/*      $NetBSD: if_jme.c,v 1.57 2024/07/05 04:31:51 rin Exp $  */

/*
* Copyright (c) 2008 Manuel Bouyer.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*-
* Copyright (c) 2008, Pyun YongHyeon <[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice unmodified, this list of conditions, and the following
*    disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/


/*
* Driver for JMicron Technologies JMC250 (Giganbit) and JMC260 (Fast)
* Ethernet Controllers.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_jme.c,v 1.57 2024/07/05 04:31:51 rin Exp $");


#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/proc.h>   /* only for declaration of wakeup() used by vm.h */
#include <sys/device.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>

#include <net/if.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_dl.h>
#include <net/route.h>
#include <net/bpf.h>

#include <sys/rndsource.h>

#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>

#include <netinet6/ip6_var.h>

#ifdef INET
#include <netinet/in_var.h>
#endif

#include <netinet/tcp.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>

#include <net/if_ether.h>
#if defined(INET)
#include <netinet/if_inarp.h>
#endif

#include <sys/bus.h>
#include <sys/intr.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_jmereg.h>

#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>

/* number of entries in transmit and receive rings */
#define JME_NBUFS (PAGE_SIZE / sizeof(struct jme_desc))

#define JME_DESC_INC(x, y)      ((x) = ((x) + 1) % (y))

/* Water mark to kick reclaiming Tx buffers. */
#define JME_TX_DESC_HIWAT       (JME_NBUFS - (((JME_NBUFS) * 3) / 10))


struct jme_softc {
       device_t jme_dev;               /* base device */
       bus_space_tag_t jme_bt_mac;
       bus_space_handle_t jme_bh_mac;  /* Mac registers */
       bus_space_tag_t jme_bt_phy;
       bus_space_handle_t jme_bh_phy;  /* PHY registers */
       bus_space_tag_t jme_bt_misc;
       bus_space_handle_t jme_bh_misc; /* Misc registers */
       bus_dma_tag_t jme_dmatag;
       bus_dma_segment_t jme_txseg;    /* transmit ring seg */
       bus_dmamap_t jme_txmap;         /* transmit ring DMA map */
       struct jme_desc* jme_txring;    /* transmit ring */
       bus_dmamap_t jme_txmbufm[JME_NBUFS]; /* transmit mbufs DMA map */
       struct mbuf *jme_txmbuf[JME_NBUFS]; /* mbufs being transmitted */
       int jme_tx_cons;                /* transmit ring consumer */
       int jme_tx_prod;                /* transmit ring producer */
       int jme_tx_cnt;                 /* transmit ring active count */
       bus_dma_segment_t jme_rxseg;    /* receive ring seg */
       bus_dmamap_t jme_rxmap;         /* receive ring DMA map */
       struct jme_desc* jme_rxring;    /* receive ring */
       bus_dmamap_t jme_rxmbufm[JME_NBUFS]; /* receive mbufs DMA map */
       struct mbuf *jme_rxmbuf[JME_NBUFS]; /* mbufs being received */
       int jme_rx_cons;                /* receive ring consumer */
       int jme_rx_prod;                /* receive ring producer */
       void* jme_ih;                   /* our interrupt */
       struct ethercom jme_ec;
       struct callout jme_tick_ch;     /* tick callout */
       uint8_t jme_enaddr[ETHER_ADDR_LEN];/* hardware address */
       uint8_t jme_phyaddr;            /* address of integrated phy */
       uint8_t jme_chip_rev;           /* chip revision */
       uint8_t jme_rev;                /* PCI revision */
       mii_data_t jme_mii;             /* mii bus */
       uint32_t jme_flags;             /* device features, see below */
       uint32_t jme_txcsr;             /* TX config register */
       uint32_t jme_rxcsr;             /* RX config register */
       krndsource_t rnd_source;
       /* interrupt coalition parameters */
       struct sysctllog *jme_clog;
       int jme_intrxto;                /* interrupt RX timeout */
       int jme_intrxct;                /* interrupt RX packets counter */
       int jme_inttxto;                /* interrupt TX timeout */
       int jme_inttxct;                /* interrupt TX packets counter */
};

#define JME_FLAG_FPGA   0x0001 /* FPGA version */
#define JME_FLAG_GIGA   0x0002 /* giga Ethernet capable */


#define jme_if  jme_ec.ec_if
#define jme_bpf jme_if.if_bpf

typedef struct jme_softc jme_softc_t;
typedef u_long ioctl_cmd_t;

static int jme_pci_match(device_t, cfdata_t, void *);
static void jme_pci_attach(device_t, device_t, void *);
static void jme_intr_rx(jme_softc_t *);
static int jme_intr(void *);

static int jme_ifioctl(struct ifnet *, ioctl_cmd_t, void *);
static int jme_mediachange(struct ifnet *);
static void jme_ifwatchdog(struct ifnet *);
static bool jme_shutdown(device_t, int);

static void jme_txeof(struct jme_softc *);
static void jme_ifstart(struct ifnet *);
static void jme_reset(jme_softc_t *);
static int  jme_ifinit(struct ifnet *);
static int  jme_init(struct ifnet *, int);
static void jme_stop(struct ifnet *, int);
// static void jme_restart(void *);
static void jme_ticks(void *);
static void jme_mac_config(jme_softc_t *);
static void jme_set_filter(jme_softc_t *);

static int jme_mii_read(device_t, int, int, uint16_t *);
static int jme_mii_write(device_t, int, int, uint16_t);
static void jme_statchg(struct ifnet *);

static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
static int jme_eeprom_macaddr(struct jme_softc *);
static int jme_reg_macaddr(struct jme_softc *);

#define JME_TIMEOUT             1000
#define JME_PHY_TIMEOUT         1000
#define JME_EEPROM_TIMEOUT      1000

static int jme_sysctl_intrxto(SYSCTLFN_PROTO);
static int jme_sysctl_intrxct(SYSCTLFN_PROTO);
static int jme_sysctl_inttxto(SYSCTLFN_PROTO);
static int jme_sysctl_inttxct(SYSCTLFN_PROTO);
static int jme_root_num;


CFATTACH_DECL_NEW(jme, sizeof(jme_softc_t),
   jme_pci_match, jme_pci_attach, NULL, NULL);

static const struct device_compatible_entry compat_data[] = {
       { .id = PCI_ID_CODE(PCI_VENDOR_JMICRON,
               PCI_PRODUCT_JMICRON_JMC250),
         .data = "JMicron JMC250 Gigabit Ethernet Controller" },

       { .id = PCI_ID_CODE(PCI_VENDOR_JMICRON,
               PCI_PRODUCT_JMICRON_JMC260),
         .data = "JMicron JMC260 Gigabit Ethernet Controller" },

       PCI_COMPAT_EOL
};

static int
jme_pci_match(device_t parent, cfdata_t cf, void *aux)
{
       struct pci_attach_args *pa = (struct pci_attach_args *)aux;

       return pci_compatible_match(pa, compat_data);
}

static void
jme_pci_attach(device_t parent, device_t self, void *aux)
{
       jme_softc_t *sc = device_private(self);
       struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
       const struct device_compatible_entry *dce;
       struct ifnet * const ifp = &sc->jme_if;
       struct mii_data * const mii = &sc->jme_mii;
       bus_space_tag_t iot1, iot2, memt;
       bus_space_handle_t ioh1, ioh2, memh;
       bus_size_t size, size2;
       pci_intr_handle_t intrhandle;
       const char *intrstr;
       pcireg_t csr;
       int nsegs, i;
       const struct sysctlnode *node;
       int jme_nodenum;
       char intrbuf[PCI_INTRSTR_LEN];

       sc->jme_dev = self;
       aprint_normal("\n");
       callout_init(&sc->jme_tick_ch, 0);
       callout_setfunc(&sc->jme_tick_ch, jme_ticks, sc);

       dce = pci_compatible_lookup(pa, compat_data);
       KASSERT(dce != NULL);

       if (PCI_PRODUCT(dce->id) == PCI_PRODUCT_JMICRON_JMC250)
               sc->jme_flags = JME_FLAG_GIGA;

