/* $NetBSD: if_vge.c,v 1.89 2024/07/05 04:31:51 rin Exp $ */

/*-
* Copyright (c) 2004
*      Bill Paul <[email protected]>.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.89 2024/07/05 04:31:51 rin Exp $");

/*
* VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
*
* Written by Bill Paul <[email protected]>
* Senior Networking Software Engineer
* Wind River Systems
*/

/*
* The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
* combines a tri-speed ethernet MAC and PHY, with the following
* features:
*
*      o Jumbo frame support up to 16K
*      o Transmit and receive flow control
*      o IPv4 checksum offload
*      o VLAN tag insertion and stripping
*      o TCP large send
*      o 64-bit multicast hash table filter
*      o 64 entry CAM filter
*      o 16K RX FIFO and 48K TX FIFO memory
*      o Interrupt moderation
*
* The VT6122 supports up to four transmit DMA queues. The descriptors
* in the transmit ring can address up to 7 data fragments; frames which
* span more than 7 data buffers must be coalesced, but in general the
* BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
* long. The receive descriptors address only a single buffer.
*
* There are two peculiar design issues with the VT6122. One is that
* receive data buffers must be aligned on a 32-bit boundary. This is
* not a problem where the VT6122 is used as a LOM device in x86-based
* systems, but on architectures that generate unaligned access traps, we
* have to do some copying.
*
* The other issue has to do with the way 64-bit addresses are handled.
* The DMA descriptors only allow you to specify 48 bits of addressing
* information. The remaining 16 bits are specified using one of the
* I/O registers (VGE_DATABUF_HIADDR). If you only have a 32-bit system,
* then this isn't an issue, but if you have a 64-bit system and more than
* 4GB of memory, you must have to make sure your network data buffers reside
* in the same 48-bit 'segment.'
*
* Furthermore, the descriptors must also all reside within the same 32-bit
* 'segment' (see VGE_TXDESC_HIADDR).
*
* Special thanks to Ryan Fu at VIA Networking for providing documentation
* and sample NICs for testing.
*/


#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>

#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_ether.h>
#include <net/if_dl.h>
#include <net/if_media.h>

#include <net/bpf.h>

#include <sys/bus.h>

#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>

#include <dev/pci/if_vgereg.h>

#define VGE_IFQ_MAXLEN          64

#define VGE_RING_ALIGN          256

#define VGE_NTXDESC             256
#define VGE_NTXDESC_MASK        (VGE_NTXDESC - 1)
#define VGE_NEXT_TXDESC(x)      ((x + 1) & VGE_NTXDESC_MASK)
#define VGE_PREV_TXDESC(x)      ((x - 1) & VGE_NTXDESC_MASK)

#define VGE_NRXDESC             256     /* Must be a multiple of 4!! */
#define VGE_NRXDESC_MASK        (VGE_NRXDESC - 1)
#define VGE_NEXT_RXDESC(x)      ((x + 1) & VGE_NRXDESC_MASK)
#define VGE_PREV_RXDESC(x)      ((x - 1) & VGE_NRXDESC_MASK)

#define VGE_ADDR_LO(y)          BUS_ADDR_LO32(y)
#define VGE_ADDR_HI(y)          BUS_ADDR_HI32(y)
#define VGE_BUFLEN(y)           ((y) & 0x7FFF)
#define ETHER_PAD_LEN           (ETHER_MIN_LEN - ETHER_CRC_LEN)

#define VGE_POWER_MANAGEMENT    0       /* disabled for now */

/*
* Mbuf adjust factor to force 32-bit alignment of IP header.
* Drivers should pad ETHER_ALIGN bytes when setting up a
* RX mbuf so the upper layers get the IP header properly aligned
* past the 14-byte Ethernet header.
*
* See also comment in vge_encap().
*/

#ifdef __NO_STRICT_ALIGNMENT
#define VGE_RX_BUFSIZE          MCLBYTES
#else
#define VGE_RX_PAD              sizeof(uint32_t)
#define VGE_RX_BUFSIZE          (MCLBYTES - VGE_RX_PAD)
#endif

/*
* Control structures are DMA'd to the vge chip. We allocate them in
* a single clump that maps to a single DMA segment to make several things
* easier.
*/
struct vge_control_data {
       /* TX descriptors */
       struct vge_txdesc       vcd_txdescs[VGE_NTXDESC];
       /* RX descriptors */
       struct vge_rxdesc       vcd_rxdescs[VGE_NRXDESC];
       /* dummy data for TX padding */
       uint8_t                 vcd_pad[ETHER_PAD_LEN];
};

#define VGE_CDOFF(x)    offsetof(struct vge_control_data, x)
#define VGE_CDTXOFF(x)  VGE_CDOFF(vcd_txdescs[(x)])
#define VGE_CDRXOFF(x)  VGE_CDOFF(vcd_rxdescs[(x)])
#define VGE_CDPADOFF()  VGE_CDOFF(vcd_pad[0])

/*
* Software state for TX jobs.
*/
struct vge_txsoft {
       struct mbuf     *txs_mbuf;              /* head of our mbuf chain */
       bus_dmamap_t    txs_dmamap;             /* our DMA map */
};

/*
* Software state for RX jobs.
*/
struct vge_rxsoft {
       struct mbuf     *rxs_mbuf;              /* head of our mbuf chain */
       bus_dmamap_t    rxs_dmamap;             /* our DMA map */
};


struct vge_softc {
       device_t                sc_dev;

       bus_space_tag_t         sc_bst;         /* bus space tag */
       bus_space_handle_t      sc_bsh;         /* bus space handle */
       bus_dma_tag_t           sc_dmat;

       struct ethercom         sc_ethercom;    /* interface info */
       uint8_t                 sc_eaddr[ETHER_ADDR_LEN];

       void                    *sc_intrhand;
       struct mii_data         sc_mii;
       uint8_t                 sc_type;
       u_short                 sc_if_flags;
       int                     sc_link;
       int                     sc_camidx;
       callout_t               sc_timeout;

       bus_dmamap_t            sc_cddmamap;
#define sc_cddma                sc_cddmamap->dm_segs[0].ds_addr

       struct vge_txsoft       sc_txsoft[VGE_NTXDESC];
       struct vge_rxsoft       sc_rxsoft[VGE_NRXDESC];
       struct vge_control_data *sc_control_data;
#define sc_txdescs              sc_control_data->vcd_txdescs
#define sc_rxdescs              sc_control_data->vcd_rxdescs

       int                     sc_tx_prodidx;
       int                     sc_tx_considx;
       int                     sc_tx_free;

       struct mbuf             *sc_rx_mhead;
       struct mbuf             *sc_rx_mtail;
       int                     sc_rx_prodidx;
       int                     sc_rx_consumed;

       int                     sc_suspended;   /* 0 = normal  1 = suspended */
       uint32_t                sc_saved_maps[5];       /* pci data */
       uint32_t                sc_saved_biosaddr;
       uint8_t                 sc_saved_intline;
       uint8_t                 sc_saved_cachelnsz;
       uint8_t                 sc_saved_lattimer;
};

#define VGE_CDTXADDR(sc, x)     ((sc)->sc_cddma + VGE_CDTXOFF(x))
#define VGE_CDRXADDR(sc, x)     ((sc)->sc_cddma + VGE_CDRXOFF(x))
#define VGE_CDPADADDR(sc)       ((sc)->sc_cddma + VGE_CDPADOFF())

