;
dma->dma_tag = NULL;
return 1;
}
static void
igc_dma_free(struct igc_softc *sc, struct igc_dma_alloc *dma)
{
if (dma->dma_tag == NULL)
return;
if (dma->dma_map != NULL) {
bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
dma->dma_map->dm_mapsize,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
dma->dma_map = NULL;
}
}
/*********************************************************************
*
* Setup networking device structure and register an interface.
*
**********************************************************************/
static void
igc_setup_interface(struct igc_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_extflags = IFEF_MPSAFE;
ifp->if_ioctl = igc_ioctl;
ifp->if_start = igc_start;
if (sc->sc_nqueues > 1)
ifp->if_transmit = igc_transmit;
ifp->if_watchdog = igc_watchdog;
ifp->if_init = igc_init;
ifp->if_stop = igc_stop;
ifp->if_capabilities = IFCAP_TSOv4 | IFCAP_TSOv6;
ifp->if_capabilities |=
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
ifp->if_capenable = 0;
sc->sc_ec.ec_capabilities |=
ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
IFQ_SET_MAXLEN(&ifp->if_snd, sc->num_tx_desc - 1);
IFQ_SET_READY(&ifp->if_snd);
#if NVLAN > 0
sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
#endif
mutex_init(&sc->sc_core_lock, MUTEX_DEFAULT, IPL_NET);
/* Initialize ifmedia structures. */
sc->sc_ec.ec_ifmedia = &sc->media;
ifmedia_init_with_lock(&sc->media, IFM_IMASK, igc_media_change,
igc_media_status, &sc->sc_core_lock);
ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
ifmedia_add(&sc->media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
sc->sc_rx_intr_process_limit = IGC_RX_INTR_PROCESS_LIMIT_DEFAULT;
sc->sc_tx_intr_process_limit = IGC_TX_INTR_PROCESS_LIMIT_DEFAULT;
sc->sc_rx_process_limit = IGC_RX_PROCESS_LIMIT_DEFAULT;
sc->sc_tx_process_limit = IGC_TX_PROCESS_LIMIT_DEFAULT;
if_initialize(ifp);
sc->sc_ipq = if_percpuq_create(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, sc->hw.mac.addr);
ether_set_ifflags_cb(&sc->sc_ec, igc_ifflags_cb);
if_register(ifp);
}
static int
igc_init(struct ifnet *ifp)
{
struct igc_softc *sc = ifp->if_softc;
int error;
mutex_enter(&sc->sc_core_lock);
error = igc_init_locked(sc);
mutex_exit(&sc->sc_core_lock);
return error;
}
static int
igc_init_locked(struct igc_softc *sc)
{
struct ethercom *ec = &sc->sc_ec;
struct ifnet *ifp = &ec->ec_if;
DPRINTF(CFG, "called\n");
KASSERT(mutex_owned(&sc->sc_core_lock));
if (ISSET(ifp->if_flags, IFF_RUNNING))
igc_stop_locked(sc);
/* Put the address into the receive address array. */
igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
/* Initialize the hardware. */
igc_reset(sc);
igc_update_link_status(sc);
/* Setup VLAN support, basic and offload if available. */
IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
igc_initialize_transmit_unit(sc);
igc_initialize_receive_unit(sc);
if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
uint32_t ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
ctrl |= IGC_CTRL_VME;
IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
}
/* Setup multicast table. */
igc_set_filter(sc);
igc_clear_hw_cntrs_base_generic(&sc->hw);
if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
igc_configure_queues(sc);
/* This clears any pending interrupts */
IGC_READ_REG(&sc->hw, IGC_ICR);
IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
/* The driver can now take control from firmware. */
igc_get_hw_control(sc);
/* Set Energy Efficient Ethernet. */
igc_set_eee_i225(&sc->hw, true, true, true);
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct rx_ring *rxr = &sc->rx_rings[iq];
mutex_enter(&rxr->rxr_lock);
igc_rxfill(rxr);
mutex_exit(&rxr->rxr_lock);
}
sc->sc_core_stopping = false;
ifp->if_flags |= IFF_RUNNING;
/* Save last flags for the callback */
sc->sc_if_flags = ifp->if_flags;
callout_schedule(&sc->sc_tick_ch, hz);
igc_enable_intr(sc);
return 0;
}
static inline int
igc_load_mbuf(struct igc_queue *q, bus_dma_tag_t dmat, bus_dmamap_t map,
struct mbuf *m)
{
int error;
error = bus_dmamap_load_mbuf(dmat, map, m,
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (__predict_false(error == EFBIG)) {
IGC_DRIVER_EVENT(q, txdma_efbig, 1);
m = m_defrag(m, M_NOWAIT);
if (__predict_false(m == NULL)) {
IGC_DRIVER_EVENT(q, txdma_defrag, 1);
return ENOBUFS;
}
error = bus_dmamap_load_mbuf(dmat, map, m,
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
}
switch (error) {
case 0:
break;
case ENOMEM:
IGC_DRIVER_EVENT(q, txdma_enomem, 1);
break;
case EINVAL:
IGC_DRIVER_EVENT(q, txdma_einval, 1);
break;
case EAGAIN:
IGC_DRIVER_EVENT(q, txdma_eagain, 1);
break;
default:
IGC_DRIVER_EVENT(q, txdma_other, 1);
break;
}
return error;
}
#define IGC_TX_START 1
#define IGC_TX_TRANSMIT 2
static void
igc_start(struct ifnet *ifp)
{
struct igc_softc *sc = ifp->if_softc;
if (__predict_false(!sc->link_active)) {
IFQ_PURGE(&ifp->if_snd);
return;
}
struct tx_ring *txr = &sc->tx_rings[0]; /* queue 0 */
mutex_enter(&txr->txr_lock);
igc_tx_common_locked(ifp, txr, IGC_TX_START);
mutex_exit(&txr->txr_lock);
}
static inline u_int
igc_select_txqueue(struct igc_softc *sc, struct mbuf *m __unused)
{
const u_int cpuid = cpu_index(curcpu());
return cpuid % sc->sc_nqueues;
}
static int
igc_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct igc_softc *sc = ifp->if_softc;
const u_int qid = igc_select_txqueue(sc, m);
struct tx_ring *txr = &sc->tx_rings[qid];
struct igc_queue *q = txr->txr_igcq;
if (__predict_false(!pcq_put(txr->txr_interq, m))) {
IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
m_freem(m);
return ENOBUFS;
}
mutex_enter(&txr->txr_lock);
igc_tx_common_locked(ifp, txr, IGC_TX_TRANSMIT);
mutex_exit(&txr->txr_lock);
return 0;
}
static void
igc_tx_common_locked(struct ifnet *ifp, struct tx_ring *txr, int caller)
{
struct igc_softc *sc = ifp->if_softc;
struct igc_queue *q = txr->txr_igcq;
