/*-
* BSD LICENSE
*
* Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include <sys/cdefs.h>
#if 0
__FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
#endif
__KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.43 2025/02/26 04:49:46 andvar Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/kthread.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/workqueue.h>
#include <sys/callout.h>
#include <sys/interrupt.h>
#include <sys/cpu.h>

#include <net/if_ether.h>
#include <net/if_vlanvar.h>

#include <dev/pci/if_enavar.h>

/*********************************************************
*  Function prototypes
*********************************************************/
/* cfattach interface functions */
static int      ena_probe(device_t, cfdata_t, void *);
static void     ena_attach(device_t, device_t, void *);
static int      ena_detach(device_t, int);

/* ifnet interface functions */
static int      ena_init(struct ifnet *);
static void     ena_stop(struct ifnet *, int);
static int      ena_ioctl(struct ifnet *, u_long, void *);
static int      ena_media_change(struct ifnet *);
static void     ena_media_status(struct ifnet *, struct ifmediareq *);
static int      ena_mq_start(struct ifnet *, struct mbuf *);

/* attach or detach */
static int      ena_calc_io_queue_num(struct pci_attach_args *,
                   struct ena_adapter *,
                   struct ena_com_dev_get_features_ctx *);
static int      ena_calc_queue_size(struct ena_adapter *, uint16_t *,
                   uint16_t *, struct ena_com_dev_get_features_ctx *);

static int      ena_allocate_pci_resources(struct pci_attach_args *,
                   struct ena_adapter *);
static void     ena_free_pci_resources(struct ena_adapter *);
static void     ena_free_irqs(struct ena_adapter*);

static void     ena_init_io_rings_common(struct ena_adapter *,
                                           struct ena_ring *, uint16_t);
static void     ena_init_io_rings(struct ena_adapter *);
static void     ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
static void     ena_free_all_io_rings_resources(struct ena_adapter *);

static int      ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
static int      ena_setup_ifnet(device_t, struct ena_adapter *,
                   struct ena_com_dev_get_features_ctx *);
static void     ena_rss_init_default(device_t);

static inline void      ena_alloc_counters_rx(struct ena_adapter *,
                           struct ena_stats_rx *, int);
static inline void      ena_alloc_counters_tx(struct ena_adapter *,
                           struct ena_stats_tx *, int);
static inline void      ena_alloc_counters_dev(struct ena_adapter *,
                           struct ena_stats_dev *, int);
static inline void      ena_alloc_counters_hwstats(struct ena_adapter *,
                           struct ena_hw_stats *, int);
static inline void      ena_free_counters(struct evcnt *, int, int);

/* attach or detach or ena_reset_task() */
static void     ena_reset_task(struct work *, void *);

static void     ena_free_mgmnt_irq(struct ena_adapter *);
static void     ena_disable_msix(struct ena_adapter *);
static void     ena_config_host_info(struct ena_com_dev *);
static int      ena_device_init(struct ena_adapter *, device_t,
                   struct ena_com_dev_get_features_ctx *, int *);
static int      ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
                   int);
static int      ena_enable_msix(struct ena_adapter *);
static int      ena_request_mgmnt_irq(struct ena_adapter *);

/* I/F up or down */
static int      ena_up_complete(struct ena_adapter *);
static int      ena_up(struct ena_adapter *);
static void     ena_down(struct ena_adapter *);
static void     ena_set_stopping_flag(struct ena_adapter *, bool);

static int      ena_setup_rx_resources(struct ena_adapter *, unsigned int);
static int      ena_setup_all_rx_resources(struct ena_adapter *);
static void     ena_free_rx_resources(struct ena_adapter *, unsigned int);
static void     ena_free_all_rx_resources(struct ena_adapter *);
static void     ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
                   struct ena_rx_buffer *);
static void     ena_free_rx_bufs(struct ena_adapter *, unsigned int);
static void     ena_free_all_rx_bufs(struct ena_adapter *);

static int      ena_setup_tx_resources(struct ena_adapter *, int);
static int      ena_setup_all_tx_resources(struct ena_adapter *);
static void     ena_free_tx_resources(struct ena_adapter *, int);
static void     ena_free_all_tx_resources(struct ena_adapter *);
static void     ena_free_tx_bufs(struct ena_adapter *, unsigned int);
static void     ena_free_all_tx_bufs(struct ena_adapter *);

static int      ena_request_io_irq(struct ena_adapter *);
static void     ena_free_io_irq(struct ena_adapter *);
static int      ena_create_io_queues(struct ena_adapter *);
static void     ena_destroy_all_tx_queues(struct ena_adapter *);
static void     ena_destroy_all_rx_queues(struct ena_adapter *);
static void     ena_destroy_all_io_queues(struct ena_adapter *);

static void     ena_update_hwassist(struct ena_adapter *);
static int      ena_rss_configure(struct ena_adapter *);
static void     ena_unmask_all_io_irqs(struct ena_adapter *);
static inline void      ena_reset_counters(struct evcnt *, int, int);

/* other hardware interrupt, workqueue, softint context */
static int      ena_intr_msix_mgmnt(void *);
static void     ena_update_on_link_change(void *,
                   struct ena_admin_aenq_entry *);
static void     ena_keep_alive_wd(void *,
                   struct ena_admin_aenq_entry *);
static void     unimplemented_aenq_handler(void *,
                   struct ena_admin_aenq_entry *);

static int      ena_handle_msix(void *);
static void     ena_cleanup(struct work *, void *);
static inline int       validate_rx_req_id(struct ena_ring *, uint16_t);
static inline int       ena_alloc_rx_mbuf(struct ena_adapter *,
                           struct ena_ring *, struct ena_rx_buffer *);
static int      ena_refill_rx_bufs(struct ena_ring *, uint32_t);
static void     ena_refill_all_rx_bufs(struct ena_adapter *);
static int      ena_rx_cleanup(struct ena_ring *);
static struct mbuf*     ena_rx_mbuf(struct ena_ring *,
                           struct ena_com_rx_buf_info *,
                           struct ena_com_rx_ctx *, uint16_t *);
static inline void      ena_rx_checksum(struct ena_ring *,
                           struct ena_com_rx_ctx *, struct mbuf *);

static int      ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
                   struct mbuf **mbuf);
static int      ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
static void     ena_start_xmit(struct ena_ring *);
static void     ena_deferred_mq_start(struct work *, void *);
static int      ena_tx_cleanup(struct ena_ring *);
static void     ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
static inline int       validate_tx_req_id(struct ena_ring *, uint16_t);

/* other */
static int      ena_change_mtu(struct ifnet *, int);

static void     ena_timer_service(void *);
static void     check_for_missing_keep_alive(struct ena_adapter *);
static void     check_for_admin_com_state(struct ena_adapter *);
static int      check_missing_comp_in_queue(struct ena_adapter *, struct ena_ring*);
static void     check_for_missing_tx_completions(struct ena_adapter *);
static void     check_for_empty_rx_ring(struct ena_adapter *);
static void     ena_update_host_info(struct ena_admin_host_info *,
                   struct ifnet *);

#if 0
static int      ena_setup_tx_dma_tag(struct ena_adapter *);
static int      ena_free_tx_dma_tag(struct ena_adapter *);
static int      ena_setup_rx_dma_tag(struct ena_adapter *);
static int      ena_free_rx_dma_tag(struct ena_adapter *);
static void     ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
   struct mbuf *);
static uint64_t ena_get_counter(struct ifnet *, ift_counter);
static void     ena_qflush(struct ifnet *);
#endif

static const char ena_version[] =
   DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;

#if 0
static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
#endif

/*
* Tuneable number of buffers in the buf-ring (drbr)
*/
static int ena_buf_ring_size = 4096;
#if 0
SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
   &ena_buf_ring_size, 0, "Size of the bufring");
#endif

/*
* Logging level for changing verbosity of the output
*/
int ena_log_level = ENA_ALERT | ENA_WARNING;
#if 0
SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
   &ena_log_level, 0, "Logging level indicating verbosity of the logs");
#endif

static const ena_vendor_info_t ena_vendor_info_array[] = {
   { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
   { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
   { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
   { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
   /* Last entry */
   { 0, 0, 0 }
};

/*
* Contains pointers to event handlers, e.g. link state change.
*/
static struct ena_aenq_handlers aenq_handlers;

int
ena_dma_alloc(device_t dmadev, bus_size_t size,
   ena_mem_handle_t *dma , int mapflags)
{
       struct ena_adapter *adapter = device_private(dmadev);
       bus_size_t maxsize;
       int error;

       maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;

#if 0
       /* XXX what is this needed for ? */
       dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
       if (unlikely(dma_space_addr == 0))
               dma_space_addr = BUS_SPACE_MAXADDR;
#endif

       dma->tag = adapter->sc_dmat;

       if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
           BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
               ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
                   (uintmax_t)maxsize, error);
               goto fail_create;
       }

       error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &dma->seg, 1, &dma->nseg,
           BUS_DMA_ALLOCNOW);
       if (error) {
               ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
                   (uintmax_t)maxsize, error);
               goto fail_alloc;
       }

       error = bus_dmamem_map(dma->tag, &dma->seg, dma->nseg, maxsize,
           &dma->vaddr, BUS_DMA_COHERENT);
       if (error) {
               ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
                   (uintmax_t)maxsize, error);
               goto fail_map;
       }
       memset(dma->vaddr, 0, maxsize);

       error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
           maxsize, NULL, mapflags);
       if (error) {
               ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
               goto fail_load;
       }
       dma->paddr = dma->map->dm_segs[0].ds_addr;

       return (0);

fail_load:
       bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
fail_map:
       bus_dmamem_free(dma->tag, &dma->seg, dma->nseg);
fail_alloc:
       bus_dmamap_destroy(adapter->sc_dmat, dma->map);
fail_create:
       return (error);
}

static int
ena_allocate_pci_resources(struct pci_attach_args *pa,
   struct ena_adapter *adapter)
{
       pcireg_t memtype, reg;
       int flags, error;
       int msixoff;

       memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
       if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) {
               aprint_error_dev(adapter->pdev, "invalid type (type=0x%x)\n",
                   memtype);
               return ENXIO;
       }
       reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
       if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) ||
           ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) {
               /*
                * Enable address decoding for memory range in case BIOS or
                * UEFI didn't set it.
                */
               reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
               pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
                   reg);
       }

       adapter->sc_btag = pa->pa_memt;
       error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, ENA_REG_BAR,
           memtype, &adapter->sc_memaddr, &adapter->sc_mapsize, &flags);
       if (error) {
               aprint_error_dev(adapter->pdev, "can't get map info\n");
               return ENXIO;
       }

       if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff,
           NULL)) {
               pcireg_t msixtbl;
               bus_size_t table_offset;
               int bir;

               msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag,
                   msixoff + PCI_MSIX_TBLOFFSET);
               table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
               bir = msixtbl & PCI_MSIX_TBLBIR_MASK;
               if (bir == PCI_MAPREG_NUM(ENA_REG_BAR))
                       adapter->sc_mapsize = table_offset;
       }

       error = bus_space_map(adapter->sc_btag, adapter->sc_memaddr,
           adapter->sc_mapsize, flags, &adapter->sc_bhandle);
       if (error != 0) {
               aprint_error_dev(adapter->pdev,
                   "can't map mem space (error=%d)\n", error);
               return ENXIO;
       }

       return (0);
}

static void
ena_free_pci_resources(struct ena_adapter *adapter)
{
       if (adapter->sc_mapsize != 0) {
               bus_space_unmap(adapter->sc_btag, adapter->sc_bhandle,
                   adapter->sc_mapsize);
       }
}

static int
ena_probe(device_t parent, cfdata_t match, void *aux)
{
       struct pci_attach_args *pa = aux;
       const ena_vendor_info_t *ent;

       for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
               ent = &ena_vendor_info_array[i];

               if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
                   (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
                       return 1;
               }
       }

       return 0;
}

static int
ena_change_mtu(struct ifnet *ifp, int new_mtu)
{
       struct ena_adapter *adapter = if_getsoftc(ifp);
       int rc;

       if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
               device_printf(adapter->pdev, "Invalid MTU setting. "
                   "new_mtu: %d max mtu: %d min mtu: %d\n",
                   new_mtu, adapter->max_mtu, ENA_MIN_MTU);
               return (EINVAL);
       }

       rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
       if (likely(rc == 0)) {
               ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
               if_setmtu(ifp, new_mtu);
       } else {
               device_printf(adapter->pdev, "Failed to set MTU to %d\n",
                   new_mtu);
       }

       return (rc);
}

#define EVCNT_INIT(st, f) \
       do {                                                            \
               evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL,     \
                   st->name, #f);                                      \
       } while (0)

static inline void
ena_alloc_counters_rx(struct ena_adapter *adapter, struct ena_stats_rx *st, int queue)
{
       snprintf(st->name, sizeof(st->name), "%s rxq%d",
           device_xname(adapter->pdev), queue);

       EVCNT_INIT(st, cnt);
       EVCNT_INIT(st, bytes);
       EVCNT_INIT(st, refil_partial);
       EVCNT_INIT(st, bad_csum);
       EVCNT_INIT(st, mbuf_alloc_fail);
       EVCNT_INIT(st, dma_mapping_err);
       EVCNT_INIT(st, bad_desc_num);
       EVCNT_INIT(st, bad_req_id);
       EVCNT_INIT(st, empty_rx_ring);

       /* Make sure all code is updated when new fields added */
       CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
           + sizeof(st->empty_rx_ring) == sizeof(*st));
}

static inline void
ena_alloc_counters_tx(struct ena_adapter *adapter, struct ena_stats_tx *st, int queue)
{
       snprintf(st->name, sizeof(st->name), "%s txq%d",
           device_xname(adapter->pdev), queue);