#define VGE_TXDESCSYNC(sc, idx, ops)                                    \
       bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap,                \
           VGE_CDTXOFF(idx),                                           \
           offsetof(struct vge_txdesc, td_frag[0]),                    \
           (ops))
#define VGE_TXFRAGSYNC(sc, idx, nsegs, ops)                             \
       bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,               \
           VGE_CDTXOFF(idx) +                                          \
           offsetof(struct vge_txdesc, td_frag[0]),                    \
           sizeof(struct vge_txfrag) * (nsegs),                        \
           (ops))
#define VGE_RXDESCSYNC(sc, idx, ops)                                    \
       bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,               \
           VGE_CDRXOFF(idx),                                           \
           sizeof(struct vge_rxdesc),                                  \
           (ops))

/*
* register space access macros
*/
#define CSR_WRITE_4(sc, reg, val)       \
       bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
#define CSR_WRITE_2(sc, reg, val)       \
       bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
#define CSR_WRITE_1(sc, reg, val)       \
       bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))

#define CSR_READ_4(sc, reg)             \
       bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
#define CSR_READ_2(sc, reg)             \
       bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
#define CSR_READ_1(sc, reg)             \
       bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))

#define CSR_SETBIT_1(sc, reg, x)        \
       CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
#define CSR_SETBIT_2(sc, reg, x)        \
       CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
#define CSR_SETBIT_4(sc, reg, x)        \
       CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))

#define CSR_CLRBIT_1(sc, reg, x)        \
       CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
#define CSR_CLRBIT_2(sc, reg, x)        \
       CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
#define CSR_CLRBIT_4(sc, reg, x)        \
       CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))

#define VGE_TIMEOUT             10000

#define VGE_PCI_LOIO             0x10
#define VGE_PCI_LOMEM            0x14

static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);

static int vge_ifflags_cb(struct ethercom *);

static int vge_match(device_t, cfdata_t, void *);
static void vge_attach(device_t, device_t, void *);

static int vge_encap(struct vge_softc *, struct mbuf *, int);

static int vge_allocmem(struct vge_softc *);
static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
#ifndef __NO_STRICT_ALIGNMENT
static inline void vge_fixup_rx(struct mbuf *);
#endif
static void vge_rxeof(struct vge_softc *);
static void vge_txeof(struct vge_softc *);
static int vge_intr(void *);
static void vge_tick(void *);
static void vge_start(struct ifnet *);
static int vge_ioctl(struct ifnet *, u_long, void *);
static int vge_init(struct ifnet *);
static void vge_stop(struct ifnet *, int);
static void vge_watchdog(struct ifnet *);
#if VGE_POWER_MANAGEMENT
static int vge_suspend(device_t);
static int vge_resume(device_t);
#endif
static bool vge_shutdown(device_t, int);

static uint16_t vge_read_eeprom(struct vge_softc *, int);

static void vge_miipoll_start(struct vge_softc *);
static void vge_miipoll_stop(struct vge_softc *);
static int vge_miibus_readreg(device_t, int, int, uint16_t *);
static int vge_miibus_writereg(device_t, int, int, uint16_t);
static void vge_miibus_statchg(struct ifnet *);

static void vge_cam_clear(struct vge_softc *);
static int vge_cam_set(struct vge_softc *, uint8_t *);
static void     vge_clrwol(struct vge_softc *);
static void vge_setmulti(struct vge_softc *);
static void vge_reset(struct vge_softc *);

CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc),
   vge_match, vge_attach, NULL, NULL);

static inline void
vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
{

       f->tf_addrlo = htole32((uint32_t)daddr);
       if (sizeof(bus_addr_t) == sizeof(uint64_t))
               f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
       else
               f->tf_addrhi = 0;
}

static inline void
vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
{

       rxd->rd_addrlo = htole32((uint32_t)daddr);
       if (sizeof(bus_addr_t) == sizeof(uint64_t))
               rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
       else
               rxd->rd_addrhi = 0;
}

/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static uint16_t
vge_read_eeprom(struct vge_softc *sc, int addr)
{
       int i;
       uint16_t word = 0;

       /*
        * Enter EEPROM embedded programming mode. In order to
        * access the EEPROM at all, we first have to set the
        * EELOAD bit in the CHIPCFG2 register.
        */
       CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
       CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*| VGE_EECSR_ECS*/);

       /* Select the address of the word we want to read */
       CSR_WRITE_1(sc, VGE_EEADDR, addr);

       /* Issue read command */
       CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);

       /* Wait for the done bit to be set. */
       for (i = 0; i < VGE_TIMEOUT; i++) {
               if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
                       break;
       }

       if (i == VGE_TIMEOUT) {
               printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev));
               return 0;
       }

       /* Read the result */
       word = CSR_READ_2(sc, VGE_EERDDAT);

       /* Turn off EEPROM access mode. */
       CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*| VGE_EECSR_ECS*/);
       CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);

       return word;
}

static void
vge_miipoll_stop(struct vge_softc *sc)
{
       int i;

       CSR_WRITE_1(sc, VGE_MIICMD, 0);

       for (i = 0; i < VGE_TIMEOUT; i++) {
               DELAY(1);
               if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
                       break;
       }

       if (i == VGE_TIMEOUT) {
               printf("%s: failed to idle MII autopoll\n",
                   device_xname(sc->sc_dev));
       }
}

static void
vge_miipoll_start(struct vge_softc *sc)
{
       int i;

       /* First, make sure we're idle. */

       CSR_WRITE_1(sc, VGE_MIICMD, 0);
       CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);

       for (i = 0; i < VGE_TIMEOUT; i++) {
               DELAY(1);
               if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
                       break;
       }

       if (i == VGE_TIMEOUT) {
               printf("%s: failed to idle MII autopoll\n",
                   device_xname(sc->sc_dev));
               return;
       }

       /* Now enable auto poll mode. */

       CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);

       /* And make sure it started. */

       for (i = 0; i < VGE_TIMEOUT; i++) {
               DELAY(1);
               if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
                       break;
       }

       if (i == VGE_TIMEOUT) {
               printf("%s: failed to start MII autopoll\n",
                   device_xname(sc->sc_dev));
       }
}

static int
vge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
{
       struct vge_softc *sc;
       int i, s;
       int rv = 0;

       sc = device_private(dev);
       if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
               return -1;

       s = splnet();
       vge_miipoll_stop(sc);

       /* Specify the register we want to read. */
       CSR_WRITE_1(sc, VGE_MIIADDR, reg);

       /* Issue read command. */
       CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);

       /* Wait for the read command bit to self-clear. */
       for (i = 0; i < VGE_TIMEOUT; i++) {
               DELAY(1);
               if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
                       break;
       }

       if (i == VGE_TIMEOUT) {
               printf("%s: MII read timed out\n", device_xname(sc->sc_dev));
               rv = ETIMEDOUT;
       } else
               *val = CSR_READ_2(sc, VGE_MIIDATA);

       vge_miipoll_start(sc);
       splx(s);

       return rv;
}

static int
vge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
{
       struct vge_softc *sc;
       int i, s, rv = 0;

       sc = device_private(dev);
       if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
               return -1;

       s = splnet();
       vge_miipoll_stop(sc);

       /* Specify the register we want to write. */
       CSR_WRITE_1(sc, VGE_MIIADDR, reg);