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
int prod, free, last = -1;
bool post = false;
prod = txr->next_avail_desc;
free = txr->next_to_clean;
if (free <= prod)
free += sc->num_tx_desc;
free -= prod;
DPRINTF(TX, "%s: begin: msix %d prod %d n2c %d free %d\n",
caller == IGC_TX_TRANSMIT ? "transmit" : "start",
txr->me, prod, txr->next_to_clean, free);
for (;;) {
struct mbuf *m;
if (__predict_false(free <= IGC_MAX_SCATTER)) {
IGC_QUEUE_EVENT(q, tx_no_desc, 1);
break;
}
if (caller == IGC_TX_TRANSMIT)
m = pcq_get(txr->txr_interq);
else
IFQ_DEQUEUE(&ifp->if_snd, m);
if (__predict_false(m == NULL))
break;
struct igc_tx_buf *txbuf = &txr->tx_buffers[prod];
bus_dmamap_t map = txbuf->map;
if (__predict_false(
igc_load_mbuf(q, txr->txdma.dma_tag, map, m))) {
if (caller == IGC_TX_TRANSMIT)
IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
m_freem(m);
if_statinc_ref(ifp, nsr, if_oerrors);
continue;
}
uint32_t ctx_cmd_type_len = 0, olinfo_status = 0;
if (igc_tx_ctx_setup(txr, m, prod, &ctx_cmd_type_len,
&olinfo_status)) {
IGC_QUEUE_EVENT(q, tx_ctx, 1);
/* Consume the first descriptor */
prod = igc_txdesc_incr(sc, prod);
free--;
}
bus_dmamap_sync(txr->txdma.dma_tag, map, 0,
map->dm_mapsize, BUS_DMASYNC_PREWRITE);
for (int i = 0; i < map->dm_nsegs; i++) {
union igc_adv_tx_desc *txdesc = &txr->tx_base[prod];
uint32_t cmd_type_len = ctx_cmd_type_len |
IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DTYP_DATA |
IGC_ADVTXD_DCMD_DEXT | map->dm_segs[i].ds_len;
if (i == map->dm_nsegs - 1) {
cmd_type_len |=
IGC_ADVTXD_DCMD_EOP | IGC_ADVTXD_DCMD_RS;
}
igc_txdesc_sync(txr, prod,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
htolem64(&txdesc->read.buffer_addr,
map->dm_segs[i].ds_addr);
htolem32(&txdesc->read.cmd_type_len, cmd_type_len);
htolem32(&txdesc->read.olinfo_status, olinfo_status);
igc_txdesc_sync(txr, prod,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
last = prod;
prod = igc_txdesc_incr(sc, prod);
}
txbuf->m_head = m;
txbuf->eop_index = last;
bpf_mtap(ifp, m, BPF_D_OUT);
if_statadd_ref(ifp, nsr, if_obytes, m->m_pkthdr.len);
if (m->m_flags & M_MCAST)
if_statinc_ref(ifp, nsr, if_omcasts);
IGC_QUEUE_EVENT(q, tx_packets, 1);
IGC_QUEUE_EVENT(q, tx_bytes, m->m_pkthdr.len);
free -= map->dm_nsegs;
post = true;
}
if (post) {
txr->next_avail_desc = prod;
IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), prod);
}
DPRINTF(TX, "%s: done : msix %d prod %d n2c %d free %d\n",
caller == IGC_TX_TRANSMIT ? "transmit" : "start",
txr->me, prod, txr->next_to_clean, free);
IF_STAT_PUTREF(ifp);
}
static bool
igc_txeof(struct tx_ring *txr, u_int limit)
{
struct igc_softc *sc = txr->sc;
struct ifnet *ifp = &sc->sc_ec.ec_if;
int cons, prod;
bool more = false;
prod = txr->next_avail_desc;
cons = txr->next_to_clean;
if (cons == prod) {
DPRINTF(TX, "false: msix %d cons %d prod %d\n",
txr->me, cons, prod);
return false;
}
do {
struct igc_tx_buf *txbuf = &txr->tx_buffers[cons];
const int last = txbuf->eop_index;
membar_consumer(); /* XXXRO necessary? */
KASSERT(last != -1);
union igc_adv_tx_desc *txdesc = &txr->tx_base[last];
igc_txdesc_sync(txr, last, BUS_DMASYNC_POSTREAD);
const uint32_t status = le32toh(txdesc->wb.status);
igc_txdesc_sync(txr, last, BUS_DMASYNC_PREREAD);
if (!(status & IGC_TXD_STAT_DD))
break;
if (limit-- == 0) {
more = true;
DPRINTF(TX, "pending TX "
"msix %d cons %d last %d prod %d "
"status 0x%08x\n",
txr->me, cons, last, prod, status);
break;
}
DPRINTF(TX, "handled TX "
"msix %d cons %d last %d prod %d "
"status 0x%08x\n",
txr->me, cons, last, prod, status);
if_statinc(ifp, if_opackets);
bus_dmamap_t map = txbuf->map;
bus_dmamap_sync(txr->txdma.dma_tag, map, 0, map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txr->txdma.dma_tag, map);
m_freem(txbuf->m_head);
txbuf->m_head = NULL;
txbuf->eop_index = -1;
cons = igc_txdesc_incr(sc, last);
} while (cons != prod);
txr->next_to_clean = cons;
return more;
}
static void
igc_intr_barrier(struct igc_softc *sc __unused)
{
xc_barrier(0);
}
static void
igc_stop(struct ifnet *ifp, int disable)
{
struct igc_softc *sc = ifp->if_softc;
mutex_enter(&sc->sc_core_lock);
igc_stop_locked(sc);
mutex_exit(&sc->sc_core_lock);
}
/*********************************************************************
*
* This routine disables all traffic on the adapter by issuing a
* global reset on the MAC.
*
**********************************************************************/
static void
igc_stop_locked(struct igc_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
DPRINTF(CFG, "called\n");
KASSERT(mutex_owned(&sc->sc_core_lock));
/*
* If stopping processing has already started, do nothing.
*/
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
/* Tell the stack that the interface is no longer active. */
ifp->if_flags &= ~IFF_RUNNING;
/*
* igc_handle_queue() can enable interrupts, so wait for completion of
* last igc_handle_queue() after unset IFF_RUNNING.
*/
mutex_exit(&sc->sc_core_lock);
igc_barrier_handle_queue(sc);
mutex_enter(&sc->sc_core_lock);
sc->sc_core_stopping = true;
igc_disable_intr(sc);
callout_halt(&sc->sc_tick_ch, &sc->sc_core_lock);
igc_reset_hw(&sc->hw);
IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
/*
* Wait for completion of interrupt handlers.
*/
mutex_exit(&sc->sc_core_lock);
igc_intr_barrier(sc);
mutex_enter(&sc->sc_core_lock);
igc_update_link_status(sc);
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct tx_ring *txr = &sc->tx_rings[iq];
igc_withdraw_transmit_packets(txr, false);
}
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct rx_ring *rxr = &sc->rx_rings[iq];
igc_clear_receive_status(rxr);
}
/* Save last flags for the callback */
sc->sc_if_flags = ifp->if_flags;
}
/*********************************************************************
* Ioctl entry point
*
* igc_ioctl is called when the user wants to configure the
* interface.