       EVCNT_INIT(st, cnt);
       EVCNT_INIT(st, bytes);
       EVCNT_INIT(st, prepare_ctx_err);
       EVCNT_INIT(st, dma_mapping_err);
       EVCNT_INIT(st, doorbells);
       EVCNT_INIT(st, missing_tx_comp);
       EVCNT_INIT(st, bad_req_id);
       EVCNT_INIT(st, collapse);
       EVCNT_INIT(st, collapse_err);
       EVCNT_INIT(st, pcq_drops);

       /* Make sure all code is updated when new fields added */
       CTASSERT(offsetof(struct ena_stats_tx, pcq_drops)
           + sizeof(st->pcq_drops) == sizeof(*st));
}

static inline void
ena_alloc_counters_dev(struct ena_adapter *adapter, struct ena_stats_dev *st, int queue)
{
       snprintf(st->name, sizeof(st->name), "%s dev ioq%d",
           device_xname(adapter->pdev), queue);

       EVCNT_INIT(st, wd_expired);
       EVCNT_INIT(st, interface_up);
       EVCNT_INIT(st, interface_down);
       EVCNT_INIT(st, admin_q_pause);

       /* Make sure all code is updated when new fields added */
       CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
           + sizeof(st->admin_q_pause) == sizeof(*st));
}

static inline void
ena_alloc_counters_hwstats(struct ena_adapter *adapter, struct ena_hw_stats *st, int queue)
{
       snprintf(st->name, sizeof(st->name), "%s hw ioq%d",
           device_xname(adapter->pdev), queue);

       EVCNT_INIT(st, rx_packets);
       EVCNT_INIT(st, tx_packets);
       EVCNT_INIT(st, rx_bytes);
       EVCNT_INIT(st, tx_bytes);
       EVCNT_INIT(st, rx_drops);

       /* Make sure all code is updated when new fields added */
       CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
           + sizeof(st->rx_drops) == sizeof(*st));
}
static inline void
ena_free_counters(struct evcnt *begin, int size, int offset)
{
       struct evcnt *end = (struct evcnt *)((char *)begin + size);
       begin = (struct evcnt *)((char *)begin + offset);

       for (; begin < end; ++begin)
               counter_u64_free(*begin);
}

static inline void
ena_reset_counters(struct evcnt *begin, int size, int offset)
{
       struct evcnt *end = (struct evcnt *)((char *)begin + size);
       begin = (struct evcnt *)((char *)begin + offset);

       for (; begin < end; ++begin)
               counter_u64_zero(*begin);
}

static void
ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
   uint16_t qid)
{

       ring->qid = qid;
       ring->adapter = adapter;
       ring->ena_dev = adapter->ena_dev;
}

static void
ena_init_io_rings(struct ena_adapter *adapter)
{
       struct ena_com_dev *ena_dev;
       struct ena_ring *txr, *rxr;
       struct ena_que *que;
       int i;

       ena_dev = adapter->ena_dev;

       for (i = 0; i < adapter->num_queues; i++) {
               txr = &adapter->tx_ring[i];
               rxr = &adapter->rx_ring[i];

               /* TX/RX common ring state */
               ena_init_io_rings_common(adapter, txr, i);
               ena_init_io_rings_common(adapter, rxr, i);

               /* TX specific ring state */
               txr->ring_size = adapter->tx_ring_size;
               txr->tx_max_header_size = ena_dev->tx_max_header_size;
               txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
               txr->smoothed_interval =
                   ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);

               /* Allocate a buf ring */
               txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
                   M_WAITOK, &txr->ring_mtx);

               /* Alloc TX statistics. */
               ena_alloc_counters_tx(adapter, &txr->tx_stats, i);

               /* RX specific ring state */
               rxr->ring_size = adapter->rx_ring_size;
               rxr->smoothed_interval =
                   ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);

               /* Alloc RX statistics. */
               ena_alloc_counters_rx(adapter, &rxr->rx_stats, i);

               /* Initialize locks */
               snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
                   device_xname(adapter->pdev), i);
               snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
                   device_xname(adapter->pdev), i);

               mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
               mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);

               que = &adapter->que[i];
               que->adapter = adapter;
               que->id = i;
               que->tx_ring = txr;
               que->rx_ring = rxr;

               txr->que = que;
               rxr->que = que;

               rxr->empty_rx_queue = 0;
       }
}

static void
ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
{
       struct ena_ring *txr = &adapter->tx_ring[qid];
       struct ena_ring *rxr = &adapter->rx_ring[qid];

       ena_free_counters((struct evcnt *)&txr->tx_stats,
           sizeof(txr->tx_stats), offsetof(struct ena_stats_tx, cnt));
       ena_free_counters((struct evcnt *)&rxr->rx_stats,
           sizeof(rxr->rx_stats), offsetof(struct ena_stats_rx, cnt));

       mutex_destroy(&txr->ring_mtx);
       mutex_destroy(&rxr->ring_mtx);
}

static void
ena_free_all_io_rings_resources(struct ena_adapter *adapter)
{
       int i;

       for (i = 0; i < adapter->num_queues; i++)
               ena_free_io_ring_resources(adapter, i);

}

#if 0
static int
ena_setup_tx_dma_tag(struct ena_adapter *adapter)
{
       int ret;

       /* Create DMA tag for Tx buffers */
       ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
           1, 0,                                 /* alignment, bounds       */
           ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
           BUS_SPACE_MAXADDR,                    /* highaddr of excl window */
           NULL, NULL,                           /* filter, filterarg       */
           ENA_TSO_MAXSIZE,                      /* maxsize                 */
           adapter->max_tx_sgl_size - 1,         /* nsegments               */
           ENA_TSO_MAXSIZE,                      /* maxsegsize              */
           0,                                    /* flags                   */
           NULL,                                 /* lockfunc                */
           NULL,                                 /* lockfuncarg             */
           &adapter->tx_buf_tag);

       return (ret);
}
#endif

#if 0
static int
ena_setup_rx_dma_tag(struct ena_adapter *adapter)
{
       int ret;

       /* Create DMA tag for Rx buffers*/
       ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent   */
           1, 0,                                 /* alignment, bounds       */
           ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
           BUS_SPACE_MAXADDR,                    /* highaddr of excl window */
           NULL, NULL,                           /* filter, filterarg       */
           MJUM16BYTES,                          /* maxsize                 */
           adapter->max_rx_sgl_size,             /* nsegments               */
           MJUM16BYTES,                          /* maxsegsize              */
           0,                                    /* flags                   */
           NULL,                                 /* lockfunc                */
           NULL,                                 /* lockarg                 */
           &adapter->rx_buf_tag);

       return (ret);
}
#endif

/**
* ena_setup_tx_resources - allocate Tx resources (Descriptors)
* @adapter: network interface device structure
* @qid: queue index
*
* Returns 0 on success, otherwise on failure.
**/
static int
ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
{
       struct ena_que *que = &adapter->que[qid];
       struct ena_ring *tx_ring = que->tx_ring;
       int size, i, err;

       size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
       tx_ring->tx_buffer_info = kmem_zalloc(size, KM_SLEEP);

       size = sizeof(uint16_t) * tx_ring->ring_size;
       tx_ring->free_tx_ids = kmem_zalloc(size, KM_SLEEP);

       /* Req id stack for TX OOO completions */
       for (i = 0; i < tx_ring->ring_size; i++)
               tx_ring->free_tx_ids[i] = i;

       /* Reset TX statistics. */
       ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
           sizeof(tx_ring->tx_stats),
           offsetof(struct ena_stats_tx, cnt));

       tx_ring->next_to_use = 0;
       tx_ring->next_to_clean = 0;

       tx_ring->br = pcq_create(ENA_DEFAULT_RING_SIZE, KM_SLEEP);

       /* ... and create the buffer DMA maps */
       for (i = 0; i < tx_ring->ring_size; i++) {
               err = bus_dmamap_create(adapter->sc_dmat,
                   ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
                   ENA_TSO_MAXSIZE, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
                   &tx_ring->tx_buffer_info[i].map);
               if (unlikely(err != 0)) {
                       ena_trace(ENA_ALERT,
                            "Unable to create Tx DMA map for buffer %d\n", i);
                       goto err_buf_info_unmap;
               }
       }

       /* Allocate workqueues */
       int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
           ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
       if (unlikely(rc != 0)) {
               ena_trace(ENA_ALERT,
                   "Unable to create workqueue for enqueue task\n");
               i = tx_ring->ring_size;
               goto err_buf_info_unmap;
       }
       return (0);

err_buf_info_unmap:
       while (i--) {
               bus_dmamap_destroy(adapter->sc_dmat,
                   tx_ring->tx_buffer_info[i].map);
       }
       size = sizeof(uint16_t) * tx_ring->ring_size;
       kmem_free(tx_ring->free_tx_ids, size);
       tx_ring->free_tx_ids = NULL;
       size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
       kmem_free(tx_ring->tx_buffer_info, size);
       tx_ring->tx_buffer_info = NULL;

       return (ENOMEM);
}

/**
* ena_free_tx_resources - Free Tx Resources per Queue
* @adapter: network interface device structure
* @qid: queue index
*
* Free all transmit software resources
**/
static void
ena_free_tx_resources(struct ena_adapter *adapter, int qid)
{
       struct ena_ring *tx_ring = &adapter->tx_ring[qid];
       struct mbuf *m;

       workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
       workqueue_destroy(tx_ring->enqueue_tq);
       tx_ring->enqueue_tq = NULL;

       /* Flush buffer ring, */
       while ((m = pcq_get(tx_ring->br)) != NULL)
               m_freem(m);
       pcq_destroy(tx_ring->br);
       tx_ring->br = NULL;

       /* Free buffer DMA maps, */
       for (int i = 0; i < tx_ring->ring_size; i++) {
               bus_dmamap_unload(adapter->sc_dmat,
                   tx_ring->tx_buffer_info[i].map);
               bus_dmamap_destroy(adapter->sc_dmat,
                   tx_ring->tx_buffer_info[i].map);
               m_freem(tx_ring->tx_buffer_info[i].mbuf);
               tx_ring->tx_buffer_info[i].mbuf = NULL;
       }

       /* And free allocated memory. */
       kmem_free(tx_ring->tx_buffer_info,
           sizeof(struct ena_tx_buffer) * tx_ring->ring_size);
       tx_ring->tx_buffer_info = NULL;

       kmem_free(tx_ring->free_tx_ids, sizeof(uint16_t) * tx_ring->ring_size);
       tx_ring->free_tx_ids = NULL;
}

/**
* ena_setup_all_tx_resources - allocate all queues Tx resources
* @adapter: network interface device structure
*
* Returns 0 on success, otherwise on failure.
**/
static int
ena_setup_all_tx_resources(struct ena_adapter *adapter)
{
       int i, rc;

       for (i = 0; i < adapter->num_queues; i++) {
               rc = ena_setup_tx_resources(adapter, i);
               if (rc != 0) {
                       device_printf(adapter->pdev,
                           "Allocation for Tx Queue %u failed\n", i);
                       goto err_setup_tx;
               }
       }

       return (0);

err_setup_tx:
       /* Rewind the index freeing the rings as we go */
       while (i--)
               ena_free_tx_resources(adapter, i);
       return (rc);
}

/**
* ena_free_all_tx_resources - Free Tx Resources for All Queues
* @adapter: network interface device structure
*
* Free all transmit software resources
**/
static void
ena_free_all_tx_resources(struct ena_adapter *adapter)
{
       int i;

       for (i = 0; i < adapter->num_queues; i++)
               ena_free_tx_resources(adapter, i);
}

static inline int
validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
{
       if (likely(req_id < rx_ring->ring_size))
               return (0);

       device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
           req_id);
       counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);

       /* Trigger device reset */
       rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
       ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, rx_ring->adapter);

       return (EFAULT);
}

/**
* ena_setup_rx_resources - allocate Rx resources (Descriptors)
* @adapter: network interface device structure
* @qid: queue index
*
* Returns 0 on success, otherwise on failure.
**/
static int
ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
{
       struct ena_que *que = &adapter->que[qid];
       struct ena_ring *rx_ring = que->rx_ring;
       int size, err, i;

       size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;

       /*
        * Alloc extra element so in rx path
        * we can always prefetch rx_info + 1
        */
       size += sizeof(struct ena_rx_buffer);

       rx_ring->rx_buffer_info = kmem_zalloc(size, KM_SLEEP);

       size = sizeof(uint16_t) * rx_ring->ring_size;
       rx_ring->free_rx_ids = kmem_zalloc(size, KM_SLEEP);

       for (i = 0; i < rx_ring->ring_size; i++)
               rx_ring->free_rx_ids[i] = i;

       /* Reset RX statistics. */
       ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
           sizeof(rx_ring->rx_stats),
           offsetof(struct ena_stats_rx, cnt));

       rx_ring->next_to_clean = 0;
       rx_ring->next_to_use = 0;

       /* ... and create the buffer DMA maps */
       for (i = 0; i < rx_ring->ring_size; i++) {
               err = bus_dmamap_create(adapter->sc_dmat,
                   MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
                   0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
                   &(rx_ring->rx_buffer_info[i].map));
               if (err != 0) {
                       ena_trace(ENA_ALERT,
                           "Unable to create Rx DMA map for buffer %d\n", i);
                       goto err_buf_info_unmap;
               }
       }

#ifdef LRO
       /* Create LRO for the ring */
       if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
               int err = tcp_lro_init(&rx_ring->lro);
               if (err != 0) {
                       device_printf(adapter->pdev,
                           "LRO[%d] Initialization failed!\n", qid);
               } else {
                       ena_trace(ENA_INFO,
                           "RX Soft LRO[%d] Initialized\n", qid);
                       rx_ring->lro.ifp = adapter->ifp;
               }
       }
#endif