       /* Specify the data we want to write. */
       CSR_WRITE_2(sc, VGE_MIIDATA, val);

       /* Issue write command. */
       CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);

       /* Wait for the write command bit to self-clear. */
       for (i = 0; i < VGE_TIMEOUT; i++) {
               DELAY(1);
               if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
                       break;
       }

       if (i == VGE_TIMEOUT) {
               printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
               rv = ETIMEDOUT;
       }

       vge_miipoll_start(sc);
       splx(s);

       return rv;
}

static void
vge_cam_clear(struct vge_softc *sc)
{
       int i;

       /*
        * Turn off all the mask bits. This tells the chip
        * that none of the entries in the CAM filter are valid.
        * desired entries will be enabled as we fill the filter in.
        */

       CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
       CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
       CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
       for (i = 0; i < 8; i++)
               CSR_WRITE_1(sc, VGE_CAM0 + i, 0);

       /* Clear the VLAN filter too. */

       CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | VGE_CAMADDR_AVSEL);
       for (i = 0; i < 8; i++)
               CSR_WRITE_1(sc, VGE_CAM0 + i, 0);

       CSR_WRITE_1(sc, VGE_CAMADDR, 0);
       CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
       CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);

       sc->sc_camidx = 0;
}

static int
vge_cam_set(struct vge_softc *sc, uint8_t *addr)
{
       int i, error;

       error = 0;

       if (sc->sc_camidx == VGE_CAM_MAXADDRS)
               return ENOSPC;

       /* Select the CAM data page. */
       CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
       CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);

       /* Set the filter entry we want to update and enable writing. */
       CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);

       /* Write the address to the CAM registers */
       for (i = 0; i < ETHER_ADDR_LEN; i++)
               CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);

       /* Issue a write command. */
       CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);

       /* Wake for it to clear. */
       for (i = 0; i < VGE_TIMEOUT; i++) {
               DELAY(1);
               if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
                       break;
       }

       if (i == VGE_TIMEOUT) {
               printf("%s: setting CAM filter failed\n",
                   device_xname(sc->sc_dev));
               error = EIO;
               goto fail;
       }

       /* Select the CAM mask page. */
       CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
       CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);

       /* Set the mask bit that enables this filter. */
       CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
           1 << (sc->sc_camidx & 7));

       sc->sc_camidx++;

fail:
       /* Turn off access to CAM. */
       CSR_WRITE_1(sc, VGE_CAMADDR, 0);
       CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
       CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);

       return error;
}

/*
* Program the multicast filter. We use the 64-entry CAM filter
* for perfect filtering. If there's more than 64 multicast addresses,
* we use the hash filter instead.
*/
static void
vge_setmulti(struct vge_softc *sc)
{
       struct ethercom *ec = &sc->sc_ethercom;
       struct ifnet *ifp = &ec->ec_if;
       int error;
       uint32_t h, hashes[2] = { 0, 0 };
       struct ether_multi *enm;
       struct ether_multistep step;

       error = 0;

       /* First, zot all the multicast entries. */
       vge_cam_clear(sc);
       CSR_WRITE_4(sc, VGE_MAR0, 0);
       CSR_WRITE_4(sc, VGE_MAR1, 0);
       ifp->if_flags &= ~IFF_ALLMULTI;

       /*
        * If the user wants allmulti or promisc mode, enable reception
        * of all multicast frames.
        */
       if (ifp->if_flags & IFF_PROMISC) {
allmulti:
               CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
               CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
               ifp->if_flags |= IFF_ALLMULTI;
               return;
       }

       /* Now program new ones */
       ETHER_LOCK(ec);
       ETHER_FIRST_MULTI(step, ec, enm);
       while (enm != NULL) {
               /*
                * If multicast range, fall back to ALLMULTI.
                */
               if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
                   ETHER_ADDR_LEN) != 0) {
                       ETHER_UNLOCK(ec);
                       goto allmulti;
               }

               error = vge_cam_set(sc, enm->enm_addrlo);
               if (error)
                       break;

               ETHER_NEXT_MULTI(step, enm);
       }
       ETHER_UNLOCK(ec);

       /* If there were too many addresses, use the hash filter. */
       if (error) {
               vge_cam_clear(sc);

               ETHER_LOCK(ec);
               ETHER_FIRST_MULTI(step, ec, enm);
               while (enm != NULL) {
                       /*
                        * If multicast range, fall back to ALLMULTI.
                        */
                       if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
                           ETHER_ADDR_LEN) != 0) {
                               ETHER_UNLOCK(ec);
                               goto allmulti;
                       }

                       h = ether_crc32_be(enm->enm_addrlo,
                           ETHER_ADDR_LEN) >> 26;
                       hashes[h >> 5] |= 1 << (h & 0x1f);

                       ETHER_NEXT_MULTI(step, enm);
               }
               ETHER_UNLOCK(ec);

               CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
               CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
       }
}

static void
vge_reset(struct vge_softc *sc)
{
       int i;

       CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);

       for (i = 0; i < VGE_TIMEOUT; i++) {
               DELAY(5);
               if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
                       break;
       }

       if (i == VGE_TIMEOUT) {
               printf("%s: soft reset timed out", device_xname(sc->sc_dev));
               CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
               DELAY(2000);
       }

       DELAY(5000);

       CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);

       for (i = 0; i < VGE_TIMEOUT; i++) {
               DELAY(5);
               if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
                       break;
       }

       if (i == VGE_TIMEOUT) {
               printf("%s: EEPROM reload timed out\n",
                   device_xname(sc->sc_dev));
               return;
       }

       /*
        * On some machine, the first read data from EEPROM could be
        * messed up, so read one dummy data here to avoid the mess.
        */
       (void)vge_read_eeprom(sc, 0);

       CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
}

/*
* Probe for a VIA gigabit chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
vge_match(device_t parent, cfdata_t match, void *aux)
{
       struct pci_attach_args *pa = aux;

       if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
           && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
               return 1;

       return 0;
}

static int
vge_allocmem(struct vge_softc *sc)
{
       int error;
       int nseg;
       int i;
       bus_dma_segment_t seg;

       /*
        * Allocate memory for control data.
        *
        * NOTE: This must all fit within the same 4GB segment.  The
        * "boundary" argument to bus_dmamem_alloc() will end up as
        * 4GB on 64-bit platforms and 0 ("no boundary constraint") on
        * 32-bit platformds.
        */

       error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
            VGE_RING_ALIGN,
            (bus_size_t)(1ULL << 32),
            &seg, 1, &nseg, BUS_DMA_NOWAIT);
       if (error) {
               aprint_error_dev(sc->sc_dev,
                   "could not allocate control data dma memory\n");
               goto fail_1;
       }

       /* Map the memory to kernel VA space */

       error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
           sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
           BUS_DMA_NOWAIT);
       if (error) {
               aprint_error_dev(sc->sc_dev,
                   "could not map control data dma memory\n");
               goto fail_2;
       }
       memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));

       /*
        * Create map for control data.
        */
       error = bus_dmamap_create(sc->sc_dmat,
           sizeof(struct vge_control_data), 1,
           sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
           &sc->sc_cddmamap);
       if (error) {
               aprint_error_dev(sc->sc_dev,
                   "could not create control data dmamap\n");
               goto fail_3;
       }