       /*
        * Map the card space. Try Mem first.
        */
       if (pci_mapreg_map(pa, JME_PCI_BAR0,
           PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
           0, &memt, &memh, NULL, &size) == 0) {
               sc->jme_bt_mac = memt;
               sc->jme_bh_mac = memh;
               sc->jme_bt_phy = memt;
               if (bus_space_subregion(memt, memh, JME_PHY_EEPROM_BASE_MEMOFF,
                   JME_PHY_EEPROM_SIZE, &sc->jme_bh_phy) != 0) {
                       aprint_error_dev(self, "can't subregion PHY space\n");
                       bus_space_unmap(memt, memh, size);
                       return;
               }
               sc->jme_bt_misc = memt;
               if (bus_space_subregion(memt, memh, JME_MISC_BASE_MEMOFF,
                   JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
                       aprint_error_dev(self, "can't subregion misc space\n");
                       bus_space_unmap(memt, memh, size);
                       return;
               }
       } else {
               if (pci_mapreg_map(pa, JME_PCI_BAR1, PCI_MAPREG_TYPE_IO,
                   0, &iot1, &ioh1, NULL, &size) != 0) {
                       aprint_error_dev(self, "can't map I/O space 1\n");
                       return;
               }
               sc->jme_bt_mac = iot1;
               sc->jme_bh_mac = ioh1;
               if (pci_mapreg_map(pa, JME_PCI_BAR2, PCI_MAPREG_TYPE_IO,
                   0, &iot2, &ioh2, NULL, &size2) != 0) {
                       aprint_error_dev(self, "can't map I/O space 2\n");
                       bus_space_unmap(iot1, ioh1, size);
                       return;
               }
               sc->jme_bt_phy = iot2;
               sc->jme_bh_phy = ioh2;
               sc->jme_bt_misc = iot2;
               if (bus_space_subregion(iot2, ioh2, JME_MISC_BASE_IOOFF,
                   JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
                       aprint_error_dev(self, "can't subregion misc space\n");
                       bus_space_unmap(iot1, ioh1, size);
                       bus_space_unmap(iot2, ioh2, size2);
                       return;
               }
       }

       if (pci_dma64_available(pa))
               sc->jme_dmatag = pa->pa_dmat64;
       else
               sc->jme_dmatag = pa->pa_dmat;

       /* Enable the device. */
       csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
       pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
           csr | PCI_COMMAND_MASTER_ENABLE);

       aprint_normal_dev(self, "%s\n", (const char *)dce->data);

       sc->jme_rev = PCI_REVISION(pa->pa_class);

       csr = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_CHIPMODE);
       if (((csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
           CHIPMODE_NOT_FPGA)
               sc->jme_flags |= JME_FLAG_FPGA;
       sc->jme_chip_rev = (csr & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
       aprint_verbose_dev(self, "PCI device revision : 0x%x, Chip revision: "
           "0x%x", sc->jme_rev, sc->jme_chip_rev);
       if (sc->jme_flags & JME_FLAG_FPGA)
               aprint_verbose(" FPGA revision: 0x%x",
                   (csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT);
       aprint_verbose("\n");

       /*
        * Save PHY address.
        * Integrated JR0211 has fixed PHY address whereas FPGA version
        * requires PHY probing to get correct PHY address.
        */
       if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
               sc->jme_phyaddr =
                   bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
                                    JME_GPREG0) & GPREG0_PHY_ADDR_MASK;
       } else
               sc->jme_phyaddr = 0;


       jme_reset(sc);

       /* read mac addr */
       if (jme_eeprom_macaddr(sc) && jme_reg_macaddr(sc)) {
               aprint_error_dev(self, "error reading Ethernet address\n");
               /* return; */
       }
       aprint_normal_dev(self, "Ethernet address %s\n",
           ether_sprintf(sc->jme_enaddr));

       /* Map and establish interrupts */
       if (pci_intr_map(pa, &intrhandle)) {
               aprint_error_dev(self, "couldn't map interrupt\n");
               return;
       }
       intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf, sizeof(intrbuf));
       sc->jme_if.if_softc = sc;
       sc->jme_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET,
           jme_intr, sc, device_xname(self));
       if (sc->jme_ih == NULL) {
               aprint_error_dev(self, "couldn't establish interrupt");
               if (intrstr != NULL)
                       aprint_error(" at %s", intrstr);
               aprint_error("\n");
               return;
       }
       aprint_normal_dev(self, "interrupting at %s\n", intrstr);

       /* allocate and map DMA-safe memory for transmit ring */
       if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
           &sc->jme_txseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
           bus_dmamem_map(sc->jme_dmatag, &sc->jme_txseg,
           nsegs, PAGE_SIZE, (void **)&sc->jme_txring,
           BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
           bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
           BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_txmap) != 0 ||
           bus_dmamap_load(sc->jme_dmatag, sc->jme_txmap, sc->jme_txring,
           PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
               aprint_error_dev(self, "can't allocate DMA memory TX ring\n");
               return;
       }
       /* allocate and map DMA-safe memory for receive ring */
       if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
             &sc->jme_rxseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
           bus_dmamem_map(sc->jme_dmatag, &sc->jme_rxseg,
             nsegs, PAGE_SIZE, (void **)&sc->jme_rxring,
             BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
           bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
             BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_rxmap) != 0 ||
           bus_dmamap_load(sc->jme_dmatag, sc->jme_rxmap, sc->jme_rxring,
             PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
               aprint_error_dev(self, "can't allocate DMA memory RX ring\n");
               return;
       }
       for (i = 0; i < JME_NBUFS; i++) {
               sc->jme_txmbuf[i] = sc->jme_rxmbuf[i] = NULL;
               if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_TX_LEN,
                   JME_NBUFS, JME_MAX_TX_LEN, 0,
                   BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
                   &sc->jme_txmbufm[i]) != 0) {
                       aprint_error_dev(self, "can't allocate DMA TX map\n");
                       return;
               }
               if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_RX_LEN,
                   1, JME_MAX_RX_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
                   &sc->jme_rxmbufm[i]) != 0) {
                       aprint_error_dev(self, "can't allocate DMA RX map\n");
                       return;
               }
       }
       /*
        * Initialize our media structures and probe the MII.
        *
        * Note that we don't care about the media instance.  We
        * are expecting to have multiple PHYs on the 10/100 cards,
        * and on those cards we exclude the internal PHY from providing
        * 10baseT.  By ignoring the instance, it allows us to not have
        * to specify it on the command line when switching media.
        */
       mii->mii_ifp = ifp;
       mii->mii_readreg = jme_mii_read;
       mii->mii_writereg = jme_mii_write;
       mii->mii_statchg = jme_statchg;
       sc->jme_ec.ec_mii = mii;
       ifmedia_init(&mii->mii_media, IFM_IMASK, jme_mediachange,
           ether_mediastatus);
       mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
       if (LIST_FIRST(&mii->mii_phys) == NULL) {
               ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
               ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
       } else
               ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);

       /*
        * We can support 802.1Q VLAN-sized frames.
        */
       sc->jme_ec.ec_capabilities |=
           ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
       sc->jme_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;

       if (sc->jme_flags & JME_FLAG_GIGA)
               sc->jme_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;


       strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
       ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
       ifp->if_ioctl = jme_ifioctl;
       ifp->if_start = jme_ifstart;
       ifp->if_watchdog = jme_ifwatchdog;
       ifp->if_init = jme_ifinit;
       ifp->if_stop = jme_stop;
       ifp->if_timer = 0;
       ifp->if_capabilities |=
           IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
           IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
           IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
           IFCAP_CSUM_TCPv6_Tx | /* IFCAP_CSUM_TCPv6_Rx | hardware bug */
           IFCAP_CSUM_UDPv6_Tx | /* IFCAP_CSUM_UDPv6_Rx | hardware bug */
           IFCAP_TSOv4 | IFCAP_TSOv6;
       IFQ_SET_READY(&ifp->if_snd);
       if_attach(ifp);
       ether_ifattach(&(sc)->jme_if, (sc)->jme_enaddr);

       /*
        * Add shutdown hook so that DMA is disabled prior to reboot.
        */
       if (pmf_device_register1(self, NULL, NULL, jme_shutdown))
               pmf_class_network_register(self, ifp);
       else
               aprint_error_dev(self, "couldn't establish power handler\n");

       rnd_attach_source(&sc->rnd_source, device_xname(self),
           RND_TYPE_NET, RND_FLAG_DEFAULT);

       sc->jme_intrxto = PCCRX_COAL_TO_DEFAULT;
       sc->jme_intrxct = PCCRX_COAL_PKT_DEFAULT;
       sc->jme_inttxto = PCCTX_COAL_TO_DEFAULT;
       sc->jme_inttxct = PCCTX_COAL_PKT_DEFAULT;
       if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
           0, CTLTYPE_NODE, device_xname(sc->jme_dev),
           SYSCTL_DESCR("jme per-controller controls"),
           NULL, 0, NULL, 0, CTL_HW, jme_root_num, CTL_CREATE,
           CTL_EOL) != 0) {
               aprint_normal_dev(sc->jme_dev, "couldn't create sysctl node\n");
               return;
       }
       jme_nodenum = node->sysctl_num;