       /* Allocate workqueues */
       int rc = workqueue_create(&rx_ring->cleanup_tq, "ena_rx_comp",
           ena_cleanup, que, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
       if (unlikely(rc != 0)) {
               ena_trace(ENA_ALERT,
                   "Unable to create workqueue for RX completion task\n");
               goto err_buf_info_unmap;
       }

       return (0);

err_buf_info_unmap:
       while (i--) {
               bus_dmamap_destroy(adapter->sc_dmat,
                   rx_ring->rx_buffer_info[i].map);
       }

       size = sizeof(uint16_t) * rx_ring->ring_size;
       kmem_free(rx_ring->free_rx_ids, size);
       rx_ring->free_rx_ids = NULL;
       size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
       kmem_free(rx_ring->rx_buffer_info, size);
       rx_ring->rx_buffer_info = NULL;
       return (ENOMEM);
}

/**
* ena_free_rx_resources - Free Rx Resources
* @adapter: network interface device structure
* @qid: queue index
*
* Free all receive software resources
**/
static void
ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
{
       struct ena_ring *rx_ring = &adapter->rx_ring[qid];

       workqueue_wait(rx_ring->cleanup_tq, &rx_ring->cleanup_task);
       workqueue_destroy(rx_ring->cleanup_tq);
       rx_ring->cleanup_tq = NULL;

       /* Free buffer DMA maps, */
       for (int i = 0; i < rx_ring->ring_size; i++) {
               bus_dmamap_unload(adapter->sc_dmat,
                   rx_ring->rx_buffer_info[i].map);
               bus_dmamap_destroy(adapter->sc_dmat,
                   rx_ring->rx_buffer_info[i].map);
               m_freem(rx_ring->rx_buffer_info[i].mbuf);
               rx_ring->rx_buffer_info[i].mbuf = NULL;
       }

#ifdef LRO
       /* free LRO resources, */
       tcp_lro_free(&rx_ring->lro);
#endif

       /* free allocated memory */
       kmem_free(rx_ring->rx_buffer_info,
           sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1));
       rx_ring->rx_buffer_info = NULL;

       kmem_free(rx_ring->free_rx_ids, sizeof(uint16_t) * rx_ring->ring_size);
       rx_ring->free_rx_ids = NULL;
}

/**
* ena_setup_all_rx_resources - allocate all queues Rx resources
* @adapter: network interface device structure
*
* Returns 0 on success, otherwise on failure.
**/
static int
ena_setup_all_rx_resources(struct ena_adapter *adapter)
{
       int i, rc = 0;

       for (i = 0; i < adapter->num_queues; i++) {
               rc = ena_setup_rx_resources(adapter, i);
               if (rc != 0) {
                       device_printf(adapter->pdev,
                           "Allocation for Rx Queue %u failed\n", i);
                       goto err_setup_rx;
               }
       }
       return (0);

err_setup_rx:
       /* rewind the index freeing the rings as we go */
       while (i--)
               ena_free_rx_resources(adapter, i);
       return (rc);
}

/**
* ena_free_all_rx_resources - Free Rx resources for all queues
* @adapter: network interface device structure
*
* Free all receive software resources
**/
static void
ena_free_all_rx_resources(struct ena_adapter *adapter)
{
       int i;

       for (i = 0; i < adapter->num_queues; i++)
               ena_free_rx_resources(adapter, i);
}

static inline int
ena_alloc_rx_mbuf(struct ena_adapter *adapter,
   struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
{
       struct ena_com_buf *ena_buf;
       int error;
       int mlen;

       /* if previous allocated frag is not used */
       if (unlikely(rx_info->mbuf != NULL))
               return (0);

       rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
       if (unlikely(rx_info->mbuf == NULL)) {
               counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
               return (ENOMEM);
       }
       mlen = MCLBYTES;

       /* Set mbuf length*/
       rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;

       /* Map packets for DMA */
       ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
           "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
           adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
       error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
           rx_info->mbuf, BUS_DMA_NOWAIT);
       if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
               ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
                   "nsegs: %d\n", error, rx_info->map->dm_nsegs);
               counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
               goto exit;

       }

       bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
           rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);

       ena_buf = &rx_info->ena_buf;
       ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
       ena_buf->len = mlen;

       ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
           "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
           rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);

       return (0);

exit:
       m_freem(rx_info->mbuf);
       rx_info->mbuf = NULL;
       return (EFAULT);
}

static void
ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
   struct ena_rx_buffer *rx_info)
{

       if (rx_info->mbuf == NULL) {
               ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
               return;
       }

       bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
       m_freem(rx_info->mbuf);
       rx_info->mbuf = NULL;
}

/**
* ena_refill_rx_bufs - Refills ring with descriptors
* @rx_ring: the ring which we want to feed with free descriptors
* @num: number of descriptors to refill
* Refills the ring with newly allocated DMA-mapped mbufs for receiving
**/
static int
ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
{
       struct ena_adapter *adapter = rx_ring->adapter;
       uint16_t next_to_use, req_id;
       uint32_t i;
       int rc;

       ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
           rx_ring->qid);

       next_to_use = rx_ring->next_to_use;

       for (i = 0; i < num; i++) {
               struct ena_rx_buffer *rx_info;

               ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
                   "RX buffer - next to use: %d", next_to_use);

               req_id = rx_ring->free_rx_ids[next_to_use];
               rc = validate_rx_req_id(rx_ring, req_id);
               if (unlikely(rc != 0))
                       break;

               rx_info = &rx_ring->rx_buffer_info[req_id];

               rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
               if (unlikely(rc != 0)) {
                       ena_trace(ENA_WARNING,
                           "failed to alloc buffer for rx queue %d\n",
                           rx_ring->qid);
                       break;
               }
               rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
                   &rx_info->ena_buf, req_id);
               if (unlikely(rc != 0)) {
                       ena_trace(ENA_WARNING,
                           "failed to add buffer for rx queue %d\n",
                           rx_ring->qid);
                       break;
               }
               next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
                   rx_ring->ring_size);
       }

       if (unlikely(i < num)) {
               counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
               ena_trace(ENA_WARNING,
                    "refilled rx qid %d with only %d mbufs (from %d)\n",
                    rx_ring->qid, i, num);
       }

       if (likely(i != 0)) {
               wmb();
               ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
       }
       rx_ring->next_to_use = next_to_use;
       return (i);
}

static void
ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
{
       struct ena_ring *rx_ring = &adapter->rx_ring[qid];
       unsigned int i;

       for (i = 0; i < rx_ring->ring_size; i++) {
               struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];

               if (rx_info->mbuf != NULL)
                       ena_free_rx_mbuf(adapter, rx_ring, rx_info);
       }
}

/**
* ena_refill_all_rx_bufs - allocate all queues Rx buffers
* @adapter: network interface device structure
*
*/
static void
ena_refill_all_rx_bufs(struct ena_adapter *adapter)
{
       struct ena_ring *rx_ring;
       int i, rc, bufs_num;

       for (i = 0; i < adapter->num_queues; i++) {
               rx_ring = &adapter->rx_ring[i];
               bufs_num = rx_ring->ring_size - 1;
               rc = ena_refill_rx_bufs(rx_ring, bufs_num);

               if (unlikely(rc != bufs_num))
                       ena_trace(ENA_WARNING, "refilling Queue %d failed. "
                           "Allocated %d buffers from: %d\n", i, rc, bufs_num);
       }
}

static void
ena_free_all_rx_bufs(struct ena_adapter *adapter)
{
       int i;

       for (i = 0; i < adapter->num_queues; i++)
               ena_free_rx_bufs(adapter, i);
}

/**
* ena_free_tx_bufs - Free Tx Buffers per Queue
* @adapter: network interface device structure
* @qid: queue index
**/
static void
ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
{
       bool print_once = true;
       struct ena_ring *tx_ring = &adapter->tx_ring[qid];

       for (int i = 0; i < tx_ring->ring_size; i++) {
               struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];

               if (tx_info->mbuf == NULL)
                       continue;

               if (print_once) {
                       device_printf(adapter->pdev,
                           "free uncompleted tx mbuf qid %d idx 0x%x",
                           qid, i);
                       print_once = false;
               } else {
                       ena_trace(ENA_DBG,
                           "free uncompleted tx mbuf qid %d idx 0x%x",
                            qid, i);
               }

               bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
               m_free(tx_info->mbuf);
               tx_info->mbuf = NULL;
       }
}

static void
ena_free_all_tx_bufs(struct ena_adapter *adapter)
{

       for (int i = 0; i < adapter->num_queues; i++)
               ena_free_tx_bufs(adapter, i);
}

static void
ena_destroy_all_tx_queues(struct ena_adapter *adapter)
{
       uint16_t ena_qid;
       int i;

       for (i = 0; i < adapter->num_queues; i++) {
               ena_qid = ENA_IO_TXQ_IDX(i);
               ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
       }
}

static void
ena_destroy_all_rx_queues(struct ena_adapter *adapter)
{
       uint16_t ena_qid;
       int i;

       for (i = 0; i < adapter->num_queues; i++) {
               ena_qid = ENA_IO_RXQ_IDX(i);
               ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
       }
}

static void
ena_destroy_all_io_queues(struct ena_adapter *adapter)
{
       ena_destroy_all_tx_queues(adapter);
       ena_destroy_all_rx_queues(adapter);
}

static inline int
validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
{
       struct ena_adapter *adapter = tx_ring->adapter;
       struct ena_tx_buffer *tx_info = NULL;
       KASSERT(ENA_RING_MTX_OWNED(tx_ring));

       if (likely(req_id < tx_ring->ring_size)) {
               tx_info = &tx_ring->tx_buffer_info[req_id];
               if (tx_info->mbuf != NULL)
                       return (0);
       }

       if (tx_info->mbuf == NULL)
               device_printf(adapter->pdev,
                   "tx_info doesn't have valid mbuf\n");
       else
               device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);

       counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);

       return (EFAULT);
}

static int
ena_create_io_queues(struct ena_adapter *adapter)
{
       struct ena_com_dev *ena_dev = adapter->ena_dev;
       struct ena_com_create_io_ctx ctx;
       struct ena_ring *ring;
       uint16_t ena_qid;
       uint32_t msix_vector;
       int rc, i;

       /* Create TX queues */
       for (i = 0; i < adapter->num_queues; i++) {
               msix_vector = ENA_IO_IRQ_IDX(i);
               ena_qid = ENA_IO_TXQ_IDX(i);
               ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
               ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
               ctx.queue_size = adapter->tx_ring_size;
               ctx.msix_vector = msix_vector;
               ctx.qid = ena_qid;
               rc = ena_com_create_io_queue(ena_dev, &ctx);
               if (rc != 0) {
                       device_printf(adapter->pdev,
                           "Failed to create io TX queue #%d rc: %d\n", i, rc);
                       goto err_tx;
               }
               ring = &adapter->tx_ring[i];
               rc = ena_com_get_io_handlers(ena_dev, ena_qid,
                   &ring->ena_com_io_sq,
                   &ring->ena_com_io_cq);
               if (rc != 0) {
                       device_printf(adapter->pdev,
                           "Failed to get TX queue handlers. TX queue num"
                           " %d rc: %d\n", i, rc);
                       ena_com_destroy_io_queue(ena_dev, ena_qid);
                       goto err_tx;
               }
       }

       /* Create RX queues */
       for (i = 0; i < adapter->num_queues; i++) {
               msix_vector = ENA_IO_IRQ_IDX(i);
               ena_qid = ENA_IO_RXQ_IDX(i);
               ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
               ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
               ctx.queue_size = adapter->rx_ring_size;
               ctx.msix_vector = msix_vector;
               ctx.qid = ena_qid;
               rc = ena_com_create_io_queue(ena_dev, &ctx);
               if (unlikely(rc != 0)) {
                       device_printf(adapter->pdev,
                           "Failed to create io RX queue[%d] rc: %d\n", i, rc);
                       goto err_rx;
               }

               ring = &adapter->rx_ring[i];
               rc = ena_com_get_io_handlers(ena_dev, ena_qid,
                   &ring->ena_com_io_sq,
                   &ring->ena_com_io_cq);
               if (unlikely(rc != 0)) {
                       device_printf(adapter->pdev,
                           "Failed to get RX queue handlers. RX queue num"
                           " %d rc: %d\n", i, rc);
                       ena_com_destroy_io_queue(ena_dev, ena_qid);
                       goto err_rx;
               }
       }

       return (0);

err_rx:
       while (i--)
               ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
       i = adapter->num_queues;
err_tx:
       while (i--)
               ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));

       return (ENXIO);
}

/**
* ena_tx_cleanup - clear sent packets and corresponding descriptors
* @tx_ring: ring for which we want to clean packets
*
* Once packets are sent, we ask the device in a loop for no longer used
* descriptors. We find the related mbuf chain in a map (index in an array)
* and free it, then update ring state.
* This is performed in "endless" loop, updating ring pointers every
* TX_COMMIT. The first check of free descriptor is performed before the actual
* loop, then repeated at the loop end.
**/
static int
ena_tx_cleanup(struct ena_ring *tx_ring)
{
       struct ena_adapter *adapter;
       struct ena_com_io_cq* io_cq;
       uint16_t next_to_clean;
       uint16_t req_id;
       uint16_t ena_qid;
       unsigned int total_done = 0;
       int rc;
       int commit = TX_COMMIT;
       int budget = TX_BUDGET;
       int work_done;

       KASSERT(ENA_RING_MTX_OWNED(tx_ring));

       adapter = tx_ring->que->adapter;
       ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
       io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
       next_to_clean = tx_ring->next_to_clean;

       do {
               struct ena_tx_buffer *tx_info;
               struct mbuf *mbuf;

               rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
               if (unlikely(rc != 0))
                       break;

               rc = validate_tx_req_id(tx_ring, req_id);
               if (unlikely(rc != 0))
                       break;

               tx_info = &tx_ring->tx_buffer_info[req_id];

               mbuf = tx_info->mbuf;

               tx_info->mbuf = NULL;
               bintime_clear(&tx_info->timestamp);

               if (likely(tx_info->num_of_bufs != 0)) {
                       /* Map is no longer required */
                       bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
               }

               ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
                   tx_ring->qid, mbuf);

               m_freem(mbuf);

               total_done += tx_info->tx_descs;

               tx_ring->free_tx_ids[next_to_clean] = req_id;
               next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
                   tx_ring->ring_size);

               if (unlikely(--commit == 0)) {
                       commit = TX_COMMIT;
                       /* update ring state every TX_COMMIT descriptor */
                       tx_ring->next_to_clean = next_to_clean;
                       ena_com_comp_ack(
                           &adapter->ena_dev->io_sq_queues[ena_qid],
                           total_done);
                       ena_com_update_dev_comp_head(io_cq);
                       total_done = 0;
               }
       } while (likely(--budget));

       work_done = TX_BUDGET - budget;

       ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
       tx_ring->qid, work_done);

       /* If there is still something to commit update ring state */
       if (likely(commit != TX_COMMIT)) {
               tx_ring->next_to_clean = next_to_clean;
               ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
                   total_done);
               ena_com_update_dev_comp_head(io_cq);
       }

       if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
               workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);

       return (work_done);
}

#if 0
static void
ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   struct mbuf *mbuf)
{
       struct ena_adapter *adapter = rx_ring->adapter;

       if (likely(adapter->rss_support)) {
               mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;

               if (ena_rx_ctx->frag &&
                   (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
                       M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
                       return;
               }

               switch (ena_rx_ctx->l3_proto) {
               case ENA_ETH_IO_L3_PROTO_IPV4:
                       switch (ena_rx_ctx->l4_proto) {
                       case ENA_ETH_IO_L4_PROTO_TCP:
                               M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
                               break;
                       case ENA_ETH_IO_L4_PROTO_UDP:
                               M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
                               break;
                       default:
                               M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
                       }
                       break;
               case ENA_ETH_IO_L3_PROTO_IPV6:
                       switch (ena_rx_ctx->l4_proto) {
                       case ENA_ETH_IO_L4_PROTO_TCP:
                               M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
                               break;
                       case ENA_ETH_IO_L4_PROTO_UDP:
                               M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
                               break;
                       default:
                               M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
                       }
                       break;
               case ENA_ETH_IO_L3_PROTO_UNKNOWN:
                       M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
                       break;
               default:
                       M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
               }
       } else {
               mbuf->m_pkthdr.flowid = rx_ring->qid;
               M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
       }
}
#endif

/**
* ena_rx_mbuf - assemble mbuf from descriptors
* @rx_ring: ring for which we want to clean packets
* @ena_bufs: buffer info
* @ena_rx_ctx: metadata for this packet(s)
* @next_to_clean: ring pointer, will be updated only upon success
*
**/
static struct mbuf*
ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
   struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
{
       struct mbuf *mbuf;
       struct ena_rx_buffer *rx_info;
       struct ena_adapter *adapter;
       unsigned int descs = ena_rx_ctx->descs;
       uint16_t ntc, len, req_id, buf = 0;

       ntc = *next_to_clean;
       adapter = rx_ring->adapter;

       len = ena_bufs[buf].len;
       req_id = ena_bufs[buf].req_id;
       rx_info = &rx_ring->rx_buffer_info[req_id];
       if (unlikely(rx_info->mbuf == NULL)) {
               device_printf(adapter->pdev, "NULL mbuf in rx_info");
               return (NULL);
       }

       ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
           rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);

       mbuf = rx_info->mbuf;
       KASSERT(mbuf->m_flags & M_PKTHDR);
       mbuf->m_pkthdr.len = len;
       mbuf->m_len = len;
       m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);

       /* Fill mbuf with hash key and it's interpretation for optimization */
#if 0
       ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
#endif

       ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf %p, flags=0x%x, len: %d",
           mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);

       /* DMA address is not needed anymore, unmap it */
       bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);

       rx_info->mbuf = NULL;
       rx_ring->free_rx_ids[ntc] = req_id;
       ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);

       /*
        * While we have more than 1 descriptors for one rcvd packet, append
        * other mbufs to the main one
        */
       while (--descs) {
               ++buf;
               len = ena_bufs[buf].len;
               req_id = ena_bufs[buf].req_id;
               rx_info = &rx_ring->rx_buffer_info[req_id];

               if (unlikely(rx_info->mbuf == NULL)) {
                       device_printf(adapter->pdev, "NULL mbuf in rx_info");
                       /*
                        * If one of the required mbufs was not allocated yet,
                        * we can break there.
                        * All earlier used descriptors will be reallocated
                        * later and not used mbufs can be reused.
                        * The next_to_clean pointer will not be updated in case
                        * of an error, so caller should advance it manually
                        * in error handling routine to keep it up to date
                        * with hw ring.
                        */
                       m_freem(mbuf);
                       return (NULL);
               }

               if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
                       counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
                       ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
                           mbuf);
               }

               ena_trace(ENA_DBG | ENA_RXPTH,
                   "rx mbuf updated. len %d", mbuf->m_pkthdr.len);

               /* Free already appended mbuf, it won't be useful anymore */
               bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
               m_freem(rx_info->mbuf);
               rx_info->mbuf = NULL;

               rx_ring->free_rx_ids[ntc] = req_id;
               ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
       }

       *next_to_clean = ntc;

       return (mbuf);
}

/**
* ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
**/
static inline void
ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   struct mbuf *mbuf)
{

       /* IPv4 */
       if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
               mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
               if (ena_rx_ctx->l3_csum_err) {
                       /* ipv4 checksum error */
                       mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
                       counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
                       ena_trace(ENA_DBG, "RX IPv4 header checksum error");
                       return;
               }

               /*  TCP/UDP */
               if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
                   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
                       mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
                       if (ena_rx_ctx->l4_csum_err) {
                               /* TCP/UDP checksum error */
                               mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
                               counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
                               ena_trace(ENA_DBG, "RX L4 checksum error");
                       }
               }
       }
       /* IPv6 */
       else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
               /*  TCP/UDP */
               if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
                   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
                       mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
                       if (ena_rx_ctx->l4_csum_err) {
                               /* TCP/UDP checksum error */
                               mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
                               counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
                               ena_trace(ENA_DBG, "RX L4 checksum error");
                       }
               }
       }
}

/**
* ena_rx_cleanup - handle rx irq
* @arg: ring for which irq is being handled
**/
static int
ena_rx_cleanup(struct ena_ring *rx_ring)
{
       struct ena_adapter *adapter;
       struct mbuf *mbuf;
       struct ena_com_rx_ctx ena_rx_ctx;
       struct ena_com_io_cq* io_cq;
       struct ena_com_io_sq* io_sq;
       struct ifnet *ifp;
       uint16_t ena_qid;
       uint16_t next_to_clean;
       uint32_t refill_required;
       uint32_t refill_threshold;
       uint32_t do_if_input = 0;
       unsigned int qid;
       int rc, i;
       int budget = RX_BUDGET;

       adapter = rx_ring->que->adapter;
       ifp = adapter->ifp;
       qid = rx_ring->que->id;
       ena_qid = ENA_IO_RXQ_IDX(qid);
       io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
       io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
       next_to_clean = rx_ring->next_to_clean;

       ena_trace(ENA_DBG, "rx: qid %d", qid);

       do {
               ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
               ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
               ena_rx_ctx.descs = 0;
               rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);

               if (unlikely(rc != 0))
                       goto error;

               if (unlikely(ena_rx_ctx.descs == 0))
                       break;

               ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
                   "descs #: %d l3 proto %d l4 proto %d hash: %x",
                   rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
                   ena_rx_ctx.l4_proto, ena_rx_ctx.hash);

               /* Receive mbuf from the ring */
               mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
                   &ena_rx_ctx, &next_to_clean);

               /* Exit if we failed to retrieve a buffer */
               if (unlikely(mbuf == NULL)) {
                       for (i = 0; i < ena_rx_ctx.descs; ++i) {
                               rx_ring->free_rx_ids[next_to_clean] =
                                   rx_ring->ena_bufs[i].req_id;
                               next_to_clean =
                                   ENA_RX_RING_IDX_NEXT(next_to_clean,
                                   rx_ring->ring_size);

                       }
                       if_statinc(ifp, if_ierrors);
                       break;
               }

               if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
                   ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
                   ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
                   ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
                   ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
                       ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
               }

               counter_enter();
               counter_u64_add_protected(rx_ring->rx_stats.bytes,
                   mbuf->m_pkthdr.len);
               counter_u64_add_protected(adapter->hw_stats.rx_bytes,
                   mbuf->m_pkthdr.len);
               counter_exit();
               /*
                * LRO is only for IP/TCP packets and TCP checksum of the packet
                * should be computed by hardware.
                */
               do_if_input = 1;
#ifdef LRO
               if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
                   ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
                   (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
                       /*
                        * Send to the stack if:
                        *  - LRO not enabled, or
                        *  - no LRO resources, or
                        *  - lro enqueue fails
                        */
                       if ((rx_ring->lro.lro_cnt != 0) &&
                           (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
                                       do_if_input = 0;
               }
#endif
               if (do_if_input != 0) {
                       ena_trace(ENA_DBG | ENA_RXPTH,
                           "calling if_input() with mbuf %p", mbuf);
                       if_percpuq_enqueue(ifp->if_percpuq, mbuf);
               }

               counter_enter();
               counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
               counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
               counter_exit();
       } while (--budget);

       rx_ring->next_to_clean = next_to_clean;

       refill_required = ena_com_free_desc(io_sq);
       refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;

       if (refill_required > refill_threshold) {
               ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
               ena_refill_rx_bufs(rx_ring, refill_required);
       }

#ifdef LRO
       tcp_lro_flush_all(&rx_ring->lro);
#endif

       return (RX_BUDGET - budget);

error:
       counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
       return (RX_BUDGET - budget);
}

/*********************************************************************
*
*  MSIX & Interrupt Service routine
*
**********************************************************************/

/**
* ena_handle_msix - MSIX Interrupt Handler for admin/async queue
* @arg: interrupt number
**/
static int
ena_intr_msix_mgmnt(void *arg)
{
       struct ena_adapter *adapter = (struct ena_adapter *)arg;

       ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
       if (likely(ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter)))
               ena_com_aenq_intr_handler(adapter->ena_dev, arg);

       return 1;
}

/**
* ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
* @arg: interrupt number
**/
static int
ena_handle_msix(void *arg)
{
       struct ena_que *queue = arg;
       struct ena_ring *rx_ring = queue->rx_ring;

       ENA_RING_MTX_LOCK(rx_ring);
       if (unlikely(rx_ring->stopping)) {
               ENA_RING_MTX_UNLOCK(rx_ring);
               return 0;
       }

       if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
               workqueue_enqueue(rx_ring->cleanup_tq, &rx_ring->cleanup_task,
                   curcpu());

       ENA_RING_MTX_UNLOCK(rx_ring);
       return 1;
}

static void
ena_cleanup(struct work *wk, void *arg)
{
       struct ena_que  *que = arg;
       struct ena_adapter *adapter = que->adapter;
       struct ifnet *ifp = adapter->ifp;
       struct ena_ring *tx_ring = que->tx_ring;
       struct ena_ring *rx_ring = que->rx_ring;
       struct ena_com_io_cq* io_cq;
       struct ena_eth_io_intr_reg intr_reg;
       int qid, ena_qid;
       int txc, rxc, i;

       atomic_swap_uint(&rx_ring->task_pending, 0);

       if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
               return;

       ena_trace(ENA_DBG, "MSI-X TX/RX routine");

       qid = que->id;
       ena_qid = ENA_IO_TXQ_IDX(qid);
       io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];

       for (i = 0; i < CLEAN_BUDGET; ++i) {
               /*
                * If lock cannot be acquired, then deferred cleanup task was
                * being executed and rx ring is being cleaned up in
                * another thread.
                */
               ENA_RING_MTX_LOCK(rx_ring);
               if (rx_ring->stopping) {
                       ENA_RING_MTX_UNLOCK(rx_ring);
                       return;
               }
               ENA_RING_MTX_UNLOCK(rx_ring);
               rxc = ena_rx_cleanup(rx_ring);

               /* Protection from calling ena_tx_cleanup from ena_start_xmit */
               ENA_RING_MTX_LOCK(tx_ring);
               if (tx_ring->stopping) {
                       ENA_RING_MTX_UNLOCK(tx_ring);
                       return;
               }
               txc = ena_tx_cleanup(tx_ring);
               ENA_RING_MTX_UNLOCK(tx_ring);

               if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
                       return;

               if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
                      break;
       }

       /* Signal that work is done and unmask interrupt */
       ena_com_update_intr_reg(&intr_reg,
           RX_IRQ_INTERVAL,
           TX_IRQ_INTERVAL,
           true);
       ena_com_unmask_intr(io_cq, &intr_reg);
}

static int
ena_enable_msix(struct ena_adapter *adapter)
{
       int msix_req;
       int counts[PCI_INTR_TYPE_SIZE];
       int max_type;

       /* Reserved the max msix vectors we might need */
       msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);

       counts[PCI_INTR_TYPE_INTX] = 0;
       counts[PCI_INTR_TYPE_MSI] = 0;
       counts[PCI_INTR_TYPE_MSIX] = msix_req;
       max_type = PCI_INTR_TYPE_MSIX;

       if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
           max_type) != 0) {
               aprint_error_dev(adapter->pdev,
                   "failed to allocate interrupt\n");
               return ENOSPC;
       }

       adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];

       if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
               device_printf(adapter->pdev,
                   "Enable only %d MSI-x (out of %d), reduce "
                   "the number of queues\n", adapter->sc_nintrs, msix_req);
               adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
       }

       return 0;
}

#if 0
static void
ena_setup_io_intr(struct ena_adapter *adapter)
{
       static int last_bind_cpu = -1;
       int irq_idx;

       for (int i = 0; i < adapter->num_queues; i++) {
               irq_idx = ENA_IO_IRQ_IDX(i);

               snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
                   "%s-TxRx-%d", device_xname(adapter->pdev), i);
               adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
               adapter->irq_tbl[irq_idx].data = &adapter->que[i];
               adapter->irq_tbl[irq_idx].vector =
                   adapter->msix_entries[irq_idx].vector;
               ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
                   adapter->msix_entries[irq_idx].vector);
#ifdef  RSS
               adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
                   rss_getcpu(i % rss_getnumbuckets());
#else
               /*
                * We still want to bind rings to the corresponding cpu
                * using something similar to the RSS round-robin technique.
                */
               if (unlikely(last_bind_cpu < 0))
                       last_bind_cpu = CPU_FIRST();
               adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
                   last_bind_cpu;
               last_bind_cpu = CPU_NEXT(last_bind_cpu);
#endif
       }
}
#endif

static int
ena_request_mgmnt_irq(struct ena_adapter *adapter)
{
       const char *intrstr;
       char intrbuf[PCI_INTRSTR_LEN];
       char intr_xname[INTRDEVNAMEBUF];
       pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
       const int irq_slot = ENA_MGMNT_IRQ_IDX;

