/* $NetBSD: if_ti.c,v 1.125 2024/11/05 22:00:30 andvar Exp $ */

/*
* Copyright (c) 1997, 1998, 1999
*      Bill Paul <[email protected]>.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
*      FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
*/

/*
* Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
* Manuals, sample driver and firmware source kits are available
* from http://www.alteon.com/support/openkits.
*
* Written by Bill Paul <[email protected]>
* Electrical Engineering Department
* Columbia University, New York City
*/

/*
* The Alteon Networks Tigon chip contains an embedded R4000 CPU,
* gigabit MAC, dual DMA channels and a PCI interface unit. NICs
* using the Tigon may have anywhere from 512K to 2MB of SRAM. The
* Tigon supports hardware IP, TCP and UDP checksumming, multicast
* filtering and jumbo (9014 byte) frames. The hardware is largely
* controlled by firmware, which must be loaded into the NIC during
* initialization.
*
* The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
* revision, which supports new features such as extended commands,
* extended jumbo receive ring descriptors and a mini receive ring.
*
* Alteon Networks is to be commended for releasing such a vast amount
* of development material for the Tigon NIC without requiring an NDA
* (although they really should have done it a long time ago). With
* any luck, the other vendors will finally wise up and follow Alteon's
* stellar example.
*
* The firmware for the Tigon 1 and 2 NICs is compiled directly into
* this driver by #including it as a C header file. This bloats the
* driver somewhat, but it's the easiest method considering that the
* driver code and firmware code need to be kept in sync. The source
* for the firmware is not provided with the FreeBSD distribution since
* compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
*
* The following people deserve special thanks:
* - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
*   for testing
* - Raymond Lee of Netgear, for providing a pair of Netgear
*   GA620 Tigon 2 boards for testing
* - Ulf Zimmermann, for bringing the GA620 to my attention and
*   convincing me to write this driver.
* - Andrew Gallatin for providing FreeBSD/Alpha support.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.125 2024/11/05 22:00:30 andvar Exp $");

#include "opt_inet.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <sys/device.h>
#include <sys/reboot.h>

#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_ether.h>
#include <net/if_dl.h>
#include <net/if_media.h>

#include <net/bpf.h>

#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#endif


#include <sys/bus.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>

#include <dev/pci/if_tireg.h>

#include <dev/microcode/tigon/ti_fw.h>
#include <dev/microcode/tigon/ti_fw2.h>

/*
* Various supported device vendors/types and their names.
*/

static const struct ti_type ti_devs[] = {
       { PCI_VENDOR_ALTEON,    PCI_PRODUCT_ALTEON_ACENIC,
               "Alteon AceNIC 1000BASE-SX Ethernet" },
       { PCI_VENDOR_ALTEON,    PCI_PRODUCT_ALTEON_ACENIC_COPPER,
               "Alteon AceNIC 1000BASE-T Ethernet" },
       { PCI_VENDOR_3COM,      PCI_PRODUCT_3COM_3C985,
               "3Com 3c985-SX Gigabit Ethernet" },
       { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
               "Netgear GA620 1000BASE-SX Ethernet" },
       { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
               "Netgear GA620 1000BASE-T Ethernet" },
       { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
               "Silicon Graphics Gigabit Ethernet" },
       { PCI_VENDOR_DEC, PCI_PRODUCT_DEC_PN9000SX,
               "Farallon PN9000SX Gigabit Ethernet" },
       { 0, 0, NULL }
};

static const struct ti_type *ti_type_match(struct pci_attach_args *);
static int ti_probe(device_t, cfdata_t, void *);
static void ti_attach(device_t, device_t, void *);
static bool ti_shutdown(device_t, int);
static void ti_txeof_tigon1(struct ti_softc *);
static void ti_txeof_tigon2(struct ti_softc *);
static void ti_rxeof(struct ti_softc *);

static void ti_stats_update(struct ti_softc *);
static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, uint32_t *);
static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, uint32_t *);

static int ti_intr(void *);
static void ti_start(struct ifnet *);
static int ti_ioctl(struct ifnet *, u_long, void *);
static void ti_init(void *);
static void ti_init2(struct ti_softc *);
static void ti_stop(struct ti_softc *);
static void ti_watchdog(struct ifnet *);
static int ti_ifmedia_upd(struct ifnet *);
static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);

static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
static uint8_t  ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
static int ti_read_eeprom(struct ti_softc *, void *, int, int);

static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
static void ti_setmulti(struct ti_softc *);

static void ti_mem(struct ti_softc *, uint32_t, uint32_t, const void *);
static void ti_loadfw(struct ti_softc *);
static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, void *, int);
static void ti_handle_events(struct ti_softc *);
static int ti_alloc_jumbo_mem(struct ti_softc *);
static void *ti_jalloc(struct ti_softc *);
static void ti_jfree(struct mbuf *, void *, size_t, void *);
static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
static int ti_init_rx_ring_std(struct ti_softc *);
static void ti_free_rx_ring_std(struct ti_softc *);
static int ti_init_rx_ring_jumbo(struct ti_softc *);
static void ti_free_rx_ring_jumbo(struct ti_softc *);
static int ti_init_rx_ring_mini(struct ti_softc *);
static void ti_free_rx_ring_mini(struct ti_softc *);
static void ti_free_tx_ring(struct ti_softc *);
static int ti_init_tx_ring(struct ti_softc *);

static int ti_64bitslot_war(struct ti_softc *);
static int ti_chipinit(struct ti_softc *);
static int ti_gibinit(struct ti_softc *);

static int ti_ether_ioctl(struct ifnet *, u_long, void *);

CFATTACH_DECL_NEW(ti, sizeof(struct ti_softc),
   ti_probe, ti_attach, NULL, NULL);

/*
* Send an instruction or address to the EEPROM, check for ACK.
*/
static uint32_t
ti_eeprom_putbyte(struct ti_softc *sc, int byte)
{
       int i, ack = 0;

       /*
        * Make sure we're in TX mode.
        */
       TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);

       /*
        * Feed in each bit and strobe the clock.
        */
       for (i = 0x80; i; i >>= 1) {
               if (byte & i) {
                       TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
               } else {
                       TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
               }
               DELAY(1);
               TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
               DELAY(1);
               TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
       }

       /*
        * Turn off TX mode.
        */
       TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);

       /*
        * Check for ack.
        */
       TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
       ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
       TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);

       return (ack);
}

/*
* Read a byte of data stored in the EEPROM at address 'addr.'
* We have to send two address bytes since the EEPROM can hold
* more than 256 bytes of data.
*/
static uint8_t
ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
{
       int             i;
       uint8_t         byte = 0;

       EEPROM_START();

       /*
        * Send write control code to EEPROM.
        */
       if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
               printf("%s: failed to send write command, status: %x\n",
                   device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
               return (1);
       }

       /*
        * Send first byte of address of byte we want to read.
        */
       if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
               printf("%s: failed to send address, status: %x\n",
                   device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
               return (1);
       }
       /*
        * Send second byte address of byte we want to read.
        */
       if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
               printf("%s: failed to send address, status: %x\n",
                   device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
               return (1);
       }

       EEPROM_STOP();
       EEPROM_START();
       /*
        * Send read control code to EEPROM.
        */
       if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
               printf("%s: failed to send read command, status: %x\n",
                   device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
               return (1);
       }

       /*
        * Start reading bits from EEPROM.
        */
       TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
       for (i = 0x80; i; i >>= 1) {
               TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
               DELAY(1);
               if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
                       byte |= i;
               TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
               DELAY(1);
       }

       EEPROM_STOP();

       /*
        * No ACK generated for read, so just return byte.
        */

       *dest = byte;

       return (0);
}

/*
* Read a sequence of bytes from the EEPROM.
*/
static int
ti_read_eeprom(struct ti_softc *sc, void *destv, int off, int cnt)
{
       char *dest = destv;
       int err = 0, i;
       uint8_t byte = 0;

       for (i = 0; i < cnt; i++) {
               err = ti_eeprom_getbyte(sc, off + i, &byte);
               if (err)
                       break;
               *(dest + i) = byte;
       }

       return (err ? 1 : 0);
}

/*
* NIC memory access function. Can be used to either clear a section
* of NIC local memory or (if tbuf is non-NULL) copy data into it.
*/
static void
ti_mem(struct ti_softc *sc, uint32_t addr, uint32_t len, const void *xbuf)
{
       int                     segptr, segsize, cnt;
       const void              *ptr;

       segptr = addr;
       cnt = len;
       ptr = xbuf;

       while (cnt) {
               if (cnt < TI_WINLEN)
                       segsize = cnt;
               else
                       segsize = TI_WINLEN - (segptr % TI_WINLEN);
               CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
               if (xbuf == NULL) {
                       bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
                           TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
                           segsize / 4);
               } else {
#ifdef __BUS_SPACE_HAS_STREAM_METHODS
                       bus_space_write_region_stream_4(sc->ti_btag,
                           sc->ti_bhandle,
                           TI_WINDOW + (segptr & (TI_WINLEN - 1)),
                           (const uint32_t *)ptr, segsize / 4);
#else
                       bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
                           TI_WINDOW + (segptr & (TI_WINLEN - 1)),
                           (const uint32_t *)ptr, segsize / 4);
#endif
                       ptr = (const char *)ptr + segsize;
               }
               segptr += segsize;
               cnt -= segsize;
       }