       /* interrupt moderation sysctls */
       if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
           CTLFLAG_READWRITE,
           CTLTYPE_INT, "int_rxto",
           SYSCTL_DESCR("jme RX interrupt moderation timer"),
           jme_sysctl_intrxto, 0, (void *)sc,
           0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
           CTL_EOL) != 0) {
               aprint_normal_dev(sc->jme_dev,
                   "couldn't create int_rxto sysctl node\n");
       }
       if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
           CTLFLAG_READWRITE,
           CTLTYPE_INT, "int_rxct",
           SYSCTL_DESCR("jme RX interrupt moderation packet counter"),
           jme_sysctl_intrxct, 0, (void *)sc,
           0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
           CTL_EOL) != 0) {
               aprint_normal_dev(sc->jme_dev,
                   "couldn't create int_rxct sysctl node\n");
       }
       if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
           CTLFLAG_READWRITE,
           CTLTYPE_INT, "int_txto",
           SYSCTL_DESCR("jme TX interrupt moderation timer"),
           jme_sysctl_inttxto, 0, (void *)sc,
           0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
           CTL_EOL) != 0) {
               aprint_normal_dev(sc->jme_dev,
                   "couldn't create int_txto sysctl node\n");
       }
       if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
           CTLFLAG_READWRITE,
           CTLTYPE_INT, "int_txct",
           SYSCTL_DESCR("jme TX interrupt moderation packet counter"),
           jme_sysctl_inttxct, 0, (void *)sc,
           0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
           CTL_EOL) != 0) {
               aprint_normal_dev(sc->jme_dev,
                   "couldn't create int_txct sysctl node\n");
       }
}

static void
jme_stop_rx(jme_softc_t *sc)
{
       uint32_t reg;
       int i;

       reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR);
       if ((reg & RXCSR_RX_ENB) == 0)
               return;
       reg &= ~RXCSR_RX_ENB;
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, reg);
       for (i = JME_TIMEOUT / 10; i > 0; i--) {
               DELAY(10);
               if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
                   JME_RXCSR) & RXCSR_RX_ENB) == 0)
                       break;
       }
       if (i == 0)
               aprint_error_dev(sc->jme_dev, "stopping receiver timeout!\n");

}

static void
jme_stop_tx(jme_softc_t *sc)
{
       uint32_t reg;
       int i;

       reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR);
       if ((reg & TXCSR_TX_ENB) == 0)
               return;
       reg &= ~TXCSR_TX_ENB;
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, reg);
       for (i = JME_TIMEOUT / 10; i > 0; i--) {
               DELAY(10);
               if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
                   JME_TXCSR) & TXCSR_TX_ENB) == 0)
                       break;
       }
       if (i == 0)
               aprint_error_dev(sc->jme_dev,
                   "stopping transmitter timeout!\n");
}

static void
jme_reset(jme_softc_t *sc)
{
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, GHC_RESET);
       DELAY(10);
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, 0);
}

static bool
jme_shutdown(device_t self, int howto)
{
       jme_softc_t *sc;
       struct ifnet *ifp;

       sc = device_private(self);
       ifp = &sc->jme_if;
       jme_stop(ifp, 1);

       return true;
}

static void
jme_stop(struct ifnet *ifp, int disable)
{
       jme_softc_t *sc = ifp->if_softc;
       int i;
       /* Stop receiver, transmitter. */
       jme_stop_rx(sc);
       jme_stop_tx(sc);
       /* free receive mbufs */
       for (i = 0; i < JME_NBUFS; i++) {
               if (sc->jme_rxmbuf[i]) {
                       bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]);
                       m_freem(sc->jme_rxmbuf[i]);
               }
               sc->jme_rxmbuf[i] = NULL;
       }
       /* process completed transmits */
       jme_txeof(sc);
       /* free abort pending transmits */
       for (i = 0; i < JME_NBUFS; i++) {
               if (sc->jme_txmbuf[i]) {
                       bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[i]);
                       m_freem(sc->jme_txmbuf[i]);
                       sc->jme_txmbuf[i] = NULL;
               }
       }
       ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
       ifp->if_timer = 0;
}

#if 0
static void
jme_restart(void *v)
{

       jme_init(v);
}
#endif

static int
jme_add_rxbuf(jme_softc_t *sc, struct mbuf *m)
{
       int error;
       bus_dmamap_t map;
       int i = sc->jme_rx_prod;

       if (sc->jme_rxmbuf[i] != NULL) {
               aprint_error_dev(sc->jme_dev,
                   "mbuf already here: rxprod %d rxcons %d\n",
                   sc->jme_rx_prod, sc->jme_rx_cons);
               m_freem(m);
               return EINVAL;
       }

       if (m == NULL) {
               sc->jme_rxmbuf[i] = NULL;
               MGETHDR(m, M_DONTWAIT, MT_DATA);
               if (m == NULL)
                       return (ENOBUFS);
               MCLGET(m, M_DONTWAIT);
               if ((m->m_flags & M_EXT) == 0) {
                       m_freem(m);
                       return (ENOBUFS);
               }
       }
       map = sc->jme_rxmbufm[i];
       m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
       KASSERT(m->m_len == MCLBYTES);

       error = bus_dmamap_load_mbuf(sc->jme_dmatag, map, m,
           BUS_DMA_READ | BUS_DMA_NOWAIT);
       if (error) {
               sc->jme_rxmbuf[i] = NULL;
               aprint_error_dev(sc->jme_dev,
                   "unable to load rx DMA map %d, error = %d\n",
                   i, error);
               m_freem(m);
               return (error);
       }
       bus_dmamap_sync(sc->jme_dmatag, map, 0, map->dm_mapsize,
           BUS_DMASYNC_PREREAD);

       sc->jme_rxmbuf[i] = m;

       sc->jme_rxring[i].buflen = htole32(map->dm_segs[0].ds_len);
       sc->jme_rxring[i].addr_lo =
           htole32(JME_ADDR_LO(map->dm_segs[0].ds_addr));
       sc->jme_rxring[i].addr_hi =
           htole32(JME_ADDR_HI(map->dm_segs[0].ds_addr));
       sc->jme_rxring[i].flags =
           htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
       bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap,
           i * sizeof(struct jme_desc), sizeof(struct jme_desc),
           BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
       JME_DESC_INC(sc->jme_rx_prod, JME_NBUFS);
       return (0);
}

static int
jme_ifinit(struct ifnet *ifp)
{
       return jme_init(ifp, 1);
}

static int
jme_init(struct ifnet *ifp, int do_ifinit)
{
       jme_softc_t *sc = ifp->if_softc;
       int i, s;
       uint8_t eaddr[ETHER_ADDR_LEN];
       uint32_t reg;

       s = splnet();
       /* cancel any pending IO */
       jme_stop(ifp, 1);
       jme_reset(sc);
       if ((sc->jme_if.if_flags & IFF_UP) == 0) {
               splx(s);
               return 0;
       }
       /* allocate receive ring */
       sc->jme_rx_prod = 0;
       for (i = 0; i < JME_NBUFS; i++) {
               if (jme_add_rxbuf(sc, NULL) < 0) {
                       aprint_error_dev(sc->jme_dev,
                           "can't allocate rx mbuf\n");
                       for (i--; i >= 0; i--) {
                               bus_dmamap_unload(sc->jme_dmatag,
                                   sc->jme_rxmbufm[i]);
                               m_freem(sc->jme_rxmbuf[i]);
                               sc->jme_rxmbuf[i] = NULL;
                       }
                       splx(s);
                       return ENOMEM;
               }
       }
       /* init TX ring */
       memset(sc->jme_txring, 0, JME_NBUFS * sizeof(struct jme_desc));
       bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
           0, JME_NBUFS * sizeof(struct jme_desc),
           BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
       for (i = 0; i < JME_NBUFS; i++)
               sc->jme_txmbuf[i] = NULL;
       sc->jme_tx_cons = sc->jme_tx_prod = sc->jme_tx_cnt = 0;

       /* Reprogram the station address. */
       memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0,
           eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
           JME_PAR1, eaddr[5] << 8 | eaddr[4]);