       KASSERT(adapter->sc_intrs != NULL);
       KASSERT(adapter->sc_ihs[irq_slot] == NULL);

       pci_intr_setattr(pc, &adapter->sc_intrs[irq_slot],
           PCI_INTR_MPSAFE, true);

       snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
           device_xname(adapter->pdev));
       intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
           intrbuf, sizeof(intrbuf));

       adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
           pc, adapter->sc_intrs[irq_slot],
           IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);

       if (adapter->sc_ihs[irq_slot] == NULL) {
               device_printf(adapter->pdev, "failed to register "
                   "interrupt handler for MGMNT irq %s\n",
                   intrstr);
               return ENOMEM;
       }

       aprint_normal_dev(adapter->pdev,
           "for MGMNT interrupting at %s\n", intrstr);

       return 0;
}

static int
ena_request_io_irq(struct ena_adapter *adapter)
{
       const char *intrstr;
       char intrbuf[PCI_INTRSTR_LEN];
       char intr_xname[INTRDEVNAMEBUF];
       pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
       const int irq_off = ENA_IO_IRQ_FIRST_IDX;
       void *vih;
       kcpuset_t *affinity;
       int i;

       KASSERT(adapter->sc_intrs != NULL);

       kcpuset_create(&affinity, false);

       for (i = 0; i < adapter->num_queues; i++) {
               int irq_slot = i + irq_off;
               int affinity_to = (irq_slot) % ncpu;

               KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
               KASSERT(adapter->sc_ihs[irq_slot] == NULL);

               pci_intr_setattr(pc, &adapter->sc_intrs[irq_slot],
                   PCI_INTR_MPSAFE, true);

               snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
                   device_xname(adapter->pdev), i);
               intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
                   intrbuf, sizeof(intrbuf));

               vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
                   adapter->sc_intrs[irq_slot], IPL_NET,
                   ena_handle_msix, &adapter->que[i], intr_xname);

               if (vih == NULL) {
                       device_printf(adapter->pdev, "failed to register "
                           "interrupt handler for IO queue %d irq %s\n",
                           i, intrstr);
                       goto err;
               }

               kcpuset_zero(affinity);
               /* Round-robin affinity */
               kcpuset_set(affinity, affinity_to);
               int error = interrupt_distribute(vih, affinity, NULL);
               if (error == 0) {
                       aprint_normal_dev(adapter->pdev,
                           "for IO queue %d interrupting at %s"
                           " affinity to %u\n", i, intrstr, affinity_to);
               } else {
                       aprint_normal_dev(adapter->pdev,
                           "for IO queue %d interrupting at %s\n", i, intrstr);
               }

               adapter->sc_ihs[irq_slot] = vih;

#ifdef  RSS
               ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
                   i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
#else
               ena_trace(ENA_INFO, "queue %d - cpu %d\n",
                   i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
#endif
       }

       kcpuset_destroy(affinity);
       return 0;

err:
       kcpuset_destroy(affinity);

       for (i--; i >= 0; i--) {
               int irq_slot __diagused = i + irq_off;
               KASSERT(adapter->sc_ihs[irq_slot] != NULL);
               pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[irq_slot]);
               adapter->sc_ihs[irq_slot] = NULL;
       }

       return ENOSPC;
}

static void
ena_free_mgmnt_irq(struct ena_adapter *adapter)
{
       const int irq_slot = ENA_MGMNT_IRQ_IDX;

       if (adapter->sc_ihs[irq_slot]) {
               pci_intr_disestablish(adapter->sc_pa.pa_pc,
                   adapter->sc_ihs[irq_slot]);
               adapter->sc_ihs[irq_slot] = NULL;
       }
}

static void
ena_free_io_irq(struct ena_adapter *adapter)
{
       const int irq_off = ENA_IO_IRQ_FIRST_IDX;

       for (int i = 0; i < adapter->num_queues; i++) {
               int irq_slot = i + irq_off;

               if (adapter->sc_ihs[irq_slot]) {
                       pci_intr_disestablish(adapter->sc_pa.pa_pc,
                           adapter->sc_ihs[irq_slot]);
                       adapter->sc_ihs[irq_slot] = NULL;
               }
       }
}

static void
ena_free_irqs(struct ena_adapter* adapter)
{

       ena_free_io_irq(adapter);
       ena_free_mgmnt_irq(adapter);
       ena_disable_msix(adapter);
}

static void
ena_disable_msix(struct ena_adapter *adapter)
{
       pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
           adapter->sc_nintrs);
}

static void
ena_unmask_all_io_irqs(struct ena_adapter *adapter)
{
       struct ena_com_io_cq* io_cq;
       struct ena_eth_io_intr_reg intr_reg;
       uint16_t ena_qid;
       int i;

       /* Unmask interrupts for all queues */
       for (i = 0; i < adapter->num_queues; i++) {
               ena_qid = ENA_IO_TXQ_IDX(i);
               io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
               ena_com_update_intr_reg(&intr_reg, 0, 0, true);
               ena_com_unmask_intr(io_cq, &intr_reg);
       }
}

/* Configure the Rx forwarding */
static int
ena_rss_configure(struct ena_adapter *adapter)
{
       struct ena_com_dev *ena_dev = adapter->ena_dev;
       int rc;

       /* Set indirect table */
       rc = ena_com_indirect_table_set(ena_dev);
       if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
               return (rc);

       /* Configure hash function (if supported) */
       rc = ena_com_set_hash_function(ena_dev);
       if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
               return (rc);

       /* Configure hash inputs (if supported) */
       rc = ena_com_set_hash_ctrl(ena_dev);
       if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
               return (rc);

       return (0);
}

static int
ena_up_complete(struct ena_adapter *adapter)
{
       int rc;

       if (likely(adapter->rss_support)) {
               rc = ena_rss_configure(adapter);
               if (rc != 0)
                       return (rc);
       }

       rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
       if (unlikely(rc != 0))
               return (rc);

       ena_refill_all_rx_bufs(adapter);
       ena_reset_counters((struct evcnt *)&adapter->hw_stats,
           sizeof(adapter->hw_stats),
           offsetof(struct ena_hw_stats, rx_packets));

       return (0);
}

static int
ena_up(struct ena_adapter *adapter)
{
       int rc = 0;

       KASSERT(ENA_CORE_MTX_OWNED(adapter));

#if 0
       if (unlikely(device_is_attached(adapter->pdev) == 0)) {
               device_printf(adapter->pdev, "device is not attached!\n");
               return (ENXIO);
       }
#endif

       if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter))) {
               device_printf(adapter->pdev, "device is not running!\n");
               return (ENXIO);
       }

       if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
               device_printf(adapter->pdev, "device is going UP\n");

               /* allocate transmit descriptors */
               rc = ena_setup_all_tx_resources(adapter);
               if (unlikely(rc != 0)) {
                       ena_trace(ENA_ALERT, "err_setup_tx");
                       goto err_setup_tx;
               }

               /* allocate receive descriptors */
               rc = ena_setup_all_rx_resources(adapter);
               if (unlikely(rc != 0)) {
                       ena_trace(ENA_ALERT, "err_setup_rx");
                       goto err_setup_rx;
               }

               /* create IO queues for Rx & Tx */
               rc = ena_create_io_queues(adapter);
               if (unlikely(rc != 0)) {
                       ena_trace(ENA_ALERT,
                           "create IO queues failed");
                       goto err_io_que;
               }

               /* setup interrupts for IO queues */
               rc = ena_request_io_irq(adapter);
               if (unlikely(rc != 0)) {
                       ena_trace(ENA_ALERT, "err_req_irq");
                       goto err_req_irq;
               }

               if (unlikely(ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
                       if_link_state_change(adapter->ifp, LINK_STATE_UP);

               rc = ena_up_complete(adapter);
               if (unlikely(rc != 0))
                       goto err_up_complete;

               counter_u64_add(adapter->dev_stats.interface_up, 1);

               ena_update_hwassist(adapter);

               if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
                   IFF_OACTIVE);
               ena_set_stopping_flag(adapter, false);

               callout_schedule(&adapter->timer_service, hz);

               ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEV_UP, adapter);

               ena_unmask_all_io_irqs(adapter);
       }

       return (0);

err_up_complete:
       ena_destroy_all_io_queues(adapter);
err_io_que:
       ena_free_all_rx_resources(adapter);
err_setup_rx:
       ena_free_all_tx_resources(adapter);
err_setup_tx:
       ena_free_io_irq(adapter);
err_req_irq:
       return (rc);
}

#if 0
static uint64_t
ena_get_counter(struct ifnet *ifp, ift_counter cnt)
{
       struct ena_adapter *adapter;
       struct ena_hw_stats *stats;

       adapter = if_getsoftc(ifp);
       stats = &adapter->hw_stats;

       switch (cnt) {
       case IFCOUNTER_IPACKETS:
               return (counter_u64_fetch(stats->rx_packets));
       case IFCOUNTER_OPACKETS:
               return (counter_u64_fetch(stats->tx_packets));
       case IFCOUNTER_IBYTES:
               return (counter_u64_fetch(stats->rx_bytes));
       case IFCOUNTER_OBYTES:
               return (counter_u64_fetch(stats->tx_bytes));
       case IFCOUNTER_IQDROPS:
               return (counter_u64_fetch(stats->rx_drops));
       default:
               return (if_get_counter_default(ifp, cnt));
       }
}
#endif

static int
ena_media_change(struct ifnet *ifp)
{
       /* Media Change is not supported by firmware */
       return (0);
}

static void
ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
       struct ena_adapter *adapter = if_getsoftc(ifp);
       ena_trace(ENA_DBG, "enter");

       KASSERT(ENA_CORE_MTX_OWNED(adapter));

       ifmr->ifm_status = IFM_AVALID;
       ifmr->ifm_active = IFM_ETHER;

       if (!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)) {
               ena_trace(ENA_INFO, "Link is down");
               return;
       }

       ifmr->ifm_status |= IFM_ACTIVE;
}

static int
ena_init(struct ifnet *ifp)
{
       struct ena_adapter *adapter = if_getsoftc(ifp);

       if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
               ENA_CORE_MTX_LOCK(adapter);
               ena_up(adapter);
               ENA_CORE_MTX_UNLOCK(adapter);
       }

       return 0;
}

static void
ena_stop(struct ifnet *ifp, int disable){
       struct ena_adapter *adapter;

       adapter = ifp->if_softc;

       if (ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
               ENA_CORE_MTX_LOCK(adapter);
               ena_down(adapter);
               ENA_CORE_MTX_UNLOCK(adapter);
       }
}


static int
ena_ioctl(struct ifnet *ifp, u_long command, void *data)
{
       struct ena_adapter *adapter;
       struct ifreq *ifr;
       int rc;

       adapter = ifp->if_softc;
       ifr = (struct ifreq *)data;

       /*
        * Acquiring lock to prevent from running up and down routines parallel.
        */
       rc = 0;
       switch (command) {
       case SIOCSIFMTU:
               if (ifp->if_mtu == ifr->ifr_mtu)
                       break;
               ENA_CORE_MTX_LOCK(adapter);
               ena_down(adapter);

               ena_change_mtu(ifp, ifr->ifr_mtu);

               rc = ena_up(adapter);
               ENA_CORE_MTX_UNLOCK(adapter);
               break;

       case SIOCADDMULTI:
       case SIOCDELMULTI:
               break;

       case SIOCSIFCAP:
               {
                       struct ifcapreq *ifcr = data;
                       int reinit = 0;

                       if (ifcr->ifcr_capenable != ifp->if_capenable) {
                               ifp->if_capenable = ifcr->ifcr_capenable;
                               reinit = 1;
                       }

                       if ((reinit != 0) &&
                           ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
                               ENA_CORE_MTX_LOCK(adapter);
                               ena_down(adapter);
                               rc = ena_up(adapter);
                               ENA_CORE_MTX_UNLOCK(adapter);
                       }
               }

               break;
       default:
               rc = ether_ioctl(ifp, command, data);
               break;
       }

       return (rc);
}

static int
ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
{
       int caps = 0;

       if ((feat->offload.tx &
           (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
           ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
               ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
               caps |= IFCAP_CSUM_IPv4_Tx;

       if ((feat->offload.tx &
           (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
           ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
               caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;

       if ((feat->offload.tx &
           ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
               caps |= IFCAP_TSOv4;

       if ((feat->offload.tx &
           ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
               caps |= IFCAP_TSOv6;

       if ((feat->offload.rx_supported &
           (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
           ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
               caps |= IFCAP_CSUM_IPv4_Rx;

       if ((feat->offload.rx_supported &
           ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
               caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;