       return;
}

/*
* Load firmware image into the NIC. Check that the firmware revision
* is acceptable and see if we want the firmware for the Tigon 1 or
* Tigon 2.
*/
static void
ti_loadfw(struct ti_softc *sc)
{
       switch (sc->ti_hwrev) {
       case TI_HWREV_TIGON:
               if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
                   tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
                   tigonFwReleaseFix != TI_FIRMWARE_FIX) {
                       printf("%s: firmware revision mismatch; want "
                           "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
                           TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
                           TI_FIRMWARE_FIX, tigonFwReleaseMajor,
                           tigonFwReleaseMinor, tigonFwReleaseFix);
                       return;
               }
               ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
               ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
               ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
               ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
               ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
               CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
               break;
       case TI_HWREV_TIGON_II:
               if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
                   tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
                   tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
                       printf("%s: firmware revision mismatch; want "
                           "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
                           TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
                           TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
                           tigon2FwReleaseMinor, tigon2FwReleaseFix);
                       return;
               }
               ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
               ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
               ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
                   tigon2FwRodata);
               ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
               ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
               CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
               break;
       default:
               printf("%s: can't load firmware: unknown hardware rev\n",
                   device_xname(sc->sc_dev));
               break;
       }

       return;
}

/*
* Send the NIC a command via the command ring.
*/
static void
ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
{
       uint32_t                index;

       index = sc->ti_cmd_saved_prodidx;
       CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
       TI_INC(index, TI_CMD_RING_CNT);
       CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
       sc->ti_cmd_saved_prodidx = index;
}

/*
* Send the NIC an extended command. The 'len' parameter specifies the
* number of command slots to include after the initial command.
*/
static void
ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, void *argv, int len)
{
       char            *arg = argv;
       uint32_t        index;
       int             i;

       index = sc->ti_cmd_saved_prodidx;
       CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
       TI_INC(index, TI_CMD_RING_CNT);
       for (i = 0; i < len; i++) {
               CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
                   *(uint32_t *)(&arg[i * 4]));
               TI_INC(index, TI_CMD_RING_CNT);
       }
       CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
       sc->ti_cmd_saved_prodidx = index;
}

/*
* Handle events that have triggered interrupts.
*/
static void
ti_handle_events(struct ti_softc *sc)
{
       struct ti_event_desc    *e;

       while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
               e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
               switch (TI_EVENT_EVENT(e)) {
               case TI_EV_LINKSTAT_CHANGED:
                       sc->ti_linkstat = TI_EVENT_CODE(e);
                       if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
                               printf("%s: 10/100 link up\n",
                                      device_xname(sc->sc_dev));
                       else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
                               printf("%s: gigabit link up\n",
                                      device_xname(sc->sc_dev));
                       else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
                               printf("%s: link down\n",
                                      device_xname(sc->sc_dev));
                       break;
               case TI_EV_ERROR:
                       if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
                               printf("%s: invalid command\n",
                                      device_xname(sc->sc_dev));
                       else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
                               printf("%s: unknown command\n",
                                      device_xname(sc->sc_dev));
                       else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
                               printf("%s: bad config data\n",
                                      device_xname(sc->sc_dev));
                       break;
               case TI_EV_FIRMWARE_UP:
                       ti_init2(sc);
                       break;
               case TI_EV_STATS_UPDATED:
                       ti_stats_update(sc);
                       break;
               case TI_EV_RESET_JUMBO_RING:
               case TI_EV_MCAST_UPDATED:
                       /* Who cares. */
                       break;
               default:
                       printf("%s: unknown event: %d\n",
                           device_xname(sc->sc_dev), TI_EVENT_EVENT(e));
                       break;
               }
               /* Advance the consumer index. */
               TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
               CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
       }

       return;
}

/*
* Memory management for the jumbo receive ring is a pain in the
* butt. We need to allocate at least 9018 bytes of space per frame,
* _and_ it has to be contiguous (unless you use the extended
* jumbo descriptor format). Using malloc() all the time won't
* work: malloc() allocates memory in powers of two, which means we
* would end up wasting a considerable amount of space by allocating
* 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
* to do our own memory management.
*
* The driver needs to allocate a contiguous chunk of memory at boot
* time. We then chop this up ourselves into 9K pieces and use them
* as external mbuf storage.
*
* One issue here is how much memory to allocate. The jumbo ring has
* 256 slots in it, but at 9K per slot than can consume over 2MB of
* RAM. This is a bit much, especially considering we also need
* RAM for the standard ring and mini ring (on the Tigon 2). To
* save space, we only actually allocate enough memory for 64 slots
* by default, which works out to between 500 and 600K. This can
* be tuned by changing a #define in if_tireg.h.
*/

static int
ti_alloc_jumbo_mem(struct ti_softc *sc)
{
       char *ptr;
       int i;
       struct ti_jpool_entry   *entry;
       bus_dma_segment_t dmaseg;
       int error, dmanseg;

       /* Grab a big chunk o' storage. */
       if ((error = bus_dmamem_alloc(sc->sc_dmat,
           TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
           BUS_DMA_NOWAIT)) != 0) {
               aprint_error_dev(sc->sc_dev,
                   "can't allocate jumbo buffer, error = %d\n", error);
               return (error);
       }

       if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
           TI_JMEM, (void **)&sc->ti_cdata.ti_jumbo_buf,
           BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
               aprint_error_dev(sc->sc_dev,
                   "can't map jumbo buffer, error = %d\n", error);
               return (error);
       }

       if ((error = bus_dmamap_create(sc->sc_dmat,
           TI_JMEM, 1,
           TI_JMEM, 0, BUS_DMA_NOWAIT,
           &sc->jumbo_dmamap)) != 0) {
               aprint_error_dev(sc->sc_dev,
                   "can't create jumbo buffer DMA map, error = %d\n", error);
               return (error);
       }

       if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
           sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
           BUS_DMA_NOWAIT)) != 0) {
               aprint_error_dev(sc->sc_dev,
                   "can't load jumbo buffer DMA map, error = %d\n", error);
               return (error);
       }
       sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;

       SIMPLEQ_INIT(&sc->ti_jfree_listhead);
       SIMPLEQ_INIT(&sc->ti_jinuse_listhead);

       /*
        * Now divide it up into 9K pieces and save the addresses
        * in an array.
        */
       ptr = sc->ti_cdata.ti_jumbo_buf;
       for (i = 0; i < TI_JSLOTS; i++) {
               sc->ti_cdata.ti_jslots[i] = ptr;
               ptr += TI_JLEN;
               entry = malloc(sizeof(struct ti_jpool_entry),
                              M_DEVBUF, M_WAITOK);
               entry->slot = i;
               SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
                                   jpool_entries);
       }

       return (0);
}

/*
* Allocate a jumbo buffer.
*/
static void *
ti_jalloc(struct ti_softc *sc)
{
       struct ti_jpool_entry   *entry;

       entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);

       if (entry == NULL) {
               printf("%s: no free jumbo buffers\n", device_xname(sc->sc_dev));
               return (NULL);
       }

       SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
       SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);

       return (sc->ti_cdata.ti_jslots[entry->slot]);
}

/*
* Release a jumbo buffer.
*/
static void
ti_jfree(struct mbuf *m, void *tbuf, size_t size, void *arg)
{
       struct ti_softc         *sc;
       int                     i, s;
       struct ti_jpool_entry   *entry;

       /* Extract the softc struct pointer. */
       sc = (struct ti_softc *)arg;

       if (sc == NULL)
               panic("ti_jfree: didn't get softc pointer!");

       /* calculate the slot this buffer belongs to */

       i = ((char *)tbuf
            - (char *)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;

       if ((i < 0) || (i >= TI_JSLOTS))
               panic("ti_jfree: asked to free buffer that we don't manage!");

       s = splvm();
       entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
       if (entry == NULL)
               panic("ti_jfree: buffer not in use!");
       entry->slot = i;
       SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
       SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);

       if (__predict_true(m != NULL))
               pool_cache_put(mb_cache, m);
       splx(s);
}


/*
* Initialize a standard receive ring descriptor.
*/
static int
ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
{
       struct mbuf             *m_new = NULL;
       struct ti_rx_desc       *r;
       int error;

       if (dmamap == NULL) {
               /* if (m) panic() */

               if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
                                              MCLBYTES, 0, BUS_DMA_NOWAIT,
                                              &dmamap)) != 0) {
                       aprint_error_dev(sc->sc_dev,
                           "can't create recv map, error = %d\n", error);
                       return (ENOMEM);
               }
       }
       sc->std_dmamap[i] = dmamap;

       if (m == NULL) {
               MGETHDR(m_new, M_DONTWAIT, MT_DATA);
               if (m_new == NULL) {
                       aprint_error_dev(sc->sc_dev,
                           "mbuf allocation failed -- packet dropped!\n");
                       return (ENOBUFS);
               }