       /* Load the map for the control data. */
       error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
           sc->sc_control_data, sizeof(struct vge_control_data), NULL,
           BUS_DMA_NOWAIT);
       if (error) {
               aprint_error_dev(sc->sc_dev,
                   "could not load control data dma memory\n");
               goto fail_4;
       }

       /* Create DMA maps for TX buffers */

       for (i = 0; i < VGE_NTXDESC; i++) {
               error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
                   VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
                   &sc->sc_txsoft[i].txs_dmamap);
               if (error) {
                       aprint_error_dev(sc->sc_dev,
                           "can't create DMA map for TX descs\n");
                       goto fail_5;
               }
       }

       /* Create DMA maps for RX buffers */

       for (i = 0; i < VGE_NRXDESC; i++) {
               error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
                   1, MCLBYTES, 0, BUS_DMA_NOWAIT,
                   &sc->sc_rxsoft[i].rxs_dmamap);
               if (error) {
                       aprint_error_dev(sc->sc_dev,
                           "can't create DMA map for RX descs\n");
                       goto fail_6;
               }
               sc->sc_rxsoft[i].rxs_mbuf = NULL;
       }

       return 0;

fail_6:
       for (i = 0; i < VGE_NRXDESC; i++) {
               if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
                       bus_dmamap_destroy(sc->sc_dmat,
                           sc->sc_rxsoft[i].rxs_dmamap);
       }
fail_5:
       for (i = 0; i < VGE_NTXDESC; i++) {
               if (sc->sc_txsoft[i].txs_dmamap != NULL)
                       bus_dmamap_destroy(sc->sc_dmat,
                           sc->sc_txsoft[i].txs_dmamap);
       }
       bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
fail_4:
       bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
fail_3:
       bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
           sizeof(struct vge_control_data));
fail_2:
       bus_dmamem_free(sc->sc_dmat, &seg, nseg);
fail_1:
       return ENOMEM;
}

/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static void
vge_attach(device_t parent, device_t self, void *aux)
{
       uint8_t *eaddr;
       struct vge_softc *sc = device_private(self);
       struct ifnet *ifp;
       struct mii_data * const mii = &sc->sc_mii;
       struct pci_attach_args *pa = aux;
       pci_chipset_tag_t pc = pa->pa_pc;
       const char *intrstr;
       pci_intr_handle_t ih;
       uint16_t val;
       char intrbuf[PCI_INTRSTR_LEN];

       sc->sc_dev = self;

       pci_aprint_devinfo_fancy(pa, NULL, "VIA VT612X Gigabit Ethernet", 1);

       /* Make sure bus-mastering is enabled */
       pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
           pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
           PCI_COMMAND_MASTER_ENABLE);

       /*
        * Map control/status registers.
        */
       if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
           &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
               aprint_error_dev(self, "couldn't map memory\n");
               return;
       }

       /*
        * Map and establish our interrupt.
        */
       if (pci_intr_map(pa, &ih)) {
               aprint_error_dev(self, "unable to map interrupt\n");
               return;
       }
       intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
       sc->sc_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, vge_intr,
           sc, device_xname(self));
       if (sc->sc_intrhand == NULL) {
               aprint_error_dev(self, "unable to establish interrupt");
               if (intrstr != NULL)
                       aprint_error(" at %s", intrstr);
               aprint_error("\n");
               return;
       }
       aprint_normal_dev(self, "interrupting at %s\n", intrstr);

       /* Reset the adapter. */
       vge_reset(sc);

       /*
        * Get station address from the EEPROM.
        */
       eaddr = sc->sc_eaddr;
       val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
       eaddr[0] = val & 0xff;
       eaddr[1] = val >> 8;
       val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
       eaddr[2] = val & 0xff;
       eaddr[3] = val >> 8;
       val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
       eaddr[4] = val & 0xff;
       eaddr[5] = val >> 8;

       aprint_normal_dev(self, "Ethernet address %s\n",
           ether_sprintf(eaddr));

       /* Clear WOL and take hardware from powerdown. */
       vge_clrwol(sc);

       /*
        * The hardware supports 64-bit DMA addresses, but it's a little
        * complicated (see large comment about the hardware near the top
        * of the file).  TL;DR -- restrict ourselves to 48-bit.
        */
       if (pci_dma64_available(pa)) {
               if (bus_dmatag_subregion(pa->pa_dmat64,
                                        0,
                                        (bus_addr_t)__MASK(48),
                                        &sc->sc_dmat,
                                        BUS_DMA_WAITOK) != 0) {
                       aprint_error_dev(self,
                           "WARNING: failed to restrict dma range,"
                           " falling back to parent bus dma range\n");
                       sc->sc_dmat = pa->pa_dmat64;
               }
       } else {
               sc->sc_dmat = pa->pa_dmat;
       }

       if (vge_allocmem(sc) != 0)
               return;

       ifp = &sc->sc_ethercom.ec_if;
       ifp->if_softc = sc;
       strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
       ifp->if_mtu = ETHERMTU;
       ifp->if_baudrate = IF_Gbps(1);
       ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
       ifp->if_ioctl = vge_ioctl;
       ifp->if_start = vge_start;
       ifp->if_init = vge_init;
       ifp->if_stop = vge_stop;

       /*
        * We can support 802.1Q VLAN-sized frames and jumbo
        * Ethernet frames.
        */
       sc->sc_ethercom.ec_capabilities |=
           ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
           ETHERCAP_VLAN_HWTAGGING;
       sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;

       /*
        * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
        */
       ifp->if_capabilities |=
           IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
           IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
           IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;

#ifdef DEVICE_POLLING
#ifdef IFCAP_POLLING
       ifp->if_capabilities |= IFCAP_POLLING;
#endif
#endif
       ifp->if_watchdog = vge_watchdog;
       IFQ_SET_MAXLEN(&ifp->if_snd, uimax(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
       IFQ_SET_READY(&ifp->if_snd);

       /*
        * Initialize our media structures and probe the MII.
        */
       mii->mii_ifp = ifp;
       mii->mii_readreg = vge_miibus_readreg;
       mii->mii_writereg = vge_miibus_writereg;
       mii->mii_statchg = vge_miibus_statchg;

       sc->sc_ethercom.ec_mii = mii;
       ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
       mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
           MII_OFFSET_ANY, MIIF_DOPAUSE);
       if (LIST_FIRST(&mii->mii_phys) == NULL) {
               ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
               ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
       } else
               ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);

       /*
        * Attach the interface.
        */
       if_attach(ifp);
       if_deferred_start_init(ifp, NULL);
       ether_ifattach(ifp, eaddr);
       ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb);

       callout_init(&sc->sc_timeout, 0);
       callout_setfunc(&sc->sc_timeout, vge_tick, sc);

       /*
        * Make sure the interface is shutdown during reboot.
        */
       if (pmf_device_register1(self, NULL, NULL, vge_shutdown))
               pmf_class_network_register(self, ifp);
       else
               aprint_error_dev(self, "couldn't establish power handler\n");
}

static int
vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
{
       struct mbuf *m_new;
       struct vge_rxdesc *rxd;
       struct vge_rxsoft *rxs;
       bus_dmamap_t map;
       int i;
#ifdef DIAGNOSTIC
       uint32_t rd_sts;
#endif

       m_new = NULL;
       if (m == NULL) {
               MGETHDR(m_new, M_DONTWAIT, MT_DATA);
               if (m_new == NULL)
                       return ENOBUFS;