       /*
        * Configure Tx queue.
        *  Tx priority queue weight value : 0
        *  Tx FIFO threshold for processing next packet : 16QW
        *  Maximum Tx DMA length : 512
        *  Allow Tx DMA burst.
        */
       sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
       sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
       sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
       sc->jme_txcsr |= TXCSR_DMA_SIZE_512;
       sc->jme_txcsr |= TXCSR_DMA_BURST;
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
            JME_TXCSR, sc->jme_txcsr);

       /* Set Tx descriptor counter. */
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
            JME_TXQDC, JME_NBUFS);

       /* Set Tx ring address to the hardware. */
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI,
           JME_ADDR_HI(sc->jme_txmap->dm_segs[0].ds_addr));
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO,
           JME_ADDR_LO(sc->jme_txmap->dm_segs[0].ds_addr));

       /* Configure TxMAC parameters. */
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC,
           TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB |
           TXMAC_THRESH_1_PKT | TXMAC_CRC_ENB | TXMAC_PAD_ENB);

       /*
        * Configure Rx queue.
        *  FIFO full threshold for transmitting Tx pause packet : 128T
        *  FIFO threshold for processing next packet : 128QW
        *  Rx queue 0 select
        *  Max Rx DMA length : 128
        *  Rx descriptor retry : 32
        *  Rx descriptor retry time gap : 256ns
        *  Don't receive runt/bad frame.
        */
       sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
       /*
        * Since Rx FIFO size is 4K bytes, receiving frames larger
        * than 4K bytes will suffer from Rx FIFO overruns. So
        * decrease FIFO threshold to reduce the FIFO overruns for
        * frames larger than 4000 bytes.
        * For best performance of standard MTU sized frames use
        * maximum allowable FIFO threshold, 128QW.
        */
       if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
           ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
               sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
       else
               sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
       sc->jme_rxcsr |= RXCSR_DMA_SIZE_128 | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
       sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
       sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
            JME_RXCSR, sc->jme_rxcsr);

       /* Set Rx descriptor counter. */
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
            JME_RXQDC, JME_NBUFS);

       /* Set Rx ring address to the hardware. */
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI,
           JME_ADDR_HI(sc->jme_rxmap->dm_segs[0].ds_addr));
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO,
           JME_ADDR_LO(sc->jme_rxmap->dm_segs[0].ds_addr));

       /* Clear receive filter. */
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, 0);
       /* Set up the receive filter. */
       jme_set_filter(sc);

       /*
        * Disable all WOL bits as WOL can interfere normal Rx
        * operation. Also clear WOL detection status bits.
        */
       reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS);
       reg &= ~PMCS_WOL_ENB_MASK;
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS, reg);

       reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
       /*
        * Pad 10bytes right before received frame. This will greatly
        * help Rx performance on strict-alignment architectures as
        * it does not need to copy the frame to align the payload.
        */
       reg |= RXMAC_PAD_10BYTES;
       if ((ifp->if_capenable &
           (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
            IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) != 0)
               reg |= RXMAC_CSUM_ENB;
       reg |= RXMAC_VLAN_ENB; /* enable hardware vlan */
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, reg);

       /* Configure general purpose reg0 */
       reg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0);
       reg &= ~GPREG0_PCC_UNIT_MASK;
       /* Set PCC timer resolution to micro-seconds unit. */
       reg |= GPREG0_PCC_UNIT_US;
       /*
        * Disable all shadow register posting as we have to read
        * JME_INTR_STATUS register in jme_int_task. Also it seems
        * that it's hard to synchronize interrupt status between
        * hardware and software with shadow posting due to
        * requirements of bus_dmamap_sync(9).
        */
       reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
           GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
           GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
           GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
       /* Disable posting of DW0. */
       reg &= ~GPREG0_POST_DW0_ENB;
       /* Clear PME message. */
       reg &= ~GPREG0_PME_ENB;
       /* Set PHY address. */
       reg &= ~GPREG0_PHY_ADDR_MASK;
       reg |= sc->jme_phyaddr;
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0, reg);

       /* Configure Tx queue 0 packet completion coalescing. */
       reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
       reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
       reg |= PCCTX_COAL_TXQ0;
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);

       /* Configure Rx queue 0 packet completion coalescing. */
       reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
       reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);

       /* Disable Timers */
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TMCSR, 0);
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER1, 0);
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER2, 0);

       /* Configure retry transmit period, retry limit value. */
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
           ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
           TXTRHD_RT_PERIOD_MASK) |
           ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
           TXTRHD_RT_LIMIT_SHIFT));

       /* Disable RSS. */
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
           JME_RSSC, RSSC_DIS_RSS);

       /* Initialize the interrupt mask. */
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
            JME_INTR_MASK_SET, JME_INTRS_ENABLE);
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
            JME_INTR_STATUS, 0xFFFFFFFF);

       /* set media, if not already handling a media change */
       if (do_ifinit) {
               int error;
               if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
                       error = 0;
               else if (error != 0) {
                       aprint_error_dev(sc->jme_dev, "could not set media\n");
                       splx(s);
                       return error;
               }
       }

       /* Program MAC with resolved speed/duplex/flow-control. */
       jme_mac_config(sc);

       /* Start receiver/transmitter. */
       sc->jme_rx_cons = 0;
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR,
           sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
           sc->jme_txcsr | TXCSR_TX_ENB);

       /* start ticks calls */
       callout_schedule(&sc->jme_tick_ch, hz);
       sc->jme_if.if_flags |= IFF_RUNNING;
       sc->jme_if.if_flags &= ~IFF_OACTIVE;
       splx(s);
       return 0;
}

static int
jme_mii_read(device_t self, int phy, int reg, uint16_t *val)
{
       struct jme_softc *sc = device_private(self);
       int data, i;

       /* For FPGA version, PHY address 0 should be ignored. */
       if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
               if (phy == 0)
                       return -1;
       } else {
               if (sc->jme_phyaddr != phy)
                       return -1;
       }

       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
           SMI_OP_READ | SMI_OP_EXECUTE |
           SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
       for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
               delay(10);
               if (((data = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
                   JME_SMI)) & SMI_OP_EXECUTE) == 0)
                       break;
       }

       if (i == 0) {
               aprint_error_dev(sc->jme_dev, "phy read timeout : %d\n", reg);
               return ETIMEDOUT;
       }

       *val = (data & SMI_DATA_MASK) >> SMI_DATA_SHIFT;
       return 0;
}

static int
jme_mii_write(device_t self, int phy, int reg, uint16_t val)
{
       struct jme_softc *sc = device_private(self);
       int i;

       /* For FPGA version, PHY address 0 should be ignored. */
       if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
               if (phy == 0)
                       return -1;
       } else {
               if (sc->jme_phyaddr != phy)
                       return -1;
       }

       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
           SMI_OP_WRITE | SMI_OP_EXECUTE |
           (((uint32_t)val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
           SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
       for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
               delay(10);
               if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
                   JME_SMI)) & SMI_OP_EXECUTE) == 0)
                       break;
       }

       if (i == 0) {
               aprint_error_dev(sc->jme_dev, "phy write timeout : %d\n", reg);
               return ETIMEDOUT;
       }

       return 0;
}

static void
jme_statchg(struct ifnet *ifp)
{
       if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
               jme_init(ifp, 0);
}

static void
jme_intr_rx(jme_softc_t *sc) {
       struct mbuf *m, *mhead;
       bus_dmamap_t mmap;
       struct ifnet *ifp = &sc->jme_if;
       uint32_t flags,  buflen;
       int i, ipackets, nsegs, seg, error;
       struct jme_desc *desc;

       bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 0,
           sizeof(struct jme_desc) * JME_NBUFS,
           BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
#ifdef JMEDEBUG_RX
       printf("rxintr sc->jme_rx_cons %d flags 0x%x\n",
           sc->jme_rx_cons, le32toh(sc->jme_rxring[sc->jme_rx_cons].flags));
#endif
       ipackets = 0;
       while ((le32toh(sc->jme_rxring[sc->jme_rx_cons].flags) & JME_RD_OWN)
           == 0) {
               i = sc->jme_rx_cons;
               desc = &sc->jme_rxring[i];
#ifdef JMEDEBUG_RX
               printf("rxintr i %d flags 0x%x buflen 0x%x\n",
                   i, le32toh(desc->flags), le32toh(desc->buflen));
#endif
               if (sc->jme_rxmbuf[i] == NULL) {
                       if ((error = jme_add_rxbuf(sc, NULL)) != 0) {
                               aprint_error_dev(sc->jme_dev,
                                   "can't add new mbuf to empty slot: %d\n",
                                   error);
                               break;
                       }
                       JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
                       i = sc->jme_rx_cons;
                       continue;
               }
               if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
                       break;