               MCLGET(m_new, M_DONTWAIT);
               if (!(m_new->m_flags & M_EXT)) {
                       aprint_error_dev(sc->sc_dev,
                           "cluster allocation failed -- packet dropped!\n");
                       m_freem(m_new);
                       return (ENOBUFS);
               }
               m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
               m_adj(m_new, ETHER_ALIGN);

               if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
                               mtod(m_new, void *), m_new->m_len, NULL,
                               BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
                       aprint_error_dev(sc->sc_dev,
                           "can't load recv map, error = %d\n", error);
                       m_freem(m_new);
                       return (ENOMEM);
               }
       } else {
               m_new = m;
               m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
               m_new->m_data = m_new->m_ext.ext_buf;
               m_adj(m_new, ETHER_ALIGN);

               /* reuse the dmamap */
       }

       sc->ti_cdata.ti_rx_std_chain[i] = m_new;
       r = &sc->ti_rdata->ti_rx_std_ring[i];
       TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
       r->ti_type = TI_BDTYPE_RECV_BD;
       r->ti_flags = 0;
       if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
               r->ti_flags |= TI_BDFLAG_IP_CKSUM;
       if (sc->ethercom.ec_if.if_capenable &
           (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
               r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
       r->ti_len = m_new->m_len; /* == ds_len */
       r->ti_idx = i;

       return (0);
}

/*
* Initialize a mini receive ring descriptor. This only applies to
* the Tigon 2.
*/
static int
ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
{
       struct mbuf             *m_new = NULL;
       struct ti_rx_desc       *r;
       int error;

       if (dmamap == NULL) {
               /* if (m) panic() */

               if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
                                              MHLEN, 0, BUS_DMA_NOWAIT,
                                              &dmamap)) != 0) {
                       aprint_error_dev(sc->sc_dev,
                           "can't create recv map, error = %d\n", error);
                       return (ENOMEM);
               }
       }
       sc->mini_dmamap[i] = dmamap;

       if (m == NULL) {
               MGETHDR(m_new, M_DONTWAIT, MT_DATA);
               if (m_new == NULL) {
                       aprint_error_dev(sc->sc_dev,
                           "mbuf allocation failed -- packet dropped!\n");
                       return (ENOBUFS);
               }
               m_new->m_len = m_new->m_pkthdr.len = MHLEN;
               m_adj(m_new, ETHER_ALIGN);

               if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
                               mtod(m_new, void *), m_new->m_len, NULL,
                               BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
                       aprint_error_dev(sc->sc_dev,
                           "can't load recv map, error = %d\n", error);
                       m_freem(m_new);
                       return (ENOMEM);
               }
       } else {
               m_new = m;
               m_new->m_data = m_new->m_pktdat;
               m_new->m_len = m_new->m_pkthdr.len = MHLEN;
               m_adj(m_new, ETHER_ALIGN);

               /* reuse the dmamap */
       }

       r = &sc->ti_rdata->ti_rx_mini_ring[i];
       sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
       TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
       r->ti_type = TI_BDTYPE_RECV_BD;
       r->ti_flags = TI_BDFLAG_MINI_RING;
       if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
               r->ti_flags |= TI_BDFLAG_IP_CKSUM;
       if (sc->ethercom.ec_if.if_capenable &
           (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
               r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
       r->ti_len = m_new->m_len; /* == ds_len */
       r->ti_idx = i;

       return (0);
}

/*
* Initialize a jumbo receive ring descriptor. This allocates
* a jumbo buffer from the pool managed internally by the driver.
*/
static int
ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
{
       struct mbuf             *m_new = NULL;
       struct ti_rx_desc       *r;

       if (m == NULL) {
               void *          tbuf = NULL;

               /* Allocate the mbuf. */
               MGETHDR(m_new, M_DONTWAIT, MT_DATA);
               if (m_new == NULL) {
                       aprint_error_dev(sc->sc_dev,
                           "mbuf allocation failed -- packet dropped!\n");
                       return (ENOBUFS);
               }

               /* Allocate the jumbo buffer */
               tbuf = ti_jalloc(sc);
               if (tbuf == NULL) {
                       m_freem(m_new);
                       aprint_error_dev(sc->sc_dev,
                           "jumbo allocation failed -- packet dropped!\n");
                       return (ENOBUFS);
               }

               /* Attach the buffer to the mbuf. */
               MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
                   M_DEVBUF, ti_jfree, sc);
               m_new->m_flags |= M_EXT_RW;
               m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
       } else {
               m_new = m;
               m_new->m_data = m_new->m_ext.ext_buf;
               m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
       }

       m_adj(m_new, ETHER_ALIGN);
       /* Set up the descriptor. */
       r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
       sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
       TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
               (mtod(m_new, char *) - (char *)sc->ti_cdata.ti_jumbo_buf);
       r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
       r->ti_flags = TI_BDFLAG_JUMBO_RING;
       if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
               r->ti_flags |= TI_BDFLAG_IP_CKSUM;
       if (sc->ethercom.ec_if.if_capenable &
           (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
               r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
       r->ti_len = m_new->m_len;
       r->ti_idx = i;

       return (0);
}

/*
* The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
* that's 1MB or memory, which is a lot. For now, we fill only the first
* 256 ring entries and hope that our CPU is fast enough to keep up with
* the NIC.
*/
static int
ti_init_rx_ring_std(struct ti_softc *sc)
{
       int             i;
       struct ti_cmd_desc      cmd;

       for (i = 0; i < TI_SSLOTS; i++) {
               if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
                       return (ENOBUFS);
       }

       TI_UPDATE_STDPROD(sc, i - 1);
       sc->ti_std = i - 1;

       return (0);
}

static void
ti_free_rx_ring_std(struct ti_softc *sc)
{
       int             i;

       for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
               if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
                       /* if (sc->std_dmamap[i] == 0) panic() */
                       bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
                       sc->std_dmamap[i] = 0;

                       m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
                       sc->ti_cdata.ti_rx_std_chain[i] = NULL;
               }
               memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
                   sizeof(struct ti_rx_desc));
       }

       return;
}

static int
ti_init_rx_ring_jumbo(struct ti_softc *sc)
{
       int             i;
       struct ti_cmd_desc      cmd;

       for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
               if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
                       return (ENOBUFS);
       }

       TI_UPDATE_JUMBOPROD(sc, i - 1);
       sc->ti_jumbo = i - 1;

       return (0);
}

static void
ti_free_rx_ring_jumbo(struct ti_softc *sc)
{
       int             i;

       for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
               m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
               sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
               memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
                   sizeof(struct ti_rx_desc));
       }

       return;
}

static int
ti_init_rx_ring_mini(struct ti_softc *sc)
{
       int             i;

       for (i = 0; i < TI_MSLOTS; i++) {
               if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
                       return (ENOBUFS);
       }

       TI_UPDATE_MINIPROD(sc, i - 1);
       sc->ti_mini = i - 1;

       return (0);
}

static void
ti_free_rx_ring_mini(struct ti_softc *sc)
{
       int             i;

       for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
               if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
                       /* if (sc->mini_dmamap[i] == 0) panic() */
                       bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
                       sc->mini_dmamap[i] = 0;

                       m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
                       sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
               }
               memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
                   sizeof(struct ti_rx_desc));
       }

       return;
}

static void
ti_free_tx_ring(struct ti_softc *sc)
{
       int             i;
       struct txdmamap_pool_entry *dma;

       for (i = 0; i < TI_TX_RING_CNT; i++) {
               if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
                       dma = sc->txdma[i];
                       KDASSERT(dma != NULL);
                       bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
                           dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
                       bus_dmamap_unload(sc->sc_dmat, dma->dmamap);

                       SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
                                           link);
                       sc->txdma[i] = NULL;

                       m_freem(sc->ti_cdata.ti_tx_chain[i]);
                       sc->ti_cdata.ti_tx_chain[i] = NULL;
               }
               memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
                   sizeof(struct ti_tx_desc));
       }

       while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
               SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
               bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
               free(dma, M_DEVBUF);
       }

       return;
}

static int
ti_init_tx_ring(struct ti_softc *sc)
{
       int i, error;
       bus_dmamap_t dmamap;
       struct txdmamap_pool_entry *dma;

       sc->ti_txcnt = 0;
       sc->ti_tx_saved_considx = 0;
       CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);