               MCLGET(m_new, M_DONTWAIT);
               if ((m_new->m_flags & M_EXT) == 0) {
                       m_freem(m_new);
                       return ENOBUFS;
               }

               m = m_new;
       } else
               m->m_data = m->m_ext.ext_buf;


       /*
        * This is part of an evil trick to deal with non-x86 platforms.
        * The VIA chip requires RX buffers to be aligned on 32-bit
        * boundaries, but that will hose non-x86 machines. To get around
        * this, we leave some empty space at the start of each buffer
        * and for non-x86 hosts, we copy the buffer back two bytes
        * to achieve word alignment. This is slightly more efficient
        * than allocating a new buffer, copying the contents, and
        * discarding the old buffer.
        */
       m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
#ifndef __NO_STRICT_ALIGNMENT
       m->m_data += VGE_RX_PAD;
#endif
       rxs = &sc->sc_rxsoft[idx];
       map = rxs->rxs_dmamap;

       if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
               goto out;

       rxd = &sc->sc_rxdescs[idx];

#ifdef DIAGNOSTIC
       /* If this descriptor is still owned by the chip, bail. */
       VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
       rd_sts = le32toh(rxd->rd_sts);
       VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
       if (rd_sts & VGE_RDSTS_OWN) {
               panic("%s: tried to map busy RX descriptor",
                   device_xname(sc->sc_dev));
       }
#endif

       rxs->rxs_mbuf = m;
       bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
           BUS_DMASYNC_PREREAD);

       rxd->rd_buflen =
           htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
       vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
       rxd->rd_sts = 0;
       rxd->rd_ctl = 0;
       VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

       /*
        * Note: the manual fails to document the fact that for
        * proper operation, the driver needs to replentish the RX
        * DMA ring 4 descriptors at a time (rather than one at a
        * time, like most chips). We can allocate the new buffers
        * but we should not set the OWN bits until we're ready
        * to hand back 4 of them in one shot.
        */

#define VGE_RXCHUNK 4
       sc->sc_rx_consumed++;
       if (sc->sc_rx_consumed == VGE_RXCHUNK) {
               for (i = idx; i != idx - VGE_RXCHUNK; i--) {
                       KASSERT(i >= 0);
                       sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
                       VGE_RXDESCSYNC(sc, i,
                           BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
               }
               sc->sc_rx_consumed = 0;
       }

       return 0;
out:
       m_freem(m_new);
       return ENOMEM;
}

#ifndef __NO_STRICT_ALIGNMENT
static inline void
vge_fixup_rx(struct mbuf *m)
{
       int i;
       uint16_t *src, *dst;

       src = mtod(m, uint16_t *);
       dst = src - 1;

       for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
               *dst++ = *src++;

       m->m_data -= ETHER_ALIGN;
}
#endif

/*
* RX handler. We support the reception of jumbo frames that have
* been fragmented across multiple 2K mbuf cluster buffers.
*/
static void
vge_rxeof(struct vge_softc *sc)
{
       struct mbuf *m;
       struct ifnet *ifp;
       int idx, total_len, lim;
       struct vge_rxdesc *cur_rxd;
       struct vge_rxsoft *rxs;
       uint32_t rxstat, rxctl;

       ifp = &sc->sc_ethercom.ec_if;
       lim = 0;

       /* Invalidate the descriptor memory */

       for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
               cur_rxd = &sc->sc_rxdescs[idx];

               VGE_RXDESCSYNC(sc, idx,
                   BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
               rxstat = le32toh(cur_rxd->rd_sts);
               if ((rxstat & VGE_RDSTS_OWN) != 0) {
                       VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
                       break;
               }

               rxctl = le32toh(cur_rxd->rd_ctl);
               rxs = &sc->sc_rxsoft[idx];
               m = rxs->rxs_mbuf;
               total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;

               /* Invalidate the RX mbuf and unload its map */

               bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
                   0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
               bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);

               /*
                * If the 'start of frame' bit is set, this indicates
                * either the first fragment in a multi-fragment receive,
                * or an intermediate fragment. Either way, we want to
                * accumulate the buffers.
                */
               if (rxstat & VGE_RXPKT_SOF) {
                       m->m_len = VGE_RX_BUFSIZE;
                       if (sc->sc_rx_mhead == NULL)
                               sc->sc_rx_mhead = sc->sc_rx_mtail = m;
                       else {
                               m->m_flags &= ~M_PKTHDR;
                               sc->sc_rx_mtail->m_next = m;
                               sc->sc_rx_mtail = m;
                       }
                       vge_newbuf(sc, idx, NULL);
                       continue;
               }

               /*
                * Bad/error frames will have the RXOK bit cleared.
                * However, there's one error case we want to allow:
                * if a VLAN tagged frame arrives and the chip can't
                * match it against the CAM filter, it considers this
                * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
                * We don't want to drop the frame though: our VLAN
                * filtering is done in software.
                */
               if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
                   (rxstat & VGE_RDSTS_VIDM) == 0 &&
                   (rxstat & VGE_RDSTS_CSUMERR) == 0) {
                       if_statinc(ifp, if_ierrors);
                       /*
                        * If this is part of a multi-fragment packet,
                        * discard all the pieces.
                        */
                       if (sc->sc_rx_mhead != NULL) {
                               m_freem(sc->sc_rx_mhead);
                               sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
                       }
                       vge_newbuf(sc, idx, m);
                       continue;
               }

               /*
                * If allocating a replacement mbuf fails,
                * reload the current one.
                */

               if (vge_newbuf(sc, idx, NULL)) {
                       if_statinc(ifp, if_ierrors);
                       if (sc->sc_rx_mhead != NULL) {
                               m_freem(sc->sc_rx_mhead);
                               sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
                       }
                       vge_newbuf(sc, idx, m);
                       continue;
               }

               if (sc->sc_rx_mhead != NULL) {
                       m->m_len = total_len % VGE_RX_BUFSIZE;
                       /*
                        * Special case: if there's 4 bytes or less
                        * in this buffer, the mbuf can be discarded:
                        * the last 4 bytes is the CRC, which we don't
                        * care about anyway.
                        */
                       if (m->m_len <= ETHER_CRC_LEN) {
                               sc->sc_rx_mtail->m_len -=
                                   (ETHER_CRC_LEN - m->m_len);
                               m_freem(m);
                       } else {
                               m->m_len -= ETHER_CRC_LEN;
                               m->m_flags &= ~M_PKTHDR;
                               sc->sc_rx_mtail->m_next = m;
                       }
                       m = sc->sc_rx_mhead;
                       sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
                       m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
               } else
                       m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;

#ifndef __NO_STRICT_ALIGNMENT
               vge_fixup_rx(m);
#endif
               m_set_rcvif(m, ifp);

               /* Do RX checksumming if enabled */
               if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {

                       /* Check IP header checksum */
                       if (rxctl & VGE_RDCTL_IPPKT)
                               m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
                       if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
                               m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
               }

               if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
                       /* Check UDP checksum */
                       if (rxctl & VGE_RDCTL_TCPPKT)
                               m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;

                       if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
                               m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
               }

               if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
                       /* Check UDP checksum */
                       if (rxctl & VGE_RDCTL_UDPPKT)
                               m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;

                       if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
                               m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
               }

               if (rxstat & VGE_RDSTS_VTAG) {
                       /*
                        * We use bswap16() here because:
                        * On LE machines, tag is stored in BE as stream data.
                        * On BE machines, tag is stored in BE as stream data
                        *  but it was already swapped by le32toh() above.
                        */
                       vlan_set_tag(m, bswap16(rxctl & VGE_RDCTL_VLANID));
               }

               if_percpuq_enqueue(ifp->if_percpuq, m);

               lim++;
               if (lim == VGE_NRXDESC)
                       break;
       }

       sc->sc_rx_prodidx = idx;
       CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
}

static void
vge_txeof(struct vge_softc *sc)
{
       struct ifnet *ifp;
       struct vge_txsoft *txs;
       uint32_t txstat;
       int idx;

       ifp = &sc->sc_ethercom.ec_if;

       for (idx = sc->sc_tx_considx;
           sc->sc_tx_free < VGE_NTXDESC;
           idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
               VGE_TXDESCSYNC(sc, idx,
                   BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
               txstat = le32toh(sc->sc_txdescs[idx].td_sts);
               VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
               if (txstat & VGE_TDSTS_OWN) {
                       break;
               }

               txs = &sc->sc_txsoft[idx];
               bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
                   txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
               bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
               m_freem(txs->txs_mbuf);
               txs->txs_mbuf = NULL;
               net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
               if (txstat & (VGE_TDSTS_EXCESSCOLL | VGE_TDSTS_COLL))
                       if_statinc_ref(ifp, nsr, if_collisions);
               if (txstat & VGE_TDSTS_TXERR)
                       if_statinc_ref(ifp, nsr, if_oerrors);
               else
                       if_statinc_ref(ifp, nsr, if_opackets);
               IF_STAT_PUTREF(ifp);
       }

       sc->sc_tx_considx = idx;

       /*
        * If not all descriptors have been released reaped yet,
        * reload the timer so that we will eventually get another
        * interrupt that will cause us to re-enter this routine.
        * This is done in case the transmitter has gone idle.
        */
       if (sc->sc_tx_free < VGE_NTXDESC)
               CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
       else
               ifp->if_timer = 0;
}

static void
vge_tick(void *arg)
{
       struct vge_softc *sc;
       struct ifnet *ifp;
       struct mii_data *mii;
       int s;

       sc = arg;
       ifp = &sc->sc_ethercom.ec_if;
       mii = &sc->sc_mii;

       s = splnet();

       callout_schedule(&sc->sc_timeout, hz);

       mii_tick(mii);
       if (sc->sc_link) {
               if ((mii->mii_media_status & IFM_ACTIVE) == 0)
                       sc->sc_link = 0;
       } else {
               if (mii->mii_media_status & IFM_ACTIVE &&
                   IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
                       sc->sc_link = 1;
                       if (!IFQ_IS_EMPTY(&ifp->if_snd))
                               vge_start(ifp);
               }
       }

       splx(s);
}

static int
vge_intr(void *arg)
{
       struct vge_softc *sc;
       struct ifnet *ifp;
       uint32_t status;
       int claim;

       sc = arg;
       claim = 0;
       if (sc->sc_suspended) {
               return claim;
       }

       ifp = &sc->sc_ethercom.ec_if;

       if ((ifp->if_flags & IFF_UP) == 0) {
               return claim;
       }

       /* Disable interrupts */
       CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);

       for (;;) {

               status = CSR_READ_4(sc, VGE_ISR);
               /* If the card has gone away the read returns 0xffffffff. */
               if (status == 0xFFFFFFFF)
                       break;

               if (status) {
                       claim = 1;
                       CSR_WRITE_4(sc, VGE_ISR, status);
               }

               if ((status & VGE_INTRS) == 0)
                       break;

               if (status & (VGE_ISR_RXOK | VGE_ISR_RXOK_HIPRIO))
                       vge_rxeof(sc);

               if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) {
                       vge_rxeof(sc);
                       CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
                       CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
               }

               if (status & (VGE_ISR_TXOK0 | VGE_ISR_TIMER0))
                       vge_txeof(sc);

               if (status & (VGE_ISR_TXDMA_STALL | VGE_ISR_RXDMA_STALL))
                       vge_init(ifp);

               if (status & VGE_ISR_LINKSTS)
                       vge_tick(sc);
       }

       /* Re-enable interrupts */
       CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);

       if (claim)
               if_schedule_deferred_start(ifp);

       return claim;
}

static int
vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
{
       struct vge_txsoft *txs;
       struct vge_txdesc *txd;
       struct vge_txfrag *f;
       struct mbuf *m_new;
       bus_dmamap_t map;
       int m_csumflags, seg, error, flags;
       size_t sz;
       uint32_t td_sts, td_ctl;

       KASSERT(sc->sc_tx_free > 0);

       txd = &sc->sc_txdescs[idx];

#ifdef DIAGNOSTIC
       /* If this descriptor is still owned by the chip, bail. */
       VGE_TXDESCSYNC(sc, idx,
           BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
       td_sts = le32toh(txd->td_sts);
       VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
       if (td_sts & VGE_TDSTS_OWN) {
               return ENOBUFS;
       }
#endif

       /*
        * Preserve m_pkthdr.csum_flags here since m_head might be
        * updated by m_defrag()
        */
       m_csumflags = m_head->m_pkthdr.csum_flags;

       txs = &sc->sc_txsoft[idx];
       map = txs->txs_dmamap;
       error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);

       /* If too many segments to map, coalesce */
       if (error == EFBIG ||
           (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
            map->dm_nsegs == VGE_TX_FRAGS)) {
               m_new = m_defrag(m_head, M_DONTWAIT);
               if (m_new == NULL)
                       return EFBIG;

               error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
                   m_new, BUS_DMA_NOWAIT);
               if (error) {
                       m_freem(m_new);
                       return error;
               }

               m_head = m_new;
       } else if (error)
               return error;

       txs->txs_mbuf = m_head;

       bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
           BUS_DMASYNC_PREWRITE);

       for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
               f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
               vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
       }

       /* Argh. This chip does not autopad short frames */
       sz = m_head->m_pkthdr.len;
       if (sz < ETHER_PAD_LEN) {
               f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
               vge_set_txaddr(f, VGE_CDPADADDR(sc));
               sz = ETHER_PAD_LEN;
               seg++;
       }
       VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);

       /*
        * When telling the chip how many segments there are, we
        * must use nsegs + 1 instead of just nsegs. Darned if I
        * know why.
        */
       seg++;

       flags = 0;
       if (m_csumflags & M_CSUM_IPv4)
               flags |= VGE_TDCTL_IPCSUM;
       if (m_csumflags & M_CSUM_TCPv4)
               flags |= VGE_TDCTL_TCPCSUM;
       if (m_csumflags & M_CSUM_UDPv4)
               flags |= VGE_TDCTL_UDPCSUM;
       td_sts = sz << 16;
       td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;

       if (sz > ETHERMTU + ETHER_HDR_LEN)
               td_ctl |= VGE_TDCTL_JUMBO;