               buflen = le32toh(desc->buflen);
               nsegs = JME_RX_NSEGS(buflen);
               flags = le32toh(desc->flags);
               if ((buflen & JME_RX_ERR_STAT) != 0 ||
                   JME_RX_BYTES(buflen) < sizeof(struct ether_header) ||
                   JME_RX_BYTES(buflen) >
                   (ifp->if_mtu + ETHER_HDR_LEN + JME_RX_PAD_BYTES)) {
#ifdef JMEDEBUG_RX
                       printf("rx error flags 0x%x buflen 0x%x\n",
                           flags, buflen);
#endif
                       if_statinc(ifp, if_ierrors);
                       /* reuse the mbufs */
                       for (seg = 0; seg < nsegs; seg++) {
                               m = sc->jme_rxmbuf[i];
                               sc->jme_rxmbuf[i] = NULL;
                               mmap = sc->jme_rxmbufm[i];
                               bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
                                   mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
                               bus_dmamap_unload(sc->jme_dmatag, mmap);
                               if ((error = jme_add_rxbuf(sc, m)) != 0)
                                       aprint_error_dev(sc->jme_dev,
                                           "can't reuse mbuf: %d\n", error);
                               JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
                               i = sc->jme_rx_cons;
                       }
                       continue;
               }
               /* receive this packet */
               mhead = m = sc->jme_rxmbuf[i];
               sc->jme_rxmbuf[i] = NULL;
               mmap = sc->jme_rxmbufm[i];
               bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
                   mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
               bus_dmamap_unload(sc->jme_dmatag, mmap);
               /* add a new buffer to chain */
               if (jme_add_rxbuf(sc, NULL) != 0) {
                       if ((error = jme_add_rxbuf(sc, m)) != 0)
                               aprint_error_dev(sc->jme_dev,
                                   "can't reuse mbuf: %d\n", error);
                       JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
                       i = sc->jme_rx_cons;
                       for (seg = 1; seg < nsegs; seg++) {
                               m = sc->jme_rxmbuf[i];
                               sc->jme_rxmbuf[i] = NULL;
                               mmap = sc->jme_rxmbufm[i];
                               bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
                                   mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
                               bus_dmamap_unload(sc->jme_dmatag, mmap);
                               if ((error = jme_add_rxbuf(sc, m)) != 0)
                                       aprint_error_dev(sc->jme_dev,
                                           "can't reuse mbuf: %d\n", error);
                               JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
                               i = sc->jme_rx_cons;
                       }
                       if_statinc(ifp, if_ierrors);
                       continue;
               }

               /* build mbuf chain: head, then remaining segments */
               m_set_rcvif(m, ifp);
               m->m_pkthdr.len = JME_RX_BYTES(buflen) - JME_RX_PAD_BYTES;
               m->m_len = (nsegs > 1) ? (MCLBYTES - JME_RX_PAD_BYTES) :
                   m->m_pkthdr.len;
               m->m_data = m->m_ext.ext_buf + JME_RX_PAD_BYTES;
               JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
               for (seg = 1; seg < nsegs; seg++) {
                       i = sc->jme_rx_cons;
                       m = sc->jme_rxmbuf[i];
                       sc->jme_rxmbuf[i] = NULL;
                       mmap = sc->jme_rxmbufm[i];
                       bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
                           mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
                       bus_dmamap_unload(sc->jme_dmatag, mmap);
                       if ((error = jme_add_rxbuf(sc, NULL)) != 0)
                               aprint_error_dev(sc->jme_dev,
                                   "can't add new mbuf: %d\n", error);
                       m->m_flags &= ~M_PKTHDR;
                       m_cat(mhead, m);
                       JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
               }
               /* and adjust last mbuf's size */
               if (nsegs > 1) {
                       m->m_len =
                           JME_RX_BYTES(buflen) - (MCLBYTES * (nsegs - 1));
               }
               ipackets++;

               if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) &&
                   (flags & JME_RD_IPV4)) {
                       mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4;
                       if (!(flags & JME_RD_IPCSUM))
                               mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
               }
               if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) &&
                   (flags & JME_RD_TCPV4) == JME_RD_TCPV4) {
                       mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
                       if (!(flags & JME_RD_TCPCSUM))
                               mhead->m_pkthdr.csum_flags |=
                                   M_CSUM_TCP_UDP_BAD;
               }
               if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) &&
                   (flags & JME_RD_UDPV4) == JME_RD_UDPV4) {
                       mhead->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
                       if (!(flags & JME_RD_UDPCSUM))
                               mhead->m_pkthdr.csum_flags |=
                                   M_CSUM_TCP_UDP_BAD;
               }
               if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) &&
                   (flags & JME_RD_TCPV6) == JME_RD_TCPV6) {
                       mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
                       if (!(flags & JME_RD_TCPCSUM))
                               mhead->m_pkthdr.csum_flags |=
                                   M_CSUM_TCP_UDP_BAD;
               }
               if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) &&
                   (flags & JME_RD_UDPV6) == JME_RD_UDPV6) {
                       m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
                       if (!(flags & JME_RD_UDPCSUM))
                               mhead->m_pkthdr.csum_flags |=
                                   M_CSUM_TCP_UDP_BAD;
               }
               if (flags & JME_RD_VLAN_TAG) {
                       /* pass to vlan_input() */
                       vlan_set_tag(mhead, (flags & JME_RD_VLAN_MASK));
               }
               if_percpuq_enqueue(ifp->if_percpuq, mhead);
       }
       if (ipackets)
               rnd_add_uint32(&sc->rnd_source, ipackets);
}

static int
jme_intr(void *v)
{
       jme_softc_t *sc = v;
       uint32_t istatus;

       istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
            JME_INTR_STATUS);
       if (istatus == 0 || istatus == 0xFFFFFFFF)
               return 0;
       /* Disable interrupts. */
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
           JME_INTR_MASK_CLR, 0xFFFFFFFF);
again:
       /* and update istatus */
       istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
            JME_INTR_STATUS);
       if ((istatus & JME_INTRS_CHECK) == 0)
               goto done;
       /* Reset PCC counter/timer and Ack interrupts. */
       if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
               istatus |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
       if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
               istatus |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
            JME_INTR_STATUS, istatus);

       if ((sc->jme_if.if_flags & IFF_RUNNING) == 0)
               goto done;
#ifdef JMEDEBUG_RX
       printf("jme_intr 0x%x RXCS 0x%x RXDBA 0x%x  0x%x RXQDC 0x%x RXNDA 0x%x RXMCS 0x%x\n", istatus,
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXQDC),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXNDA),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC));
       printf("jme_intr RXUMA 0x%x 0x%x RXMCHT 0x%x 0x%x GHC 0x%x\n",
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC));
#endif
       if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
               jme_intr_rx(sc);
       if ((istatus & INTR_RXQ_DESC_EMPTY) != 0) {
               /*
                * Notify hardware availability of new Rx
                * buffers.
                * Reading RXCSR takes very long time under
                * heavy load so cache RXCSR value and writes
                * the ORed value with the kick command to
                * the RXCSR. This saves one register access
                * cycle.
                */
               sc->jme_rx_cons = 0;
               bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
                   JME_RXCSR,
                   sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
       }
       if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
               jme_ifstart(&sc->jme_if);

       goto again;

done:
       /* enable interrupts. */
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
           JME_INTR_MASK_SET, JME_INTRS_ENABLE);
       return 1;
}


static int
jme_ifioctl(struct ifnet *ifp, unsigned long cmd, void *data)
{
       struct jme_softc *sc = ifp->if_softc;
       int s, error;
       struct ifreq *ifr;
       struct ifcapreq *ifcr;

       s = splnet();
       /*
        * we can't support at the same time jumbo frames and
        * TX checksums offload/TSO
        */
       switch (cmd) {
       case SIOCSIFMTU:
               ifr = data;
               if (ifr->ifr_mtu > JME_TX_FIFO_SIZE &&
                   (ifp->if_capenable & (
                   IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx |
                   IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv6_Tx |
                   IFCAP_CSUM_UDPv6_Tx | IFCAP_TSOv4 | IFCAP_TSOv6)) != 0) {
                       splx(s);
                       return EINVAL;
               }
               break;
       case SIOCSIFCAP:
               ifcr = data;
               if (ifp->if_mtu > JME_TX_FIFO_SIZE &&
                   (ifcr->ifcr_capenable & (
                   IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx |
                   IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv6_Tx |
                   IFCAP_CSUM_UDPv6_Tx | IFCAP_TSOv4 | IFCAP_TSOv6)) != 0) {
                       splx(s);
                       return EINVAL;
               }
               break;
       }