*
* return 0 on success, positive on failure
**********************************************************************/
static int
igc_ioctl(struct ifnet * ifp, u_long cmd, void *data)
{
struct igc_softc *sc __unused = ifp->if_softc;
int s;
int error;
DPRINTF(CFG, "cmd 0x%016lx\n", cmd);
switch (cmd) {
case SIOCADDMULTI:
case SIOCDELMULTI:
break;
default:
KASSERT(IFNET_LOCKED(ifp));
}
if (cmd == SIOCZIFDATA) {
mutex_enter(&sc->sc_core_lock);
igc_clear_counters(sc);
mutex_exit(&sc->sc_core_lock);
}
switch (cmd) {
#ifdef IF_RXR
case SIOCGIFRXR:
s = splnet();
error = igc_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
splx(s);
break;
#endif
default:
s = splnet();
error = ether_ioctl(ifp, cmd, data);
splx(s);
break;
}
if (error != ENETRESET)
return error;
error = 0;
if (cmd == SIOCSIFCAP)
error = if_init(ifp);
else if ((cmd == SIOCADDMULTI) || (cmd == SIOCDELMULTI)) {
mutex_enter(&sc->sc_core_lock);
if (sc->sc_if_flags & IFF_RUNNING) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
igc_disable_intr(sc);
igc_set_filter(sc);
igc_enable_intr(sc);
}
mutex_exit(&sc->sc_core_lock);
}
return error;
}
#ifdef IF_RXR
static int
igc_rxrinfo(struct igc_softc *sc, struct if_rxrinfo *ifri)
{
struct if_rxring_info *ifr, ifr1;
int error;
if (sc->sc_nqueues > 1) {
ifr = kmem_zalloc(sc->sc_nqueues * sizeof(*ifr), KM_SLEEP);
} else {
ifr = &ifr1;
memset(ifr, 0, sizeof(*ifr));
}
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct rx_ring *rxr = &sc->rx_rings[iq];
ifr[iq].ifr_size = MCLBYTES;
snprintf(ifr[iq].ifr_name, sizeof(ifr[iq].ifr_name), "%d", iq);
ifr[iq].ifr_info = rxr->rx_ring;
}
error = if_rxr_info_ioctl(ifri, sc->sc_nqueues, ifr);
if (sc->sc_nqueues > 1)
kmem_free(ifr, sc->sc_nqueues * sizeof(*ifr));
return error;
}
#endif
static void
igc_rxfill(struct rx_ring *rxr)
{
struct igc_softc *sc = rxr->sc;
int id;
for (id = 0; id < sc->num_rx_desc; id++) {
if (igc_get_buf(rxr, id, false)) {
panic("%s: msix=%d i=%d\n", __func__, rxr->me, id);
}
}
id = sc->num_rx_desc - 1;
rxr->last_desc_filled = id;
IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
rxr->next_to_check = 0;
}
static void
igc_rxrefill(struct rx_ring *rxr, int end)
{
struct igc_softc *sc = rxr->sc;
int id;
for (id = rxr->next_to_check; id != end; id = igc_rxdesc_incr(sc, id)) {
if (igc_get_buf(rxr, id, true)) {
/* XXXRO */
panic("%s: msix=%d id=%d\n", __func__, rxr->me, id);
}
}
id = igc_rxdesc_decr(sc, id);
DPRINTF(RX, "%s RDT %d id %d\n",
rxr->last_desc_filled == id ? "same" : "diff",
rxr->last_desc_filled, id);
rxr->last_desc_filled = id;
IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
}
/*********************************************************************
*
* This routine executes in interrupt context. It replenishes
* the mbufs in the descriptor and sends data which has been
* dma'ed into host memory to upper layer.
*
*********************************************************************/
static bool
igc_rxeof(struct rx_ring *rxr, u_int limit)
{
struct igc_softc *sc = rxr->sc;
struct igc_queue *q = rxr->rxr_igcq;
struct ifnet *ifp = &sc->sc_ec.ec_if;
int id;
bool more = false;
id = rxr->next_to_check;
for (;;) {
union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
struct igc_rx_buf *rxbuf, *nxbuf;
struct mbuf *mp, *m;
igc_rxdesc_sync(rxr, id,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
const uint32_t staterr = le32toh(rxdesc->wb.upper.status_error);
if (!ISSET(staterr, IGC_RXD_STAT_DD)) {
igc_rxdesc_sync(rxr, id,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
break;
}
if (limit-- == 0) {
igc_rxdesc_sync(rxr, id,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
DPRINTF(RX, "more=true\n");
more = true;
break;
}
/* Zero out the receive descriptors status. */
rxdesc->wb.upper.status_error = 0;
/* Pull the mbuf off the ring. */
rxbuf = &rxr->rx_buffers[id];
bus_dmamap_t map = rxbuf->map;
bus_dmamap_sync(rxr->rxdma.dma_tag, map,
0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(rxr->rxdma.dma_tag, map);
mp = rxbuf->buf;
rxbuf->buf = NULL;
const bool eop = staterr & IGC_RXD_STAT_EOP;
const uint16_t len = le16toh(rxdesc->wb.upper.length);
#if NVLAN > 0
const uint16_t vtag = le16toh(rxdesc->wb.upper.vlan);
#endif
const uint32_t ptype = le32toh(rxdesc->wb.lower.lo_dword.data) &
IGC_PKTTYPE_MASK;
const uint32_t hash __unused =
le32toh(rxdesc->wb.lower.hi_dword.rss);
const uint16_t hashtype __unused =
le16toh(rxdesc->wb.lower.lo_dword.hs_rss.pkt_info) &
IGC_RXDADV_RSSTYPE_MASK;
igc_rxdesc_sync(rxr, id,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (__predict_false(staterr & IGC_RXDEXT_STATERR_RXE)) {
m_freem(rxbuf->fmp);
rxbuf->fmp = NULL;
m_freem(mp);
m = NULL;
if_statinc(ifp, if_ierrors);
IGC_QUEUE_EVENT(q, rx_discard, 1);
DPRINTF(RX, "ierrors++\n");
goto next_desc;
}
if (__predict_false(mp == NULL)) {
panic("%s: igc_rxeof: NULL mbuf in slot %d "
"(filled %d)", device_xname(sc->sc_dev),
id, rxr->last_desc_filled);
}
if (!eop) {
/*
* Figure out the next descriptor of this frame.
*/
int nextp = igc_rxdesc_incr(sc, id);
nxbuf = &rxr->rx_buffers[nextp];
/*
* TODO prefetch(nxbuf);
*/
}
mp->m_len = len;
m = rxbuf->fmp;
rxbuf->fmp = NULL;
if (m != NULL) {
m->m_pkthdr.len += mp->m_len;
} else {
m = mp;
m->m_pkthdr.len = mp->m_len;
#if NVLAN > 0
if (staterr & IGC_RXD_STAT_VP)
vlan_set_tag(m, vtag);
#endif
}
/* Pass the head pointer on */
if (!eop) {
nxbuf->fmp = m;
m = NULL;
mp->m_next = nxbuf->buf;
} else {
m_set_rcvif(m, ifp);
m->m_pkthdr.csum_flags = igc_rx_checksum(q,
ifp->if_capenable, staterr, ptype);
#ifdef notyet
if (hashtype != IGC_RXDADV_RSSTYPE_NONE) {
m->m_pkthdr.ph_flowid = hash;
SET(m->m_pkthdr.csum_flags, M_FLOWID);
}
ml_enqueue(&ml, m);
#endif
if_percpuq_enqueue(sc->sc_ipq, m);
if_statinc(ifp, if_ipackets);
IGC_QUEUE_EVENT(q, rx_packets, 1);
IGC_QUEUE_EVENT(q, rx_bytes, m->m_pkthdr.len);
}
next_desc:
/* Advance our pointers to the next descriptor. */
id = igc_rxdesc_incr(sc, id);
}
DPRINTF(RX, "fill queue[%d]\n", rxr->me);
igc_rxrefill(rxr, id);
DPRINTF(RX, "%s n2c %d id %d\n",
rxr->next_to_check == id ? "same" : "diff",
rxr->next_to_check, id);
rxr->next_to_check = id;
#ifdef OPENBSD
if (!(staterr & IGC_RXD_STAT_DD))
return 0;
#endif
return more;
}
/*********************************************************************
*
* Verify that the hardware indicated that the checksum is valid.
* Inform the stack about the status of checksum so that stack
* doesn't spend time verifying the checksum.