#ifdef LRO
       caps |= IFCAP_LRO;
#endif

       return (caps);
}

static void
ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
{

       host_info->supported_network_features[0] =
           (uint32_t)if_getcapabilities(ifp);
}

static void
ena_update_hwassist(struct ena_adapter *adapter)
{
       struct ifnet *ifp = adapter->ifp;
       uint32_t feat = adapter->tx_offload_cap;
       int cap = if_getcapenable(ifp);
       int flags = 0;

       if_clearhwassist(ifp);

       if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
           != 0) {
               if ((feat &
                   ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
                       flags |= M_CSUM_IPv4;
               if ((feat &
                   (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
                   ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
                       flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
       }

       if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
               flags |= M_CSUM_TCPv6;

       if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
               flags |= M_CSUM_UDPv6;

       if ((cap & IFCAP_TSOv4) != 0)
               flags |= M_CSUM_TSOv4;

       if ((cap & IFCAP_TSOv6) != 0)
               flags |= M_CSUM_TSOv6;

       if_sethwassistbits(ifp, flags, 0);
}

static int
ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
   struct ena_com_dev_get_features_ctx *feat)
{
       struct ifnet *ifp;
       int caps = 0;

       ifp = adapter->ifp = &adapter->sc_ec.ec_if;
       if (unlikely(ifp == NULL)) {
               ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
               return (ENXIO);
       }
       if_initialize(ifp);
       if_initname(ifp, "ena", device_unit(pdev));
       if_setdev(ifp, pdev);
       if_setsoftc(ifp, adapter);

       if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
       ifp->if_extflags = IFEF_MPSAFE;
       if_setinitfn(ifp, ena_init);
       ifp->if_stop = ena_stop;
       if_settransmitfn(ifp, ena_mq_start);
#if 0
       if_setqflushfn(ifp, ena_qflush);
#endif
       if_setioctlfn(ifp, ena_ioctl);
#if 0
       if_setgetcounterfn(ifp, ena_get_counter);
#endif

       if_setsendqlen(ifp, adapter->tx_ring_size);
       if_setsendqready(ifp);
       if_setmtu(ifp, ETHERMTU);
       if_setbaudrate(ifp, 0);
       /* Zeroize capabilities... */
       if_setcapabilities(ifp, 0);
       if_setcapenable(ifp, 0);
       /* check hardware support */
       caps = ena_get_dev_offloads(feat);
       /* ... and set them */
       if_setcapabilitiesbit(ifp, caps, 0);
       adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;

#if 0
       /* TSO parameters */
       /* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
       ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
           (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
       ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
       ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
#endif

       if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
       if_setcapenable(ifp, if_getcapabilities(ifp));

       /*
        * Specify the media types supported by this adapter and register
        * callbacks to update media and link information
        */
       adapter->sc_ec.ec_ifmedia = &adapter->media;
       ifmedia_init_with_lock(&adapter->media, IFM_IMASK,
           ena_media_change, ena_media_status, &adapter->global_mtx);
       ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
       ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);

       ifp->if_percpuq = if_percpuq_create(ifp);
       if_deferred_start_init(ifp, NULL);
       ether_ifattach(ifp, adapter->mac_addr);
       if_register(ifp);

       return (0);
}

static void
ena_set_stopping_flag(struct ena_adapter *adapter, bool value)
{
       struct ena_ring *ring;
       int i;

       for (i = 0; i < adapter->num_queues; i++) {
               /* TX */
               ring = adapter->que[i].tx_ring;
               ENA_RING_MTX_LOCK(ring);
               ring->stopping = value;
               ENA_RING_MTX_UNLOCK(ring);

               /* RX */
               ring = adapter->que[i].rx_ring;
               ENA_RING_MTX_LOCK(ring);
               ring->stopping = value;
               ENA_RING_MTX_UNLOCK(ring);
       }
}

static void
ena_down(struct ena_adapter *adapter)
{
       int rc, i;

       KASSERT(ENA_CORE_MTX_OWNED(adapter));

       if (ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
               device_printf(adapter->pdev, "device is going DOWN\n");
               ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEV_UP, adapter);
               if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
                   IFF_RUNNING);

               ena_set_stopping_flag(adapter, true);

               callout_halt(&adapter->timer_service, NULL);
               for (i = 0; i < adapter->num_queues; i++) {
                       struct ena_ring *rx_ring = adapter->que[i].rx_ring;
                       workqueue_wait(rx_ring->cleanup_tq,
                           &rx_ring->cleanup_task);
               }

               if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter)) {
                       rc = ena_com_dev_reset(adapter->ena_dev,
                           adapter->reset_reason);
                       if (unlikely(rc != 0))
                               device_printf(adapter->pdev,
                                   "Device reset failed\n");
               }

               ena_destroy_all_io_queues(adapter);

               ena_free_all_tx_bufs(adapter);
               ena_free_all_rx_bufs(adapter);
               ena_free_all_tx_resources(adapter);
               ena_free_all_rx_resources(adapter);

               ena_free_io_irq(adapter);

               counter_u64_add(adapter->dev_stats.interface_down, 1);
       }
}

static void
ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
{
       struct ena_com_tx_meta *ena_meta;
       struct ether_vlan_header *eh;
       u32 mss;
       bool offload;
       uint16_t etype;
       int ehdrlen;
       struct ip *ip;
       int iphlen;
       struct tcphdr *th;

       offload = false;
       ena_meta = &ena_tx_ctx->ena_meta;

#if 0
       u32 mss = mbuf->m_pkthdr.tso_segsz;

       if (mss != 0)
               offload = true;
#else
       mss = mbuf->m_pkthdr.len;       /* XXX don't have tso_segsz */
#endif

       if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
               offload = true;

       if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
               offload = true;

       if (!offload) {
               ena_tx_ctx->meta_valid = 0;
               return;
       }

       /* Determine where frame payload starts. */
       eh = mtod(mbuf, struct ether_vlan_header *);
       if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
               etype = ntohs(eh->evl_proto);
               ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
       } else {
               etype = htons(eh->evl_encap_proto);
               ehdrlen = ETHER_HDR_LEN;
       }

       ip = (struct ip *)(mbuf->m_data + ehdrlen);
       iphlen = ip->ip_hl << 2;
       th = (struct tcphdr *)((vaddr_t)ip + iphlen);

       if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
               ena_tx_ctx->l3_csum_enable = 1;
       }
       if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
               ena_tx_ctx->tso_enable = 1;
               ena_meta->l4_hdr_len = (th->th_off);
       }

       switch (etype) {
       case ETHERTYPE_IP:
               ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
               if ((ip->ip_off & htons(IP_DF)) != 0)
                       ena_tx_ctx->df = 1;
               break;
       case ETHERTYPE_IPV6:
               ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;

       default:
               break;
       }

       if (ip->ip_p == IPPROTO_TCP) {
               ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
               if ((mbuf->m_pkthdr.csum_flags &
                   (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
                       ena_tx_ctx->l4_csum_enable = 1;
               else
                       ena_tx_ctx->l4_csum_enable = 0;
       } else if (ip->ip_p == IPPROTO_UDP) {
               ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
               if ((mbuf->m_pkthdr.csum_flags &
                   (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
                       ena_tx_ctx->l4_csum_enable = 1;
               else
                       ena_tx_ctx->l4_csum_enable = 0;
       } else {
               ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
               ena_tx_ctx->l4_csum_enable = 0;
       }

       ena_meta->mss = mss;
       ena_meta->l3_hdr_len = iphlen;
       ena_meta->l3_hdr_offset = ehdrlen;
       ena_tx_ctx->meta_valid = 1;
}

static int
ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
{
       struct ena_adapter *adapter;
       struct mbuf *collapsed_mbuf;
       int num_frags;

       adapter = tx_ring->adapter;
       num_frags = ena_mbuf_count(*mbuf);

       /* One segment must be reserved for configuration descriptor. */
       if (num_frags < adapter->max_tx_sgl_size)
               return (0);
       counter_u64_add(tx_ring->tx_stats.collapse, 1);

       collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
           adapter->max_tx_sgl_size - 1);
       if (unlikely(collapsed_mbuf == NULL)) {
               counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
               return (ENOMEM);
       }

       /* If mbuf was collapsed successfully, original mbuf is released. */
       *mbuf = collapsed_mbuf;

       return (0);
}

static int
ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
{
       struct ena_adapter *adapter;
       struct ena_tx_buffer *tx_info;
       struct ena_com_tx_ctx ena_tx_ctx;
       struct ena_com_dev *ena_dev;
       struct ena_com_buf *ena_buf;
       struct ena_com_io_sq* io_sq;
       void *push_hdr;
       uint16_t next_to_use;
       uint16_t req_id;
       uint16_t ena_qid;
       uint32_t header_len;
       int i, rc;
       int nb_hw_desc;

       KASSERT(ENA_RING_MTX_OWNED(tx_ring));

       ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
       adapter = tx_ring->que->adapter;
       ena_dev = adapter->ena_dev;
       io_sq = &ena_dev->io_sq_queues[ena_qid];

       rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
       if (unlikely(rc != 0)) {
               ena_trace(ENA_WARNING,
                   "Failed to collapse mbuf! err: %d", rc);
               return (rc);
       }

       next_to_use = tx_ring->next_to_use;
       req_id = tx_ring->free_tx_ids[next_to_use];
       tx_info = &tx_ring->tx_buffer_info[req_id];

       tx_info->mbuf = *mbuf;
       tx_info->num_of_bufs = 0;

       ena_buf = tx_info->bufs;

       ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);

       /*
        * header_len is just a hint for the device. Because FreeBSD is not
        * giving us information about packet header length and it is not
        * guaranteed that all packet headers will be in the 1st mbuf, setting
        * header_len to 0 is making the device ignore this value and resolve
        * header on it's own.
        */
       header_len = 0;
       push_hdr = NULL;

       rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
           *mbuf, BUS_DMA_NOWAIT);

       if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
               ena_trace(ENA_WARNING,
                   "dmamap load failed! err: %d nsegs: %d", rc,
                   tx_info->map->dm_nsegs);
               counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
               tx_info->mbuf = NULL;
               if (rc == ENOMEM)
                       return (ENA_COM_NO_MEM);
               else
                       return (ENA_COM_INVAL);
       }

       for (i = 0; i < tx_info->map->dm_nsegs; i++) {
               ena_buf->len = tx_info->map->dm_segs[i].ds_len;
               ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
               ena_buf++;
       }
       tx_info->num_of_bufs = tx_info->map->dm_nsegs;

       memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
       ena_tx_ctx.ena_bufs = tx_info->bufs;
       ena_tx_ctx.push_header = push_hdr;
       ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
       ena_tx_ctx.req_id = req_id;
       ena_tx_ctx.header_len = header_len;

       /* Set flags and meta data */
       ena_tx_csum(&ena_tx_ctx, *mbuf);
       /* Prepare the packet's descriptors and send them to device */
       rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
       if (unlikely(rc != 0)) {
               device_printf(adapter->pdev, "failed to prepare tx bufs\n");
               counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
               goto dma_error;
       }

       counter_enter();
       counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
       counter_u64_add_protected(tx_ring->tx_stats.bytes,
           (*mbuf)->m_pkthdr.len);

       counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
       counter_u64_add_protected(adapter->hw_stats.tx_bytes,
           (*mbuf)->m_pkthdr.len);
       counter_exit();

       tx_info->tx_descs = nb_hw_desc;
       getbinuptime(&tx_info->timestamp);
       tx_info->print_once = true;

       tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
           tx_ring->ring_size);

       bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
           tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);

       return (0);

dma_error:
       tx_info->mbuf = NULL;
       bus_dmamap_unload(adapter->sc_dmat, tx_info->map);

       return (rc);
}

static void
ena_start_xmit(struct ena_ring *tx_ring)
{
       struct mbuf *mbuf;
       struct ena_adapter *adapter = tx_ring->adapter;
       struct ena_com_io_sq* io_sq;
       int ena_qid;
       int acum_pkts = 0;
       int ret = 0;
       net_stat_ref_t nsr;

       KASSERT(ENA_RING_MTX_OWNED(tx_ring));

       /* ena_down() is waiting for completing */
       if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
               return;

       if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
               return;

       ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
       io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];

       nsr = IF_STAT_GETREF(adapter->ifp);

       for (;;) {
               if (unlikely(!ena_com_sq_have_enough_space(io_sq, adapter->max_tx_sgl_size)))
                       break;

               if ((mbuf = pcq_get(tx_ring->br)) == NULL)
                       break;

               ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
                   " header csum flags %#jx",
                   mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);

               if (likely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) == 0)) {
                       if_statinc_ref(adapter->ifp, nsr, if_opackets);
                       if_statadd_ref(adapter->ifp, nsr, if_obytes,
                           mbuf->m_pkthdr.len);
                       if (ISSET(mbuf->m_flags, M_MCAST))
                               if_statinc_ref(adapter->ifp, nsr, if_omcasts);
               } else {
                       if_statinc_ref(adapter->ifp, nsr, if_oerrors);
                       m_freem(mbuf);
                       break;
               }

               /* ena_down is waiting for completing */
               if (unlikely((if_getdrvflags(adapter->ifp) &
                   IFF_RUNNING) == 0)) {
                       IF_STAT_PUTREF(adapter->ifp);
                       return;
               }

               acum_pkts++;

               /*
                * If there's a BPF listener, bounce a copy of this frame
                * to him.
                */
               bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);

               if (unlikely(acum_pkts == DB_THRESHOLD)) {
                       acum_pkts = 0;
                       wmb();
                       /* Trigger the dma engine */
                       ena_com_write_sq_doorbell(io_sq);
                       counter_u64_add(tx_ring->tx_stats.doorbells, 1);
               }

       }

       IF_STAT_PUTREF(adapter->ifp);

       if (likely(acum_pkts != 0)) {
               wmb();
               /* Trigger the dma engine */
               ena_com_write_sq_doorbell(io_sq);
               counter_u64_add(tx_ring->tx_stats.doorbells, 1);
       }

       if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
               ena_tx_cleanup(tx_ring);
}

static void
ena_deferred_mq_start(struct work *wk, void *arg)
{
       struct ena_ring *tx_ring = (struct ena_ring *)arg;
       struct ifnet *ifp = tx_ring->adapter->ifp;

       atomic_swap_uint(&tx_ring->task_pending, 0);

       while (pcq_peek(tx_ring->br) != NULL &&
           (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
               ENA_RING_MTX_LOCK(tx_ring);
               if (tx_ring->stopping) {
                       ENA_RING_MTX_UNLOCK(tx_ring);
                       return;
               }
               ena_start_xmit(tx_ring);
               ENA_RING_MTX_UNLOCK(tx_ring);
       }
}

static int
ena_mq_start(struct ifnet *ifp, struct mbuf *m)
{
       struct ena_adapter *adapter = ifp->if_softc;
       struct ena_ring *tx_ring;
       struct mbuf *is_drbr_empty;
       bool ret;
       uint32_t i;

       if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
               return (ENODEV);