       /*
        * Set up hardware VLAN tagging.
        */
       if (vlan_has_tag(m_head)) {
               /*
                * No need htons() here since vge(4) chip assumes
                * that tags are written in little endian and
                * we already use htole32() here.
                */
               td_ctl |= vlan_get_tag(m_head) | VGE_TDCTL_VTAG;
       }
       txd->td_ctl = htole32(td_ctl);
       txd->td_sts = htole32(td_sts);
       VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

       txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
       VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

       sc->sc_tx_free--;

       return 0;
}

/*
* Main transmit routine.
*/

static void
vge_start(struct ifnet *ifp)
{
       struct vge_softc *sc;
       struct vge_txsoft *txs;
       struct mbuf *m_head;
       int idx, pidx, ofree, error;

       sc = ifp->if_softc;

       if (!sc->sc_link ||
           (ifp->if_flags & IFF_RUNNING) == 0) {
               return;
       }

       m_head = NULL;
       idx = sc->sc_tx_prodidx;
       pidx = VGE_PREV_TXDESC(idx);
       ofree = sc->sc_tx_free;

       /*
        * Loop through the send queue, setting up transmit descriptors
        * until we drain the queue, or use up all available transmit
        * descriptors.
        */
       while (sc->sc_tx_free != 0) {
               /* Grab a packet off the queue. */
               IFQ_POLL(&ifp->if_snd, m_head);
               if (m_head == NULL)
                       break;

               txs = &sc->sc_txsoft[idx];
               KASSERT(txs->txs_mbuf == NULL);

               if ((error = vge_encap(sc, m_head, idx))) {
                       if (error == EFBIG) {
                               printf("%s: Tx packet consumes too many "
                                   "DMA segments, dropping...\n",
                                   device_xname(sc->sc_dev));
                               IFQ_DEQUEUE(&ifp->if_snd, m_head);
                               m_freem(m_head);
                               continue;
                       }

                       /*
                        * Short on resources, just stop for now.
                        */
                       break;
               }

               IFQ_DEQUEUE(&ifp->if_snd, m_head);

               /*
                * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
                */

               sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
                   htole16(VGE_TXDESC_Q);
               VGE_TXFRAGSYNC(sc, pidx, 1,
                   BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

               if (txs->txs_mbuf != m_head) {
                       m_freem(m_head);
                       m_head = txs->txs_mbuf;
               }

               pidx = idx;
               idx = VGE_NEXT_TXDESC(idx);

               /*
                * If there's a BPF listener, bounce a copy of this frame
                * to him.
                */
               bpf_mtap(ifp, m_head, BPF_D_OUT);
       }

       if (sc->sc_tx_free < ofree) {
               /* TX packet queued */

               sc->sc_tx_prodidx = idx;

               /* Issue a transmit command. */
               CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);

               /*
                * Use the countdown timer for interrupt moderation.
                * 'TX done' interrupts are disabled. Instead, we reset the
                * countdown timer, which will begin counting until it hits
                * the value in the SSTIMER register, and then trigger an
                * interrupt. Each time we set the TIMER0_ENABLE bit, the
                * the timer count is reloaded. Only when the transmitter
                * is idle will the timer hit 0 and an interrupt fire.
                */
               CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);

               /*
                * Set a timeout in case the chip goes out to lunch.
                */
               ifp->if_timer = 5;
       }
}

static int
vge_init(struct ifnet *ifp)
{
       struct vge_softc *sc;
       int i, rc = 0;

       sc = ifp->if_softc;

       /*
        * Cancel pending I/O and free all RX/TX buffers.
        */
       vge_stop(ifp, 0);
       vge_reset(sc);

       /* Initialize the RX descriptors and mbufs. */
       memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
       sc->sc_rx_consumed = 0;
       for (i = 0; i < VGE_NRXDESC; i++) {
               if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
                       printf("%s: unable to allocate or map rx buffer\n",
                           device_xname(sc->sc_dev));
                       return 1; /* XXX */
               }
       }
       sc->sc_rx_prodidx = 0;
       sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;

       /* Initialize the  TX descriptors and mbufs. */
       memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
       bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
           VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
           BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
       for (i = 0; i < VGE_NTXDESC; i++)
               sc->sc_txsoft[i].txs_mbuf = NULL;

       sc->sc_tx_prodidx = 0;
       sc->sc_tx_considx = 0;
       sc->sc_tx_free = VGE_NTXDESC;

       /* Set our station address */
       for (i = 0; i < ETHER_ADDR_LEN; i++)
               CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);

       /*
        * Set receive FIFO threshold. Also allow transmission and
        * reception of VLAN tagged frames.
        */
       CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR | VGE_RXCFG_VTAGOPT);
       CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES | VGE_VTAG_OPT2);

       /* Set DMA burst length */
       CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
       CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);

       CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO | VGE_TXCFG_NONBLK);

       /* Set collision backoff algorithm */
       CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM |
           VGE_CHIPCFG1_CAP | VGE_CHIPCFG1_MBA | VGE_CHIPCFG1_BAKOPT);
       CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFFSET);

       /* Disable LPSEL field in priority resolution */
       CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);

       /*
        * Load the addresses of the DMA queues into the chip.
        * Note that we only use one transmit queue.
        */

       CSR_WRITE_4(sc, VGE_TXDESC_HIADDR, VGE_ADDR_HI(VGE_CDTXADDR(sc, 0)));
       CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
       CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);

       CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
       CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
       CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);

       /* Enable and wake up the RX descriptor queue */
       CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
       CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);

       /* Enable the TX descriptor queue */
       CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);

       /* Set up the receive filter -- allow large frames for VLANs. */
       CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST | VGE_RXCTL_RX_GIANT);

       /* If we want promiscuous mode, set the allframes bit. */
       if (ifp->if_flags & IFF_PROMISC) {
               CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
       }

       /* Set capture broadcast bit to capture broadcast frames. */
       if (ifp->if_flags & IFF_BROADCAST) {
               CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
       }

       /* Set multicast bit to capture multicast frames. */
       if (ifp->if_flags & IFF_MULTICAST) {
               CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
       }

       /* Init the cam filter. */
       vge_cam_clear(sc);

       /* Init the multicast filter. */
       vge_setmulti(sc);

       /* Enable flow control */

       CSR_WRITE_1(sc, VGE_CRS2, 0x8B);

       /* Enable jumbo frame reception (if desired) */

       /* Start the MAC. */
       CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
       CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
       CSR_WRITE_1(sc, VGE_CRS0,
           VGE_CR0_TX_ENABLE | VGE_CR0_RX_ENABLE | VGE_CR0_START);

       /*
        * Configure one-shot timer for microsecond
        * resolution and load it for 500 usecs.
        */
       CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
       CSR_WRITE_2(sc, VGE_SSTIMER, 400);

       /*
        * Configure interrupt moderation for receive. Enable
        * the holdoff counter and load it, and set the RX
        * suppression count to the number of descriptors we
        * want to allow before triggering an interrupt.
        * The holdoff timer is in units of 20 usecs.
        */

#ifdef notyet
       CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
       /* Select the interrupt holdoff timer page. */
       CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
       CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
       CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */

       /* Enable use of the holdoff timer. */
       CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
       CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);

       /* Select the RX suppression threshold page. */
       CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
       CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
       CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */

       /* Restore the page select bits. */
       CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
       CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
#endif