       SIMPLEQ_INIT(&sc->txdma_list);
       for (i = 0; i < TI_RSLOTS; i++) {
               /* I've seen mbufs with 30 fragments. */
               if ((error = bus_dmamap_create(sc->sc_dmat,
                           ETHER_MAX_LEN_JUMBO, 40, ETHER_MAX_LEN_JUMBO, 0,
                           BUS_DMA_NOWAIT, &dmamap)) != 0) {
                       aprint_error_dev(sc->sc_dev,
                           "can't create tx map, error = %d\n", error);
                       return (ENOMEM);
               }
               dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
               if (!dma) {
                       aprint_error_dev(sc->sc_dev,
                           "can't alloc txdmamap_pool_entry\n");
                       bus_dmamap_destroy(sc->sc_dmat, dmamap);
                       return (ENOMEM);
               }
               dma->dmamap = dmamap;
               SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
       }

       return (0);
}

/*
* The Tigon 2 firmware has a new way to add/delete multicast addresses,
* but we have to support the old way too so that Tigon 1 cards will
* work.
*/
static void
ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
{
       struct ti_cmd_desc      cmd;
       uint16_t                *m;
       uint32_t                ext[2] = {0, 0};

       m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */

       switch (sc->ti_hwrev) {
       case TI_HWREV_TIGON:
               CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
               CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
               TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
               break;
       case TI_HWREV_TIGON_II:
               ext[0] = htons(m[0]);
               ext[1] = (htons(m[1]) << 16) | htons(m[2]);
               TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (void *)&ext, 2);
               break;
       default:
               printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
               break;
       }

       return;
}

static void
ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
{
       struct ti_cmd_desc      cmd;
       uint16_t                *m;
       uint32_t                ext[2] = {0, 0};

       m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */

       switch (sc->ti_hwrev) {
       case TI_HWREV_TIGON:
               CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
               CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
               TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
               break;
       case TI_HWREV_TIGON_II:
               ext[0] = htons(m[0]);
               ext[1] = (htons(m[1]) << 16) | htons(m[2]);
               TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (void *)&ext, 2);
               break;
       default:
               printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
               break;
       }

       return;
}

/*
* Configure the Tigon's multicast address filter.
*
* The actual multicast table management is a bit of a pain, thanks to
* slight brain damage on the part of both Alteon and us. With our
* multicast code, we are only alerted when the multicast address table
* changes and at that point we only have the current list of addresses:
* we only know the current state, not the previous state, so we don't
* actually know what addresses were removed or added. The firmware has
* state, but we can't get our grubby mits on it, and there is no 'delete
* all multicast addresses' command. Hence, we have to maintain our own
* state so we know what addresses have been programmed into the NIC at
* any given time.
*/
static void
ti_setmulti(struct ti_softc *sc)
{
       struct ethercom         *ec = &sc->ethercom;
       struct ifnet            *ifp = &ec->ec_if;
       struct ti_cmd_desc      cmd;
       struct ti_mc_entry      *mc;
       uint32_t                intrs;
       struct ether_multi      *enm;
       struct ether_multistep  step;

       /* Disable interrupts. */
       intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
       CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);

       /* First, zot all the existing filters. */
       while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
               ti_del_mcast(sc, &mc->mc_addr);
               SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
               free(mc, M_DEVBUF);
       }

       /*
        * Remember all multicast addresses so that we can delete them
        * later.  Punt if there is a range of addresses or memory shortage.
        */
       ETHER_LOCK(ec);
       ETHER_FIRST_MULTI(step, ec, enm);
       while (enm != NULL) {
               if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
                   ETHER_ADDR_LEN) != 0) {
                       ETHER_UNLOCK(ec);
                       goto allmulti;
               }
               if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
                   M_NOWAIT)) == NULL) {
                       ETHER_UNLOCK(ec);
                       goto allmulti;
               }
               memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
               SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
               ETHER_NEXT_MULTI(step, enm);
       }
       ETHER_UNLOCK(ec);

       /* Accept only programmed multicast addresses */
       ifp->if_flags &= ~IFF_ALLMULTI;
       TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);

       /* Now program new ones. */
       SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
               ti_add_mcast(sc, &mc->mc_addr);

       /* Re-enable interrupts. */
       CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);

       return;

allmulti:
       /* No need to keep individual multicast addresses */
       while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
               SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
               free(mc, M_DEVBUF);
       }

       /* Accept all multicast addresses */
       ifp->if_flags |= IFF_ALLMULTI;
       TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);

       /* Re-enable interrupts. */
       CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
}

/*
* Check to see if the BIOS has configured us for a 64 bit slot when
* we aren't actually in one. If we detect this condition, we can work
* around it on the Tigon 2 by setting a bit in the PCI state register,
* but for the Tigon 1 we must give up and abort the interface attach.
*/
static int
ti_64bitslot_war(struct ti_softc *sc)
{
       if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
               CSR_WRITE_4(sc, 0x600, 0);
               CSR_WRITE_4(sc, 0x604, 0);
               CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
               if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
                       if (sc->ti_hwrev == TI_HWREV_TIGON)
                               return (EINVAL);
                       else {
                               TI_SETBIT(sc, TI_PCI_STATE,
                                   TI_PCISTATE_32BIT_BUS);
                               return (0);
                       }
               }
       }

       return (0);
}

/*
* Do endian, PCI and DMA initialization. Also check the on-board ROM
* self-test results.
*/
static int
ti_chipinit(struct ti_softc *sc)
{
       uint32_t        cacheline;
       uint32_t        pci_writemax = 0;
       uint32_t        rev;

       /* Initialize link to down state. */
       sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;

       /* Set endianness before we access any non-PCI registers. */
#if BYTE_ORDER == BIG_ENDIAN
       CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
           TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
#else
       CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
           TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
#endif

       /* Check the ROM failed bit to see if self-tests passed. */
       if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
               printf("%s: board self-diagnostics failed!\n",
                      device_xname(sc->sc_dev));
               return (ENODEV);
       }

       /* Halt the CPU. */
       TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);

       /* Figure out the hardware revision. */
       rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
       switch (rev) {
       case TI_REV_TIGON_I:
               sc->ti_hwrev = TI_HWREV_TIGON;
               break;
       case TI_REV_TIGON_II:
               sc->ti_hwrev = TI_HWREV_TIGON_II;
               break;
       default:
               printf("%s: unsupported chip revision 0x%x\n",
                   device_xname(sc->sc_dev), rev);
               return (ENODEV);
       }

       /* Do special setup for Tigon 2. */
       if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
               TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
               TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
               TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
       }

       /* Set up the PCI state register. */
       CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD | TI_PCI_WRITE_CMD);
       if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
               TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
       }

       /* Clear the read/write max DMA parameters. */
       TI_CLRBIT(sc, TI_PCI_STATE,
           (TI_PCISTATE_WRITE_MAXDMA | TI_PCISTATE_READ_MAXDMA));

       /* Get cache line size. */
       cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));

       /*
        * If the system has set enabled the PCI memory write
        * and invalidate command in the command register, set
        * the write max parameter accordingly. This is necessary
        * to use MWI with the Tigon 2.
        */
       if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
           & PCI_COMMAND_INVALIDATE_ENABLE) {
               switch (cacheline) {
               case 1:
               case 4:
               case 8:
               case 16:
               case 32:
               case 64:
                       break;
               default:
               /* Disable PCI memory write and invalidate. */
                       if (bootverbose)
                               printf("%s: cache line size %d not "
                                   "supported; disabling PCI MWI\n",
                                   device_xname(sc->sc_dev), cacheline);
                       CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
                                   CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
                                   & ~PCI_COMMAND_INVALIDATE_ENABLE);
                       break;
               }
       }

#ifdef __brokenalpha__
       /*
        * From the Alteon sample driver:
        * Must insure that we do not cross an 8K (bytes) boundary
        * for DMA reads.  Our highest limit is 1K bytes.  This is a
        * restriction on some ALPHA platforms with early revision
        * 21174 PCI chipsets, such as the AlphaPC 164lx
        */
       TI_SETBIT(sc, TI_PCI_STATE, pci_writemax | TI_PCI_READMAX_1024);
#else
       TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
#endif

       /* This sets the min dma param all the way up (0xff). */
       TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);

       /* Configure DMA variables. */
#if BYTE_ORDER == BIG_ENDIAN
       CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
           TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
           TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
           TI_OPMODE_DONT_FRAG_JUMBO);
#else
       CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA |
           TI_OPMODE_WORDSWAP_BD | TI_OPMODE_DONT_FRAG_JUMBO |
           TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB);
#endif

       /*
        * Only allow 1 DMA channel to be active at a time.
        * I don't think this is a good idea, but without it
        * the firmware racks up lots of nicDmaReadRingFull
        * errors.
        * Incompatible with hardware assisted checksums.
        */
       if ((sc->ethercom.ec_if.if_capenable &
           (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
            IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
            IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
               TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);

       /* Recommended settings from Tigon manual. */
       CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
       CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);

       if (ti_64bitslot_war(sc)) {
               printf("%s: bios thinks we're in a 64 bit slot, "
                   "but we aren't", device_xname(sc->sc_dev));
               return (EINVAL);
       }

       return (0);
}

/*
* Initialize the general information block and firmware, and
* start the CPU(s) running.
*/
static int
ti_gibinit(struct ti_softc *sc)
{
       struct ti_rcb           *rcb;
       int                     i;
       struct ifnet            *ifp;

       ifp = &sc->ethercom.ec_if;

       /* Disable interrupts for now. */
       CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);

       /* Tell the chip where to find the general information block. */
       CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
       CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));

       /* Load the firmware into SRAM. */
       ti_loadfw(sc);

       /* Set up the contents of the general info and ring control blocks. */

       /* Set up the event ring and producer pointer. */
       rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;

       TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
       rcb->ti_flags = 0;
       TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
           TI_CDEVPRODADDR(sc);

       sc->ti_ev_prodidx.ti_idx = 0;
       CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
       sc->ti_ev_saved_considx = 0;

       /* Set up the command ring and producer mailbox. */
       rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;

       TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
       rcb->ti_flags = 0;
       rcb->ti_max_len = 0;
       for (i = 0; i < TI_CMD_RING_CNT; i++) {
               CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
       }
       CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
       CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
       sc->ti_cmd_saved_prodidx = 0;

       /*
        * Assign the address of the stats refresh buffer.
        * We re-use the current stats buffer for this to
        * conserve memory.
        */
       TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
           TI_CDSTATSADDR(sc);