       /* Which queue to use */
       /*
        * If everything is setup correctly, it should be the
        * same bucket that the current CPU we're on is.
        * It should improve performance.
        */
       i = cpu_index(curcpu()) % adapter->num_queues;

       tx_ring = &adapter->tx_ring[i];

       /* Check if drbr is empty before putting packet */
       is_drbr_empty = pcq_peek(tx_ring->br);
       ret = pcq_put(tx_ring->br, m);
       if (unlikely(ret == false)) {
               m_freem(m);
               counter_u64_add(tx_ring->tx_stats.pcq_drops, 1);
               if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
                       workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
                           curcpu());
               return (ENOBUFS);
       }

       if ((is_drbr_empty != NULL) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
               if (!tx_ring->stopping)
                       ena_start_xmit(tx_ring);
               ENA_RING_MTX_UNLOCK(tx_ring);
       } else {
               if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
                       workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
                           curcpu());
       }

       return (0);
}

#if 0
static void
ena_qflush(struct ifnet *ifp)
{
       struct ena_adapter *adapter = ifp->if_softc;
       struct ena_ring *tx_ring = adapter->tx_ring;
       int i;

       for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
               if (!drbr_empty(ifp, tx_ring->br)) {
                       ENA_RING_MTX_LOCK(tx_ring);
                       drbr_flush(ifp, tx_ring->br);
                       ENA_RING_MTX_UNLOCK(tx_ring);
               }

       if_qflush(ifp);
}
#endif

static int
ena_calc_io_queue_num(struct pci_attach_args *pa,
   struct ena_adapter *adapter,
   struct ena_com_dev_get_features_ctx *get_feat_ctx)
{
       int io_sq_num, io_cq_num, io_queue_num;

       io_sq_num = get_feat_ctx->max_queues.max_sq_num;
       io_cq_num = get_feat_ctx->max_queues.max_cq_num;

       io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
       io_queue_num = min_t(int, io_queue_num, io_sq_num);
       io_queue_num = min_t(int, io_queue_num, io_cq_num);
       /* 1 IRQ for mgmnt and 1 IRQ for each TX/RX pair */
       io_queue_num = min_t(int, io_queue_num,
           pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);

       return (io_queue_num);
}

static int
ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
   uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
{
       uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
       uint32_t v;
       uint32_t q;

       queue_size = min_t(uint32_t, queue_size,
           feat->max_queues.max_cq_depth);
       queue_size = min_t(uint32_t, queue_size,
           feat->max_queues.max_sq_depth);

       /* round down to the nearest power of 2 */
       v = queue_size;
       while (v != 0) {
               if (powerof2(queue_size) != 0)
                       break;
               v /= 2;
               q = rounddown2(queue_size, v);
               if (q != 0) {
                       queue_size = q;
                       break;
               }
       }

       if (unlikely(queue_size == 0)) {
               device_printf(adapter->pdev, "Invalid queue size\n");
               return (ENA_COM_FAULT);
       }

       *max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
           feat->max_queues.max_packet_tx_descs);
       *max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
           feat->max_queues.max_packet_rx_descs);

       return (queue_size);
}

static void
ena_rss_init_default(device_t self)
{
       struct ena_adapter *adapter = device_private(self);
       struct ena_com_dev *ena_dev = adapter->ena_dev;
       device_t dev = adapter->pdev;
       int qid, rc, i;

       rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
       if (unlikely(rc != 0)) {
               device_printf(dev, "Cannot init indirect table\n");
               return;
       }

       for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
               qid = i % adapter->num_queues;
               rc = ena_com_indirect_table_fill_entry(ena_dev, i,
                   ENA_IO_RXQ_IDX(qid));
               if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
                       device_printf(dev, "Cannot fill indirect table\n");
                       goto err_rss_destroy;
               }
       }

       rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
           ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
       if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
               device_printf(dev, "Cannot fill hash function\n");
               goto err_rss_destroy;
       }

       rc = ena_com_set_default_hash_ctrl(ena_dev);
       if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
               device_printf(dev, "Cannot fill hash control\n");
               goto err_rss_destroy;
       }

       adapter->rss_support = true;
       return;

err_rss_destroy:
       ena_com_rss_destroy(ena_dev);
       adapter->rss_support = false;
       return;
}

static void
ena_config_host_info(struct ena_com_dev *ena_dev)
{
       struct ena_admin_host_info *host_info;
       int rc;

       /* Allocate only the host info */
       rc = ena_com_allocate_host_info(ena_dev);
       if (unlikely(rc != 0)) {
               ena_trace(ENA_ALERT, "Cannot allocate host info\n");
               return;
       }

       host_info = ena_dev->host_attr.host_info;

       host_info->os_type = ENA_ADMIN_OS_FREEBSD;
       host_info->kernel_ver = osreldate;

       snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
           "%d", osreldate);
       host_info->os_dist = 0;
       strncpy(host_info->os_dist_str, osrelease,
           sizeof(host_info->os_dist_str) - 1);

       host_info->driver_version =
               (DRV_MODULE_VER_MAJOR) |
               (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
               (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);

       rc = ena_com_set_host_attributes(ena_dev);
       if (unlikely(rc != 0)) {
               if (rc == EOPNOTSUPP)
                       ena_trace(ENA_WARNING, "Cannot set host attributes\n");
               else
                       ena_trace(ENA_ALERT, "Cannot set host attributes\n");

               goto err;
       }

       return;

err:
       ena_com_delete_host_info(ena_dev);
}

static int
ena_device_init(struct ena_adapter *adapter, device_t pdev,
   struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
{
       struct ena_com_dev* ena_dev = adapter->ena_dev;
       bool readless_supported;
       uint32_t aenq_groups;
       int dma_width;
       int rc;

       rc = ena_com_mmio_reg_read_request_init(ena_dev);
       if (unlikely(rc != 0)) {
               device_printf(pdev, "failed to init mmio read less\n");
               return (rc);
       }

       /*
        * The PCIe configuration space revision id indicate if mmio reg
        * read is disabled
        */
       const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
       readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
       ena_com_set_mmio_read_mode(ena_dev, readless_supported);

       rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
       if (unlikely(rc != 0)) {
               device_printf(pdev, "Can not reset device\n");
               goto err_mmio_read_less;
       }

       rc = ena_com_validate_version(ena_dev);
       if (unlikely(rc != 0)) {
               device_printf(pdev, "device version is too low\n");
               goto err_mmio_read_less;
       }

       dma_width = ena_com_get_dma_width(ena_dev);
       if (unlikely(dma_width < 0)) {
               device_printf(pdev, "Invalid dma width value %d", dma_width);
               rc = dma_width;
               goto err_mmio_read_less;
       }
       adapter->dma_width = dma_width;

       /* ENA admin level init */
       rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
       if (unlikely(rc != 0)) {
               device_printf(pdev,
                   "Can not initialize ena admin queue with device\n");
               goto err_mmio_read_less;
       }

       /*
        * To enable the msix interrupts the driver needs to know the number
        * of queues. So the driver uses polling mode to retrieve this
        * information
        */
       ena_com_set_admin_polling_mode(ena_dev, true);

       ena_config_host_info(ena_dev);

       /* Get Device Attributes */
       rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
       if (unlikely(rc != 0)) {
               device_printf(pdev,
                   "Cannot get attribute for ena device rc: %d\n", rc);
               goto err_admin_init;
       }

       aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);

       aenq_groups &= get_feat_ctx->aenq.supported_groups;
       rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
       if (unlikely(rc != 0)) {
               device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
               goto err_admin_init;
       }

       *wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));

       return (0);

err_admin_init:
       ena_com_delete_host_info(ena_dev);
       ena_com_admin_destroy(ena_dev);
err_mmio_read_less:
       ena_com_mmio_reg_read_request_destroy(ena_dev);

       return (rc);
}

static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
   int io_vectors)
{
       struct ena_com_dev *ena_dev = adapter->ena_dev;
       int rc;

       rc = ena_enable_msix(adapter);
       if (unlikely(rc != 0)) {
               device_printf(adapter->pdev, "Error with MSI-X enablement\n");
               return (rc);
       }

       rc = ena_request_mgmnt_irq(adapter);
       if (unlikely(rc != 0)) {
               device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
               goto err_disable_msix;
       }

       ena_com_set_admin_polling_mode(ena_dev, false);

       ena_com_admin_aenq_enable(ena_dev);

       return (0);

err_disable_msix:
       ena_disable_msix(adapter);

       return (rc);
}

/* Function called on ENA_ADMIN_KEEP_ALIVE event */
static void ena_keep_alive_wd(void *adapter_data,
   struct ena_admin_aenq_entry *aenq_e)
{
       struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
       struct ena_admin_aenq_keep_alive_desc *desc;
       uint64_t rx_drops, old;

       desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;

       rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
       old = adapter->hw_stats.rx_drops.ev_count;
       if (rx_drops > old) {
               counter_u64_add(adapter->hw_stats.rx_drops, rx_drops - old);
               if_statadd(adapter->ifp, if_iqdrops, rx_drops - old);
       }

       atomic_store_release(&adapter->keep_alive_timestamp, getsbinuptime());
}

/* Check for keep alive expiration */
static void check_for_missing_keep_alive(struct ena_adapter *adapter)
{
       sbintime_t timestamp, time;

       if (adapter->wd_active == 0)
               return;

       if (likely(adapter->keep_alive_timeout == 0))
               return;

       timestamp = atomic_load_acquire(&adapter->keep_alive_timestamp);

       time = getsbinuptime() - timestamp;
       if (unlikely(time > adapter->keep_alive_timeout)) {
               device_printf(adapter->pdev,
                   "Keep alive watchdog timeout.\n");
               counter_u64_add(adapter->dev_stats.wd_expired, 1);
               adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
               ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
       }
}

/* Check if admin queue is enabled */
static void check_for_admin_com_state(struct ena_adapter *adapter)
{
       if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
           false)) {
               device_printf(adapter->pdev,
                   "ENA admin queue is not in running state!\n");
               counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
               adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
               ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
       }
}

static int
check_missing_comp_in_queue(struct ena_adapter *adapter,
   struct ena_ring *tx_ring)
{
       struct bintime curtime, time;
       struct ena_tx_buffer *tx_buf;
       uint32_t missed_tx = 0;
       int i;

       getbinuptime(&curtime);

       for (i = 0; i < tx_ring->ring_size; i++) {
               tx_buf = &tx_ring->tx_buffer_info[i];

               if (bintime_isset(&tx_buf->timestamp) == 0)
                       continue;

               time = curtime;
               bintime_sub(&time, &tx_buf->timestamp);

               /* Check again if packet is still waiting */
               if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {

                       if (!tx_buf->print_once)
                               ena_trace(ENA_WARNING, "Found a Tx that wasn't "
                                   "completed on time, qid %d, index %d.\n",
                                   tx_ring->qid, i);

                       tx_buf->print_once = true;
                       missed_tx++;
                       counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);

                       if (unlikely(missed_tx >
                           adapter->missing_tx_threshold)) {
                               device_printf(adapter->pdev,
                                   "The number of lost tx completion "
                                   "is above the threshold (%d > %d). "
                                   "Reset the device\n",
                                   missed_tx, adapter->missing_tx_threshold);
                               adapter->reset_reason =
                                   ENA_REGS_RESET_MISS_TX_CMPL;
                               ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET,
                                   adapter);
                               return (EIO);
                       }
               }
       }

       return (0);
}

/*
* Check for TX which were not completed on time.
* Timeout is defined by "missing_tx_timeout".
* Reset will be performed if number of incompleted
* transactions exceeds "missing_tx_threshold".
*/
static void
check_for_missing_tx_completions(struct ena_adapter *adapter)
{
       struct ena_ring *tx_ring;
       int i, budget, rc;

       /* Make sure the driver doesn't turn the device in other process */
       rmb();

       if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter))
               return;

       if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))
               return;

       if (adapter->missing_tx_timeout == 0)
               return;

       budget = adapter->missing_tx_max_queues;

       for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
               tx_ring = &adapter->tx_ring[i];

               rc = check_missing_comp_in_queue(adapter, tx_ring);
               if (unlikely(rc != 0))
                       return;

               budget--;
               if (budget == 0) {
                       i++;
                       break;
               }
       }

       adapter->next_monitored_tx_qid = i % adapter->num_queues;
}

/* trigger deferred rx cleanup after 2 consecutive detections */
#define EMPTY_RX_REFILL 2
/* For the rare case where the device runs out of Rx descriptors and the
* msix handler failed to refill new Rx descriptors (due to a lack of memory
* for example).
* This case will lead to a deadlock:
* The device won't send interrupts since all the new Rx packets will be dropped
* The msix handler won't allocate new Rx descriptors so the device won't be
* able to send new packets.
*
* When such a situation is detected - execute rx cleanup task in another thread
*/
static void
check_for_empty_rx_ring(struct ena_adapter *adapter)
{
       struct ena_ring *rx_ring;
       int i, refill_required;

       if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter))
               return;

       if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))
               return;

       for (i = 0; i < adapter->num_queues; i++) {
               rx_ring = &adapter->rx_ring[i];

               refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
               if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
                       rx_ring->empty_rx_queue++;

                       if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
                               counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
                                   1);

                               device_printf(adapter->pdev,
                                   "trigger refill for ring %d\n", i);