*
*********************************************************************/
static int
igc_rx_checksum(struct igc_queue *q, uint64_t capenable, uint32_t staterr,
uint32_t ptype)
{
const uint16_t status = (uint16_t)staterr;
const uint8_t errors = (uint8_t)(staterr >> 24);
int flags = 0;
if ((status & IGC_RXD_STAT_IPCS) != 0 &&
(capenable & IFCAP_CSUM_IPv4_Rx) != 0) {
IGC_DRIVER_EVENT(q, rx_ipcs, 1);
flags |= M_CSUM_IPv4;
if (__predict_false((errors & IGC_RXD_ERR_IPE) != 0)) {
IGC_DRIVER_EVENT(q, rx_ipcs_bad, 1);
flags |= M_CSUM_IPv4_BAD;
}
}
if ((status & IGC_RXD_STAT_TCPCS) != 0) {
IGC_DRIVER_EVENT(q, rx_tcpcs, 1);
if ((capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
flags |= M_CSUM_TCPv4;
if ((capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
flags |= M_CSUM_TCPv6;
}
if ((status & IGC_RXD_STAT_UDPCS) != 0) {
IGC_DRIVER_EVENT(q, rx_udpcs, 1);
if ((capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
flags |= M_CSUM_UDPv4;
if ((capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
flags |= M_CSUM_UDPv6;
}
if (__predict_false((errors & IGC_RXD_ERR_TCPE) != 0)) {
IGC_DRIVER_EVENT(q, rx_l4cs_bad, 1);
if ((flags & ~M_CSUM_IPv4) != 0)
flags |= M_CSUM_TCP_UDP_BAD;
}
return flags;
}
static void
igc_watchdog(struct ifnet * ifp)
{
}
static void
igc_tick(void *arg)
{
struct igc_softc *sc = arg;
mutex_enter(&sc->sc_core_lock);
if (__predict_false(sc->sc_core_stopping)) {
mutex_exit(&sc->sc_core_lock);
return;
}
/* XXX watchdog */
if (0) {
IGC_GLOBAL_EVENT(sc, watchdog, 1);
}
igc_update_counters(sc);
mutex_exit(&sc->sc_core_lock);
callout_schedule(&sc->sc_tick_ch, hz);
}
/*********************************************************************
*
* Media Ioctl callback
*
* This routine is called whenever the user queries the status of
* the interface using ifconfig.
*
**********************************************************************/
static void
igc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct igc_softc *sc = ifp->if_softc;
struct igc_hw *hw = &sc->hw;
igc_update_link_status(sc);
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (!sc->link_active) {
ifmr->ifm_active |= IFM_NONE;
return;
}
ifmr->ifm_status |= IFM_ACTIVE;
switch (sc->link_speed) {
case 10:
ifmr->ifm_active |= IFM_10_T;
break;
case 100:
ifmr->ifm_active |= IFM_100_TX;
break;
case 1000:
ifmr->ifm_active |= IFM_1000_T;
break;
case 2500:
ifmr->ifm_active |= IFM_2500_T;
break;
}
if (sc->link_duplex == FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
switch (hw->fc.current_mode) {
case igc_fc_tx_pause:
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
break;
case igc_fc_rx_pause:
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
break;
case igc_fc_full:
ifmr->ifm_active |= IFM_FLOW |
IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
break;
case igc_fc_none:
default:
break;
}
}
/*********************************************************************
*
* Media Ioctl callback
*
* This routine is called when the user changes speed/duplex using
* media/mediopt option with ifconfig.
*
**********************************************************************/
static int
igc_media_change(struct ifnet *ifp)
{
struct igc_softc *sc = ifp->if_softc;
struct ifmedia *ifm = &sc->media;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return EINVAL;
sc->hw.mac.autoneg = DO_AUTO_NEG;
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
break;
case IFM_2500_T:
sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
break;
case IFM_1000_T:
sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
break;
case IFM_100_TX:
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
else
sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
break;
case IFM_10_T:
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
else
sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
break;
default:
return EINVAL;
}
igc_init_locked(sc);
return 0;
}
static int
igc_ifflags_cb(struct ethercom *ec)
{
struct ifnet *ifp = &ec->ec_if;
struct igc_softc *sc = ifp->if_softc;
int rc = 0;
u_short iffchange;
bool needreset = false;
DPRINTF(CFG, "called\n");
KASSERT(IFNET_LOCKED(ifp));
mutex_enter(&sc->sc_core_lock);
/*
* Check for if_flags.
* Main usage is to prevent linkdown when opening bpf.
*/
iffchange = ifp->if_flags ^ sc->sc_if_flags;
sc->sc_if_flags = ifp->if_flags;
if ((iffchange & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
needreset = true;
goto ec;
}
/* iff related updates */
if ((iffchange & IFF_PROMISC) != 0)
igc_set_filter(sc);
#ifdef notyet
igc_set_vlan(sc);
#endif
ec:
#ifdef notyet
/* Check for ec_capenable. */
ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
sc->sc_ec_capenable = ec->ec_capenable;
if ((ecchange & ~ETHERCAP_SOMETHING) != 0) {
needreset = true;
goto out;
}
#endif
if (needreset)
rc = ENETRESET;
mutex_exit(&sc->sc_core_lock);
return rc;
}
static void
igc_set_filter(struct igc_softc *sc)
{
struct ethercom *ec = &sc->sc_ec;
uint32_t rctl;
rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
rctl &= ~(IGC_RCTL_BAM |IGC_RCTL_UPE | IGC_RCTL_MPE);
if ((sc->sc_if_flags & IFF_BROADCAST) != 0)
rctl |= IGC_RCTL_BAM;
if ((sc->sc_if_flags & IFF_PROMISC) != 0) {
DPRINTF(CFG, "promisc\n");
rctl |= IGC_RCTL_UPE;
ETHER_LOCK(ec);
allmulti:
ec->ec_flags |= ETHER_F_ALLMULTI;
ETHER_UNLOCK(ec);
rctl |= IGC_RCTL_MPE;
} else {
struct ether_multistep step;
struct ether_multi *enm;
int mcnt = 0;
memset(sc->mta, 0, IGC_MTA_LEN);
ETHER_LOCK(ec);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (((memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN)) != 0) ||
(mcnt >= MAX_NUM_MULTICAST_ADDRESSES)) {
/*
* We must listen to a range of multicast
* addresses. For now, just accept all
* multicasts, rather than trying to set only
* those filter bits needed to match the range.
* (At this time, the only use of address
* ranges is for IP multicast routing, for
* which the range is big enough to require all
* bits set.)
*/
goto allmulti;
}
DPRINTF(CFG, "%d: %s\n", mcnt,
ether_sprintf(enm->enm_addrlo));
memcpy(&sc->mta[mcnt * ETHER_ADDR_LEN],
enm->enm_addrlo, ETHER_ADDR_LEN);
mcnt++;
ETHER_NEXT_MULTI(step, enm);
}
ec->ec_flags &= ~ETHER_F_ALLMULTI;
ETHER_UNLOCK(ec);
DPRINTF(CFG, "hw filter\n");
igc_update_mc_addr_list(&sc->hw, sc->mta, mcnt);
}
IGC_WRITE_REG(&sc->hw, IGC_RCTL, rctl);
}
static void
igc_update_link_status(struct igc_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct igc_hw *hw = &sc->hw;
if (hw->mac.get_link_status == true)
igc_check_for_link(hw);
if (IGC_READ_REG(&sc->hw, IGC_STATUS) & IGC_STATUS_LU) {
if (sc->link_active == 0) {
igc_get_speed_and_duplex(hw, &sc->link_speed,
&sc->link_duplex);
sc->link_active = 1;
ifp->if_baudrate = IF_Mbps(sc->link_speed);
if_link_state_change(ifp, LINK_STATE_UP);
}
} else {
if (sc->link_active == 1) {
ifp->if_baudrate = sc->link_speed = 0;
sc->link_duplex = 0;
sc->link_active = 0;
if_link_state_change(ifp, LINK_STATE_DOWN);
}
}
}
/*********************************************************************
*
* Get a buffer from system mbuf buffer pool.