#ifdef DEVICE_POLLING
       /*
        * Disable interrupts if we are polling.
        */
       if (ifp->if_flags & IFF_POLLING) {
               CSR_WRITE_4(sc, VGE_IMR, 0);
               CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
       } else  /* otherwise ... */
#endif /* DEVICE_POLLING */
       {
       /*
        * Enable interrupts.
        */
               CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
               CSR_WRITE_4(sc, VGE_ISR, 0);
               CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
       }

       if ((rc = ether_mediachange(ifp)) != 0)
               goto out;

       ifp->if_flags |= IFF_RUNNING;

       sc->sc_if_flags = 0;
       sc->sc_link = 0;

       callout_schedule(&sc->sc_timeout, hz);

out:
       return rc;
}

static void
vge_miibus_statchg(struct ifnet *ifp)
{
       struct vge_softc *sc = ifp->if_softc;
       struct mii_data *mii = &sc->sc_mii;
       struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
       uint8_t dctl;

       /*
        * If the user manually selects a media mode, we need to turn
        * on the forced MAC mode bit in the DIAGCTL register. If the
        * user happens to choose a full duplex mode, we also need to
        * set the 'force full duplex' bit. This applies only to
        * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
        * mode is disabled, and in 1000baseT mode, full duplex is
        * always implied, so we turn on the forced mode bit but leave
        * the FDX bit cleared.
        */
       dctl = CSR_READ_1(sc, VGE_DIAGCTL);

       if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
               dctl &= ~VGE_DIAGCTL_MACFORCE;
               dctl &= ~VGE_DIAGCTL_FDXFORCE;
       } else {
               u_int ifmword;

               /* If the link is up, use the current active media. */
               if ((mii->mii_media_status & IFM_ACTIVE) != 0)
                       ifmword = mii->mii_media_active;
               else
                       ifmword = ife->ifm_media;

               dctl |= VGE_DIAGCTL_MACFORCE;
               if ((ifmword & IFM_FDX) != 0)
                       dctl |= VGE_DIAGCTL_FDXFORCE;
               else
                       dctl &= ~VGE_DIAGCTL_FDXFORCE;

               if (IFM_SUBTYPE(ifmword) == IFM_1000_T) {
                       /*
                        * It means the user setting is not auto but it's
                        * 1000baseT-FDX or 1000baseT.
                        */
                       dctl |= VGE_DIAGCTL_GMII;
               } else
                       dctl &= ~VGE_DIAGCTL_GMII;
       }

       CSR_WRITE_1(sc, VGE_DIAGCTL, dctl);
}

static int
vge_ifflags_cb(struct ethercom *ec)
{
       struct ifnet *ifp = &ec->ec_if;
       struct vge_softc *sc = ifp->if_softc;
       u_short change = ifp->if_flags ^ sc->sc_if_flags;

       if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
               return ENETRESET;
       else if ((change & IFF_PROMISC) == 0)
               return 0;

       if ((ifp->if_flags & IFF_PROMISC) == 0)
               CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
       else
               CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
       vge_setmulti(sc);
       return 0;
}

static int
vge_ioctl(struct ifnet *ifp, u_long command, void *data)
{
       struct vge_softc *sc;
       int s, error;

       sc = ifp->if_softc;
       error = 0;

       s = splnet();

       if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) {
               error = 0;
               if (command != SIOCADDMULTI && command != SIOCDELMULTI)
                       ;
               else if (ifp->if_flags & IFF_RUNNING) {
                       /*
                        * Multicast list has changed; set the hardware filter
                        * accordingly.
                        */
                       vge_setmulti(sc);
               }
       }
       sc->sc_if_flags = ifp->if_flags;

       splx(s);
       return error;
}

static void
vge_watchdog(struct ifnet *ifp)
{
       struct vge_softc *sc;
       int s;

       sc = ifp->if_softc;
       s = splnet();
       printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
       if_statinc(ifp, if_oerrors);

       vge_txeof(sc);
       vge_rxeof(sc);

       vge_init(ifp);

       splx(s);
}

/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
vge_stop(struct ifnet *ifp, int disable)
{
       struct vge_softc *sc = ifp->if_softc;
       struct vge_txsoft *txs;
       struct vge_rxsoft *rxs;
       int i, s;

       s = splnet();
       ifp->if_timer = 0;

       ifp->if_flags &= ~IFF_RUNNING;
#ifdef DEVICE_POLLING
       ether_poll_deregister(ifp);
#endif /* DEVICE_POLLING */

       CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
       CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
       CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
       CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
       CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
       CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);

       if (sc->sc_rx_mhead != NULL) {
               m_freem(sc->sc_rx_mhead);
               sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
       }

       /* Free the TX list buffers. */

       for (i = 0; i < VGE_NTXDESC; i++) {
               txs = &sc->sc_txsoft[i];
               if (txs->txs_mbuf != NULL) {
                       bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
                       m_freem(txs->txs_mbuf);
                       txs->txs_mbuf = NULL;
               }
       }

       /* Free the RX list buffers. */

       for (i = 0; i < VGE_NRXDESC; i++) {
               rxs = &sc->sc_rxsoft[i];
               if (rxs->rxs_mbuf != NULL) {
                       bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
                       m_freem(rxs->rxs_mbuf);
                       rxs->rxs_mbuf = NULL;
               }
       }

       splx(s);
}

#if VGE_POWER_MANAGEMENT
/*
* Device suspend routine.  Stop the interface and save some PCI
* settings in case the BIOS doesn't restore them properly on
* resume.
*/
static int
vge_suspend(device_t dev)
{
       struct vge_softc *sc;
       int i;

       sc = device_get_softc(dev);

       vge_stop(sc);

       for (i = 0; i < 5; i++)
               sc->sc_saved_maps[i] =
                   pci_read_config(dev, PCIR_MAPS + i * 4, 4);
       sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
       sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
       sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
       sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);

       sc->suspended = 1;

       return 0;
}

/*
* Device resume routine.  Restore some PCI settings in case the BIOS
* doesn't, re-enable busmastering, and restart the interface if
* appropriate.
*/
static int
vge_resume(device_t dev)
{
       struct vge_softc *sc;
       struct ifnet *ifp;
       int i;

       sc = device_private(dev);
       ifp = &sc->sc_ethercom.ec_if;

       /* better way to do this? */
       for (i = 0; i < 5; i++)
               pci_write_config(dev, PCIR_MAPS + i * 4,
                   sc->sc_saved_maps[i], 4);
       pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
       pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
       pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
       pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);

       /* reenable busmastering */
       pci_enable_busmaster(dev);
       pci_enable_io(dev, SYS_RES_MEMORY);

       /* reinitialize interface if necessary */
       if (ifp->if_flags & IFF_UP)
               vge_init(sc);

       sc->suspended = 0;

       return 0;
}
#endif

/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static bool
vge_shutdown(device_t self, int howto)
{
       struct vge_softc *sc;

       sc = device_private(self);
       vge_stop(&sc->sc_ethercom.ec_if, 1);

       return true;
}

static void
vge_clrwol(struct vge_softc *sc)
{
       uint8_t val;

       val = CSR_READ_1(sc, VGE_PWRSTAT);
       val &= ~VGE_STICKHW_SWPTAG;
       CSR_WRITE_1(sc, VGE_PWRSTAT, val);
       /* Disable WOL and clear power state indicator. */
       val = CSR_READ_1(sc, VGE_PWRSTAT);
       val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
       CSR_WRITE_1(sc, VGE_PWRSTAT, val);

       CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
       CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);

       /* Clear WOL on pattern match. */
       CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
       /* Disable WOL on magic/unicast packet. */
       CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
       CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
           VGE_WOLCFG_PMEOVR);
       /* Clear WOL status on pattern match. */
       CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
       CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
}