                               ENA_RING_MTX_LOCK(rx_ring);
                               if (rx_ring->stopping) {
                                       ENA_RING_MTX_UNLOCK(rx_ring);
                                       return;
                               }
                               if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
                                       workqueue_enqueue(rx_ring->cleanup_tq,
                                           &rx_ring->cleanup_task, curcpu());
                               ENA_RING_MTX_UNLOCK(rx_ring);
                               rx_ring->empty_rx_queue = 0;
                       }
               } else {
                       rx_ring->empty_rx_queue = 0;
               }
       }
}

static void
ena_timer_service(void *data)
{
       struct ena_adapter *adapter = (struct ena_adapter *)data;
       struct ena_admin_host_info *host_info =
           adapter->ena_dev->host_attr.host_info;

       check_for_missing_keep_alive(adapter);

       check_for_admin_com_state(adapter);

       check_for_missing_tx_completions(adapter);

       check_for_empty_rx_ring(adapter);

       if (host_info != NULL)
               ena_update_host_info(host_info, adapter->ifp);

       if (unlikely(ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))) {
               device_printf(adapter->pdev, "Trigger reset is on\n");
               workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
                   curcpu());
               return;
       }

       /*
        * Schedule another timeout one second from now.
        */
       if (likely(ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)))
               callout_schedule(&adapter->timer_service, hz);
}

static void
ena_reset_task(struct work *wk, void *arg)
{
       struct ena_com_dev_get_features_ctx get_feat_ctx;
       struct ena_adapter *adapter = (struct ena_adapter *)arg;
       struct ena_com_dev *ena_dev = adapter->ena_dev;
       bool dev_up;
       int rc;

       if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))) {
               device_printf(adapter->pdev,
                   "device reset scheduled but trigger_reset is off\n");
               return;
       }

       ENA_CORE_MTX_LOCK(adapter);

       callout_halt(&adapter->timer_service, NULL);

       dev_up = ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter);

       ena_com_set_admin_running_state(ena_dev, false);
       ena_down(adapter);
       ena_free_mgmnt_irq(adapter);
       ena_disable_msix(adapter);
       ena_com_abort_admin_commands(ena_dev);
       ena_com_wait_for_abort_completion(ena_dev);
       ena_com_admin_destroy(ena_dev);
       ena_com_mmio_reg_read_request_destroy(ena_dev);

       adapter->reset_reason = ENA_REGS_RESET_NORMAL;
       ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);

       /* Finished destroy part. Restart the device */
       rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
           &adapter->wd_active);
       if (unlikely(rc != 0)) {
               device_printf(adapter->pdev,
                   "ENA device init failed! (err: %d)\n", rc);
               goto err_dev_free;
       }

       /* XXX dealloc and realloc MSI-X, probably a waste */
       rc = ena_enable_msix_and_set_admin_interrupts(adapter,
           adapter->num_queues);
       if (unlikely(rc != 0)) {
               device_printf(adapter->pdev, "Enable MSI-X failed\n");
               goto err_com_free;
       }

       /* If the interface was up before the reset bring it up */
       if (dev_up) {
               rc = ena_up(adapter);
               if (unlikely(rc != 0)) {
                       device_printf(adapter->pdev,
                           "Failed to create I/O queues\n");
                       goto err_msix_free;
               }
       }

       ENA_CORE_MTX_UNLOCK(adapter);

       return;

err_msix_free:
       ena_free_mgmnt_irq(adapter);
       ena_disable_msix(adapter);
err_com_free:
       ena_com_admin_destroy(ena_dev);
err_dev_free:
       device_printf(adapter->pdev, "ENA reset failed!\n");
       ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter);
       ENA_CORE_MTX_UNLOCK(adapter);
}

/**
* ena_attach - Device Initialization Routine
* @pdev: device information struct
*
* Returns 0 on success, otherwise on failure.
*
* ena_attach initializes an adapter identified by a device structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
**/
static void
ena_attach(device_t parent, device_t self, void *aux)
{
       struct pci_attach_args *pa = aux;
       struct ena_com_dev_get_features_ctx get_feat_ctx;
       static int version_printed;
       struct ena_adapter *adapter = device_private(self);
       struct ena_com_dev *ena_dev = NULL;
       uint16_t tx_sgl_size = 0;
       uint16_t rx_sgl_size = 0;
       pcireg_t reg;
       int io_queue_num;
       int queue_size;
       int rc;

       adapter->pdev = self;
       adapter->ifp = &adapter->sc_ec.ec_if;
       adapter->sc_pa = *pa;   /* used after attach for adapter reset too */

       if (pci_dma64_available(pa))
               adapter->sc_dmat = pa->pa_dmat64;
       else
               adapter->sc_dmat = pa->pa_dmat;

       pci_aprint_devinfo(pa, NULL);

       reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
       if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
               reg |= PCI_COMMAND_MASTER_ENABLE;
               pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
       }

       mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_SOFTNET);

       /* Set up the timer service */
       adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
       adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
       adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
       adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;

       if (version_printed++ == 0)
               device_printf(parent, "%s\n", ena_version);

       rc = ena_allocate_pci_resources(pa, adapter);
       if (unlikely(rc != 0)) {
               device_printf(parent, "PCI resource allocation failed!\n");
               ena_free_pci_resources(adapter);
               return;
       }

       /* Allocate memory for ena_dev structure */
       ena_dev = kmem_zalloc(sizeof(struct ena_com_dev), KM_SLEEP);

       adapter->ena_dev = ena_dev;
       ena_dev->dmadev = self;
       ena_dev->bus = kmem_zalloc(sizeof(struct ena_bus), KM_SLEEP);

       /* Store register resources */
       ((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
       ((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;

       ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;

       /* Device initialization */
       rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
       if (unlikely(rc != 0)) {
               device_printf(self, "ENA device init failed! (err: %d)\n", rc);
               rc = ENXIO;
               goto err_bus_free;
       }

       adapter->keep_alive_timestamp = getsbinuptime();

       adapter->tx_offload_cap = get_feat_ctx.offload.tx;

       /* Set for sure that interface is not up */
       ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEV_UP, adapter);

       memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
           ETHER_ADDR_LEN);

       /* calculate IO queue number to create */
       io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);

       ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
           io_queue_num);
       adapter->num_queues = io_queue_num;

       adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;

       /* calculate ring sizes */
       queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
           &rx_sgl_size, &get_feat_ctx);
       if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
               rc = ENA_COM_FAULT;
               goto err_com_free;
       }

       adapter->reset_reason = ENA_REGS_RESET_NORMAL;

       adapter->tx_ring_size = queue_size;
       adapter->rx_ring_size = queue_size;

       adapter->max_tx_sgl_size = tx_sgl_size;
       adapter->max_rx_sgl_size = rx_sgl_size;

#if 0
       /* set up dma tags for rx and tx buffers */
       rc = ena_setup_tx_dma_tag(adapter);
       if (unlikely(rc != 0)) {
               device_printf(self, "Failed to create TX DMA tag\n");
               goto err_com_free;
       }

       rc = ena_setup_rx_dma_tag(adapter);
       if (unlikely(rc != 0)) {
               device_printf(self, "Failed to create RX DMA tag\n");
               goto err_tx_tag_free;
       }
#endif

       /* initialize rings basic information */
       device_printf(self, "initialize %d io queues\n", io_queue_num);
       ena_init_io_rings(adapter);

       /* setup network interface */
       rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
       if (unlikely(rc != 0)) {
               device_printf(self, "Error with network interface setup\n");
               goto err_io_free;
       }

       rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
       if (unlikely(rc != 0)) {
               device_printf(self,
                   "Failed to enable and set the admin interrupts\n");
               goto err_ifp_free;
       }

       callout_init(&adapter->timer_service, CALLOUT_MPSAFE);
       callout_setfunc(&adapter->timer_service, ena_timer_service, adapter);

       /* Initialize reset task queue */
       rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
           ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
       if (unlikely(rc != 0)) {
               ena_trace(ENA_ALERT,
                   "Unable to create workqueue for reset task\n");
               goto err_ifp_free;
       }

       /* Initialize statistics */
       ena_alloc_counters_dev(adapter, &adapter->dev_stats, io_queue_num);
       ena_alloc_counters_hwstats(adapter, &adapter->hw_stats, io_queue_num);
#if 0
       ena_sysctl_add_nodes(adapter);
#endif

       config_interrupts(self, ena_rss_init_default);

       /* Tell the stack that the interface is not active */
       if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
       ena_set_stopping_flag(adapter, false);

       ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter);
       return;

err_ifp_free:
       if_detach(adapter->ifp);
err_io_free:
       ena_free_all_io_rings_resources(adapter);
#if 0
       ena_free_rx_dma_tag(adapter);
err_tx_tag_free:
       ena_free_tx_dma_tag(adapter);
#endif
err_com_free:
       ena_com_admin_destroy(ena_dev);
       ena_com_delete_host_info(ena_dev);
       ena_com_mmio_reg_read_request_destroy(ena_dev);
err_bus_free:
       kmem_free(ena_dev->bus, sizeof(struct ena_bus));
       kmem_free(ena_dev, sizeof(struct ena_com_dev));
       ena_free_pci_resources(adapter);
}

/**
* ena_detach - Device Removal Routine
* @pdev: device information struct
*
* ena_detach is called by the device subsystem to alert the driver
* that it should release a PCI device.
**/
static int
ena_detach(device_t pdev, int flags)
{
       struct ena_adapter *adapter = device_private(pdev);
       struct ena_com_dev *ena_dev = adapter->ena_dev;
#if 0
       int rc;
#endif

       /* Make sure VLANS are not using driver */
       if (VLAN_ATTACHED(&adapter->sc_ec)) {
               device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
               return (EBUSY);
       }

       ena_com_set_admin_running_state(ena_dev, false);
       ENA_CORE_MTX_LOCK(adapter);
       ena_down(adapter);
       ENA_CORE_MTX_UNLOCK(adapter);

       /* Free reset task and callout */
       callout_halt(&adapter->timer_service, NULL);
       callout_destroy(&adapter->timer_service);
       workqueue_wait(adapter->reset_tq, &adapter->reset_task);
       workqueue_destroy(adapter->reset_tq);
       adapter->reset_tq = NULL;

       ena_free_all_io_rings_resources(adapter);

       if (likely(adapter->rss_support))
               ena_com_rss_destroy(ena_dev);

#if 0
       rc = ena_free_rx_dma_tag(adapter);
       if (unlikely(rc != 0))
               device_printf(adapter->pdev,
                   "Unmapped RX DMA tag associations\n");

       rc = ena_free_tx_dma_tag(adapter);
       if (unlikely(rc != 0))
               device_printf(adapter->pdev,
                   "Unmapped TX DMA tag associations\n");
#endif

       /* Reset the device only if the device is running. */
       if (ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter))
               ena_com_dev_reset(ena_dev, adapter->reset_reason);

       ena_com_delete_host_info(ena_dev);

       ena_free_irqs(adapter);

       ena_com_abort_admin_commands(ena_dev);

       ena_com_wait_for_abort_completion(ena_dev);

       ena_com_admin_destroy(ena_dev);

       ena_com_mmio_reg_read_request_destroy(ena_dev);

       ena_free_pci_resources(adapter);

       ena_free_counters((struct evcnt *)&adapter->hw_stats,
           sizeof(struct ena_hw_stats),
           offsetof(struct ena_hw_stats, rx_packets));
       ena_free_counters((struct evcnt *)&adapter->dev_stats,
           sizeof(struct ena_stats_dev),
           offsetof(struct ena_stats_dev, wd_expired));

       if (adapter->ifp != NULL) {
               ether_ifdetach(adapter->ifp);
               if_detach(adapter->ifp);
       }
       ifmedia_fini(&adapter->media);

       mutex_destroy(&adapter->global_mtx);

       if (ena_dev->bus != NULL)
               kmem_free(ena_dev->bus, sizeof(struct ena_bus));

       if (ena_dev != NULL)
               kmem_free(ena_dev, sizeof(struct ena_com_dev));

       return 0;
}

/******************************************************************************
******************************** AENQ Handlers *******************************
*****************************************************************************/
/**
* ena_update_on_link_change:
* Notify the network interface about the change in link status
**/
static void
ena_update_on_link_change(void *adapter_data,
   struct ena_admin_aenq_entry *aenq_e)
{
       struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
       struct ena_admin_aenq_link_change_desc *aenq_desc;
       int status;
       struct ifnet *ifp;

       aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
       ifp = adapter->ifp;
       status = aenq_desc->flags &
           ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;

       if (status != 0) {
               device_printf(adapter->pdev, "link is UP\n");
               ENA_FLAG_SET_ATOMIC(ENA_FLAG_LINK_UP, adapter);
               if_link_state_change(ifp, LINK_STATE_UP);
       } else {
               device_printf(adapter->pdev, "link is DOWN\n");
               ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_LINK_UP, adapter);
               if_link_state_change(ifp, LINK_STATE_DOWN);
       }
}

/**
* This handler will called for unknown event group or unimplemented handlers
**/
static void
unimplemented_aenq_handler(void *data,
   struct ena_admin_aenq_entry *aenq_e)
{
       return;
}

static struct ena_aenq_handlers aenq_handlers = {
   .handlers = {
           [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
           [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
   },
   .unimplemented_handler = unimplemented_aenq_handler
};

#ifdef __FreeBSD__
/*********************************************************************
*  FreeBSD Device Interface Entry Points
*********************************************************************/

static device_method_t ena_methods[] = {
   /* Device interface */
   DEVMETHOD(device_probe, ena_probe),
   DEVMETHOD(device_attach, ena_attach),
   DEVMETHOD(device_detach, ena_detach),
   DEVMETHOD_END
};

static driver_t ena_driver = {
   "ena", ena_methods, sizeof(struct ena_adapter),
};

devclass_t ena_devclass;
DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
MODULE_DEPEND(ena, pci, 1, 1, 1);
MODULE_DEPEND(ena, ether, 1, 1, 1);

/*********************************************************************/
#endif /* __FreeBSD__ */

#ifdef __NetBSD__
CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
       ena_detach, NULL);
#endif /* __NetBSD */