*
**********************************************************************/
static int
igc_get_buf(struct rx_ring *rxr, int id, bool strict)
{
struct igc_softc *sc = rxr->sc;
struct igc_queue *q = rxr->rxr_igcq;
struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
bus_dmamap_t map = rxbuf->map;
struct mbuf *m;
int error;
if (__predict_false(rxbuf->buf)) {
if (strict) {
DPRINTF(RX, "slot %d already has an mbuf\n", id);
return EINVAL;
}
return 0;
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (__predict_false(m == NULL)) {
enobuf:
IGC_QUEUE_EVENT(q, rx_no_mbuf, 1);
return ENOBUFS;
}
MCLAIM(m, &sc->sc_ec.ec_rx_mowner);
MCLGET(m, M_DONTWAIT);
if (__predict_false(!(m->m_flags & M_EXT))) {
m_freem(m);
goto enobuf;
}
m->m_len = m->m_pkthdr.len = sc->rx_mbuf_sz;
error = bus_dmamap_load_mbuf(rxr->rxdma.dma_tag, map, m,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error) {
m_freem(m);
return error;
}
bus_dmamap_sync(rxr->rxdma.dma_tag, map, 0,
map->dm_mapsize, BUS_DMASYNC_PREREAD);
rxbuf->buf = m;
union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
igc_rxdesc_sync(rxr, id, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
rxdesc->read.pkt_addr = htole64(map->dm_segs[0].ds_addr);
igc_rxdesc_sync(rxr, id, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
return 0;
}
static void
igc_configure_queues(struct igc_softc *sc)
{
struct igc_hw *hw = &sc->hw;
uint32_t ivar;
/* First turn on RSS capability */
IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME |
IGC_GPIE_PBA | IGC_GPIE_NSICR);
/* Set the starting interrupt rate */
uint32_t newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;
newitr |= IGC_EITR_CNT_IGNR;
/* Turn on MSI-X */
uint32_t newmask = 0;
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct igc_queue *q = &sc->queues[iq];
/* RX entries */
igc_set_queues(sc, iq, q->msix, 0);
/* TX entries */
igc_set_queues(sc, iq, q->msix, 1);
newmask |= q->eims;
IGC_WRITE_REG(hw, IGC_EITR(q->msix), newitr);
}
sc->msix_queuesmask = newmask;
#if 1
ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 0);
DPRINTF(CFG, "ivar(0)=0x%x\n", ivar);
ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 1);
DPRINTF(CFG, "ivar(1)=0x%x\n", ivar);
#endif
/* And for the link interrupt */
ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
sc->msix_linkmask = 1 << sc->linkvec;
IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
}
static void
igc_set_queues(struct igc_softc *sc, uint32_t entry, uint32_t vector, int type)
{
struct igc_hw *hw = &sc->hw;
const uint32_t index = entry >> 1;
uint32_t ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
if (type) {
if (entry & 1) {
ivar &= 0x00FFFFFF;
ivar |= (vector | IGC_IVAR_VALID) << 24;
} else {
ivar &= 0xFFFF00FF;
ivar |= (vector | IGC_IVAR_VALID) << 8;
}
} else {
if (entry & 1) {
ivar &= 0xFF00FFFF;
ivar |= (vector | IGC_IVAR_VALID) << 16;
} else {
ivar &= 0xFFFFFF00;
ivar |= vector | IGC_IVAR_VALID;
}
}
IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
}
static void
igc_enable_queue(struct igc_softc *sc, uint32_t eims)
{
IGC_WRITE_REG(&sc->hw, IGC_EIMS, eims);
}
static void
igc_enable_intr(struct igc_softc *sc)
{
struct igc_hw *hw = &sc->hw;
if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
const uint32_t mask = sc->msix_queuesmask | sc->msix_linkmask;
IGC_WRITE_REG(hw, IGC_EIAC, mask);
IGC_WRITE_REG(hw, IGC_EIAM, mask);
IGC_WRITE_REG(hw, IGC_EIMS, mask);
IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
} else {
IGC_WRITE_REG(hw, IGC_IMS, IMS_ENABLE_MASK);
}
IGC_WRITE_FLUSH(hw);
}
static void
igc_disable_intr(struct igc_softc *sc)
{
struct igc_hw *hw = &sc->hw;
if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
IGC_WRITE_REG(hw, IGC_EIAC, 0);
}
IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
IGC_WRITE_FLUSH(hw);
}
static int
igc_intr_link(void *arg)
{
struct igc_softc *sc = (struct igc_softc *)arg;
const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
IGC_GLOBAL_EVENT(sc, link, 1);
if (reg_icr & IGC_ICR_LSC) {
mutex_enter(&sc->sc_core_lock);
sc->hw.mac.get_link_status = true;
igc_update_link_status(sc);
mutex_exit(&sc->sc_core_lock);
}
IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->msix_linkmask);
return 1;
}
static int
igc_intr_queue(void *arg)
{
struct igc_queue *iq = arg;
struct igc_softc *sc = iq->sc;
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct rx_ring *rxr = iq->rxr;
struct tx_ring *txr = iq->txr;
const u_int txlimit = sc->sc_tx_intr_process_limit,
rxlimit = sc->sc_rx_intr_process_limit;
bool txmore, rxmore;
IGC_QUEUE_EVENT(iq, irqs, 1);
if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
return 0;
mutex_enter(&txr->txr_lock);
txmore = igc_txeof(txr, txlimit);
mutex_exit(&txr->txr_lock);
mutex_enter(&rxr->rxr_lock);
rxmore = igc_rxeof(rxr, rxlimit);
mutex_exit(&rxr->rxr_lock);
if (txmore || rxmore) {
IGC_QUEUE_EVENT(iq, req, 1);
igc_sched_handle_queue(sc, iq);
} else {
igc_enable_queue(sc, iq->eims);
}
return 1;
}
static int
igc_intr(void *arg)
{
struct igc_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct igc_queue *iq = &sc->queues[0];
struct rx_ring *rxr = iq->rxr;
struct tx_ring *txr = iq->txr;
const u_int txlimit = sc->sc_tx_intr_process_limit,
rxlimit = sc->sc_rx_intr_process_limit;
bool txmore, rxmore;
if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
return 0;
const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
DPRINTF(MISC, "reg_icr=0x%x\n", reg_icr);
/* Definitely not our interrupt. */
if (reg_icr == 0x0) {
DPRINTF(MISC, "not for me\n");
return 0;
}
IGC_QUEUE_EVENT(iq, irqs, 1);
/* Hot eject? */
if (__predict_false(reg_icr == 0xffffffff)) {
DPRINTF(MISC, "hot eject\n");
return 0;
}
if (__predict_false(!(reg_icr & IGC_ICR_INT_ASSERTED))) {
DPRINTF(MISC, "not set IGC_ICR_INT_ASSERTED");
return 0;
}
/*
* Only MSI-X interrupts have one-shot behavior by taking advantage
* of the EIAC register. Thus, explicitly disable interrupts. This
* also works around the MSI message reordering errata on certain
* systems.