       error = ether_ioctl(ifp, cmd, data);
       if (error == ENETRESET && (ifp->if_flags & IFF_RUNNING)) {
               if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
                       jme_set_filter(sc);
                       error = 0;
               } else {
                       error = jme_init(ifp, 0);
               }
       }
       splx(s);
       return error;
}

static int
jme_encap(struct jme_softc *sc, struct mbuf * const m)
{
       struct jme_desc *desc;
       int error, i, prod, headdsc, nsegs;
       uint32_t cflags, tso_segsz;

       if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
               /*
                * Due to the adherence to NDIS specification JMC250
                * assumes upper stack computed TCP pseudo checksum
                * without including payload length. This breaks
                * checksum offload for TSO case so recompute TCP
                * pseudo checksum for JMC250. Hopefully this wouldn't
                * be much burden on modern CPUs.
                */
               bool v4 = (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
               int iphl = v4 ?
                   M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) :
                   M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
               /*
                * note: we support vlan offloading, so we should never have
                * a ETHERTYPE_VLAN packet here - so ETHER_HDR_LEN is always
                * right.
                */
               int hlen = ETHER_HDR_LEN + iphl;

               if (__predict_false(m->m_len <
                   (hlen + sizeof(struct tcphdr)))) {
                       /*
                        *
                        * TCP/IP headers are not in the first mbuf; we need
                        * to do this the slow and painful way.  Let's just
                        * hope this doesn't happen very often.
                        */
                       struct tcphdr th;

                       m_copydata(m, hlen, sizeof(th), &th);
                       if (v4) {
                               struct ip ip;

                               m_copydata(m, ETHER_HDR_LEN, sizeof(ip), &ip);
                               ip.ip_len = 0;
                               m_copyback(m,
                                   ETHER_HDR_LEN + offsetof(struct ip, ip_len),
                                   sizeof(ip.ip_len), &ip.ip_len);
                               th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
                                   ip.ip_dst.s_addr, htons(IPPROTO_TCP));
                       } else {
#if INET6
                               struct ip6_hdr ip6;

                               m_copydata(m, ETHER_HDR_LEN,
                                   sizeof(ip6), &ip6);
                               ip6.ip6_plen = 0;
                               m_copyback(m, ETHER_HDR_LEN +
                                   offsetof(struct ip6_hdr, ip6_plen),
                                   sizeof(ip6.ip6_plen), &ip6.ip6_plen);
                               th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
                                   &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
#endif /* INET6 */
                       }
                       m_copyback(m, hlen + offsetof(struct tcphdr, th_sum),
                           sizeof(th.th_sum), &th.th_sum);

                       hlen += th.th_off << 2;
               } else {
                       /*
                        * TCP/IP headers are in the first mbuf; we can do
                        * this the easy way.
                        */
                       struct tcphdr *th;

                       if (v4) {
                               struct ip *ip =
                                   (void *)(mtod(m, char *) +
                                   ETHER_HDR_LEN);
                               th = (void *)(mtod(m, char *) + hlen);

                               ip->ip_len = 0;
                               th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
                                   ip->ip_dst.s_addr, htons(IPPROTO_TCP));
                       } else {
#if INET6
                               struct ip6_hdr *ip6 =
                                   (void *)(mtod(m, char *) +
                                   ETHER_HDR_LEN);
                               th = (void *)(mtod(m, char *) + hlen);

                               ip6->ip6_plen = 0;
                               th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
                                   &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
#endif /* INET6 */
                       }
                       hlen += th->th_off << 2;
               }
       }

       prod = sc->jme_tx_prod;

       error = bus_dmamap_load_mbuf(sc->jme_dmatag, sc->jme_txmbufm[prod],
           m, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
       if (error) {
               if (error == EFBIG) {
                       log(LOG_ERR, "%s: Tx packet consumes too many "
                           "DMA segments, dropping...\n",
                           device_xname(sc->jme_dev));
                       /* Caller will free the packet. */
               }
               return (error);
       }
       /*
        * Check descriptor overrun. Leave one free descriptor.
        * Since we always use 64bit address mode for transmitting,
        * each Tx request requires one more dummy descriptor.
        */
       nsegs = sc->jme_txmbufm[prod]->dm_nsegs;
#ifdef JMEDEBUG_TX
       printf("jme_encap prod %d nsegs %d jme_tx_cnt %d\n", prod, nsegs, sc->jme_tx_cnt);
#endif
       if (sc->jme_tx_cnt + nsegs + 1 > JME_NBUFS - 1) {
               bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[prod]);
               return (ENOBUFS);
       }
       bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[prod],
           0, sc->jme_txmbufm[prod]->dm_mapsize, BUS_DMASYNC_PREWRITE);

       cflags = 0;
       tso_segsz = 0;
       /* Configure checksum offload and TSO. */
       if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
               tso_segsz = (uint32_t)m->m_pkthdr.segsz << JME_TD_MSS_SHIFT;
               cflags |= JME_TD_TSO;
       } else {
               if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0)
                       cflags |= JME_TD_IPCSUM;
               if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6))
                   != 0)
                       cflags |= JME_TD_TCPCSUM;
               if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6))
                   != 0)
                       cflags |= JME_TD_UDPCSUM;
       }
       /* Configure VLAN. */
       if (vlan_has_tag(m)) {
               cflags |= (vlan_get_tag(m) & JME_TD_VLAN_MASK);
               cflags |= JME_TD_VLAN_TAG;
       }

       desc = &sc->jme_txring[prod];
       desc->flags = htole32(cflags);
       desc->buflen = htole32(tso_segsz);
       desc->addr_hi = htole32(m->m_pkthdr.len);
       desc->addr_lo = 0;
       headdsc = prod;
       sc->jme_tx_cnt++;
       JME_DESC_INC(prod, JME_NBUFS);
       for (i = 0; i < nsegs; i++) {
               desc = &sc->jme_txring[prod];
               desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
               desc->buflen =
                   htole32(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_len);
               desc->addr_hi = htole32(
                   JME_ADDR_HI(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
               desc->addr_lo = htole32(
                   JME_ADDR_LO(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
               bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
                   prod * sizeof(struct jme_desc), sizeof(struct jme_desc),
                   BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
               sc->jme_txmbuf[prod] = NULL;
               sc->jme_tx_cnt++;
               JME_DESC_INC(prod, JME_NBUFS);
       }

       /* Update producer index. */
       sc->jme_tx_prod = prod;
#ifdef JMEDEBUG_TX
       printf("jme_encap prod now %d\n", sc->jme_tx_prod);
#endif
       /*
        * Finally request interrupt and give the first descriptor
        * ownership to hardware.
        */
       desc = &sc->jme_txring[headdsc];
       desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
       bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
           headdsc * sizeof(struct jme_desc), sizeof(struct jme_desc),
           BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

       sc->jme_txmbuf[headdsc] = m;
       return (0);
}

static void
jme_txeof(struct jme_softc *sc)
{
       struct ifnet *ifp;
       struct jme_desc *desc;
       uint32_t status;
       int cons, cons0, nsegs, seg;

       ifp = &sc->jme_if;

#ifdef JMEDEBUG_TX
       printf("jme_txeof cons %d prod %d\n",
           sc->jme_tx_cons, sc->jme_tx_prod);
       printf("jme_txeof JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
           "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
           "JME_TXTRHD 0x%x\n",
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
           bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
       for (cons = sc->jme_tx_cons; cons != sc->jme_tx_prod; ) {
               desc = &sc->jme_txring[cons];
               printf("ring[%d] 0x%x 0x%x 0x%x 0x%x\n", cons,
                   desc->flags, desc->buflen, desc->addr_hi, desc->addr_lo);
               JME_DESC_INC(cons, JME_NBUFS);
       }
#endif

       cons = sc->jme_tx_cons;
       if (cons == sc->jme_tx_prod)
               return;