       /* Set up the standard receive ring. */
       rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
       TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
       rcb->ti_max_len = ETHER_MAX_LEN;
       rcb->ti_flags = 0;
       if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
               rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
       if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
               rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
       if (VLAN_ATTACHED(&sc->ethercom))
               rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;

       /* Set up the jumbo receive ring. */
       rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
       TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
       rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
       rcb->ti_flags = 0;
       if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
               rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
       if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
               rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
       if (VLAN_ATTACHED(&sc->ethercom))
               rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;

       /*
        * Set up the mini ring. Only activated on the
        * Tigon 2 but the slot in the config block is
        * still there on the Tigon 1.
        */
       rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
       TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
       rcb->ti_max_len = MHLEN - ETHER_ALIGN;
       if (sc->ti_hwrev == TI_HWREV_TIGON)
               rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
       else
               rcb->ti_flags = 0;
       if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
               rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
       if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
               rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
       if (VLAN_ATTACHED(&sc->ethercom))
               rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;

       /*
        * Set up the receive return ring.
        */
       rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
       TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
       rcb->ti_flags = 0;
       rcb->ti_max_len = TI_RETURN_RING_CNT;
       TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
           TI_CDRTNPRODADDR(sc);

       /*
        * Set up the tx ring. Note: for the Tigon 2, we have the option
        * of putting the transmit ring in the host's address space and
        * letting the chip DMA it instead of leaving the ring in the NIC's
        * memory and accessing it through the shared memory region. We
        * do this for the Tigon 2, but it doesn't work on the Tigon 1,
        * so we have to revert to the shared memory scheme if we detect
        * a Tigon 1 chip.
        */
       CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
       if (sc->ti_hwrev == TI_HWREV_TIGON) {
               sc->ti_tx_ring_nic =
                   (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
       }
       memset((char *)sc->ti_rdata->ti_tx_ring, 0,
           TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
       rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
       if (sc->ti_hwrev == TI_HWREV_TIGON)
               rcb->ti_flags = 0;
       else
               rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
       if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
               rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
       /*
        * When we get the packet, there is a pseudo-header seed already
        * in the th_sum or uh_sum field.  Make sure the firmware doesn't
        * compute the pseudo-header checksum again!
        */
       if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
               rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
                   TI_RCB_FLAG_NO_PHDR_CKSUM;
       if (VLAN_ATTACHED(&sc->ethercom))
               rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
       rcb->ti_max_len = TI_TX_RING_CNT;
       if (sc->ti_hwrev == TI_HWREV_TIGON)
               TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
       else
               TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
       TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
           TI_CDTXCONSADDR(sc);

       /*
        * We're done frobbing the General Information Block.  Sync
        * it.  Note we take care of the first stats sync here, as
        * well.
        */
       TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

       /* Set up tuneables */
       if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
           (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
               CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
                   (sc->ti_rx_coal_ticks / 10));
       else
               CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
       CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
       CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
       CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
       CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
       CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);

       /* Turn interrupts on. */
       CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
       CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);

       /* Start CPU. */
       TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT | TI_CPUSTATE_STEP));

       return (0);
}

/*
* look for id in the device list, returning the first match
*/
static const struct ti_type *
ti_type_match(struct pci_attach_args *pa)
{
       const struct ti_type          *t;

       t = ti_devs;
       while (t->ti_name != NULL) {
               if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
                   (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
                       return (t);
               }
               t++;
       }

       return (NULL);
}

/*
* Probe for a Tigon chip. Check the PCI vendor and device IDs
* against our list and return its name if we find a match.
*/
static int
ti_probe(device_t parent, cfdata_t match, void *aux)
{
       struct pci_attach_args  *pa = aux;
       const struct ti_type    *t;

       t = ti_type_match(pa);

       return ((t == NULL) ? 0 : 1);
}

static void
ti_attach(device_t parent, device_t self, void *aux)
{
       uint32_t                command;
       struct ifnet            *ifp;
       struct ti_softc         *sc;
       uint8_t eaddr[ETHER_ADDR_LEN];
       struct pci_attach_args *pa = aux;
       pci_chipset_tag_t pc = pa->pa_pc;
       pci_intr_handle_t ih;
       const char *intrstr = NULL;
       bus_dma_segment_t dmaseg;
       int error, dmanseg, nolinear;
       const struct ti_type            *t;
       char intrbuf[PCI_INTRSTR_LEN];

       t = ti_type_match(pa);
       if (t == NULL) {
               aprint_error("ti_attach: were did the card go ?\n");
               return;
       }

       aprint_normal(": %s (rev. 0x%02x)\n", t->ti_name,
           PCI_REVISION(pa->pa_class));

       sc = device_private(self);
       sc->sc_dev = self;

       /*
        * Map control/status registers.
        */
       nolinear = 0;
       if (pci_mapreg_map(pa, 0x10,
           PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
           BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
           NULL, NULL)) {
               nolinear = 1;
               if (pci_mapreg_map(pa, 0x10,
                   PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
                   0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
                       aprint_error_dev(self, "can't map memory space\n");
                       return;
               }
       }
       if (nolinear == 0)
               sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
       else
               sc->ti_vhandle = NULL;

       command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
       command |= PCI_COMMAND_MASTER_ENABLE;
       pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);

       /* Allocate interrupt */
       if (pci_intr_map(pa, &ih)) {
               aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
               return;
       }
       intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
       sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ti_intr, sc,
           device_xname(self));
       if (sc->sc_ih == NULL) {
               aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
               if (intrstr != NULL)
                       aprint_error(" at %s", intrstr);
               aprint_error("\n");
               return;
       }
       aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);

       if (ti_chipinit(sc)) {
               aprint_error_dev(self, "chip initialization failed\n");
               goto fail2;
       }

       /*
        * Deal with some chip diffrences.
        */
       switch (sc->ti_hwrev) {
       case TI_HWREV_TIGON:
               sc->sc_tx_encap = ti_encap_tigon1;
               sc->sc_tx_eof = ti_txeof_tigon1;
               if (nolinear == 1)
                       aprint_error_dev(self,
                           "memory space not mapped linear\n");
               break;

       case TI_HWREV_TIGON_II:
               sc->sc_tx_encap = ti_encap_tigon2;
               sc->sc_tx_eof = ti_txeof_tigon2;
               break;

       default:
               aprint_error_dev(self, "Unknown chip version: %d\n",
                   sc->ti_hwrev);
               goto fail2;
       }

       /* Zero out the NIC's on-board SRAM. */
       ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);

       /* Init again -- zeroing memory may have clobbered some registers. */
       if (ti_chipinit(sc)) {
               aprint_error_dev(self, "chip initialization failed\n");
               goto fail2;
       }

       /*
        * Get station address from the EEPROM. Note: the manual states
        * that the MAC address is at offset 0x8c, however the data is
        * stored as two longwords (since that's how it's loaded into
        * the NIC). This means the MAC address is actually preceded
        * by two zero bytes. We need to skip over those.
        */
       if (ti_read_eeprom(sc, (void *)&eaddr,
                               TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
               aprint_error_dev(self, "failed to read station address\n");
               goto fail2;
       }

       /*
        * A Tigon chip was detected. Inform the world.
        */
       aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));

       sc->sc_dmat = pa->pa_dmat;

       /* Allocate the general information block and ring buffers. */
       if ((error = bus_dmamem_alloc(sc->sc_dmat,
           sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
           BUS_DMA_NOWAIT)) != 0) {
               aprint_error_dev(self,
                   "can't allocate ring buffer, error = %d\n", error);
               goto fail2;
       }

       if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
           sizeof(struct ti_ring_data), (void **)&sc->ti_rdata,
           BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
               aprint_error_dev(self,
                   "can't map ring buffer, error = %d\n", error);
               goto fail2;
       }

       if ((error = bus_dmamap_create(sc->sc_dmat,
           sizeof(struct ti_ring_data), 1,
           sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
           &sc->info_dmamap)) != 0) {
               aprint_error_dev(self,
                   "can't create ring buffer DMA map, error = %d\n", error);
               goto fail2;
       }

       if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
           sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
           BUS_DMA_NOWAIT)) != 0) {
               aprint_error_dev(self,
                   "can't load ring buffer DMA map, error = %d\n", error);
               goto fail2;
       }

       sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;

       memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));

       /* Try to allocate memory for jumbo buffers. */
       if (ti_alloc_jumbo_mem(sc)) {
               aprint_error_dev(self, "jumbo buffer allocation failed\n");
               goto fail2;
       }

       SIMPLEQ_INIT(&sc->ti_mc_listhead);

       /*
        * We really need a better way to tell a 1000baseT card
        * from a 1000baseSX one, since in theory there could be
        * OEMed 1000baseT cards from lame vendors who aren't
        * clever enough to change the PCI ID. For the moment
        * though, the AceNIC is the only copper card available.
        */
       if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
           PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
           (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
           PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
               sc->ti_copper = 1;
       else
               sc->ti_copper = 0;

       /* Set default tuneable values. */
       sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
       sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
       sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
       sc->ti_rx_max_coal_bds = 64;
       sc->ti_tx_max_coal_bds = 128;
       sc->ti_tx_buf_ratio = 21;