*/
igc_disable_intr(sc);
mutex_enter(&txr->txr_lock);
txmore = igc_txeof(txr, txlimit);
mutex_exit(&txr->txr_lock);
mutex_enter(&rxr->rxr_lock);
rxmore = igc_rxeof(rxr, rxlimit);
mutex_exit(&rxr->rxr_lock);
/* Link status change */
// XXXX FreeBSD checks IGC_ICR_RXSEQ
if (__predict_false(reg_icr & IGC_ICR_LSC)) {
IGC_GLOBAL_EVENT(sc, link, 1);
mutex_enter(&sc->sc_core_lock);
sc->hw.mac.get_link_status = true;
igc_update_link_status(sc);
mutex_exit(&sc->sc_core_lock);
}
if (txmore || rxmore) {
IGC_QUEUE_EVENT(iq, req, 1);
igc_sched_handle_queue(sc, iq);
} else {
igc_enable_intr(sc);
}
return 1;
}
static void
igc_handle_queue(void *arg)
{
struct igc_queue *iq = arg;
struct igc_softc *sc = iq->sc;
struct tx_ring *txr = iq->txr;
struct rx_ring *rxr = iq->rxr;
const u_int txlimit = sc->sc_tx_process_limit,
rxlimit = sc->sc_rx_process_limit;
bool txmore, rxmore;
IGC_QUEUE_EVENT(iq, handleq, 1);
mutex_enter(&txr->txr_lock);
txmore = igc_txeof(txr, txlimit);
/* for ALTQ, dequeue from if_snd */
if (txr->me == 0) {
struct ifnet *ifp = &sc->sc_ec.ec_if;
igc_tx_common_locked(ifp, txr, IGC_TX_START);
}
mutex_exit(&txr->txr_lock);
mutex_enter(&rxr->rxr_lock);
rxmore = igc_rxeof(rxr, rxlimit);
mutex_exit(&rxr->rxr_lock);
if (txmore || rxmore) {
igc_sched_handle_queue(sc, iq);
} else {
if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
igc_enable_queue(sc, iq->eims);
else
igc_enable_intr(sc);
}
}
static void
igc_handle_queue_work(struct work *wk, void *context)
{
struct igc_queue *iq =
container_of(wk, struct igc_queue, igcq_wq_cookie);
igc_handle_queue(iq);
}
static void
igc_sched_handle_queue(struct igc_softc *sc, struct igc_queue *iq)
{
if (iq->igcq_workqueue) {
/* XXXRO notyet */
workqueue_enqueue(sc->sc_queue_wq, &iq->igcq_wq_cookie,
curcpu());
} else {
softint_schedule(iq->igcq_si);
}
}
static void
igc_barrier_handle_queue(struct igc_softc *sc)
{
if (sc->sc_txrx_workqueue) {
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct igc_queue *q = &sc->queues[iq];
workqueue_wait(sc->sc_queue_wq, &q->igcq_wq_cookie);
}
} else {
xc_barrier(0);
}
}
/*********************************************************************
*
* Allocate memory for tx_buffer structures. The tx_buffer stores all
* the information needed to transmit a packet on the wire.
*
**********************************************************************/
static int
igc_allocate_transmit_buffers(struct tx_ring *txr)
{
struct igc_softc *sc = txr->sc;
int error;
txr->tx_buffers =
kmem_zalloc(sc->num_tx_desc * sizeof(struct igc_tx_buf), KM_SLEEP);
txr->txtag = txr->txdma.dma_tag;
/* Create the descriptor buffer dma maps. */
for (int id = 0; id < sc->num_tx_desc; id++) {
struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
error = bus_dmamap_create(txr->txdma.dma_tag,
round_page(IGC_TSO_SIZE + sizeof(struct ether_vlan_header)),
IGC_MAX_SCATTER, PAGE_SIZE, 0, BUS_DMA_NOWAIT, &txbuf->map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create TX DMA map\n");
goto fail;
}
txbuf->eop_index = -1;
}
return 0;
fail:
return error;
}
/*********************************************************************
*
* Allocate and initialize transmit structures.
*
**********************************************************************/
static int
igc_setup_transmit_structures(struct igc_softc *sc)
{
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct tx_ring *txr = &sc->tx_rings[iq];
if (igc_setup_transmit_ring(txr))
goto fail;
}
return 0;
fail:
igc_free_transmit_structures(sc);
return ENOBUFS;
}
/*********************************************************************
*
* Initialize a transmit ring.
*
**********************************************************************/
static int
igc_setup_transmit_ring(struct tx_ring *txr)
{
struct igc_softc *sc = txr->sc;
/* Now allocate transmit buffers for the ring. */
if (igc_allocate_transmit_buffers(txr))
return ENOMEM;
/* Clear the old ring contents */
memset(txr->tx_base, 0,
sizeof(union igc_adv_tx_desc) * sc->num_tx_desc);
/* Reset indices. */
txr->next_avail_desc = 0;
txr->next_to_clean = 0;
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
txr->txdma.dma_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
txr->txr_interq = pcq_create(sc->num_tx_desc, KM_SLEEP);
mutex_init(&txr->txr_lock, MUTEX_DEFAULT, IPL_NET);
return 0;
}
/*********************************************************************
*
* Enable transmit unit.
*
**********************************************************************/
static void
igc_initialize_transmit_unit(struct igc_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct igc_hw *hw = &sc->hw;
/* Setup the Base and Length of the TX descriptor ring. */
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct tx_ring *txr = &sc->tx_rings[iq];
const uint64_t bus_addr =
txr->txdma.dma_map->dm_segs[0].ds_addr;
/* Base and len of TX ring */
IGC_WRITE_REG(hw, IGC_TDLEN(iq),
sc->num_tx_desc * sizeof(union igc_adv_tx_desc));
IGC_WRITE_REG(hw, IGC_TDBAH(iq), (uint32_t)(bus_addr >> 32));
IGC_WRITE_REG(hw, IGC_TDBAL(iq), (uint32_t)bus_addr);
/* Init the HEAD/TAIL indices */
IGC_WRITE_REG(hw, IGC_TDT(iq), 0 /* XXX txr->next_avail_desc */);
IGC_WRITE_REG(hw, IGC_TDH(iq), 0);
txr->watchdog_timer = 0;
uint32_t txdctl = 0; /* Clear txdctl */
txdctl |= 0x1f; /* PTHRESH */
txdctl |= 1 << 8; /* HTHRESH */
txdctl |= 1 << 16; /* WTHRESH */
txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
txdctl |= IGC_TXDCTL_GRAN;
txdctl |= 1 << 25; /* LWTHRESH */
IGC_WRITE_REG(hw, IGC_TXDCTL(iq), txdctl);
}
ifp->if_timer = 0;
/* Program the Transmit Control Register */
uint32_t tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
tctl &= ~IGC_TCTL_CT;
tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
/* This write will effectively turn on the transmit unit. */
IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
}
/*********************************************************************
*
* Free all transmit rings.
*
**********************************************************************/
static void
igc_free_transmit_structures(struct igc_softc *sc)
{
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct tx_ring *txr = &sc->tx_rings[iq];
igc_free_transmit_buffers(txr);
}
}
/*********************************************************************
*
* Free transmit ring related data structures.
*
**********************************************************************/
static void
igc_free_transmit_buffers(struct tx_ring *txr)
{
struct igc_softc *sc = txr->sc;
if (txr->tx_buffers == NULL)
return;
igc_withdraw_transmit_packets(txr, true);
kmem_free(txr->tx_buffers,
sc->num_tx_desc * sizeof(struct igc_tx_buf));
txr->tx_buffers = NULL;
txr->txtag = NULL;
pcq_destroy(txr->txr_interq);
mutex_destroy(&txr->txr_lock);
}
/*********************************************************************
*
* Withdraw transmit packets.