       /*
        * Go through our Tx list and free mbufs for those
        * frames which have been transmitted.
        */
       for (; cons != sc->jme_tx_prod;) {
               bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
                   cons * sizeof(struct jme_desc), sizeof(struct jme_desc),
                   BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);

               desc = &sc->jme_txring[cons];
               status = le32toh(desc->flags);
#ifdef JMEDEBUG_TX
               printf("jme_txeof %i status 0x%x nsegs %d\n", cons, status,
                   sc->jme_txmbufm[cons]->dm_nsegs);
#endif
               if (status & JME_TD_OWN)
                       break;

               if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
                       if_statinc(ifp, if_oerrors);
               else {
                       if_statinc(ifp, if_opackets);
                       if ((status & JME_TD_COLLISION) != 0) {
                               if_statadd(ifp, if_collisions,
                                   le32toh(desc->buflen) &
                                   JME_TD_BUF_LEN_MASK);
                       }
               }
               /*
                * Only the first descriptor of multi-descriptor
                * transmission is updated so driver have to skip entire
                * chained buffers for the transmitted frame. In other
                * words, JME_TD_OWN bit is valid only at the first
                * descriptor of a multi-descriptor transmission.
                */
               nsegs = sc->jme_txmbufm[cons]->dm_nsegs;
               cons0 = cons;
               JME_DESC_INC(cons, JME_NBUFS);
               for (seg = 1; seg < nsegs + 1; seg++) {
                       bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
                           cons * sizeof(struct jme_desc),
                           sizeof(struct jme_desc),
                           BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
                       sc->jme_txring[cons].flags = 0;
                       JME_DESC_INC(cons, JME_NBUFS);
               }
               /* Reclaim transferred mbufs. */
               bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[cons0],
                   0, sc->jme_txmbufm[cons0]->dm_mapsize,
                   BUS_DMASYNC_POSTWRITE);
               bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[cons0]);

               KASSERT(sc->jme_txmbuf[cons0] != NULL);
               m_freem(sc->jme_txmbuf[cons0]);
               sc->jme_txmbuf[cons0] = NULL;
               sc->jme_tx_cnt -= nsegs + 1;
               KASSERT(sc->jme_tx_cnt >= 0);
               sc->jme_if.if_flags &= ~IFF_OACTIVE;
       }
       sc->jme_tx_cons = cons;
       /* Unarm watchdog timer when there are no pending descriptors in queue. */
       if (sc->jme_tx_cnt == 0)
               ifp->if_timer = 0;
#ifdef JMEDEBUG_TX
       printf("jme_txeof jme_tx_cnt %d\n", sc->jme_tx_cnt);
#endif
}

static void
jme_ifstart(struct ifnet *ifp)
{
       jme_softc_t *sc = ifp->if_softc;
       struct mbuf *mb_head;
       int enq, error;

       /*
        * check if we can free some desc.
        * Clear TX interrupt status to reset TX coalescing counters.
        */
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
            JME_INTR_STATUS, INTR_TXQ_COMP);
       jme_txeof(sc);

       if ((sc->jme_if.if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
               return;
       for (enq = 0;; enq++) {
nexttx:
               /* Grab a paquet for output */
               IFQ_POLL(&ifp->if_snd, mb_head);
               if (mb_head == NULL) {
#ifdef JMEDEBUG_TX
                       printf("%s: nothing to send\n", __func__);
#endif
                       break;
               }
               /* try to add this mbuf to the TX ring */
               if ((error = jme_encap(sc, mb_head)) != 0) {
                       if (error == EFBIG) {
                               /* This error is fatal to the packet. */
                               IFQ_DEQUEUE(&ifp->if_snd, mb_head);
                               m_freem(mb_head);
                               if_statinc(ifp, if_oerrors);
                               goto nexttx;
                       }
                       /* resource shortage, try again later */
                       ifp->if_flags |= IFF_OACTIVE;
                       break;
               }
               IFQ_DEQUEUE(&ifp->if_snd, mb_head);

               /* Pass packet to bpf if there is a listener */
               bpf_mtap(ifp, mb_head, BPF_D_OUT);
       }
#ifdef JMEDEBUG_TX
       printf("jme_ifstart enq %d\n", enq);
#endif
       if (enq) {
               /*
                * Set a 5 second timer just in case we don't hear from
                * the card again.
                */
               ifp->if_timer = 5;
               /*
                * Reading TXCSR takes very long time under heavy load
                * so cache TXCSR value and writes the ORed value with
                * the kick command to the TXCSR. This saves one register
                * access cycle.
                */
               bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
                 sc->jme_txcsr | TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
#ifdef JMEDEBUG_TX
               printf("jme_ifstart JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
                   "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
                   "JME_TXTRHD 0x%x\n",
                   bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
                   bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
                   bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
                   bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
                   bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
                   bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
                   bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
                   bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
#endif
       }
}

static void
jme_ifwatchdog(struct ifnet *ifp)
{
       jme_softc_t *sc = ifp->if_softc;

       if ((ifp->if_flags & IFF_RUNNING) == 0)
               return;
       printf("%s: device timeout\n", device_xname(sc->jme_dev));
       if_statinc(ifp, if_oerrors);
       jme_init(ifp, 0);
}

static int
jme_mediachange(struct ifnet *ifp)
{
       int error;
       jme_softc_t *sc = ifp->if_softc;

       if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
               error = 0;
       else if (error != 0) {
               aprint_error_dev(sc->jme_dev, "could not set media\n");
               return error;
       }
       return 0;
}

static void
jme_ticks(void *v)
{
       jme_softc_t *sc = v;
       int s = splnet();

       /* Tick the MII. */
       mii_tick(&sc->jme_mii);

       /* every seconds */
       callout_schedule(&sc->jme_tick_ch, hz);
       splx(s);
}

static void
jme_mac_config(jme_softc_t *sc)
{
       uint32_t ghc, gpreg, rxmac, txmac, txpause;
       struct mii_data *mii = &sc->jme_mii;

       ghc = 0;
       rxmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
       rxmac &= ~RXMAC_FC_ENB;
       txmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC);
       txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
       txpause = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC);
       txpause &= ~TXPFC_PAUSE_ENB;

       if (mii->mii_media_active & IFM_FDX) {
               ghc |= GHC_FULL_DUPLEX;
               rxmac &= ~RXMAC_COLL_DET_ENB;
               txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
                   TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
                   TXMAC_FRAME_BURST);
               /* Disable retry transmit timer/retry limit. */
               bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
                   bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)
                   & ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
       } else {
               rxmac |= RXMAC_COLL_DET_ENB;
               txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
               /* Enable retry transmit timer/retry limit. */
               bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
                   bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)                    | TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
       }
       /* Reprogram Tx/Rx MACs with resolved speed/duplex. */
       switch (IFM_SUBTYPE(mii->mii_media_active)) {
       case IFM_10_T:
               ghc |= GHC_SPEED_10 | GHC_CLKSRC_10_100;
               break;
       case IFM_100_TX:
               ghc |= GHC_SPEED_100 | GHC_CLKSRC_10_100;
               break;
       case IFM_1000_T:
               ghc |= GHC_SPEED_1000 | GHC_CLKSRC_1000;
               if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
                       txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
               break;
       default:
               break;
       }
       if ((sc->jme_flags & JME_FLAG_GIGA) &&
           sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
               /*
                * Workaround occasional packet loss issue of JMC250 A2
                * when it runs on half-duplex media.
                */
#ifdef JMEDEBUG
               printf("JME250 A2 workaround\n");
#endif
               gpreg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
                   JME_GPREG1);
               if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
                       gpreg &= ~GPREG1_HDPX_FIX;
               else
                       gpreg |= GPREG1_HDPX_FIX;
               bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
                   JME_GPREG1, gpreg);
               /* Workaround CRC errors at 100Mbps on JMC250 A2. */
               if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
                       /* Extend interface FIFO depth. */
                       jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
                           0x1B, 0x0000);
               } else {
                       /* Select default interface FIFO depth. */
                       jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
                           0x1B, 0x0004);
               }
       }
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, ghc);
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxmac);
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, txmac);
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC, txpause);
}

static void
jme_set_filter(jme_softc_t *sc)
{
       struct ethercom *ec = &sc->jme_ec;
       struct ifnet *ifp = &sc->jme_if;
       struct ether_multistep step;
       struct ether_multi *enm;
       uint32_t hash[2] = {0, 0};
       int i;
       uint32_t rxcfg;

       rxcfg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
       rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
           RXMAC_ALLMULTI);
       /* Always accept frames destined to our station address. */
       rxcfg |= RXMAC_UNICAST;
       if ((ifp->if_flags & IFF_BROADCAST) != 0)
               rxcfg |= RXMAC_BROADCAST;
       if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
               if ((ifp->if_flags & IFF_PROMISC) != 0)
                       rxcfg |= RXMAC_PROMISC;
               if ((ifp->if_flags & IFF_ALLMULTI) != 0)
                       rxcfg |= RXMAC_ALLMULTI;
               bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
                    JME_MAR0, 0xFFFFFFFF);
               bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
                    JME_MAR1, 0xFFFFFFFF);
               bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
                    JME_RXMAC, rxcfg);
               return;
       }
       /*
        * Set up the multicast address filter by passing all multicast
        * addresses through a CRC generator, and then using the low-order
        * 6 bits as an index into the 64 bit multicast hash table.  The
        * high order bits select the register, while the rest of the bits
        * select the bit within the register.
        */
       rxcfg |= RXMAC_MULTICAST;
       memset(hash, 0, sizeof(hash));