       /* Set up ifnet structure */
       ifp = &sc->ethercom.ec_if;
       ifp->if_softc = sc;
       strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
       ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
       ifp->if_ioctl = ti_ioctl;
       ifp->if_start = ti_start;
       ifp->if_watchdog = ti_watchdog;
       IFQ_SET_READY(&ifp->if_snd);

#if 0
       /*
        * XXX This is not really correct -- we don't necessarily
        * XXX want to queue up as many as we can transmit at the
        * XXX upper layer like that.  Someone with a board should
        * XXX check to see how this affects performance.
        */
       ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
#endif

       /*
        * We can support 802.1Q VLAN-sized frames.
        */
       sc->ethercom.ec_capabilities |=
           ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
       sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;

       /*
        * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
        */
       ifp->if_capabilities |=
           IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
           IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
           IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;

       /* Set up ifmedia support. */
       sc->ethercom.ec_ifmedia = &sc->ifmedia;
       ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
       if (sc->ti_copper) {
               /*
                * Copper cards allow manual 10/100 mode selection,
                * but not manual 1000baseT mode selection. Why?
                * Because currently there's no way to specify the
                * master/slave setting through the firmware interface,
                * so Alteon decided to just bag it and handle it
                * via autonegotiation.
                */
               ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
               ifmedia_add(&sc->ifmedia,
                   IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
               ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
               ifmedia_add(&sc->ifmedia,
                   IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
               ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
               ifmedia_add(&sc->ifmedia,
                   IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
       } else {
               /* Fiber cards don't support 10/100 modes. */
               ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
               ifmedia_add(&sc->ifmedia,
                   IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
       }
       ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
       ifmedia_set(&sc->ifmedia, IFM_ETHER | IFM_AUTO);

       /*
        * Call MI attach routines.
        */
       if_attach(ifp);
       if_deferred_start_init(ifp, NULL);
       ether_ifattach(ifp, eaddr);

       /*
        * Add shutdown hook so that DMA is disabled prior to reboot. Not
        * doing do could allow DMA to corrupt kernel memory during the
        * reboot before the driver initializes.
        */
       if (pmf_device_register1(self, NULL, NULL, ti_shutdown))
               pmf_class_network_register(self, ifp);
       else
               aprint_error_dev(self, "couldn't establish power handler\n");

       return;
fail2:
       pci_intr_disestablish(pc, sc->sc_ih);
       return;
}

/*
* Frame reception handling. This is called if there's a frame
* on the receive return list.
*
* Note: we have to be able to handle three possibilities here:
* 1) the frame is from the mini receive ring (can only happen)
*    on Tigon 2 boards)
* 2) the frame is from the jumbo receive ring
* 3) the frame is from the standard receive ring
*/

static void
ti_rxeof(struct ti_softc *sc)
{
       struct ifnet            *ifp;
       struct ti_cmd_desc      cmd;

       ifp = &sc->ethercom.ec_if;

       while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
               struct ti_rx_desc       *cur_rx;
               uint32_t                rxidx;
               struct mbuf             *m = NULL;
               struct ether_header     *eh;
               bus_dmamap_t dmamap;

               cur_rx =
                   &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
               rxidx = cur_rx->ti_idx;
               TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);

               if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
                       TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
                       m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
                       sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
                       if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
                               if_statinc(ifp, if_ierrors);
                               ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
                               continue;
                       }
                       if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
                           == ENOBUFS) {
                               if_statinc(ifp, if_ierrors);
                               ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
                               continue;
                       }
               } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
                       TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
                       m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
                       sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
                       dmamap = sc->mini_dmamap[rxidx];
                       sc->mini_dmamap[rxidx] = 0;
                       if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
                               if_statinc(ifp, if_ierrors);
                               ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
                               continue;
                       }
                       if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
                           == ENOBUFS) {
                               if_statinc(ifp, if_ierrors);
                               ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
                               continue;
                       }
               } else {
                       TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
                       m = sc->ti_cdata.ti_rx_std_chain[rxidx];
                       sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
                       dmamap = sc->std_dmamap[rxidx];
                       sc->std_dmamap[rxidx] = 0;
                       if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
                               if_statinc(ifp, if_ierrors);
                               ti_newbuf_std(sc, sc->ti_std, m, dmamap);
                               continue;
                       }
                       if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
                           == ENOBUFS) {
                               if_statinc(ifp, if_ierrors);
                               ti_newbuf_std(sc, sc->ti_std, m, dmamap);
                               continue;
                       }
               }

               m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
               m_set_rcvif(m, ifp);

               eh = mtod(m, struct ether_header *);
               switch (ntohs(eh->ether_type)) {
#ifdef INET
               case ETHERTYPE_IP:
                   {
                       struct ip *ip = (struct ip *) (eh + 1);

                       /*
                        * Note the Tigon firmware does not invert
                        * the checksum for us, hence the XOR.
                        */
                       m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
                       if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
                               m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
                       /*
                        * ntohs() the constant so the compiler can
                        * optimize...
                        *
                        * XXX Figure out a sane way to deal with
                        * fragmented packets.
                        */
                       if ((ip->ip_off & htons(IP_MF | IP_OFFMASK)) == 0) {
                               switch (ip->ip_p) {
                               case IPPROTO_TCP:
                                       m->m_pkthdr.csum_data =
                                           cur_rx->ti_tcp_udp_cksum;
                                       m->m_pkthdr.csum_flags |=
                                           M_CSUM_TCPv4 | M_CSUM_DATA;
                                       break;
                               case IPPROTO_UDP:
                                       m->m_pkthdr.csum_data =
                                           cur_rx->ti_tcp_udp_cksum;
                                       m->m_pkthdr.csum_flags |=
                                           M_CSUM_UDPv4 | M_CSUM_DATA;
                                       break;
                               default:
                                       /* Nothing */;
                               }
                       }
                       break;
                   }
#endif
               default:
                       /* Nothing. */
                       break;
               }

               if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG)
                       vlan_set_tag(m, cur_rx->ti_vlan_tag);

               if_percpuq_enqueue(ifp->if_percpuq, m);
       }

       /* Only necessary on the Tigon 1. */
       if (sc->ti_hwrev == TI_HWREV_TIGON)
               CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
                   sc->ti_rx_saved_considx);

       TI_UPDATE_STDPROD(sc, sc->ti_std);
       TI_UPDATE_MINIPROD(sc, sc->ti_mini);
       TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
}

static void
ti_txeof_tigon1(struct ti_softc *sc)
{
       struct ti_tx_desc       *cur_tx = NULL;
       struct ifnet            *ifp;
       struct txdmamap_pool_entry *dma;

       ifp = &sc->ethercom.ec_if;

       /*
        * Go through our tx ring and free mbufs for those
        * frames that have been sent.
        */
       while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
               uint32_t        idx = 0;

               idx = sc->ti_tx_saved_considx;
               if (idx > 383)
                       CSR_WRITE_4(sc, TI_WINBASE,
                           TI_TX_RING_BASE + 6144);
               else if (idx > 255)
                       CSR_WRITE_4(sc, TI_WINBASE,
                           TI_TX_RING_BASE + 4096);
               else if (idx > 127)
                       CSR_WRITE_4(sc, TI_WINBASE,
                           TI_TX_RING_BASE + 2048);
               else
                       CSR_WRITE_4(sc, TI_WINBASE,
                           TI_TX_RING_BASE);
               cur_tx = &sc->ti_tx_ring_nic[idx % 128];
               if (cur_tx->ti_flags & TI_BDFLAG_END)
                       if_statinc(ifp, if_opackets);
               if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
                       dma = sc->txdma[idx];
                       KDASSERT(dma != NULL);
                       bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
                           dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
                       bus_dmamap_unload(sc->sc_dmat, dma->dmamap);

                       SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
                       sc->txdma[idx] = NULL;

                       m_freem(sc->ti_cdata.ti_tx_chain[idx]);
                       sc->ti_cdata.ti_tx_chain[idx] = NULL;
               }
               sc->ti_txcnt--;
               TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
               ifp->if_timer = 0;
       }

       if (cur_tx != NULL)
               ifp->if_flags &= ~IFF_OACTIVE;
}

static void
ti_txeof_tigon2(struct ti_softc *sc)
{
       struct ti_tx_desc       *cur_tx = NULL;
       struct ifnet            *ifp;
       struct txdmamap_pool_entry *dma;
       int firstidx, cnt;

       ifp = &sc->ethercom.ec_if;

       /*
        * Go through our tx ring and free mbufs for those
        * frames that have been sent.
        */
       firstidx = sc->ti_tx_saved_considx;
       cnt = 0;
       while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
               uint32_t        idx = 0;

               idx = sc->ti_tx_saved_considx;
               cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
               if (cur_tx->ti_flags & TI_BDFLAG_END)
                       if_statinc(ifp, if_opackets);
               if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
                       dma = sc->txdma[idx];
                       KDASSERT(dma != NULL);
                       bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
                           dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
                       bus_dmamap_unload(sc->sc_dmat, dma->dmamap);

                       SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
                       sc->txdma[idx] = NULL;

                       m_freem(sc->ti_cdata.ti_tx_chain[idx]);
                       sc->ti_cdata.ti_tx_chain[idx] = NULL;
               }
               cnt++;
               sc->ti_txcnt--;
               TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
               ifp->if_timer = 0;
       }

       if (cnt != 0)
               TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);

       if (cur_tx != NULL)
               ifp->if_flags &= ~IFF_OACTIVE;
}

static int
ti_intr(void *xsc)
{
       struct ti_softc *sc;
       struct ifnet    *ifp;

       sc = xsc;
       ifp = &sc->ethercom.ec_if;