*
**********************************************************************/
static void
igc_withdraw_transmit_packets(struct tx_ring *txr, bool destroy)
{
struct igc_softc *sc = txr->sc;
struct igc_queue *q = txr->txr_igcq;
mutex_enter(&txr->txr_lock);
for (int id = 0; id < sc->num_tx_desc; id++) {
union igc_adv_tx_desc *txdesc = &txr->tx_base[id];
igc_txdesc_sync(txr, id,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
txdesc->read.buffer_addr = 0;
txdesc->read.cmd_type_len = 0;
txdesc->read.olinfo_status = 0;
igc_txdesc_sync(txr, id,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
bus_dmamap_t map = txbuf->map;
if (map != NULL && map->dm_nsegs > 0) {
bus_dmamap_sync(txr->txdma.dma_tag, map,
0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txr->txdma.dma_tag, map);
}
m_freem(txbuf->m_head);
txbuf->m_head = NULL;
if (map != NULL && destroy) {
bus_dmamap_destroy(txr->txdma.dma_tag, map);
txbuf->map = NULL;
}
txbuf->eop_index = -1;
txr->next_avail_desc = 0;
txr->next_to_clean = 0;
}
struct mbuf *m;
while ((m = pcq_get(txr->txr_interq)) != NULL) {
IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
m_freem(m);
}
mutex_exit(&txr->txr_lock);
}
/*********************************************************************
*
* Advanced Context Descriptor setup for VLAN, CSUM or TSO
*
**********************************************************************/
static bool
igc_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
uint32_t *cmd_type_len, uint32_t *olinfo_status)
{
struct ether_vlan_header *evl;
struct tcphdr *th = NULL /* XXXGCC */;
uint32_t vlan_macip_lens = 0;
uint32_t type_tucmd_mlhl = 0;
uint32_t mss_l4len_idx = 0;
uint32_t ehlen, iphlen;
uint16_t ehtype;
const int csum_flags = mp->m_pkthdr.csum_flags;
const bool v4 = (csum_flags &
(M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TSOv4)) != 0;
const bool v6 = (csum_flags &
(M_CSUM_UDPv6 | M_CSUM_TCPv6 | M_CSUM_TSOv6)) != 0;
const bool tso = (csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
const bool tcp = tso ||
(csum_flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0;
const bool udp = (csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0;
/* Indicate the whole packet as payload when not doing TSO */
if (!tso) {
*olinfo_status |= mp->m_pkthdr.len << IGC_ADVTXD_PAYLEN_SHIFT;
} else {
/* Set L4 payload length later... */
}
#if NVLAN > 0
/*
* In advanced descriptors the vlan tag must
* be placed into the context descriptor. Hence
* we need to make one even if not doing offloads.
*/
if (vlan_has_tag(mp)) {
vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
<< IGC_ADVTXD_VLAN_SHIFT;
} else
#endif
if (!v4 && !v6)
return false;
KASSERT(mp->m_len >= sizeof(struct ether_header));
evl = mtod(mp, struct ether_vlan_header *);
if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
ehtype = evl->evl_proto;
} else {
ehlen = ETHER_HDR_LEN;
ehtype = evl->evl_encap_proto;
}
switch (ntohs(ehtype)) {
case ETHERTYPE_IP:
iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
if ((csum_flags & (M_CSUM_IPv4 | M_CSUM_TSOv4)) != 0)
*olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
if (!tso)
break;
struct ip *ip;
KASSERT(mp->m_len >= ehlen + sizeof(*ip));
ip = (void *)(mtod(mp, char *) + ehlen);
ip->ip_len = 0;
KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
th = (void *)((char *)ip + iphlen);
th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
break;
case ETHERTYPE_IPV6:
iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
if (!tso)
break;
struct ip6_hdr *ip6;
KASSERT(mp->m_len >= ehlen + sizeof(*ip6));
ip6 = (void *)(mtod(mp, char *) + ehlen);
ip6->ip6_plen = 0;
KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
th = (void *)((char *)ip6 + iphlen);
th->th_sum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 0,
htonl(IPPROTO_TCP));
break;
default:
/*
* Unknown L3 protocol. Clear L3 header length and proceed for
* LAN as done by Linux driver.
*/
KASSERT(!v4 && !v6);
iphlen = 0;
break;
}
if (tcp) {
type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
} else if (udp) {
type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
}
if (tso) {
const uint32_t tcphlen = th->th_off << 2;
const uint32_t paylen =
mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
mss_l4len_idx |= mp->m_pkthdr.segsz << IGC_ADVTXD_MSS_SHIFT;
mss_l4len_idx |= tcphlen << IGC_ADVTXD_L4LEN_SHIFT;
*cmd_type_len |= IGC_ADVTXD_DCMD_TSE;
*olinfo_status |= paylen << IGC_ADVTXD_PAYLEN_SHIFT;
}
vlan_macip_lens |= iphlen;
vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
/* Now ready a context descriptor */
struct igc_adv_tx_context_desc *txdesc =
(struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
igc_txdesc_sync(txr, prod,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* Now copy bits into descriptor */
htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
htolem32(&txdesc->seqnum_seed, 0);
htolem32(&txdesc->mss_l4len_idx, mss_l4len_idx);
igc_txdesc_sync(txr, prod,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return 1;
}
/*********************************************************************
*
* Allocate memory for rx_buffer structures. Since we use one
* rx_buffer per received packet, the maximum number of rx_buffer's
* that we'll need is equal to the number of receive descriptors
* that we've allocated.
*
**********************************************************************/
static int
igc_allocate_receive_buffers(struct rx_ring *rxr)
{
struct igc_softc *sc = rxr->sc;
int error;
rxr->rx_buffers =
kmem_zalloc(sc->num_rx_desc * sizeof(struct igc_rx_buf), KM_SLEEP);
for (int id = 0; id < sc->num_rx_desc; id++) {
struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
error = bus_dmamap_create(rxr->rxdma.dma_tag, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_WAITOK, &rxbuf->map);
if (error) {
aprint_error_dev(sc->sc_dev,
"unable to create RX DMA map\n");
goto fail;
}
}
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
rxr->rxdma.dma_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return 0;
fail:
return error;
}
/*********************************************************************
*
* Allocate and initialize receive structures.
*
**********************************************************************/
static int
igc_setup_receive_structures(struct igc_softc *sc)
{
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct rx_ring *rxr = &sc->rx_rings[iq];
if (igc_setup_receive_ring(rxr))
goto fail;
}
return 0;
fail:
igc_free_receive_structures(sc);
return ENOBUFS;
}
/*********************************************************************
*
* Initialize a receive ring and its buffers.
*
**********************************************************************/
static int
igc_setup_receive_ring(struct rx_ring *rxr)
{
struct igc_softc *sc = rxr->sc;
const int rsize = roundup2(
sc->num_rx_desc * sizeof(union igc_adv_rx_desc), IGC_DBA_ALIGN);
/* Clear the ring contents. */
memset(rxr->rx_base, 0, rsize);
if (igc_allocate_receive_buffers(rxr))
return ENOMEM;
/* Setup our descriptor indices. */
rxr->next_to_check = 0;
rxr->last_desc_filled = 0;
mutex_init(&rxr->rxr_lock, MUTEX_DEFAULT, IPL_NET);
return 0;
}
/*********************************************************************
*
* Enable receive unit.
*
**********************************************************************/
static void
igc_initialize_receive_unit(struct igc_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct igc_hw *hw = &sc->hw;
uint32_t rctl, rxcsum, srrctl;
DPRINTF(RX, "called\n");
/*
* Make sure receives are disabled while setting
* up the descriptor ring.
*/
rctl = IGC_READ_REG(hw, IGC_RCTL);
IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
/* Setup the Receive Control Register */
rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
#if 1
/* Do not store bad packets */
rctl &= ~IGC_RCTL_SBP;
#else
/* for debug */
rctl |= IGC_RCTL_SBP;
#endif
/* Enable Long Packet receive */
if (sc->hw.mac.max_frame_size > ETHER_MAX_LEN)
rctl |= IGC_RCTL_LPE;
else
rctl &= ~IGC_RCTL_LPE;
/* Strip the CRC */
rctl |= IGC_RCTL_SECRC;
/*
* Set the interrupt throttling rate. Value is calculated
* as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
*
* XXX Sync with Linux, especially for jumbo MTU or TSO.
* XXX Shouldn't be here?
*/
IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
rxcsum &= ~(IGC_RXCSUM_IPOFL | IGC_RXCSUM_TUOFL | IGC_RXCSUM_PCSD);
if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
rxcsum |= IGC_RXCSUM_IPOFL;
if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
rxcsum |= IGC_RXCSUM_TUOFL;
if (sc->sc_nqueues > 1)
rxcsum |= IGC_RXCSUM_PCSD;
IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
if (sc->sc_nqueues > 1)
igc_initialize_rss_mapping(sc);
srrctl = 0;
#if 0
srrctl |= 4096 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
rctl |= IGC_RCTL_SZ_4096 | IGC_RCTL_BSEX;
#else
srrctl |= 2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
rctl |= IGC_RCTL_SZ_2048;
#endif
/*
* If TX flow control is disabled and there's > 1 queue defined,
* enable DROP.