       ETHER_LOCK(ec);
       ETHER_FIRST_MULTI(step, ec, enm);
       while (enm != NULL) {
#ifdef JEMDBUG
               printf("%s: addrs %s %s\n", __func__,
                  ether_sprintf(enm->enm_addrlo),
                  ether_sprintf(enm->enm_addrhi));
#endif
               if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) {
                       i = ether_crc32_be(enm->enm_addrlo, 6);
                       /* Just want the 6 least significant bits. */
                       i &= 0x3f;
                       hash[i / 32] |= 1 << (i%32);
               } else {
                       hash[0] = hash[1] = 0xffffffff;
                       sc->jme_if.if_flags |= IFF_ALLMULTI;
                       break;
               }
               ETHER_NEXT_MULTI(step, enm);
       }
       ETHER_UNLOCK(ec);
#ifdef JMEDEBUG
       printf("%s: hash1 %x has2 %x\n", __func__, hash[0], hash[1]);
#endif
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0, hash[0]);
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1, hash[1]);
       bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxcfg);
}

#if 0
static int
jme_multicast_hash(uint8_t *a)
{
       int hash;

#define DA(addr, bit) (addr[5 - (bit / 8)] & (1 << (bit % 8)))
#define xor8(a,b,c,d,e,f,g,h)                                           \
       (((a != 0) + (b != 0) + (c != 0) + (d != 0) +                   \
         (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1)

       hash  = xor8(DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30),
           DA(a,36), DA(a,42));
       hash |= xor8(DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31),
           DA(a,37), DA(a,43)) << 1;
       hash |= xor8(DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32),
           DA(a,38), DA(a,44)) << 2;
       hash |= xor8(DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33),
           DA(a,39), DA(a,45)) << 3;
       hash |= xor8(DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34),
           DA(a,40), DA(a,46)) << 4;
       hash |= xor8(DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35),
           DA(a,41), DA(a,47)) << 5;

       return hash;
}
#endif

static int
jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
{
        uint32_t reg;
        int i;

        *val = 0;
        for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
                 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
                     JME_SMBCSR);
                 if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
                          break;
                 delay(10);
        }

        if (i == 0) {
                 aprint_error_dev(sc->jme_dev, "EEPROM idle timeout!\n");
                 return (ETIMEDOUT);
        }

        reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
        bus_space_write_4(sc->jme_bt_phy, sc->jme_bh_phy,
            JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
        for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
                 delay(10);
                 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
                     JME_SMBINTF);
                 if ((reg & SMBINTF_CMD_TRIGGER) == 0)
                          break;
        }

        if (i == 0) {
                 aprint_error_dev(sc->jme_dev, "EEPROM read timeout!\n");
                 return (ETIMEDOUT);
        }

        reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, JME_SMBINTF);
        *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
        return (0);
}


static int
jme_eeprom_macaddr(struct jme_softc *sc)
{
       uint8_t eaddr[ETHER_ADDR_LEN];
       uint8_t fup, reg, val;
       uint32_t offset;
       int match;

       offset = 0;
       if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
           fup != JME_EEPROM_SIG0)
               return (ENOENT);
       if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
           fup != JME_EEPROM_SIG1)
               return (ENOENT);
       match = 0;
       do {
               if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
                       break;
               if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1)
                   == (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
                       if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
                               break;
                       if (reg >= JME_PAR0 &&
                           reg < JME_PAR0 + ETHER_ADDR_LEN) {
                               if (jme_eeprom_read_byte(sc, offset + 2,
                                   &val) != 0)
                                       break;
                               eaddr[reg - JME_PAR0] = val;
                               match++;
                       }
               }
               if (fup & JME_EEPROM_DESC_END)
                       break;

               /* Try next eeprom descriptor. */
               offset += JME_EEPROM_DESC_BYTES;
       } while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);

       if (match == ETHER_ADDR_LEN) {
               memcpy(sc->jme_enaddr, eaddr, ETHER_ADDR_LEN);
               return (0);
       }

       return (ENOENT);
}

static int
jme_reg_macaddr(struct jme_softc *sc)
{
       uint32_t par0, par1;

       par0 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0);
       par1 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1);
       par1 &= 0xffff;
       if ((par0 == 0 && par1 == 0) ||
           (par0 == 0xffffffff && par1 == 0xffff)) {
               return (ENOENT);
       } else {
               sc->jme_enaddr[0] = (par0 >> 0) & 0xff;
               sc->jme_enaddr[1] = (par0 >> 8) & 0xff;
               sc->jme_enaddr[2] = (par0 >> 16) & 0xff;
               sc->jme_enaddr[3] = (par0 >> 24) & 0xff;
               sc->jme_enaddr[4] = (par1 >> 0) & 0xff;
               sc->jme_enaddr[5] = (par1 >> 8) & 0xff;
       }
       return (0);
}

/*
* Set up sysctl(3) MIB, hw.jme.* - Individual controllers will be
* set up in jme_pci_attach()
*/
SYSCTL_SETUP(sysctl_jme, "sysctl jme subtree setup")
{
       int rc;
       const struct sysctlnode *node;

       if ((rc = sysctl_createv(clog, 0, NULL, &node,
           0, CTLTYPE_NODE, "jme",
           SYSCTL_DESCR("jme interface controls"),
           NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
               goto err;
       }

       jme_root_num = node->sysctl_num;
       return;

err:
       aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
}

static int
jme_sysctl_intrxto(SYSCTLFN_ARGS)
{
       int error, t;
       struct sysctlnode node;
       struct jme_softc *sc;
       uint32_t reg;

       node = *rnode;
       sc = node.sysctl_data;
       t = sc->jme_intrxto;
       node.sysctl_data = &t;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       if (t < PCCRX_COAL_TO_MIN || t > PCCRX_COAL_TO_MAX)
               return EINVAL;

       /*
        * update the softc with sysctl-changed value, and mark
        * for hardware update
        */
       sc->jme_intrxto = t;
       /* Configure Rx queue 0 packet completion coalescing. */
       reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
       reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
       return 0;
}

static int
jme_sysctl_intrxct(SYSCTLFN_ARGS)
{
       int error, t;
       struct sysctlnode node;
       struct jme_softc *sc;
       uint32_t reg;

       node = *rnode;
       sc = node.sysctl_data;
       t = sc->jme_intrxct;
       node.sysctl_data = &t;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       if (t < PCCRX_COAL_PKT_MIN || t > PCCRX_COAL_PKT_MAX)
               return EINVAL;

       /*
        * update the softc with sysctl-changed value, and mark
        * for hardware update
        */
       sc->jme_intrxct = t;
       /* Configure Rx queue 0 packet completion coalescing. */
       reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
       reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
       return 0;
}

static int
jme_sysctl_inttxto(SYSCTLFN_ARGS)
{
       int error, t;
       struct sysctlnode node;
       struct jme_softc *sc;
       uint32_t reg;

       node = *rnode;
       sc = node.sysctl_data;
       t = sc->jme_inttxto;
       node.sysctl_data = &t;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       if (t < PCCTX_COAL_TO_MIN || t > PCCTX_COAL_TO_MAX)
               return EINVAL;

       /*
        * update the softc with sysctl-changed value, and mark
        * for hardware update
        */
       sc->jme_inttxto = t;
       /* Configure Tx queue 0 packet completion coalescing. */
       reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
       reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
       reg |= PCCTX_COAL_TXQ0;
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
       return 0;
}

static int
jme_sysctl_inttxct(SYSCTLFN_ARGS)
{
       int error, t;
       struct sysctlnode node;
       struct jme_softc *sc;
       uint32_t reg;

       node = *rnode;
       sc = node.sysctl_data;
       t = sc->jme_inttxct;
       node.sysctl_data = &t;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       if (t < PCCTX_COAL_PKT_MIN || t > PCCTX_COAL_PKT_MAX)
               return EINVAL;

       /*
        * update the softc with sysctl-changed value, and mark
        * for hardware update
        */
       sc->jme_inttxct = t;
       /* Configure Tx queue 0 packet completion coalescing. */
       reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
       reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
       reg |= PCCTX_COAL_TXQ0;
       bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
       return 0;
}