#ifdef notdef
       /* Avoid this for now -- checking this register is expensive. */
       /* Make sure this is really our interrupt. */
       if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
               return (0);
#endif

       /* Ack interrupt and stop others from occurring. */
       CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);

       if (ifp->if_flags & IFF_RUNNING) {
               /* Check RX return ring producer/consumer */
               ti_rxeof(sc);

               /* Check TX ring producer/consumer */
               (*sc->sc_tx_eof)(sc);
       }

       ti_handle_events(sc);

       /* Re-enable interrupts. */
       CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);

       if ((ifp->if_flags & IFF_RUNNING) != 0)
               if_schedule_deferred_start(ifp);

       return (1);
}

static void
ti_stats_update(struct ti_softc *sc)
{
       struct ifnet *ifp = &sc->ethercom.ec_if;

       TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);

       uint64_t collisions =
          (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
           sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
           sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
           sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions);
       if_statadd(ifp, if_collisions, collisions - sc->ti_if_collisions);
       sc->ti_if_collisions = collisions;

       TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
}

/*
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
* pointers to descriptors.
*/
static int
ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
{
       struct ti_tx_desc       *f = NULL;
       uint32_t                frag, cur, cnt = 0;
       struct txdmamap_pool_entry *dma;
       bus_dmamap_t dmamap;
       int error, i;
       uint16_t csum_flags = 0;

       dma = SIMPLEQ_FIRST(&sc->txdma_list);
       if (dma == NULL) {
               return ENOMEM;
       }
       dmamap = dma->dmamap;

       error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
           BUS_DMA_WRITE | BUS_DMA_NOWAIT);
       if (error) {
               struct mbuf *m;
               int j = 0;
               for (m = m_head; m; m = m->m_next)
                       j++;
               printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
                      "error %d\n", m_head->m_pkthdr.len, j, error);
               return (ENOMEM);
       }

       cur = frag = *txidx;

       if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
               /* IP header checksum field must be 0! */
               csum_flags |= TI_BDFLAG_IP_CKSUM;
       }
       if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
               csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;

       /* XXX fragmented packet checksum capability? */

       /*
        * Start packing the mbufs in this chain into
        * the fragment pointers. Stop when we run out
        * of fragments or hit the end of the mbuf chain.
        */
       for (i = 0; i < dmamap->dm_nsegs; i++) {
               if (frag > 383)
                       CSR_WRITE_4(sc, TI_WINBASE,
                           TI_TX_RING_BASE + 6144);
               else if (frag > 255)
                       CSR_WRITE_4(sc, TI_WINBASE,
                           TI_TX_RING_BASE + 4096);
               else if (frag > 127)
                       CSR_WRITE_4(sc, TI_WINBASE,
                           TI_TX_RING_BASE + 2048);
               else
                       CSR_WRITE_4(sc, TI_WINBASE,
                           TI_TX_RING_BASE);
               f = &sc->ti_tx_ring_nic[frag % 128];
               if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
                       break;
               TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
               f->ti_len = dmamap->dm_segs[i].ds_len;
               f->ti_flags = csum_flags;
               if (vlan_has_tag(m_head)) {
                       f->ti_flags |= TI_BDFLAG_VLAN_TAG;
                       f->ti_vlan_tag = vlan_get_tag(m_head);
               } else {
                       f->ti_vlan_tag = 0;
               }
               /*
                * Sanity check: avoid coming within 16 descriptors
                * of the end of the ring.
                */
               if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
                       return (ENOBUFS);
               cur = frag;
               TI_INC(frag, TI_TX_RING_CNT);
               cnt++;
       }

       if (i < dmamap->dm_nsegs)
               return (ENOBUFS);

       if (frag == sc->ti_tx_saved_considx)
               return (ENOBUFS);

       sc->ti_tx_ring_nic[cur % 128].ti_flags |=
           TI_BDFLAG_END;

       /* Sync the packet's DMA map. */
       bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
           BUS_DMASYNC_PREWRITE);

       sc->ti_cdata.ti_tx_chain[cur] = m_head;
       SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
       sc->txdma[cur] = dma;
       sc->ti_txcnt += cnt;

       *txidx = frag;

       return (0);
}

static int
ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
{
       struct ti_tx_desc       *f = NULL;
       uint32_t                frag, firstfrag, cur, cnt = 0;
       struct txdmamap_pool_entry *dma;
       bus_dmamap_t dmamap;
       int error, i;
       uint16_t csum_flags = 0;

       dma = SIMPLEQ_FIRST(&sc->txdma_list);
       if (dma == NULL) {
               return ENOMEM;
       }
       dmamap = dma->dmamap;

       error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
           BUS_DMA_WRITE | BUS_DMA_NOWAIT);
       if (error) {
               struct mbuf *m;
               int j = 0;
               for (m = m_head; m; m = m->m_next)
                       j++;
               printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
                      "error %d\n", m_head->m_pkthdr.len, j, error);
               return (ENOMEM);
       }

       cur = firstfrag = frag = *txidx;

       if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
               /* IP header checksum field must be 0! */
               csum_flags |= TI_BDFLAG_IP_CKSUM;
       }
       if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
               csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;

       /* XXX fragmented packet checksum capability? */

       /*
        * Start packing the mbufs in this chain into
        * the fragment pointers. Stop when we run out
        * of fragments or hit the end of the mbuf chain.
        */
       for (i = 0; i < dmamap->dm_nsegs; i++) {
               f = &sc->ti_rdata->ti_tx_ring[frag];
               if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
                       break;
               TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
               f->ti_len = dmamap->dm_segs[i].ds_len;
               f->ti_flags = csum_flags;
               if (vlan_has_tag(m_head)) {
                       f->ti_flags |= TI_BDFLAG_VLAN_TAG;
                       f->ti_vlan_tag = vlan_get_tag(m_head);
               } else {
                       f->ti_vlan_tag = 0;
               }
               /*
                * Sanity check: avoid coming within 16 descriptors
                * of the end of the ring.
                */
               if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
                       return (ENOBUFS);
               cur = frag;
               TI_INC(frag, TI_TX_RING_CNT);
               cnt++;
       }

       if (i < dmamap->dm_nsegs)
               return (ENOBUFS);

       if (frag == sc->ti_tx_saved_considx)
               return (ENOBUFS);

       sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;

       /* Sync the packet's DMA map. */
       bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
           BUS_DMASYNC_PREWRITE);

       /* Sync the descriptors we are using. */
       TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);

       sc->ti_cdata.ti_tx_chain[cur] = m_head;
       SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
       sc->txdma[cur] = dma;
       sc->ti_txcnt += cnt;

       *txidx = frag;

       return (0);
}

/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
static void
ti_start(struct ifnet *ifp)
{
       struct ti_softc *sc;
       struct mbuf     *m_head = NULL;
       uint32_t        prodidx = 0;

       sc = ifp->if_softc;

       prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);

       while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
               IFQ_POLL(&ifp->if_snd, m_head);
               if (m_head == NULL)
                       break;

               /*
                * Pack the data into the transmit ring. If we
                * don't have room, set the OACTIVE flag and wait
                * for the NIC to drain the ring.
                */
               if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
                       ifp->if_flags |= IFF_OACTIVE;
                       break;
               }

               IFQ_DEQUEUE(&ifp->if_snd, m_head);

               /*
                * If there's a BPF listener, bounce a copy of this frame
                * to him.
                */
               bpf_mtap(ifp, m_head, BPF_D_OUT);
       }

       /* Transmit */
       CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);

       /* Set a timeout in case the chip goes out to lunch. */
       ifp->if_timer = 5;
}

static void
ti_init(void *xsc)
{
       struct ti_softc         *sc = xsc;
       int                     s;

       s = splnet();

       /* Cancel pending I/O and flush buffers. */
       ti_stop(sc);

       /* Init the gen info block, ring control blocks and firmware. */
       if (ti_gibinit(sc)) {
               aprint_error_dev(sc->sc_dev, "initialization failure\n");
               splx(s);
               return;
       }

       splx(s);
}

static void
ti_init2(struct ti_softc *sc)
{
       struct ti_cmd_desc      cmd;
       struct ifnet            *ifp;
       const uint8_t           *m;
       struct ifmedia          *ifm;
       int                     tmp;

       ifp = &sc->ethercom.ec_if;

       /* Specify MTU and interface index. */
       CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(sc->sc_dev)); /* ??? */

       tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
       if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
               tmp += ETHER_VLAN_ENCAP_LEN;
       CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);

       TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);

       /* Load our MAC address. */
       m = (const uint8_t *)CLLADDR(ifp->if_sadl);
       CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
       CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
                   | (m[4] << 8) | m[5]);
       TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);

       /* Enable or disable promiscuous mode as needed. */
       if (ifp->if_flags & IFF_PROMISC) {
               TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
       } else {
               TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
       }

       /* Program multicast filter. */
       ti_setmulti(sc);