*
* This drops frames rather than hanging the RX MAC for all queues.
*/
if (sc->sc_nqueues > 1 &&
(sc->fc == igc_fc_none || sc->fc == igc_fc_rx_pause))
srrctl |= IGC_SRRCTL_DROP_EN;
/* Setup the Base and Length of the RX descriptor rings. */
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct rx_ring *rxr = &sc->rx_rings[iq];
const uint64_t bus_addr =
rxr->rxdma.dma_map->dm_segs[0].ds_addr;
IGC_WRITE_REG(hw, IGC_RXDCTL(iq), 0);
srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
IGC_WRITE_REG(hw, IGC_RDLEN(iq),
sc->num_rx_desc * sizeof(union igc_adv_rx_desc));
IGC_WRITE_REG(hw, IGC_RDBAH(iq), (uint32_t)(bus_addr >> 32));
IGC_WRITE_REG(hw, IGC_RDBAL(iq), (uint32_t)bus_addr);
IGC_WRITE_REG(hw, IGC_SRRCTL(iq), srrctl);
/* Setup the Head and Tail Descriptor Pointers */
IGC_WRITE_REG(hw, IGC_RDH(iq), 0);
IGC_WRITE_REG(hw, IGC_RDT(iq), 0 /* XXX rxr->last_desc_filled */);
/* Enable this Queue */
uint32_t rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(iq));
rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
rxdctl &= 0xFFF00000;
rxdctl |= IGC_RX_PTHRESH;
rxdctl |= IGC_RX_HTHRESH << 8;
rxdctl |= IGC_RX_WTHRESH << 16;
IGC_WRITE_REG(hw, IGC_RXDCTL(iq), rxdctl);
}
/* Make sure VLAN Filters are off */
rctl &= ~IGC_RCTL_VFE;
/* Write out the settings */
IGC_WRITE_REG(hw, IGC_RCTL, rctl);
}
/*********************************************************************
*
* Free all receive rings.
*
**********************************************************************/
static void
igc_free_receive_structures(struct igc_softc *sc)
{
for (int iq = 0; iq < sc->sc_nqueues; iq++) {
struct rx_ring *rxr = &sc->rx_rings[iq];
igc_free_receive_buffers(rxr);
}
}
/*********************************************************************
*
* Free receive ring data structures
*
**********************************************************************/
static void
igc_free_receive_buffers(struct rx_ring *rxr)
{
struct igc_softc *sc = rxr->sc;
if (rxr->rx_buffers != NULL) {
for (int id = 0; id < sc->num_rx_desc; id++) {
struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
bus_dmamap_t map = rxbuf->map;
if (rxbuf->buf != NULL) {
bus_dmamap_sync(rxr->rxdma.dma_tag, map,
0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(rxr->rxdma.dma_tag, map);
m_freem(rxbuf->buf);
rxbuf->buf = NULL;
}
bus_dmamap_destroy(rxr->rxdma.dma_tag, map);
rxbuf->map = NULL;
}
kmem_free(rxr->rx_buffers,
sc->num_rx_desc * sizeof(struct igc_rx_buf));
rxr->rx_buffers = NULL;
}
mutex_destroy(&rxr->rxr_lock);
}
/*********************************************************************
*
* Clear status registers in all RX descriptors.
*
**********************************************************************/
static void
igc_clear_receive_status(struct rx_ring *rxr)
{
struct igc_softc *sc = rxr->sc;
mutex_enter(&rxr->rxr_lock);
for (int id = 0; id < sc->num_rx_desc; id++) {
union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
igc_rxdesc_sync(rxr, id,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
rxdesc->wb.upper.status_error = 0;
igc_rxdesc_sync(rxr, id,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
mutex_exit(&rxr->rxr_lock);
}
/*
* Initialise the RSS mapping for NICs that support multiple transmit/
* receive rings.
*/
static void
igc_initialize_rss_mapping(struct igc_softc *sc)
{
struct igc_hw *hw = &sc->hw;
/*
* The redirection table controls which destination
* queue each bucket redirects traffic to.
* Each DWORD represents four queues, with the LSB
* being the first queue in the DWORD.
*
* This just allocates buckets to queues using round-robin
* allocation.
*
* NOTE: It Just Happens to line up with the default
* RSS allocation method.
*/
/* Warning FM follows */
uint32_t reta = 0;
for (int i = 0; i < 128; i++) {
const int shift = 0; /* XXXRO */
int queue_id = i % sc->sc_nqueues;
/* Adjust if required */
queue_id <<= shift;
/*
* The low 8 bits are for hash value (n+0);
* The next 8 bits are for hash value (n+1), etc.
*/
reta >>= 8;
reta |= ((uint32_t)queue_id) << 24;
if ((i & 3) == 3) {
IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
reta = 0;
}
}
/*
* MRQC: Multiple Receive Queues Command
* Set queuing to RSS control, number depends on the device.
*/
/* Set up random bits */
uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
rss_getkey((uint8_t *)rss_key);
/* Now fill our hash function seeds */
for (int i = 0; i < __arraycount(rss_key); i++)
IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
/*
* Configure the RSS fields to hash upon.
*/
uint32_t mrqc = IGC_MRQC_ENABLE_RSS_4Q;
mrqc |= IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP;
mrqc |= IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP;
mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
}
/*
* igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means
* that the driver is loaded. For AMT version type f/w
* this means that the network i/f is open.
*/
static void
igc_get_hw_control(struct igc_softc *sc)
{
const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
}
/*
* igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is no longer loaded. For AMT versions of the
* f/w this means that the network i/f is closed.
*/
static void
igc_release_hw_control(struct igc_softc *sc)
{
const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
}
static int
igc_is_valid_ether_addr(uint8_t *addr)
{
const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
return 0;
return 1;
}
static void
igc_print_devinfo(struct igc_softc *sc)
{
device_t dev = sc->sc_dev;
struct igc_hw *hw = &sc->hw;
struct igc_phy_info *phy = &hw->phy;
u_int oui, model, rev;
uint16_t id1, id2, nvm_ver, phy_ver, etk_lo, etk_hi;
char descr[MII_MAX_DESCR_LEN];
/* Print PHY Info */
id1 = phy->id >> 16;
/* The revision field in phy->id is cleard and it's in phy->revision */
id2 = (phy->id & 0xfff0) | phy->revision;
oui = MII_OUI(id1, id2);
model = MII_MODEL(id2);
rev = MII_REV(id2);
mii_get_descr(descr, sizeof(descr), oui, model);
if (descr[0])
aprint_normal_dev(dev, "PHY: %s, rev. %d",
descr, rev);
else
aprint_normal_dev(dev,
"PHY OUI 0x%06x, model 0x%04x, rev. %d",
oui, model, rev);
/* PHY FW version */
phy->ops.read_reg(hw, 0x1e, &phy_ver);
aprint_normal(", PHY FW version 0x%04hx\n", phy_ver);
/* NVM version */
hw->nvm.ops.read(hw, NVM_VERSION, 1, &nvm_ver);
/* EtrackID */
hw->nvm.ops.read(hw, NVM_ETKID_LO, 1, &etk_lo);
hw->nvm.ops.read(hw, NVM_ETKID_HI, 1, &etk_hi);
aprint_normal_dev(dev,
"NVM image version %x.%02x, EtrackID %04hx%04hx\n",
(nvm_ver & NVM_VERSION_MAJOR) >> NVM_VERSION_MAJOR_SHIFT,
nvm_ver & NVM_VERSION_MINOR, etk_hi, etk_lo);
}