       /*
        * If this is a Tigon 1, we should tell the
        * firmware to use software packet filtering.
        */
       if (sc->ti_hwrev == TI_HWREV_TIGON) {
               TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
       }

       /* Init RX ring. */
       ti_init_rx_ring_std(sc);

       /* Init jumbo RX ring. */
       if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
               ti_init_rx_ring_jumbo(sc);

       /*
        * If this is a Tigon 2, we can also configure the
        * mini ring.
        */
       if (sc->ti_hwrev == TI_HWREV_TIGON_II)
               ti_init_rx_ring_mini(sc);

       CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
       sc->ti_rx_saved_considx = 0;

       /* Init TX ring. */
       ti_init_tx_ring(sc);

       /* Tell firmware we're alive. */
       TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);

       /* Enable host interrupts. */
       CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);

       ifp->if_flags |= IFF_RUNNING;
       ifp->if_flags &= ~IFF_OACTIVE;

       /*
        * Make sure to set media properly. We have to do this
        * here since we have to issue commands in order to set
        * the link negotiation and we can't issue commands until
        * the firmware is running.
        */
       ifm = &sc->ifmedia;
       tmp = ifm->ifm_media;
       ifm->ifm_media = ifm->ifm_cur->ifm_media;
       ti_ifmedia_upd(ifp);
       ifm->ifm_media = tmp;
}

/*
* Set media options.
*/
static int
ti_ifmedia_upd(struct ifnet *ifp)
{
       struct ti_softc         *sc;
       struct ifmedia          *ifm;
       struct ti_cmd_desc      cmd;

       sc = ifp->if_softc;
       ifm = &sc->ifmedia;

       if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
               return (EINVAL);

       switch (IFM_SUBTYPE(ifm->ifm_media)) {
       case IFM_AUTO:
               CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB |
                   TI_GLNK_FULL_DUPLEX | TI_GLNK_RX_FLOWCTL_Y |
                   TI_GLNK_AUTONEGENB | TI_GLNK_ENB);
               CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB | TI_LNK_10MB |
                   TI_LNK_FULL_DUPLEX | TI_LNK_HALF_DUPLEX |
                   TI_LNK_AUTONEGENB | TI_LNK_ENB);
               TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
                   TI_CMD_CODE_NEGOTIATE_BOTH, 0);
               break;
       case IFM_1000_SX:
       case IFM_1000_T:
               if ((ifm->ifm_media & IFM_FDX) != 0) {
                       CSR_WRITE_4(sc, TI_GCR_GLINK,
                           TI_GLNK_PREF | TI_GLNK_1000MB | TI_GLNK_FULL_DUPLEX
                           | TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
               } else {
                       CSR_WRITE_4(sc, TI_GCR_GLINK,
                           TI_GLNK_PREF | TI_GLNK_1000MB |
                           TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
               }
               CSR_WRITE_4(sc, TI_GCR_LINK, 0);
               TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
                   TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
               break;
       case IFM_100_FX:
       case IFM_10_FL:
       case IFM_100_TX:
       case IFM_10_T:
               CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
               CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB | TI_LNK_PREF);
               if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
                   IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
                       TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
               } else {
                       TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
               }
               if ((ifm->ifm_media & IFM_FDX) != 0) {
                       TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
               } else {
                       TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
               }
               TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
                   TI_CMD_CODE_NEGOTIATE_10_100, 0);
               break;
       }

       sc->ethercom.ec_if.if_baudrate =
           ifmedia_baudrate(ifm->ifm_media);

       return (0);
}

/*
* Report current media status.
*/
static void
ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
       struct ti_softc         *sc;
       uint32_t                media = 0;

       sc = ifp->if_softc;

       ifmr->ifm_status = IFM_AVALID;
       ifmr->ifm_active = IFM_ETHER;

       if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
               return;

       ifmr->ifm_status |= IFM_ACTIVE;

       if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
               media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
               if (sc->ti_copper)
                       ifmr->ifm_active |= IFM_1000_T;
               else
                       ifmr->ifm_active |= IFM_1000_SX;
               if (media & TI_GLNK_FULL_DUPLEX)
                       ifmr->ifm_active |= IFM_FDX;
               else
                       ifmr->ifm_active |= IFM_HDX;
       } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
               media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
               if (sc->ti_copper) {
                       if (media & TI_LNK_100MB)
                               ifmr->ifm_active |= IFM_100_TX;
                       if (media & TI_LNK_10MB)
                               ifmr->ifm_active |= IFM_10_T;
               } else {
                       if (media & TI_LNK_100MB)
                               ifmr->ifm_active |= IFM_100_FX;
                       if (media & TI_LNK_10MB)
                               ifmr->ifm_active |= IFM_10_FL;
               }
               if (media & TI_LNK_FULL_DUPLEX)
                       ifmr->ifm_active |= IFM_FDX;
               if (media & TI_LNK_HALF_DUPLEX)
                       ifmr->ifm_active |= IFM_HDX;
       }

       sc->ethercom.ec_if.if_baudrate =
           ifmedia_baudrate(sc->ifmedia.ifm_media);
}

static int
ti_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
       struct ifaddr *ifa = (struct ifaddr *)data;
       struct ti_softc *sc = ifp->if_softc;

       if ((ifp->if_flags & IFF_UP) == 0) {
               ifp->if_flags |= IFF_UP;
               ti_init(sc);
       }

       switch (cmd) {
       case SIOCINITIFADDR:

               switch (ifa->ifa_addr->sa_family) {
#ifdef INET
               case AF_INET:
                       arp_ifinit(ifp, ifa);
                       break;
#endif
               default:
                       break;
               }
               break;

       default:
               return (EINVAL);
       }

       return (0);
}

static int
ti_ioctl(struct ifnet *ifp, u_long command, void *data)
{
       struct ti_softc         *sc = ifp->if_softc;
       struct ifreq            *ifr = (struct ifreq *)data;
       int                     s, error = 0;
       struct ti_cmd_desc      cmd;

       s = splnet();

       switch (command) {
       case SIOCINITIFADDR:
               error = ti_ether_ioctl(ifp, command, data);
               break;
       case SIOCSIFMTU:
               if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
                       error = EINVAL;
               else if ((error = ifioctl_common(ifp, command, data))
                   == ENETRESET) {
                       ti_init(sc);
                       error = 0;
               }
               break;
       case SIOCSIFFLAGS:
               if ((error = ifioctl_common(ifp, command, data)) != 0)
                       break;
               if (ifp->if_flags & IFF_UP) {
                       /*
                        * If only the state of the PROMISC flag changed,
                        * then just use the 'set promisc mode' command
                        * instead of reinitializing the entire NIC. Doing
                        * a full re-init means reloading the firmware and
                        * waiting for it to start up, which may take a
                        * second or two.
                        */
                       if (ifp->if_flags & IFF_RUNNING &&
                           ifp->if_flags & IFF_PROMISC &&
                           !(sc->ti_if_flags & IFF_PROMISC)) {
                               TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
                                   TI_CMD_CODE_PROMISC_ENB, 0);
                       } else if (ifp->if_flags & IFF_RUNNING &&
                           !(ifp->if_flags & IFF_PROMISC) &&
                           sc->ti_if_flags & IFF_PROMISC) {
                               TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
                                   TI_CMD_CODE_PROMISC_DIS, 0);
                       } else
                               ti_init(sc);
               } else {
                       if (ifp->if_flags & IFF_RUNNING) {
                               ti_stop(sc);
                       }
               }
               sc->ti_if_flags = ifp->if_flags;
               error = 0;
               break;
       default:
               if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
                       break;

               error = 0;

               if (command == SIOCSIFCAP)
                       ti_init(sc);
               else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
                       ;
               else if (ifp->if_flags & IFF_RUNNING)
                       ti_setmulti(sc);
               break;
       }

       (void)splx(s);

       return (error);
}

static void
ti_watchdog(struct ifnet *ifp)
{
       struct ti_softc         *sc;

       sc = ifp->if_softc;

       aprint_error_dev(sc->sc_dev, "watchdog timeout -- resetting\n");
       ti_stop(sc);
       ti_init(sc);

       if_statinc(ifp, if_oerrors);
}

/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
ti_stop(struct ti_softc *sc)
{
       struct ifnet            *ifp;
       struct ti_cmd_desc      cmd;

       ifp = &sc->ethercom.ec_if;

       /* Disable host interrupts. */
       CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
       /*
        * Tell firmware we're shutting down.
        */
       TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);

       /* Halt and reinitialize. */
       ti_chipinit(sc);
       ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
       ti_chipinit(sc);

       /* Free the RX lists. */
       ti_free_rx_ring_std(sc);

       /* Free jumbo RX list. */
       ti_free_rx_ring_jumbo(sc);

       /* Free mini RX list. */
       ti_free_rx_ring_mini(sc);

       /* Free TX buffers. */
       ti_free_tx_ring(sc);

       sc->ti_ev_prodidx.ti_idx = 0;
       sc->ti_return_prodidx.ti_idx = 0;
       sc->ti_tx_considx.ti_idx = 0;
       sc->ti_tx_saved_considx = TI_TXCONS_UNSET;

       ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
}

/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static bool
ti_shutdown(device_t self, int howto)
{
       struct ti_softc *sc;

       sc = device_private(self);
       ti_chipinit(sc);

       return true;
}